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Abstract 16 

Several functional classes of short noncoding RNAs are 17 

involved in manifold regulatory processes in eukaryotes, including, 18 

among the best characterized, miRNAs. One of the most intriguing 19 

regulatory networks in the eukaryotic cell is the mito-nuclear 20 

crosstalk: recently, miRNA-like elements of mitochondrial origin, 21 

called smithRNAs, were detected in a bivalve species, Ruditapes 22 

philippinarum. These RNA types originate in the organelle, but were 23 

shown in vivo to regulate nuclear genes. Since miRNA genes evolve 24 

easily de novo with respect to protein coding genes, in the present 25 

work we estimate the probability with which a newly arisen smithRNA 26 

finds a suitable target in the nuclear transcriptome. Simulations with 27 

transcriptomes of twelve bivalve species suggest that this probability 28 

is not species-specific and high: one in a hundred million (1×10−8) if 29 

five mismatch between the smithRNA and the 3’ mRNA are allowed, 30 

yet many more are allowed in animals. We propose that novel 31 

smithRNAs may easily evolve as exaptations of the pre-existing 32 

mitochondrial genome architecture, where suitable secondary 33 

structures are common and constitutive. In turn, the ability of evolving 34 

novel smithRNAs may have played a pivotal role in mito-nuclear 35 

interactions during animal evolution, including the intriguing 36 

possibility of acting as speciation triggers.  37 
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RNA-silencing pathways 38 

Beside well-known ribosomal, messenger, and transfer RNAs, 39 

many short and long RNA type are known from the cell cytoplasm. 40 

Among short noncoding RNAs (sncRNAs), small interfering RNAs 41 

and microRNAs play a pivotal role in the regulation of eukaryotic 42 

cytoplasmic translation, and involve a DICER-related protein and an 43 

Argonaute-related protein (Shabalina and Koonin 2008; Ghildiyal and 44 

Zamore 2009; Auyeung et al. 2013; Fang and Bartel 2015; 45 

Michlewski and Cáceres 2019). DICER proteins are required to 46 

process the immature RNA transcript to its functional form (Bernstein 47 

et al. 2001; Bartel 2018), while Argonaute proteins load the mature 48 

sncRNA and take part in the repression of the target transcripts 49 

(Bartel 2009; O’Brien et al. 2018). 50 

Primary small interfering RNAs (siRNAs) are generally 51 

produced from exogenous double stranded RNAs; conversely, 52 

primary microRNAs (miRNAs) are transcribed from specific genomic 53 

loci (for instance, Ghildiyal et al. 2008; O’Brien et al. 2018; and 54 

references therein). However, this distinction is blurred, since siRNAs 55 

have been documented arising from selfish elements integrated in 56 

the genome (Yang and Kazazian Jr 2006; Chen et al. 2012), hairpins 57 

or endogenous double stranded RNAs (Czech et al. 2008; 58 

Kawamura et al. 2008; Okamura et al. 2008; Tam et al. 2008; 59 
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Watanabe et al. 2008; Ghildiyal and Zamore 2009). Moreover, 60 

siRNAs involve a complete base pairing with the target mRNA, 61 

whereas miRNAs may show more flexible complementarity to their 62 

targets. This is the case of metazoans, where a short sequence at 63 

the 5’ of the mature miRNA, called the “seed”, is crucial in the 64 

interaction with mRNAs (Shabalina and Koonin 2008; Ghildiyal and 65 

Zamore 2009; Bofill-De Ros et al. 2020). 66 

Pathways for RNA interference (RNAi) have deep eukaryotic 67 

roots (Shabalina and Koonin 2008). The ancestral forms of RNAi 68 

most likely worked as defense mechanisms against viruses and 69 

transposons (Li and Ding 2005; Matzke and Birchler 2005). However, 70 

alternative hypotheses have been put forward. RNA-mediated gene 71 

silencing and suppression of exogenous or selfish elements may 72 

have been an exaptation after the evolution of an RNA machinery 73 

used for centromere assembly and proper formation of telomeres 74 

during eukaryogenesis (Cavalier-Smith 2010). Alternatively, a 75 

qualitative system drift has been proposed for RNAi, starting from the 76 

prokaryotic antisense RNA gene regulation mechanism (Torri et al. 77 

2022). 78 

It is commonly accepted that the last eukaryotic common 79 

ancestor possessed a proto-RNAi mechanism (Cerutti and Casas-80 

Mollano, 2006; Shabalina and Koonin 2008; Moran et al. 2017; Bråte 81 
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et al. 2018; Velandia-Huerto et al. 2022); moreover, it is increasingly 82 

clear that miRNAs arose multiple times among eukaryotes, exploiting 83 

the same ancient RNAi components (Moran et al. 2017; Yazbeck et 84 

al. 2017; Bråte et al. 2018; Velandia-Huerto et al. 2022; but see 85 

Poole et al. 2014). Conversely, miRNAs and their hairpin precursors 86 

have been shown to be highly conserved within eukaryotic 87 

supergroups (Hertel and Stadler 2015; Yazbeck et al. 2017; 88 

Velandia-Huerto et al. 2022). 89 

In metazoans, hundreds of conserved miRNA families have 90 

been identified (for instance, Yazbeck et al. 2017; Velandia-Huerto et 91 

al. 2022). If confirmed by the growing knowledge about miRNAs in 92 

non-model species, this would mean that the expansion of miRNA 93 

families in the kingdom is coincidental with, if not associated to, the 94 

diversification of body plans and ultimately the evolution of bilaterians 95 

(Hertel and Stadler 2015; Dexheimer and Cochella 2020; Desvignes 96 

et al. 2021; Ma et al. 2021). However, multicellular organisms are 97 

particularly prone to the evolution of complex regulatory networks by 98 

neutral processes, and the evolution of miRNAs in animals may not 99 

be adaptive at its roots (Lynch 2007). 100 

To date, there is virtually no eukaryotic cell phenomenon 101 

which has not been shown to be regulated by miRNAs, from stress 102 

response (Larriba and del Mazo 2016; Riggs et al. 2018) to 103 
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biomineralization (van Wijnen et al. 2013; Jiao et al. 2014), from 104 

immunity (Chen et al. 2013; Wang et al. 2018) to development and 105 

aging (Yekta et al. 2008; Kim and Lee 2019). 106 

  107 
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Retrograde signaling through RNA-silencing: smithRNAs 108 

The mitochondrion-to-nucleus communication is typically 109 

referred to as “retrograde signaling” or “Mitochondrial Retrograde 110 

Response” (MRR; Ovciarikova et al. 2022), because it was always 111 

clear that nucleus ought to regulate mitochondria in the eukaryotic 112 

cell, but the reverse regulatory function was not immediately 113 

understood. MRR may be mediated by cholesterol, reactive oxygen 114 

species and Ca2+ at nucleus-mitochondrion contact sites (Connelly et 115 

al. 2021). However, there are short RNAs (Maniataki and Mourelatos 116 

2005; Weber-Lofti and Dietrich 2018), long non-coding RNAs 117 

(Vendramin et al. 2017; Weber-Lofti and Dietrich 2018) and peptides 118 

(Lee et al. 2013; Cohen 2014) of mitochondrial origin that have been 119 

proposed to interact with the nucleus. 120 

Recently, it has been shown that sncRNAs with some 121 

similarities with miRNAs are involved in MRR as well; they were 122 

termed small mitochondrial highly expressed RNAs (smithRNAs) and 123 

were originally found in the Manila clam Ruditapes philippinarum 124 

(Pozzi et al. 2017). Small RNAs were already known from animal 125 

mitochondria (e.g., Mercer et al. 2011; Ro et al. 2013; Bottje et al. 126 

2017; Riggs et al. 2018), but they had always been associated to 127 

mitochondrial targets (Mercer et al. 2011; Ro et al. 2013; Bottje et al. 128 

2017). Conversely, smithRNAs are transcribed from the 129 
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mitochondrial genome, but they regulate nuclear targets by definition. 130 

The complementarity of a small region of the sncRNA with the 3’ 131 

UTR of target messengers was shown to be a good predictor of 132 

regulated target genes (Pozzi et al. 2017; Passamonti et al. 2020). 133 

The original in silico prediction of smithRNAs was 134 

subsequently confirmed by in vivo experiments, which also showed 135 

that smithRNAs can affect the epigenetic status of the nuclear 136 

genome by regulating histone methylation/acetylation (Passamonti et 137 

al. 2020). Finally, far from being a bivalve oddity, smithRNAs were 138 

suggested to be present in distantly related bilaterians (Passamonti 139 

et al. 2020). Notably, putative mitochondrial noncoding RNAs have 140 

been also found in Arabidopsis thaliana (Marker et al. 2002), as well 141 

as in other plants (Weber-Lofti and Dietrich 2018). 142 

As most sncRNAs, smithRNAs may well be genetic elements 143 

that commonly arise de novo during evolution (Velandia-Huerto et al. 144 

2022; and references therein). Duplication, reshuffling, transposition, 145 

retrotransposition, chimeric phenomena account for most new genes 146 

(Andersson et al. 2015; Schlotterer 2015; VanKuren and Long 2018; 147 

Zhao et al. 2021), but small noncoding loci like miRNAs may 148 

represent the most common source of de novo genes (Lu et al. 149 

2008b; Lyu et al. 2014; Zhao et al. 2021). Most miRNAs arising de 150 

novo are probably functionless (Lu et al. 2008b; Berezikov et al. 151 
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2010) or even dead-on-arrival (Petrov et al. 1996; Petrov and Hartl 152 

1998), but many may become adaptive miRNAs (Lu et al. 2008a; 153 

Mohammed et al. 2014; Lyu et al. 2014; Mohammed et al. 2018; 154 

Zhao et al. 2021). 155 

Therefore, it can be stated that (i) at least some smithRNAs 156 

are miRNA-like molecules, structurally simple and requiring flexible 157 

base pairing to nuclear targets; (ii) at least some smithRNAs exert 158 

significant and broad-scope effects on the associated nuclear 159 

genome; (iii) smithRNAs may be widespread among animals and 160 

may have been present in the metazoan common ancestor; (iv) 161 

miRNA-like elements can easily evolve de novo, be conserved as 162 

adaptive traits, or be swept away by natural selection. Therefore, a 163 

fundamental evolutionary question arises: how common is the 164 

emergence of new smithRNAs and of novel smithRNA functions? 165 

  166 
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Target availability 167 

As stated, at least some smithRNAs behave as animal 168 

miRNAs and require only partial pairing with 3’ UTRs of target 169 

nuclear messengers. Namely, the extended seed region required to 170 

basepair and regulate the target encompasses nucleotides 1-8 of the 171 

mature miRNA molecule (Bartel 2009; McGeary et al. 2019). 172 

Although cases of alternative and noncanonical pairing sites are 173 

known (see Tan et al. 2014; Bartel 2018; McGeary et al. 2019; Bofill-174 

De Ros et al. 2020; Rissland 2020; Komatsu et al. 2023; and 175 

reference therein), a handful of nucleotides are anyway involved in 176 

target regulation. 177 

To provide a rough estimate of the probability of a random 178 

sequence to behave as a miRNA-like regulatory element for a 179 

transcript within the same organism, we generated 189,339,429 180 

random pri-miRNA-like sequences using custom-tailored Python 181 

scripts. The pri-miRNA is the canonical primary transcript of a miRNA 182 

element: it will be cleaved by the protein DROSHA within the nucleus 183 

at specific sites associated to its secondary structure, producing the 184 

pre-miRNA. As described above, the pre-miRNA will be cleaved by 185 

DICER in the cytoplasm to produce the functional molecule (Ghildiyal 186 

and Zamore 2009; García-López et al. 2013; Ha and Kim 2014; 187 

Bartel 2018; and reference therein). Sequences were randomly 188 
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generated following the canonical pri-miRNA structure detailed in 189 

Bartel (2018): all sequences were then matured in silico, respecting 190 

the sites of DROSHA and DICER cleavage (see Ha and Kim 2014; 191 

Bartel 2018). 192 

Since functional smithRNAs have been demonstrated in vivo 193 

in the Manila clam only (Passamonti et al. 2020), we assembled 194 

transcriptomes from 12 bivalve species for which transcriptome data 195 

are available on GenBank: Ruditapes decussatus (SRR527757); 196 

Arctica islandica (SRR1559269); Galeomma turtoni (SRR1560274); 197 

Sphaerium nucleus (SRR1561723); Laternula elliptica 198 

(SRR1687084); Lyonsia floridana (SRR1560310); Margaritifera 199 

margaritifera (SRR1560312); Arca noae (SRR1559268); Mytilus 200 

edulis (SRR1560431); Placopecten magellanicus (SRR1560445); 201 

Solemya velum (SRR330465); Yoldia eightsii (SRR3205073). 202 

Transcriptomes were curated using the software FastQC 203 

(Andrews 2010), Trimmomatic (Bolger et al. 2014), BUSCO (Simão 204 

et al. 2015), and Trinity (Grabherr et al. 2011; Haas et al. 2013). The 205 

software Kraken2 (Wood et al. 2019) was used to classify potential 206 

contaminants of human and prokaryotic origin, using a custom-207 

assembled database of prokaryotic sequences updated to June 208 

2019. Peptide detection on noisy matured sequences was carried out 209 

with FrameDP (Gouzy et al. 2009), and 3’ UTRs were predicted 210 
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using ExUTR (Huang and Teeling 2017) and the invertebrate dataset 211 

of 3’ UTRs. 212 

In silico-matured RNAs were mapped onto assembled 213 

transcriptomes using Bowtie (Langmead et al. 2009), using the minus 214 

strand of the Bowtie index and requiring at least a perfect match 215 

between the 3’ UTR and nucleotides 2-8 of the simulated miRNA-like 216 

element, thus conservatively restricting the analysis to “canonical” 217 

targeting only. Scripts, commands, and settings are available by YLC 218 

and AF upon request. 219 

The number of simulated miRNA-like elements able to find 220 

targets in the transcriptome were normalized over the number of k-221 

mers (k = 22 nucleotides) available in the 3’ UTRs of the focal 222 

transcriptome: the result was divided by 189,339,429 (the number of 223 

random pri-miRNAs) to get an estimate of the probability for a single 224 

miRNA-like element to find a suitable target in a given k-mer. 225 

The probability for a random pri-miRNA-like sequence to result 226 

in a mature miRNA having a target on a transcriptome is 227 

exponentially linked to the number of mismatches outside the seed 228 

region, irrespective of the species the transcriptome is obtained from 229 

(Fig. 1). Specifically, this probability is approximately one in a 230 

hundred million (1×10−8) if exactly five mismatches between the 231 
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mature miRNA-like molecule and a 3’ UTR are considered (provided 232 

that the seed basepairs perfectly). 233 

Recall the large amount of replicating mitochondrial genomes 234 

in the germline, and the huge number of individuals and populations 235 

of these species, one in a hundred million should be regarded as a 236 

high chance for a de novo-arisen mitochondrial miRNA-like element 237 

to find a regulative target in the nuclear transcriptome of the same 238 

cell. Notably, this probability does not change across species, which 239 

means that it is independent from nuclear transcriptome features. 240 

It is worth noting that we conservatively focused on the 2-8 241 

eptamer seed pairing, but other types of seed pairing are 242 

conceivable, and, thus, this probability is largely underestimated. 243 

Moreover, more than five mismatches are normally allowed in 244 

miRNA-driven regulation in animals (Shabalina and Koonin 2008; 245 

Ghildiyal and Zamore 2009; Bofill-De Ros et al. 2020), thus again 246 

increasing the chances for a de novo mitochondrial miRNA-like 247 

element, since the decimal logarithm of probability is positively 248 

correlated with mismatches outside the seed (r = +0.9858; Fig. 1). 249 

If this trend will be confirmed outside bivalves, it will be 250 

tempting to conclude that the DNA chemistry and nucleotide 251 

composition of eukaryotes, as well as constraints on pri-miRNA 252 

structures, do result in a significant probability that a miRNA-like 253 
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element finds a suitable nuclear target, after having originated merely 254 

by chance and random mutations on a mitochondrial genome. 255 

  256 
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Mitochondrial secondary structures are easily co-opted to deliver new 257 

functions 258 

Obviously, the probability of a simulated sequence to match a 259 

3’ UTR is not enough to state that smithRNA commonly arise de 260 

novo. A smithRNA is a sncRNA associated to a specific biogenesis 261 

pathway, which requires molecular signals for processing enzymes, 262 

such as secondary structures. 263 

In the traditional view, the animal mitochondrial genome is 264 

believed to be small and compact, containing a conserved set of 265 

protein-coding genes associated with the mitochondrial oxidative 266 

phosphorylation (OXPHOS) pathway (Boore 1999). However, recent 267 

research has shown that this may not always be the case, 268 

challenging the notion of ubiquitous features in metazoan 269 

mitochondrial genomics (Lavrov et al. 2013; Breton et al. 2014; 270 

Formaggioni et al. 2021). Actually, animal mitochondrial genomes 271 

are highly variable for what concerns genome architecture (Lavrov 272 

and Pett 2016); genome size (Pu et al. 2019; Hemmi et al. 2020); 273 

use of different genetic codes (Lavrov et al. 2013; Li et al. 2018); 274 

gene arrangement (Trindade Rosa et al. 2017; Pu et al. 2019; 275 

Hemmi et al. 2020; Monnens et al. 2020; Ghiselli et al. 2021; 276 

Kutyumov et al. 2021); Doubly Uniparental Inheritance (DUI; 277 

Passamonti and Ghiselli 2009; Zouros and Rodakis 2019; 278 
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Passamonti and Plazzi 2020); and post-transcriptional regulation 279 

(Osigus et al. 2017; Schuster et al. 2017). 280 

The finetuning of some of these mechanisms (for instance, 281 

DUI, post-transcriptional regulation) and the origin of these features 282 

involves a complex crosstalk with nuclear genomes, as well as the 283 

availability of regulatory sequences and signals along the 284 

mitochondrial genome (e.g., Ghiselli et al. 2013, 2021). For example, 285 

since mitochondrial DNA is normally transcribed as a single 286 

polycistron (e.g., Hillen et al. 2018), structural signals ought to be 287 

present to cleave single transcripts, which are normally found 288 

between protein coding genes as tRNA genes or short noncoding 289 

regions with stem-and-loop secondary structures (e.g., Plazzi et al. 290 

2013; Bettinazzi et al. 2016). 291 

Therefore, mitochondrial genomics itself requires multiple 292 

secondary structures to regulate the organellar functions. Moreover, 293 

many of these structural sites are processing and cleavage signals, 294 

as is the case for protein coding gene spacers, that are excised to 295 

separate single transcripts. These RNA hairpins are normally 296 

processed and degraded as part of the normal cellular turnover of 297 

macromolecules. 298 

However, it is easy to speculate that a hairpin might survive 299 

being directly co-opted as pre-miRNA. It is sufficient that its 300 
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secondary structure can be recognized by some DICER ortholog: 301 

hairpin structure that are normally found in cleavage signals are 302 

indeed very similar to hairpin structure normally shown by pre-303 

miRNAs. In that case, the RNA would be cleaved and a miRNA 304 

would be produced skipping the pri-miRNA/DROSHA stage – and will 305 

find a suitable nuclear target one in a hundred million times, and 306 

probably more (as per our simulation above). Other examples of 307 

DROSHA-independent biogenesis of miRNAs are indeed known 308 

(Ruby et al. 2007; Babiarz et al. 2008; O’Brien et al. 2018). 309 

Obviously, a hairpin excised within the mitochondrion must be 310 

delivered to the cytoplasm prior to the final, and in this case only, 311 

maturation step driven by DICER. In fact, many studies found 312 

mitochondrial RNA outside the source organelle, which accounts for 313 

the possibility for RNA molecules to be exported. For example, 314 

several tRNAs of mitochondrial origin were found in the cytoplasm of 315 

human cells, even in association with Ago2, an Argonaute protein 316 

included in the formation of the functional complex involved in RNA 317 

silencing (Maniataki and Mourelatos 2005). Mitochondrially-encoded 318 

RNAs can bind Ago2 as well (Pozzi and Dowling 2022), and long 319 

non-coding RNAs from the mitochondrion were also reported within 320 

the nucleus (Landerer et al. 2011; Rackham et al. 2011; Vendramin 321 

et al. 2017). Interestingly, mitochondria of R. philippinarum have 322 
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been observed while releasing their content in the cytoplasm (Milani 323 

et al. 2011), which would be a straightforward mechanism for 324 

smithRNAs to enter cytoplasm, at least in this species. 325 

RNAi driven by mitochondria might be a remnant of their origin 326 

as free-living, aerobic prokaryotes. Notably, the intracellular 327 

pathogen Mycobacterium marinum synthetize small, antisense 328 

regulatory RNAs which are exported to the host cell and processed 329 

as if they were miRNAs (Furuse et al. 2014) and, generally speaking, 330 

many bacterial small RNAs show complex secondary structures 331 

(Wagner and Simons 1994). Indeed, a connection between small 332 

antisense regulatory RNAs in prokaryotes and the cytoplasmic proto-333 

RNAi system in eukaryotes has been suggested (Torri et al. 2022). In 334 

sum, we propose that smithRNAs arise as an exaptation at the 335 

molecular level of secondary structures that were always present in 336 

mitochondrial genomes, possibly since their origin as endosymbionts. 337 

Moreover, we also predict that this phenomenon might be more 338 

common than thought, given the similar selective constraints on 339 

hairpins. 340 

  341 
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Retrograde RNAi and mitonuclear co-adaptation 342 

Mitochondrial and nuclear genomes must coevolve to provide 343 

an efficient energy production (Hill 2019). The electron transport 344 

system of mitochondria (ETS), to which the efficiency of energy 345 

production through OXPHOS is strictly linked, is delivered by a 346 

complex assembly of nuclear and mitochondrial subunits that are 347 

forced to function together (Rand et al. 2004). An effective OXPHOS 348 

is achieved by three different mechanisms: (i) protein-protein 349 

interaction forming the ETS complexes (Phillips et al. 2010); (ii) 350 

protein-RNA/DNA interactions during transcription and translation of 351 

mitochondrial genes (Taanmann 1999; D’Souza and Minczuck 2018); 352 

and (iii) protein-DNA interaction in the replication of the mitochondrial 353 

genome (Clayton 2000). 354 

In fact, speciation soon started to be discussed in the context 355 

of mito-nuclear coadaptation, as a mechanism that may easily evolve 356 

mito-nuclear incompatibilities (Dowling et al 2008; Gershoni et al. 357 

2009; Burton and Barreto 2012). Examples of these mitonuclear 358 

incompatibilities are for instance available for Drosophila and 359 

Tigriopus copepods (see Hill 2019; and references therein). 360 

Although the abovementioned system may suggest a strict 361 

need of mito-nuclear coadaptation, other systems point in the 362 

opposite direction. In bivalves with DUI, two mitochondrial genomes 363 
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are transmitted to offspring in a sex-linked way (Passamonti and 364 

Ghiselli 2009; Zouros and Rodakis 2019; Passamonti and Plazzi 365 

2020) and there is evidence of a functional assembly of the ETS with 366 

two, highly divergent sets of mitochondrial proteins. Therefore, the 367 

correct protein-protein interaction forming the ETS complexes is less 368 

strict than previously thought, at least in these bivalve mollusks. 369 

The existence of mitochondrially mediated RNAi provides a 370 

fourth mechanism for the evolution of mito-nuclear incompatibilities, 371 

which can arise much faster than the other three. When a set of 372 

smithRNAs is adapted to regulate nuclear gene expression in a 373 

species, the system could easily produce genetic barriers with other 374 

species having a differently adapted smithRNA subset. To our 375 

knowledge, there is currently no study on this issue, but we strongly 376 

suggest that the cases of mito-nuclear incompatibilities may be 377 

reconsidered in light of the role of the mitochondrial genome in 378 

regulating nuclear gene expression. In this conception, smithRNAs 379 

(and maybe other MRR mechanisms) may represent classical 380 

Dobzhansky-Muller speciation triggers (Dobzhansky 1937; Muller 381 

1942), which lead to the evolution of postzygotic genetic barriers. 382 

  383 



21 
 

Concluding remarks 384 

Notwithstanding their recent discovery (Pozzi et al. 2017), it is 385 

likely that smithRNAs are not a peculiar feature of a single bivalve 386 

species: they are probably widespread among metazoans 387 

(Passamonti et al. 2020). This does not necessarily imply that they 388 

are phylogenetically related, nor that the origin of smithRNAs is a 389 

single event in evolutionary history. The peculiar features of 390 

mitochondrial genomes involve the possibility that smithRNAs 391 

spontaneously arose multiple times from the secondary structure 392 

repertoire that is normally available along the mitochondrial genome. 393 

Therefore, it is important to characterize the smithRNA toolbox 394 

in as many animal species as possible, and functional studies are 395 

required to prove that smithRNAs are regulatory elements in vivo. 396 

This will increase the list of functions smithRNAs can exert in the cell; 397 

moreover, light will be shed on the evolutionary conservation of 398 

smithRNAs and on their multiple origin through molecular exaptation, 399 

being the two things not mutually exclusive. Finally, if smithRNA 400 

precursors (or at least some of them) arise as exaptation of ancient 401 

legacies from free living bacteria, smithRNAs might be strictly 402 

connected with early eukaryogenesis. 403 

  404 
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Figure Legends 788 

Figure 1. Frequency of miRNA-like simulated molecules that 789 

found at least one suitable target on 3’ UTRs of the same species. 790 

The seed was conservatively defined as nucleotides 2-8 of the 791 

miRNA; a match was accepted if it was perfect at the seed and if it 792 

included a maximum of 5 mismatches outside. An example of an 793 

alignment with three mismatches is included in the insert. The 794 

number of elements with an acceptable match was normalized on the 795 

number of 22-mers in the relative 3’ UTR set and divided by the 796 

number of simulated pri-miRNAs. The y axis is Log-transformed for 797 

the sake of readability. Regression line details: y = 1.0757x − 798 

12.8616; R2 = 0.9719; P < 2×10−16***. 799 




