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Abstract—High Performance Computing (HPC) systems are
complex machines that need to be operated at their maximum
potential to recoup their investment cost and to mitigate their
environmental impact. Anomalous conditions hindering the cor-
rect usage of the supercomputing nodes are a significant prob-
lem. Hence, the development of automated anomaly detection
techniques remains a vital area of research. Machine Learning
(ML) models demonstrated to be good at detecting anomalies
on individual nodes. However, the potential of combining data
from multiple computing nodes and associated ML models has
not been explored yet. Federated Learning (FL) can address this
shortcoming, by allowing individual models to learn from each
other. This paper applies FL to improve the performance of
anomaly detection models for HPC systems. The approach has
been validated on data from an actual supercomputer, obtaining
an improvement in the average f-score from 0.31 to 0.84. We
also show how FL can significantly shorten the data collection
period needed to create a training set. While ML models need,
on average, 4.5 months of training data, FL reduces the training
set size to 1.2 weeks – a 15x reduction.

Index Terms—Federated Learning, High Performance Com-
puting, Anomaly Detection, Machine Learning

I. INTRODUCTION

High Performance Computing (HPC) systems, data centers,
and warehouse-scale computing are vital aspects of today’s
industry and society [1]. They comprise several computing
rooms, each having many racks with tens/hundreds of com-
puting nodes. Each node is powered by heterogeneous process-
ing units including CPUs and accelerators (e.g. GPU, NPU,
FPGA); users submit jobs running as parallel applications.
Supercomputers are becoming increasingly sophisticated, as
the requirements for computer performance also increase. A
very significant issue is the detection of fault conditions.
Historically, system management was done using scripts and
the intervention of system administrators; automated tools to
detect anomalies in HPC nodes would be extremely beneficial
[2]. Log-based analysis has been typically conducted post-
mortem to understand the cause of failures that have happened
[3]. Recently, another research line exploited the data collected
from current supercomputers [4], which HW sensors and SW
probes to monitor the status of the different components.
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Most data-driven approaches drew inspiration from Machine
Learning (ML) and Deep Learning (DL) domain [5], including
supervised approaches that assume labeled training data [6]
and unsupervised ones [7]. Semi-supervised models have
been demonstrated to be very good at merging the strengths
from both areas’ weaknesses [8]. These models are tightly
connected to a specific HPC node, that is the HPC node
whose data has been used for training. However, the node
failures tend to be comparable and to follow similar patterns.
Hence, combining information from multiple HPC nodes can
aid automated anomaly detection; for this scope, we employ
Federated Learning (FL) [9]. While FL has been used for
anomaly detection [9], this is the first application to the HPC
domain. We focus on semi-supervised models for anomaly
detection of HPC systems, as they have been proven to be a
good practical trade-off between detection accuracy and less
stringent requirements in terms of available annotated data. We
demonstrate the effectiveness of our approach by validating it
on data coming from a real HPC system1.

The main contributions of this paper are the following:
• We apply FL to enhance semi-supervised anomaly detec-

tion models for HPC nodes (this is the first application of
FL in this domain); we observe a steep improvement in
detection accuracy, with average f-score rising from 0.31
(no FL) to 0.84 (using FL).

• We additionally demonstrate how FL can reduce the
training set size needed to train the anomaly detection
models – while the non-FL approach requires 4.5 months
of training data to obtain high accuracy, the FL approach
has equivalent results in just 1.2 weeks.

II. RELATED WORKS

In HPC, anomalies are time periods in which computing
jobs turn out to be incomplete or erroneous, affecting the
quality of computing services provided to the users. The
vast majority of data generated by supercomputers are non-
anomalous. Thus due to unbalance in data, typical supervised
anomaly detection approaches are not well-suited without
the adoption of data re-balancing mechanisms. Additionally,
annotated data is not always available; this is only partially

1Namely Marconi100, hosted at CINECA facilities – the Italian supercom-
puting center – in Bologna. https://www.hpc.cineca.it/hardware/marconi100



Fig. 1. Semi-Supervised Anomaly Detection for HPC using FL

mitigated by SW tools recording the status of HPC nodes,
such as Nagios2. Thus, supervised approaches remain not
applicable to all HPC contexts. Recently, semi-supervised
anomaly detection techniques have been proposed; they exploit
the fact that the most of data is normal [10]. A DL model
called autoencoder is used to learn the healthy state of a
supercomputer. The autoencoder is trained using only normal
samples; it learns the normal behavior in its latent state.
At test time the reconstruction error is used to discriminate
between normal and anomalous data. In all cases, a different
DL model is needed for each computing node. FL has been
used to facilitate anomaly detection in several disciplines, from
network anomaly detection [9] to industrial settings [11]. FL
allows DL models to train and learn from each other without
sharing their data. To the best of our knowledge, this is the
first FL application to anomaly detection in HPC.

III. METHODOLOGY

The goal of our approach is to improve the automated
anomaly detection of HPC nodes using FL. As this is the first
attempt at employing FL for this task, we decided to focus
on a specific approach for anomaly detection in HPC, namely
the semi-supervised method, as it has demonstrated very good
results when applied to real HPC while not requiring fully
annotated data (which is not always available in the HPC
context); in future works, we plan to explore the impact of
FL to other underlying ML models for anomaly detection. We
start with a key assumption (the same described in previous
semi-supervised approaches for HPC anomaly detection, see
[5], [10]), that is we suppose that the training data will contain
only examples corresponding to normal operating condition;
this is a safe assumption as it is typically possible to identify
relatively long healthy periods right after the installation of
a new supercomputer before the HW components start to
degrade. To allow for a fair comparison (FL usage against
no FL) we opted to use as baseline ML model the same semi-
supervised deep neural network (DNN) employed in [10]3,
namely an autoencoder network.

2https://www.nagios.org/
3The current state-of-the-art for semi-supervised anomaly detection in HPC

Previous works explained how to train an autoencoder for
each computing node, and how to use a threshold mechanism
to detect anomalies at inference time – the autoencoders for the
different nodes were trained separately. Instead, in this work
the autoencoders are trained in a federated manner, improving
their prediction performance by learning from other models.
Fig. 1 shows the workflow of the approach.

A. Semi-Supervised Anomaly Detection

In this step, an autoencoder DNN is trained only on non-
anomalous data. The autoencoder is made to learn the healthy
behavior of the system. Then, the network can be used for
anomaly detection by analyzing its reconstruction error for
new data [12]. If the autoencoder reconstruction error of a
new value is greater than a threshold, the new value is declared
as an anomaly, otherwise a normal value. The reconstruction
error of an autoencoder is defined as the mean error over all
features in the data. The threshold is chosen by observing the
errors distribution in the training set and by selecting the n-
th percentile; the value of n is a crucial hyperparameter. In
this work we relied on the guidelines provided by the state-
of-the-art to identify good initial candidates [10], and then we
performed a manual fine-tuning. While impactful, the selection
of the optimal threshold is a problem orthogonal to the one at
hand; in this work, we focus on the benefits due to FL, and
for a fair comparison we keep the same threshold for both the
FL and non-FL experiments.

B. The Federated Learning Approach

The motivation for incorporating FL is that the autoencoder
models previously described are trained independently. How-
ever, the single models might benefit from joint learning [13],
as the behavior of the nodes is similar, albeit not identical. The
architecture of FL architecture is reported in Fig. 1. There
are two vital components: a central server (this role can be
performed by the login/management node that in typical HPC
systems hosts the resource manager and the job scheduler) and
autoencoder models as clients; the clients are the computing
nodes, which communicate with the management nodes (i.e.,
receive the workload to be executed); each computing node has



a daemon continuously running and collecting node-related
information, with minimal overhead [4], that produces the data
used for training and then to perform anomaly detection on
live streams. Each client has an autoencoder model that has
been trained on an HPC node. To start FL, the server sends
weights to the clients. After one or more training steps, each
client sends its weights to the central server. The server updates
the global model by aggregating all weights received from the
clients [11]. The central server uses the FedAvg algorithm
[11], to do a weighted average of weights obtained from all
clients as shown in Eq. 1.

ωt+1 ←
k∑

k=1

nk

n
ωk
t+1 (1)

Here ωt+1 is the most recent weights sent to clients by the
server. t+1 is the recent round of communication. ωk

t+1 is
the weights sent by client k to server in the t+1 round of
communication. n is the total number of data values used
for training the global model, while nk is the number of
data samples used by client k for local training [14]. At
the end of FL, all autoencoder clients have been updated,
with global model. Each of them performs semi-supervised
anomaly detection again, on their respective HPC node. In
the reduced training data size experiment, the methodology
remains the same; the only difference is that a reduced training
set size is used to train the client models (the training set is
reduced by a factor r).

IV. EXPERIMENTAL ANALYSIS

This research was executed in a Ubuntu 22.0 environment.
The system has 790 GB of RAM. The system also has 42
Intel(R) Xeon(R) Gold 6240R CPUs with a total of 96 cores.

A. Data

The data used in this research is from a tier-0 production
supercomputer, Marconi100, hosted at CINECA, Bologna. The
current system has more 980 nodes. Marconi100 has been
the flagship HPC system until 2023, peaking at number #9
in the Top500 list in 2020. Each node has 2x16 cores (IBM
POWER9 AC922 at 3.1 GHz) and 4 Nvidia Volta V100 GPUs,
plus 256 GB of RAM. The data has sensor measures from
hardware (HW) sensors and program counters, ranging from
the power consumption of HW devices such as GPUs, CPUs,
RAM memory, etc., to clock frequency and fan speed. In
this work, we focus on node-related metrics as the aim is
to detect anomalies at the node level. The data used in this
research also has information about a node’s status, extracted
using the software tool Nagios. This tool is used by system
administrators to flag nodes that are behaving wrongly and that
should be the subject of maintenance operations. The Nagios-
generated information is used to annotate the data. Nagios has
a 15-minute node-labeling rate, hence we employ the same
15-minute aggregation window.

Average value and standard deviation are computed over
the time window, thus incorporating the temporal dynamics of
the collected metrics. The label (the target for our anomaly

detection task) can be either zero (normal operation) or non-
zero, fault condition. As this is the first evaluation of the FL
approach in HPC, we decided to validate it on a sub-set of
nodes, hence we randomly chose 70 nodes to conduct our
experiments; we note that this number is sufficiently high to
ensure that our results are not due to random chance. Table I
depicts the average of normal, anomalous data points and the
percentage of anomalies across all 70 nodes. Anomalies are
scarce and happen randomly in the data (they do not follow
any specific distribution); this scarcity is one of the reasons
why supervised approaches are typically not very effective on
real data, as the data is very unbalanced.

TABLE I
AVERAGE NUMBER OF NORMAL, ANOMALOUS, TOTAL DATA POINTS

AND AVERAGE NUMBER OF ANOMALIES OF ALL 70 NODES

Normal Anomalous Total % Anom
12650.25 391.25 13041.49 3.00

B. Approach Implementation

There is one autoencoder model for each of the 70 HPC
nodes, each trained in a semi-supervised fashion. There are
461 numerical features in the data, that were normalized
in the 0 to 1 range, using scikit-learn4. The data for each
node is randomly split, 80% used for training and 20% for
testing. After this split, anomalous data were removed from
the training set and moved to the test set. We used 10 epochs
for training all autoencoder models and a batch size equal to
10. The input layer to the auto-encoder had a size of 460.
There were three successive dense layers of size 80, 60 and
40 respectively. The hidden layer had a size of 20 neurons. It
is a dense layer with a ReLU activation function. The decoder
has 4 dense layers of sizes 40, 60, 80, and 100 respectively.
All hyperparameters were chosen after a preliminary empirical
evaluation, guided by the study of the literature. The loss
function was root mean squared error. The autoencoder has
been trained using RMProp optimizer, with a learning rate
of 0.000001. The reconstruction error is used to train the
autoencoder (minimizing it), and then to detect anomalies
as well. Since the autoencoders learned to recognize normal
points (being the only examples shown during training), a low
reconstruction error at test time indicates a normal sample and
a higher error reveals an anomaly, instead [10]. To distinguish
anomalies from normal points, the reconstruction error must
be compared to a threshold, identified as the n-th percentile
computed over the training set; we selected the 98th percentile.
Each autoencoder was implemented with Tensorflow.

Flower5was used to implement the FL strategy. Namely,
we have clients (a Python script) that train the autoencoder
models (one per node) participating in the FedAvg strategy. In
addition, there is also a FedAvg server entity that coordinates
the interaction. We experimented with 1000, 1500 and 2000

4https://scikit-learn.org/stable/
5https://flower.dev/



TABLE II
EXPERIMENTAL RESULTS OBTAINED OVER 70 NODES

Prec.-AE Prec.-FL Recall-AE Recall-FL F1-AE F1-FL TNR-AE TNR-FL FPR-AE FPR-FL
Avg. 0.24+/-0.31 0.79+/-0.30 1 1 0.31+/-0.33 0.84+/-0.27 0.24+/-0.30 0.81+/-0.32 0.76+/-0.33 0.19+/-0.29

rounds of FL (following the literature [14]), but no significant
performance changes were noted. At the end of FL, each
node has the resultant model of FL. All nodes perform semi-
supervised anomaly detection again with the updated model.

C. Results

Fig. 2. Histogram for Improvement in F-score of Full Training Data after FL

The metrics calculated in this research are precision
(Precision = TP

TP+FP ), recall (Recall = TP
TP+FN ), f-

score (FScore = 2 ∗ Precision∗Recall
Precision+Recall ), true positive rate

(TPR = TP
TP+FN ), true negative rate (TNR = TN

TN+FP ),
false positive rate(FPR = FP

TN+FP ), and false negative rate
(FNR = FN

TP+FN ) [12].

Fig. 3. Histogram for Improvement in Precision of Full Training Data after
FL

As depicted in Table II, the average precision of 70 nodes
with baseline autoencoder is 0.24 and the average f-score is
0.31. The recall of the overall experimental setup is 1. It is a
threshold-based method hence the autoencoder does not allow

any anomaly to be missed. The validity of recall being 1 in
this data set has been manually verified from predictions of 25
nodes to validate that the autoencoder is correctly returning a
recall of 1. The average precision of all HPC nodes improves

Fig. 4. Histogram for Decline in False Positive Rate of Full Training Data
after FL

to 0.79 and the average f-score improves to 0.84 after FL,
as shown in Table II. Table II depicts that the average true
negative rate improves to 0.81 and the average false positive
rate drops to 0.19 after FL. The true positive rate is always
1. The false negative rate is always 0. The f-score of more
than 40 nodes increases to the 0.95 to 1 interval as shown in
Figure 2. The precision of more than 35 HPC nodes reaches
the 0.95 to 1 range, after FL as shown in Figure 3. Further
Fig. 4 depicts that the false positive rate of more than 40 nodes
drops to the 0 to 0.05 range after FL.

In our dataset, there are an average of 12,865 data values
per node. Each data value is calculated after 15 minutes, which
is equivalent to 4.5 months of data to effectively train deep
learning models for anomaly detection. In another experiment,
we wanted to analyze if the learning capabilities of FL can
be utilized to improve the prediction abilities of models with
less training data [15]. To evaluate this in the context of this
research, the above experiment was executed out with 1/16

th,
1/8

th, 1/6th, 1/4th, and 1/2 of training data. The goal of the
evaluation was to see what least amount of training data, with
FL, would generate the same prediction results as the baseline
autoencoder on full training data. From Table III, it can be
seen that the average precision of the autoencoder of full
training data is 0.24. The average precision with FL training on
1/16

th training data is 0.51 and 0.60 on 1/8
th training data.

FL training gives 0.64 precision on 1/6
th, and 1/4

th training
data. Lastly, Table III also shows that FL training gives 0.69
precision on 1/2 training data.

Table III depicts that with 1/16
th training data, the average



TABLE III
EXPERIMENTAL RESULTS OF REDUCED TRAINING SET SIZES OBTAINED OVER 70 NODES

Prec.-AE Prec.-FL Recall-AE Recall-FL F1-AE F1-FL TNR-AE TNR-FL FPR-AE FPR-FL
Avg. - Full
Data

0.24+/-0.31 0.79+/-0.30 1 1 0.31+/-0.33 0.84+/-0.27 0.24+/-0.30 0.81+/-0.32 0.76+/-0.33 0.19+/-0.29

Average -
1/2 Data

0.23+/-0.30 0.69+/-0.32 1 1 0.29+/-0.32 0.75+/-0.31 0.25+/-0.31 0.64+/-0.38 0.75+/-0.29 0.35+/-0.32

Avg. - 1/4th

Data
0.21+/-0.28 0.64+/-0.34 1 1 0.28+/-0.31 0.71+/-0.32 0.22+/-0.29 0.63+/-0.39 0.78+/-0.31 0.37+/-0.34

Avg. - 1/6th

Data
0.23+/-0.31 0.64+/-0.36 1 1 0.29+/-0.33 0.70+/-0.34 0.25+/-31 0.55+/-0.40 0.75+/-0.33 0.45+/-0.34

Avg. - 1/8th

Data
0.22+/-0.29 0.60+/-0.37 1 1 0.29+/-0.31 0.67+/-0.35 0.24+/-0.33 0.51+/-0.39 0.76+/-0.34 0.49+/-0.32

Avg. -
1/16th

0.25+/-
0.310

0.51+/-0.39 1 1 0.22+/-0.34 0.58+/-0.38 0.23+/-0.30 0.47+/-0.39 0.77+/-0.36 0.53+/-0.35

f-score after FL is 0.58, and 0.67 with 1/8
th training data.

FL with 1/6
th training data gives an average f-score of 0.70

and an average f-score of 0.71 with 1/4
th training data. The

average f-score after FL is 0.75 with 1/2 training data. From
Table III, it can be seen that the average true negative rate after
FL is 0.47 with With 1/16

th training data, 0.51 with 1/8
th

training data, 0.55 with 1/6
th training data, 0.63 with 1/4

th

training data and 0.64 with 1/2 training data. It can also be
seen that the average false negative rate after FL is 0.53 with
1/16

th training data, 0.49 with 1/8
th training data, 0.45 with

1/6
th training data, 0.37 with 1/4

th training data and 0.35
with 1/2 training data.

V. CONCLUSION

This research presents the application of FedAvg to improve
the anomaly detection performance of semi-supervised models
on HPC nodes. FL has been used to enrich local models by
exploiting the underlying similarity of the behavior of the HPC
nodes, without explicitly sharing data. The empirical analysis
reveals how FL has the potential to be very beneficial to
the anomaly detection task, as highlighted by a very marked
improvement in overall relevant metrics. This is the first
application of FL to this problem and the results are very
promising. We also noticed a significant decrease in terms of
data collection time required to obtain reasonably good results
for anomaly detection. Without using FL, the state-of-the-
art for semi-supervised anomaly detection in supercomputing
systems requires an amount of training data equivalent to
approximately 4 months of normal operation. However, a
smaller training time would allow for quicker deployment of
anomaly detection models, greatly improving their efficacy and
benefits. We demonstrate that with FL it is possible to decrease
the initial data collection time to just a few weeks (a couple
of weeks are sufficient to obtain results on par with 4 months
without FL). This happens as the aggregation of information
from multiple HPC nodes has a positive effect on each
individual model, after the FL-guide updates. In the future,
we intend to deploy this FL strategy on real HPC systems.
We also intend to try other FL approaches like FedAdam, and
FedAdagrad on anomaly detection in HPC systems. Finally,
we will consider other implementation options for the FL

approach like using other FL libraries (including specialized
tools for the hardware used for performing the experiments6).
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