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Abstract 

In this paper we document both theoretically and numerically the melting of PCM in an enclosure 

heated from the bottom, in the presence of vertical metallic fins. We start with the analysis of the 

PCM melting in the absence of fins to discover the main scales of the problem, stressing the 

occurrence of Rayleigh-Bénard cells generated during the convection regime of melting. We 

continue with predicting the impact of fins on the development of the melting interface. The 

numerical experiments allow to understand the impact of the aspect ratio between the height of the 

enclosure and the distance between fins on the melting dynamics. They highlight the existence of 

solid drops for a certain range of aspect ratios when the horizontal flow channels in the convective 

loops along the fins become in contact, and they show how the solid drop is dragged downward to 

finish melting on the heated bottom of the enclosure. 

 

Keywords: Phase Change Materials, theoretical and numerical analysis, melting, bottom heated 

cavity, fins. 
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Nomenclature 

cp Specific heat capacity at constant pressure, J/(kg·K) 

*

pc  Modified specific heat capacity at constant pressure, J/(kg·K) 

Fo Fourier number 

g Gravitational acceleration, m/s2 

H Vertical dimension of the enclosure, m 

h Fin height, m 

k Thermal conductivity, W/(m∙K) 

L Horizontal dimension of the enclosure, m 

l Fin spacing, m 

Lf Latent heat of fusion, J/kg 

Nu Nusselt number 

p Pressure, Pa 

Pr Prandtl number 

q″ Heat flux, W/m2 

Ra Rayleigh number 

Ste Stefan number 

T Temperature, K 

t Time, s 

 Velocity vector, m/s 

x Thickness of the boundary layer, m 

Greek Letters 

α Thermal diffusivity, m2/s 

u
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β Coefficient of thermal expansion, K-1 

δ Melt layer height, m 

θ Local liquid fraction 

  Average liquid fraction 

μ Dynamic viscosity, Pa s 

𝜈 Kinematic viscosity, m2/s 

ρ Density, kg/m3 

Subscripts 

* Based on ∆T / 2 

f Fins 

m Melting 

trans Transition between conduction and convection 

Abbreviations 

PCM Phase Change Material 

RMSD Root Mean Square Deviation 

 

1. Introduction 

The use of Phase Change Materials (PCMs) allows to store large amounts of heat, both sensible 

and latent, with a significant increase in the storage capacity thanks to latent heat. Yet, the 

generally poor thermal conductivity of PCMs limits their ability to be an efficient thermal energy 

storage solution. This is why the relative allocation of the volume of PCM with regards to the heat 

source is of paramount importance as demonstrated in [1] and [2] through scale analysis and 

numerical experiments. As a result, several studies have been carried out in the last years to 
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improve the heat transfer within PCMs, either enhancing the convective heat transfer [3]-[7], or 

adding high conductivity components like nanoparticles [8]-[10], metal foams [11]-[14], or metal 

fins [15]-[19]. 

In order to study the influence of natural convection on the PCM melting and solidification 

processes in bottom-heated configurations, different research works have been conducted. 

Parsazadeh and Duan [3] analyzed, both numerically and experimentally, the melting process of 

coconut oil in the presence of Rayleigh–Bénard cells. In particular, a rectangular enclosure filled 

with PCM and heated from the bottom was considered. The numerical and experimental results 

showed that two different regimes occur during the melting process, as functions of the Rayleigh 

number. While heat conduction is dominant in the first part of the process (low values of the 

Rayleigh number), when the critical Rayleigh number is overcome, natural convection becomes 

more efficient, with a consequent change in the shape of the phase change interface from planar to 

waveform. In addition, Parsazadeh et al. [4] found that the critical Rayleigh number strongly 

depends on the enclosure size. Several authors studied the melting process of low Pr-number PCMs. 

In particular, Guo et at. [5] showed that the presence of convective cells causes oscillation of the 

Nusselt number in the convection-dominated regime, with a consequent reorganization of the flow 

cells and a distortion of the isothermal lines. Moreover, the melting time decreased considerably 

going from high to low Pr-number PCMs. Satbhai and Roy [6] numerically studied the buoyancy-

driven convection for moderate/fast-melting low Pr-number PCMs in a square box, finding that 

the onset of convection depends on Stefan and Fourier numbers, in addition to Rayleigh number. 

Xie and Wu [7] analyzed the PCM melting in a rectangular cavity with different aspect ratios, 

under the condition of constant heat flux at the left/bottom wall. Their results showed that the 
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melting time increases with the increase of the cavity aspect ratio, for both left and bottom wall 

heating conditions. 

The effects of the inclusion of metal fins in order to speed up the melting/solidification of PCMs 

have been widely studied in the literature. Shukla et al. [15] numerically investigated the phase 

change in a metallic heat exchanger, filled with an organic PCM, with tree-shaped fins. They 

showed how the PCM melting and solidification time decreases as the number of fins increases. 

In contrast, the increase in the fin volume meant a decrease in the amount of energy stored and 

released, due to the reduction in the PCM quantity contained in the heat exchanger. Fan et al. [16] 

studied, both numerically and experimentally, the melting of a PCM inside a spherical capsule for 

thermal energy storage applications. The heat transfer was enhanced by introducing a thin fin 

inside the capsule. The presence of the fin increased the heat transferred by conduction and yielded 

the activation of natural convective cells, with consequent improvement on the thermal energy 

storage performance. Biwole et al. [17] numerically studied the melting of a PCM in a rectangular 

enclosure exposed to a constant heat flux, with the aim to determine the effects on the heat transfer 

of the number, dimension and position of metal fins. Their results proved that, either increasing 

the number of fins, or using longer and thinner fins, accelerates the sensible and latent storage of 

energy in the PCM. De Césaro Oliveski et al. [18] analyzed the lauric acid melting process in a 

finned rectangular cavity, changing the fin aspect ratio while keeping the PCM mass and the total 

fin area constant. For all the cases tested, with an increase in the fin length, a reduction of the PCM 

melting time was observed. Bouzennada et al. [19] presented a numerical study on the melting of 

a PCM in a rectangular capsule with a mid-separating fin and different inclination angles. The 

authors proved that the melting and storing energy rate increases by varying the capsule’s 
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inclination angle from 90° to 0° and that the inclusion of the fin decreases the melting time up to 

more than 20%. 

In this paper, we study the heat exchanges within a PCM inserted in a rectangular enclosure which 

is bottom heated. Fins are added while maintaining the enclosure area constant, assuming that the 

space allocated to this heat exchanger is constrained. We question the melting of PCM enhanced 

by fins on a fundamental level and examine the impact of the different heat transfer mechanisms 

– conduction and convection – on the melting behavior. A theoretical approach, based on scale 

analysis, allows to predict the evolution in time of the melt layer with or without fins. A numerical 

model is dedicated to informing the dynamic aspects as a function of the spacing between fins. 

 

2. Analysis 

We consider a rectangular enclosure L×H, where the horizontal dimension L ≫ H. 

 

Figure 1: Rectangular enclosure. 

 

The enclosure is filled with PCM (Phase Change Material). It is bottom heated at constant 

temperature TH, while the top is adiabatic, together with the vertical walls. Assume the initial 

temperature of the domain is Tm, the melting temperature of the PCM. While the bottom of the 

enclosure is brought to TH > Tm, the PCM starts melting first by conduction, then by convection. 
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The melt layer is δ(t) and the temperature difference between TH and Tm is ∆T. An energy balance 

at the liquid/solid interface of the PCM gives 

 f

d T
L k

dt







 (1) 

where ρ is the PCM density, Lf is the PCM latent heat of fusion, t is time and k is the PCM thermal 

conductivity. We assume that the density remains constant regardless of the liquid or solid state. 

Equation (1) allows to obtain the way the conductive liquid layer progresses upward in time. 

 

1/2

1/2

f

k T
t

L




 
  
 

 (2) 

Introducing the Stefan number (Ste = cp ∆T / Lf, where cp is the heat capacity at constant pressure) 

and the Fourier number (Fo = α t / H 2, where α is the thermal diffusivity), Eq. (2) can also be 

expressed as 

 ( )
1/2

/ H Ste Fo  (3) 

At some point, the purely conductive transport of heat from the bottom of the enclosure to the 

material is not enough. Convection becomes more efficient, leading to the development of 

counterrotating convection cells famously known as Rayleigh–Bénard cells [20]-[21]. The change 

in heat transfer regime is captured by the value of the Rayleigh number based on the melt layer 

thickness δ, Raδ = g β ∆T δ3
 / (ν α), where g is the gravitational acceleration, β is the coefficient of 

thermal expansion and ν is the kinematic viscosity. Transition between conduction-driven melting 

and convection-driven melting occurs when Raδ ≅ 103 [22]. In such case, the Nusselt number is 

given by [23] 

 1/3 0.0740.069 PrNu Ra =  (4) 

For a Prandtl number much greater than 1, Eq. (4) can be replaced by 
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1/31

10
Nu Ra   (5) 

In the convection regime, the energy balance at the interface between liquid and solid reads 

 f

d k T
L Nu

dt








 (6) 

because, by definition, the Nusselt number and the heat flux are related by Nuδ = q″ δ / (∆T k). 

Equation (6) clearly shows the augmentation of heat transfer due to convection. Combining Eqs. 

(5) and (6) together, we obtain the relationship between the melt layer thickness δ and time 

 

1/3
1

10 f

k T g T
t

L




 

  
 
 

 (7) 

or 

 
1/31

/
10

HH Ra Ste Fo  (8) 

Plotted in Figure 2 are Eqs. (2) and (7). 

 

Figure 2: Conduction and convection melt layer as a function of time (non-dimensional terms). 

 

When melting starts, conduction heat transfer is preferred because heat is transferred faster than 

by convection. In time, convection is more effective and becomes the chosen mode of heat 

transport. The transition between the two can be estimated by equating Eqs. (2) and (7), leading to 
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2/3
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f
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L
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 (9) 

and 

 

1/3

10trans

g T




−
 

 
 

 (10) 

which brings Raδ ≅ 103 as transition between conduction regime and convection regime. Even 

though convection accelerates the melting of the PCM through the development of Rayleigh-

Bénard cells, it may not be enough, calling for more “help”. One way to improve melting is to add 

high conductivity inserts such as metallic fins. 

 

Figure 3: Rectangular enclosure with fins. 

 



 10 

As shown in Figure 3, the fins are inserted from the bottom of the enclosure. Their height h is 

smaller than H because the point is not to convey heat from the enclosure bottom to its top, but to 

store energy by melting the entire volume of PCM. The spacing between the inserts is l. 

Assume that the thermal conductivity of the inserts is high enough to consider that their 

temperature is uniform and identical to the bottom temperature TH . Assume also that the melt layer 

in the bottom is in the convection regime, therefore δ(t) obeys Eq. (7). Consider the domain 

delineated by H × l/2. The fin we see in this domain behaves like a hot wall at temperature TH in 

contact with a PCM at Tm. 

Heat transfer from the fin to the PCM is initially by conduction, then convection. Classically, when 

considering the heat exchanges between a vertical warm wall and a PCM at a lower temperature, 

the bottom part of the wall is submitted to conduction while the upper section is dominated by 

natural convection. Here the case is different because the PCM melts simultaneously from the 

bottom and from the vertical fin. Therefore, convection is the dominant mechanism between the 

fin and the PCM, and the upward boundary layer along the fin starts developing from the bottom 

of the enclosure (see Figure 3). 

In the upper zone of the enclosure, the convective flow melts the PCM located between the height 

of the fin and the height of the enclosure, and expands horizontally moving the melting front away 

from the fin. The convective flow sinks into the liquid pool, generating a circulation loop upward 

along the fin, horizontally along the enclosure top wall, and downward along the inclined interface 

with the solid phase. 

The temperature difference across the upward boundary layer is ∆T / 2, and the temperature 

difference across the downward boundary layer is ∆T / 2. Indeed, as detailed in [24], when the 

Rayleigh–Bénard cells turns, an excess temperature of order of magnitude ∆T / 2 exists between 
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the cell and the average value of the temperature of the liquid layer. Recalling that the Prandtl 

number is greater than 1, the boundary layer thickness 
* is of order 1/4

*HH Ra− , where the Rayleigh 

number 
*HRa  is based on ∆T / 2. Note that we consider the height of the enclosure, rather than the 

height of the fin as the heat flow is conveyed all the way up to the top of the cavity. Next, we write 

the energy conservation at the interface between the downward boundary layer in the liquid phase 

and the solid phase. The heat flux through the boundary layer is given by 
*

/ 2



T
k . Combining it 

with the order of magnitude of 
* , and using the definition of 

*HRa , we obtain 

 

1/4
3

2 2
f

k T g T H dx
L

H dt




 

  
 
 

 (11) 

where x is the horizontal distance from the fin. 

The thickness of the melt layer that spreads horizontally from the fin along the ceiling of the 

enclosure is therefore 

 
1/4

5/4

1
/

2
Hx H Ra Ste Fo  (12) 

The ratio between the horizontal melt thickness and the one spreading vertically from the bottom 

of the enclosure is given by dividing Eq. (12) by Eq. (8). In an order of magnitude sense, we have 

 1/12

1/4

5

2
H

x
Ra



−  (13) 

3. Model 

3.1 Geometry and materials 

A rectangular enclosure with dimensions L = 0.1 m and H = 0.02 m was considered for the 

numerical study. Different cases were analyzed: either the enclosure contains only the PCM (see 
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Figure 1), or it includes also a certain number of fins, inserted from the bottom and spaced within 

the enclosure (see, e.g., Figure 3, representing the case with 5 fins). The fins width and height are 

0.001 m and 0.018 m, respectively. It is worth mentioning that the two lateral fins on the vertical 

walls are half as thick as the others, in order to reduce the edge effects (see Figure 3). 

The PCM is octadecane, which thermophysical properties are reported in Table 1 [25]. The fins 

are made of aluminum (kf = 237 W/(m K), ρf = 2,700 kg/m3, cpf = 897 J/(kg K)). As indicated in 

Table 1, the PCM starts melting at a temperature Tm equal to 303 K, while the melting range is 

ΔTm = 1 K. It should be noted that different properties for octadecane can be found in the literature 

[26]-[31]. We have selected Ref. [25], which is a reference in the field, but any change on a 

property value would not modify the findings of the paper. 

 

Table 1: PCM (octadecane) thermophysical properties [25]. 

Phase change temperature range, T [K] 303-304 

Latent heat of fusion, Lf [J/kg] 125,000 

Thermal conductivity, k [W/(m K)] 0.2 

Density, ρ [kg/m3] 800 

Specific heat capacity at constant pressure, cp [J/(kg K)] 1,250 

Dynamic viscosity, μ [Pa s] 0.008 

Thermal expansion coefficient, β [K-1] 0.002 

 

3.2 Governing equations 

In order to study the time-dependent melting of the PCM confined in the rectangular enclosure, 

the following assumptions are made: i) the PCM in liquid phase is incompressible and the flow 
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laminar following the Boussinesq approximation; ii) both PCM and metal fins are isotropic; iii) 

the PCM is bottom heated at constant temperature TH > Tm, while the other boundaries of the 

enclosure are kept adiabatic as mentioned in Section 2; iv) initially, the enclosure is filled with 

PCM in solid phase: the initial temperature of the whole domain is uniform and equal to the melting 

temperature Tm. 

The governing equations are the mass, momentum and energy conservation: 

 0u =  (14) 

 ( ) ( )2

m

u
u u p u g g T T

t
      


+  = − +  + − −


 (15) 

 
* 2

p

DT
c k T

Dt
 =   (16) 

where u  is the velocity vector, p is pressure, θ is the PCM local liquid fraction and 
*

pc  is the 

modified specific heat capacity according to the apparent heat capacity formulation. 

In particular, θ is a nondimensional parameter quantifying the percentage of liquid phase contained 

in the mushy zone of the PCM and is equal to 0 if the temperature is lower than Tm (solid phase), 

is (T – Tm)/ΔTm if temperature is between Tm and Tm + ΔTm (mushy region) and is equal to 1 for 

temperatures higher than Tm + ΔTm (liquid phase) [32], [33]. The apparent heat capacity 

formulation is implemented to model the PCM phase transition process [27], [34]. We assume that 

the PCM thermal conductivity, density and specific heat capacity are identical between solid and 

liquid phases. As a consequence, the apparent heat capacity formulation involves the adoption, in 

the energy conservation equation, of the modified specific heat capacity 
*

pc  defined as 

 
*  if  or p p m m mc c T T T T T=   +  (17) 
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* +  if 

f

p p m m m

m

L
c c T T T T

T
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
 (18) 

In the cases with fins within the enclosure, heat is transferred along the aluminum fins thanks to 

conduction 

 
2

f pf f

T
c k T

t



= 


 (19) 

The boundary conditions correspond to Eqs. (20) - (22), whereas the initial condition is given by 

Eqs. (23) – (24). 

 ( ) ( ) ( ) ( )0, , , , ,0, , , 0u y t u L y t u x t u x H t= = = =  (20) 

 
0

0
x x L y H

T T T

x x y= = =

  
= = =

  
 (21) 

 ( ),0, HT x t T=  (22) 

 ( ), y,0 0u x =  (23) 

 ( ), ,0 mT x y T=  (24) 

The equations set was solved with a finite element commercial package [35]. The PCM dynamic 

viscosity μ was implemented as a smoothed, continuous, second derivative step function, centered 

around (Tm + ΔTm/2) and with values going from 0.008 Pa s in the liquid phase (temperatures above 

the melting range) to a fictitious value of 108 Pa s in the solid phase (temperatures below the 

melting range). 

3.3 Grid independence tests 

The 2D computational domain was discretized through an unstructured triangular mesh, optimized 

for laminar flow, with finer elements and boundary layer mesh along all the walls. In order to 

check the mesh independence of the results, three different grid sizes were tested for the 
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simulations with TH = 47 °C and 0 or 3 fins. The time-dependent values of the average liquid 

fraction over the entire domain were compared for the different grid sizes as shown in Table 2. 

Due to the low values of maximum absolute error and root mean square deviation, in terms of 

average liquid fraction, of Mesh 2 with respect to Mesh 3 (see Table 2), Mesh 2 was considered 

sufficient. 

All simulations were performed selecting a relative tolerance of 0.01 and an absolute tolerance 

factor equal to 0.1, with automatic computational time step. Results are recorded every second. 

The time required to run a simulation of 1,500 s is about 2 h on a PC with Intel Core i7-6700K 4.0 

GHz, RAM 64 GB. 

 

Table 2: Grid independence tests: maximum absolute error and root mean square deviation 

(RMSD) in terms of average liquid fraction. 

 0 fins 3 fins 

Grid 
Number of 

elements 

Max absolute 

error 
RMSD 

Number of 

elements 

Max absolute 

error 
RMSD 

Mesh 1 6,092 0.0498 0.0383 7,559 0.0390 0.0276 

Mesh 2 11,294 0.0152 0.0100 13,068 0.0074 0.0045 

Mesh 3 26,012 - - 31,282 - - 

 

3.4 Model validation 

The numerical model was validated using both the published results from Guo et al. [5] and from 

Biwole et al [17]. In the first paper the authors numerically studied the melting process of gallium 

in a square cavity heated from the bottom. The bottom surface of the cavity was heated at constant 

temperature (higher than the melting temperature), while the other surfaces were adiabatic. The 

case with Ste = 0.148 and RaH = 7.5 × 105 (corresponding to a square cavity with side 0.087 m) 

was selected to compare the results with the ones of this work. The average liquid fraction   is 

reported in Figure 4 as a function of the dimensionless time Ste Fo. A very good agreement 
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between our numerical results and [5] can be noticed; the maximum absolute error in the values of 

  is 0.0214 and the root mean square deviation is 0.0052. 

Biwole et al [17] numerically simulated the melting of octadecane in a 2D square cavity of height 

0.1 m, heated from the left. In particular, the left vertical surface was heated at a constant 

temperature higher than the melting temperature, the right vertical surface was kept at a constant 

temperature equal to the melting temperature and the horizontal walls were adiabatic. Also in this 

case, an optimal agreement between our results and [17] is obtained, as can be noticed in Figure 

5, where the average liquid fraction   is plotted as a function of the dimensionless time Ste Fo. 

The maximum absolute error in the values of   is 0.0078 and the root mean square deviation is 

0.0043. The good agreement with the results of both Guo et al. [5] and Biwole et al [17] allows to 

conclude that our model is validated. 

 

 

Figure 4: Average liquid fraction of gallium versus dimensionless time, for Ste = 0.148 and RaH 

= 7.5 × 105, results by Guo et al. [5] and by the present model. 
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Figure 5: Average liquid fraction of octadecane versus dimensionless time, results by Biwole et 

al [17] and by the present model. 

 

4 Results 

4.1 No fins 

We show in Figure 6 the time sequence of the PCM melting in the absence of fins in the cavity for 

ΔT = TH – Tm = 17 °C. The Rayleigh number is RaH = 1.35 × 106. As predicted by the analysis in 

Section 2, melting is a one-dimensional phenomenon driven by conduction at the start of the 

process. Rayleigh–Bénard convection rolls form when conduction is not efficient enough to 

convey the heat upward. 
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Figure 6: Time sequence of the PCM melting with no fins: (a) initial time, (b) conduction-

dominated regime, (c) rolls formation, (d) established rolls, (e) complete melting. 

 

Next, we followed the evolution of the local liquid fraction at mid-distance between the vertical 

walls of the cavity as a measure of the thickness of the melt layer, δ. δ is the local value of the 

liquid fraction θ when θ = 0.5 to represent the mushy zone. Figure 7 gives the non-dimensional 

melt layer thickness δ/H as a function of dimensionless time Ste Fo. The evolution of the melt 



 19 

layer is initially proportional to the square root of time, before becoming linear in time. This 

behavior is exactly what was anticipated previously by Eqs. (2) and (7). 

 

Figure 7: Non-dimensional melt layer thickness as a function of dimensionless time; numerical 

results with no fins. 

 

Note the inflexion on the curve, which indicates the transition between the conduction regime of 

melting to the convection-dominated regime. Transition occurs at Ste Fo = 9.35 × 10-3 for a melt 

thickness of δ/H = 1.37 × 10-1. The theoretical analysis (Eq. (10)) predicted that the transition 

would occur for a non-dimensional melt layer thickness of 0.91 × 10-1, and the corresponding non-

dimensional time would be 8.20 × 10-3. 

 

4.2 Addition of fins 

As mentioned in the introduction, the addition of fins is made at constant enclosure. The share of 

PCM compared to the initial configuration without fins is given in Table 3. 

We show in Figure 8 the average melting fraction evolution as a function of the dimensionless 

time Ste Fo. The spacings investigated are shown in Table 3. 
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Table 3: Fins spacing l, aspect ratio H/l and PCM share as functions of the fins number. 

Fins number 0 2 3 5 9 17 33 

l [mm] - 99 49 24 11.50 5.25 2.13 

H/l - 0.20 0.41 0.83 1.74 3.81 9.41 

PCM area/(L×H) [%] 100 99.1 98.2 96.4 92.8 85.6 71.2 

 

The last but one line of Table 3 represents the aspect ratio of the domain generated by two fins and 

the enclosure height, H/l. 

 

Figure 8: Average melting fraction as a function of dimensionless time, for different H/l. 

 

The presence of fins allows to melt the PCM faster; a result that needs to be weighted by the fact 

that the total PCM volume decreases with the number of fins added. When the PCM is almost 

entirely melted, the slope of the average melt fraction changes with either an increase, or a 

decrease. 
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For a more precise analysis of the heat exchanges, we varied systematically the spacing between 

fins starting from l = 99 mm (which corresponds to one fin located on each vertical wall of the 

enclosure) and decreasing to l = 2.13 mm. This allows to distinguish three different domains named 

large spacing with H/l ≤ 0.38, intermediary spacing corresponding to 0.38 < H/l ≤ 3.08, and small 

spacing when H/l > 3.08. In the large spacing scenario, the one-dimensional vertical melting 

described in the no fins case is still valid. It comes in combination with the melting along the fins 

that adds to the acceleration of the overall propagation of the liquid phase. Note in Figure 9 that 

the fins are quasi-immediately isothermal. 

 

Figure 9: Temperature distribution at Ste Fo = 2.57 × 10-2; H/l = 0.20 (2 fins). 

 

As explained in Section 2, a convective cell develops quickly along the fins after a short conduction 

phase. While the horizontal melting front moves upward, the Rayleigh–Bénard cells become less 

numerous and grow in size. The cell located in the vicinity of a fin merges with the convective cell 

along the fin. Then the Rayleigh–Bénard cell immediately adjacent merges also as the vertical and 

horizontal liquid fronts continue to progress. Finally, a horizontal narrow solid layer remains 

against the top of the enclosure until it is also melted (see Supplementary material). 
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Figure 10: Temperature distribution at Ste Fo = 2.14 × 10-3; H/l = 9.41 (33 fins). 

 

The small spacing case exhibits a totally different behavior (Figure 10). As the fins are brought 

almost instantaneously to the temperature of the bottom of the enclosure, melting by conduction 

happens along the fins and the bottom. Melting is so quick that neither Rayleigh–Bénard cells nor 

convective cells along the fins have time to develop. The volume of PCM contained between fins 

melts rapidly leading to the sharp slope of the curve in Figure 8. Interestingly the rest of PCM 

located in the space between the top of the fins and the top of the enclosure needs three times 

longer to melt, as depicted by the smaller slope of the curve. That layer melts by conduction as the 

conditions are not met to develop convective cells. Indeed, the thickness of this space is below the 

criterium for Rayleigh–Bénard cells to be generated (Eq. (3)). A similar behavior is observed when 

H/l = 3.81, except that the solid layer above the fins melts faster. 

The intermediate spacing scenario corresponds to geometries where the convective channels of 

liquid PCM that develop horizontally, from the fin along the top of the enclosure, have the time to 

meet before the entire material changes phase. From Eq. (13), one can anticipate that when x ~ l/2, 

δ ~ 0.4 l, with the numerical values used in the model, as x/δ ~ 1.3. 

We plot in Figure 11 the evolution of x/H, the non-dimensional horizontal layer at the top of the 

fin, as a function of the non-dimensional time Ste Fo, as predicted by Eq. (12) and as measured 

from the numerical results, when H/l = 0.83. 
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Figure 11: Non-dimensional horizontal layer at the top of the fin as a function of dimensionless 

time; theoretical vs numerical results with H/l = 0.83 (5 fins). 

 

Note the good agreement between the two results beyond Ste Fo = 8.58 × 10-3. Below this 

threshold the results do not match. Indeed, the theoretical analysis is based on the existence of the 

two boundary layers in the convective cell, one moving upward along the fin and the other one 

sinking along the melting front. 

When H/l varies between 0.38 and 3.08, while the PCM melts, comes a time when the liquid layers 

at the top of the enclosure meet. This time is different from one aspect ratio to the other. We show 

in Figure 12 the example of H/l = 0.83 which corresponds to five fins as described in Table 3. In 

Figure 12, instead of showing the entire enclosure, we chose to show only a portion held between 

two fins and the top and bottom boundaries.  
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Figure 12: Time sequence of the solid drop formation and sink between two fins (H/l = 0.83): (a) 

Ste Fo = 4.12 × 10−2, (b) Ste Fo = 4.30 × 10−2, (c) Ste Fo = 4.32 × 10−2, (d) Ste Fo = 4.37 × 10−2, 

(e) Ste Fo = 4.57 × 10−2, (f) Ste Fo = 4.61 × 10−2. We present here only a portion of the enclosure 

delimited by two fins and the top and bottom boundaries. 

 

As can be seen in the figure, in this situation a solid domain, shaped as a drop, is trapped between 

liquid domains: the two liquid loops generated by the PCM melting in the vicinity of the fins, wide 

at the top of the enclosure and narrower towards the bottom, and the horizontal liquid layer formed 

by the Rayleigh–Bénard cells. As time increases, the solid drop is dragged towards the bottom of 

the enclosure. This phenomenon is made possible because the convective loops that exist along 

each fin have a downward liquid flow at their interface with the solid PCM. The generated shear 

forces pull the solid drop down into the bottom liquid pool. The latter is viscous enough to let the 

solid drop sink, moving away the Rayleigh–Bénard cells. Now in direct contact with the heated 

bottom, the remaining solid melts entirely. 
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The occurrence of the solid drop is caught in Figure 8, with the sharp change in the slope of the 

average melting fraction. Unlike in the case of small spacings, the change in slope is positive as 

the fall of the solid drop accelerates the melting of the volume of PCM that was not liquid yet. 

5  Conclusion 

The paper offers a theoretical approach of the melting of PCM in a bottom-heated enclosure, with 

or without metallic fins, relying on scale analysis. The proposed approach is validated by 

numerical experiments. 

The main conclusions that can be drawn are: 

- The melt layer varies first with the square root of time (conduction melting), then linearly with 

time (convection melting), because convection becomes in time more effective than 

conduction. 

- When vertical fins are added to the enclosure, a vertical convective loop of liquid PCM is 

generated along the fins. Its melting front propagates horizontally, away from the fin, and the 

distance from the fin is larger at the top of the enclosure. 

- The horizontal propagation of the melt layer is ~30% bigger than the vertical propagation of 

the bottom liquid layer, for the parameters of the study (geometry and PCM properties). 

- The work identifies the existence of three very different thermal behaviors: a Rayleigh–

Bénard cells dominated regime for large fins spacings, a conduction dominated melting 

regime for small fins spacings, and a solid drop generated regime for the intermediary spacing 

configurations. 

- The solid drops are created when the horizontal convective liquid PCM channels emanating 

from the fins become in contact along the top of the cavity. The downward flows of liquid 
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PCM on the two sides drag the solid drop down, helping it to sink into the liquid bottom layer 

where it ends melting. 
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