
15 February 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Baiardi M., Burattini S., Ciatto G., Pianini D. (2023). JaKtA: BDI Agent-Oriented Programming in Pure
Kotlin. Cham : Springer [10.1007/978-3-031-43264-4_4].

Published Version:

JaKtA: BDI Agent-Oriented Programming in Pure Kotlin

Published:
DOI: http://doi.org/10.1007/978-3-031-43264-4_4

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/950535 since: 2023-12-13

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/978-3-031-43264-4_4
https://hdl.handle.net/11585/950535

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Baiardi, M., Burattini, S., Ciatto, G., Pianini, D. (2023). JaKtA: BDI Agent-Oriented Programming in Pure

Kotlin. In: Malvone, V., Murano, A. (eds) Multi-Agent Systems. EUMAS 2023. Lecture Notes in

Computer Science(), vol 14282. Springer, Cham.

The final published version is available online at: https://doi.org/10.1007/978-3-031-43264-

4_4

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://doi.org/10.1007/978-3-031-43264-4_4
https://doi.org/10.1007/978-3-031-43264-4_4

JaKtA: BDI agent-oriented programming in pure
Kotlin⋆

Martina Baiardi2[0009−0001−0799−9166], Samuele Burattini1[0009−0009−4853−7783],
Giovanni Ciatto1[0000−0002−1841−8996], and Danilo Pianini1[0000−0002−8392−5409]

1,2 Department of Computer Science and Engineering (DISI)
Alma Mater Studiorum—Univerisità di Bologna

Via dell’Università 50, 47522 Cesena (FC), Italy
1 ⟨name⟩.⟨surname⟩@unibo.it,

https://www.unibo.it/sitoweb/⟨name⟩.⟨surname⟩/en
2 m.baiardi@unibo.it, https://www.unibo.it/sitoweb/m.baiardi/en

Abstract. Multi-paradigm languages are becoming more and more pop-
ular, as they allow developers to choose the most suitable paradigm for
each task. Most commonly, we observe the combination of object-oriented
(OOP) and functional programming (FP), however, in principle, other
paradigms could be hybridised. In this paper, we present JaKtA, an inter-
nal DSL adding support for the definition of belief-desire-intention (BDI)
agents in Kotlin. We believe is a first step to investigate the blending of
Agent-Oriented Programming (AOP) with other popular paradigms and
we discuss the opportunity and value of doing so with an internal DSLs.
Finally, through JaKtA, we show how this can already lead to compactly
and expressively create BDI agents that smoothly interoperate with the
host language, its libraries and tooling.

Keywords: BDI · AgentSpeak(L) · DSL · Kotlin · JaKtA

1 Introduction

Many modern mainstream programming languages natively support multiple
programming paradigms, thus allowing programmers to use the most appropriate
abstractions for the job at hand without the need to adapt their mind to a syntax
and tooling different to the one they are acquainted with. Most frequently, we
observe the combination of object-oriented (OOP) and functional programming
(FP) paradigms: some notable examples are OCaml [16], which adds object-
orientation on top of the functional paradigm; Java, that since version 8 supports
some functional abstractions on top of OOP [17] via the lambda expressions and
the stream API ; and Scala, that since its conception has been designed with
both OOP and FP in mind [24].
⋆ This work has been partially supported by the Chist-Era IV project “Ex-

pectation”, and by the Italian Ministry for Universities and Research (G.A.
CHIST-ERA-19-XAI-005).

2 Baiardi et al.

To the best of our knowledge, however, no mainstream programming language
currently features native support for the agent-oriented programming paradigm
(AOP), especially the beliefs–desires-intentions (BDI) model. The current state
of the art includes several stand-alone programming languages that support BDI
agents programming following the well-known AgentSpeak(L) [22] semantics—
such as Jason [3], Astra [9], and Goal [13]. However, using and maintaining
stand-alone languages can be burdening, especially when the community of con-
tributors is small, since languages usually require several tools to be usable
in practice (e.g., content assistants, syntax highlighters, linters, checkers, de-
buggers, etc.) whose development and maintenance adds upon the cost of the
language itself—potentially causing the ecosystem to evolve slowly, and thus
hindering adoption.

In this paper, we propose a solution to both the availability in the mainstream
and the tooling support of BDI languages, by leveraging a recent trend in modern
programming languages: the construction of internal domain-specific languages
(DSLs), namely, carefully designed APIs that capture problem-specific abstrac-
tions into a syntax providing ergonomics akin to that of a dedicated language,
but still letting users rely on the tooling and ecosystem of the host language,
as well as transparently use abstractions from other paradigms on a per-need
basis. Thus, inspired by the successful Jason AOP language, we present Jason-
like Kotlin Agents (JaKtA): a Kotlin internal DSL meant to seamlessly integrate
BDI agents into a mainstream programming language, adding AOP to Kotlin
as an additional paradigm, retaining its toolchain, libraries, and OOP/FP ab-
stractions. We show that the internal DSL approach can blur the (usually neat)
boundary between the two paradigms, promoting a more natural and seamless
interaction. Moreover, since the code using the DSL abstractions is still valid
code in the host language, we show that the tooling of the host language can be
used immediately, with no need for additional support software to be developed
and maintained.

The remainder of this paper is organised as follows: in Section 2, we present
DSL engineering and we summarise the state of the art of BDI languages, then in
Section 3 we discuss the design and the main features of JaKtA, and we show how
it can be used to compactly and expressively create BDI agents that smoothly
interoperate with the Kotlin ecosystem; in Section 4 we assess the effectiveness
of our internal DSL approach by showing, through practical examples, how it
can simplify the development of BDI agents in some conditions; and finally, in
Section 5, we conclude the paper by discussing some limitations of our approach,
as well as some future research directions stemming from it.

2 Background

This work lays on two pillars: DSL engineering (specifically, internal Kotlin
DSLs) and BDI agents programming. In this section, we briefly introduce them
by discussing the principles behind the creation of DSLs and we explain how and
why modern languages support the creation of internal DSLs. We also provide

JaKtA: BDI agent-oriented programming in pure Kotlin 3

a comparison among existing BDI programming frameworks from the literature,
discussing how syntactical aspects may impact their interoperability and versa-
tility.

2.1 DSL engineering

As introduced in Section 1, DSLs are programming languages tailored to spe-
cific domains: they expose the domain model entities and their interactions as
first-level abstractions. However, there is no rule on which amount of domain-
specificity makes a language a DSL: at some level, every language is domain-
specific, with the specific domain being the paradigm the language is rooted in.
For instance, we argue that even the Agent Speak Language (ASL) can be seen
as a DSL modelling the domain of BDI agents.

From a technical perspective, DSLs can be classified into two broad cat-
egories [24]: external, if they are stand-alone, with their own custom syntax
and compiler/interpreter; and internal, if they are embedded in a host language
and rely on the syntactic and semantic features of the host. From the point of
view of the host language, internal DSLs are indistinguishable from ordinary li-
braries (indeed, as C++ inventor Bjarne Stroustrup used to say, “library design
is language design” [25]), their distinction is usually driven by their purpose1.
Consequently, internal DSLs might in principle be realised in any language;
in practice, however, the host language syntactic flexibility directly reflects on
the ergonomics of any internal DSL. For this reason, several recent languages
(e.g., Scala, Kotlin, Ruby) provide syntactic features specifically tailored to the
constructions of internal DSLs. Despite these features simplify the adoption of
internal DSLs, they cannot provide the same expressiveness of an external DSL,
as they are still bound to the host language syntax, for example, in the case of
Kotlin each DSL statement must be enclosed in a curly braces block.

Selecting whether an internal or external DSL is best for the problem at hand
is a matter of trade-offs: as discussed, internal DSLs have limited syntactic flex-
ibility that could result in a less expressive language, but, in turn, they inherit
from their host: (i) the tooling (IDE support, build systems, linters, debuggers,
profilers, and so on), reducing the maintenance burden; (ii) the libraries, reduc-
ing the need for ad-hoc solutions; and (iii) the abstractions, allowing the DSL to
be used in conjunction with other paradigms. Together, these aspects may also
lower the learning curve for those already acquainted with the host language,
possibly favouring wider adoption.

2.2 BDI paradigm and programming languages

The philosopher Michael Bratman described humans’ practical reasoning via the
“beliefs, desires, intentions” (BDI) framework, as a way to explain future-directed
decision-making [4]. Successively, the framework was formalised by means of
modal logics [8], and then turned into an abstract semantics for computational
1 https://www.martinfowler.com/bliki/DslBoundary.html

https://archive.is/wip/xAeiX

4 Baiardi et al.

Table 1: Comparison of the identified practical features across several com-
mon BDI agent programming languages. Columns denote languages, rows de-
note features. JaKtA is the language proposed in this paper: it is reported here
for to ease comparison. In non-textual cells, symbol ✓ indicates the feature
availability, × unavailability, and ∼ that we were not able to find conclusive
evidence.

JaKtA Jason [3] Spade-BDI [20] Phidias [10] Astra [9] JACK [26] Jadex [21] Goal [13]
DSL Type internal external both internal external external external external

Hosting Syntax Kotlin AgentSpeak(L)
extension Python Python custom Java

extension
custom Java
extension

XML
Java annotations

custom Prolog
extension

Execution Platform JVM JVM Python Python JVM JVM JVM JVM

Direct interop. Any JVM
language

Any JVM
language Python Python Any JVM

language
Any JVM
language

Any JVM
language SWI-Prolog

Paradigm blending ✓ × ✓ ✓ ✓ ✓ × ✓
Type safety ✓ × × × ✓ ✓ ✓ ×

Reuse mechanisms Any Kotlin
mechanism

file incl.,
ext. actions

Any Python
mechanism

Any Python
mechanism

agent
extension

reusable
plans

selective
file incl.

reusable plans,
beliefs, goals,
and agents

Logic Programming ✓ ✓ × ✓ × × × ✓
License Apache 2.0 LGPL v3 GPL v3 MIT GPL v3 Proprietary GPL v3 GPL v3

agents: AgentSpeak(L) [22]. Computational agents are autonomous entities [19]
situated into an environment they can perceive and affect; they interact either
directly or stigmergically through the environment [23]. The classical implemen-
tation of BDI agents, based on the Procedural Reasoning System (PRS) [12],
is characterized by four main abstractions, namely: beliefs: a set of facts and
rules constituting the agent’s epistemic memory; desires: a set of goals, (pos-
sibly partial) descriptions of the states of the world the agent wants to achieve,
test, or maintain; intentions: a set of tasks the agent is currently committed
to; plans: a set of recipes representing the agent’s procedural memory.

Since its introduction, the community produced many programming lan-
guages for BDI agents. Most of them are either based on or inspired by the
AgentSpeak(L) semantics. In this section, we compare several major BDI agent
programming languages from a software engineering perspective. Details about
the comparison are reported in table 1. There, columns represent BDI languages,
while rows represent features that those languages may (or may not) have.

As far as BDI agent programming languages are concerned, our comparison
is focussing on those languages which appear to have some running software
implementation which is actively maintained and used by the community. Hence,
we build upon the recent work by Calegari et al. [5], which surveys the state-of-
the-art of logic-based agent-oriented technologies, and we select the ones aimed
at supporting general-purpose BDI agents programming.

Conversely, as far as features are concerned, in the remainder of this section
we discuss the most relevant ones, namely: (i) DSL type (internal or external);
(ii) hosting syntax, i.e., which syntax the DSL is embedded in (for inter-
nal DSLs) or based upon (for external DSLs); (iii) execution platform, i.e.
which runtime platform the language runs upon; (iv) direct interoperability,
i.e., whether other languages can be called from within the BDI language (and,
in that case, which ones); (v) paradigm blending, i.e., whether it is possible
to mix, in the same source and scope, AOP and other abstractions; (vi) type

JaKtA: BDI agent-oriented programming in pure Kotlin 5

safety i.e., the ability of the compiler/interpreter to intercept (most) type errors
ahead-of-execution; (vii) reuse mechanisms, i.e., whether and how it is possi-
ble to parameterise and reuse partial or entire MAS specifications; (viii) logic
programming support, i.e. the capability to rely upon the mechanisms of unifi-
cation and backtracking to represent and manipulate BDI data structures; and,
finally, (ix) license.

DSL type and hosting syntax. The former feature categorizes BDI languages as
either external or internal DSL, or possibly both of them. Conversely, the lat-
ter feature provides further details about the DSL syntax. The two features are
strictly related, as they both refer to the syntax of the language. In fact, for in-
ternal DSLs, one may be interested in understading which syntax the DSL is em-
bedded in, whereas, for external DSLs, we further describe the derivation of the
syntax. Accordingly, for internal DSLs, the hosting syntax is quite straightfor-
ward: both Spade-BDI and Phidias are hosted by Python. Conversely, external
DSLs’ syntaxes are built as extensions or refinements of well-known languages.
For instance, while Jadex relies on XML, Goal extends Prolog [15], and Jason
extends AgentSpeak(L); whereas Astra and JACK extend Java.

Execution platform. The execution platform is the runtime environment which
is required for running a given BDI language—as well as the MAS described
through it. It is worth highlighting that several programming languages may be
executed on the same platform. This is the case, for instance, in Kotlin, Java,
and Scala which are all executed on the JVM platform. The execution platform
is a relevant feature, as it may affect the portability of the MAS, as well as its
interoperability with other systems and languages. Accordingly, while Spade-
BDI and Phidias target the Python platform, the other languages target the
JVM platform.

Direct interoperability. This feature concerns the ability of the agent program-
ming language to interact with the hosting language constructs. Specifically, this
feature is about which other languages the BDI language at hand can directly
call, exploiting the hosting language interoperability mechanisms. For instance,
every language targetting the JVM can directly call all the other JVM lan-
guages. However, this is not the case for Jadex, which is implemented on Java,
but exploits XML files for MAS specification.

Paradigm blending. This is a syntactical feature of languages whose syntax mixes
AOP constructs with the hosting language ones—for instance, by letting devel-
opers exploit both AOP and OOP constructs, if the hosting language is OO.
Notice that the opposite situation may also occur. In fact, some languages en-
force a clear separation among high-level AOP constructs (e.g. belief, goals,
plans) and the hosting language ones (e.g. classes, functions, etc.). This separa-
tion may for instance be enforced by requiring the AOP portions of a MAS to
be written in separate files. For instance, in Python-based BDI languages such
as Spade-BDI and Phidias, AOP specifications consist of Python classes and

6 Baiardi et al.

methods. Conversely, Astra, JACK, and Goal allow exploiting Java or Prolog
libraries, respectively. Finally, Jason, and Jadex strongly separate AOP from
OOP. There, MAS are composed by scripts describing agent specifications, and
by actions/environment specifications. The former only support AgentSpeak(L)-
compliant constructs, whereas the latter are ordinary Java code.

Type safety. This feature refers to the presence of a strong type checker for the
BDI language at hand, which may proof check agents specifications at compile-
time. Solutions having a tight interoperability with Java, such as Astra, JACK,
and Jadex, come with this feature; whereas the others do not. Other languages
– such as Jason, Spade-BDI, Phidias, and Goal – come with a more flexi-
ble syntax—as they rely on weakly-typed hosting languages such as Prolog or
Python.

Reuse mechanisms. This feature refers the presence of abstraction mechanisms
supporting the reuse of partial MAS specifications. As far as this feature is
concerned, we observe great variety among the surveyed languages. Some rely
on bare file include mechanisms. This is the case, for instance, of Jason – which
supports the inclusion of ASL files into other ASL files, by path –, and Jadex—
which supports referencing XML or Java files into other XML files. Furthermore,
virtually all surveyed solutions support the abstraction and reuse mechanisms of
the hosting language, if any. This implies, for instance, that solutions based on an
OO hosting language may take advantage of OOP abstraction mechanisms such
as sub-typing and inheritance for the OO portions of their MAS specifications.
Some solutions may also expose high-level, agent-oriented notions – such as
agents or plans – as first-class syntactical constructs. In other words, they may
support ad-hoc syntaxes for writing agents or plans. This is the case, for instance,
of Astra, JACK, and Goal. When this is the case, first-class abstraction can
be re-used along the MAS specification. For example, Astra supports writing
agents specifications extending other agents specifications.

Logic programming support. This feature is about whether BDI languages rely on
full-fledged logic programming as the preferred means to represent and manip-
ulate BDI data structures—e.g. beliefs, goals, etc. This is the case, for instance,
of Jason, Phidias, and Goal, which use logic terms and clauses to represent
beliefs, goals, plans, and events. They also rely on logic unification and resolu-
tion as the basic mechanism to manipulate these data structures to implement
the BDI reasoning cycle.

License. This feature is about which license BDI solutions are distributed with.
Notably, most solutions come with an open-source license, and their source code
is freely available and inspectable on the Web. The only exceptions are JACK,
which is proprietary, closed-source software, and Goal which allegedly has an
open-source license, despite we were not able to find the source code on the Web.

JaKtA: BDI agent-oriented programming in pure Kotlin 7

3 A Kotlin DSL for BDI Agents

We now let the analysis from Section 2.2 drive our selection of core features,
that will lead, in turn, to the actual implementation of a DSL for BDI agents.

We want our DSL to be familiar for BDI experts and, at the same time, to
look idiomatic to the community of mainstream developers. One way to achieve
the first goal is to reach AgentSpeak(L) compliance (i.e., to fulfill its operational
semantic), as AgentSpeak(L)-inspired languages are very popular within the
AOP community. Concerning the second goal, it can be achieved by letting the
DSL (and the underlying agent interpreter) be compliant with the API, the
syntax, and the stylistic conventions of some mainstream language of choice.
Programmers from both communities must be able to blend paradigms, writing
pieces of code that mix BDI abstractions with the ones of the chosen mainstream
language. Together with the will to inherit the existing reuse mechanisms of a
mainstream language, these aspects led us to choose an internal DSL.

As a BDI agent programming language, we also require our DSL to be compli-
ant w.r.t. a set of features, discussed below. First, the language should support
strong typing, and possibly type inference, in order to keep types as hidden
as possible. It should also support modularity and reusability at various lev-
els, there including (i) agent specifications, (ii) plan libraries and/or individual
plans, (iii) belief bases or goal sets, as well as (iv) internal and external actions.
This implies all such syntactical categories could be in principle written in sep-
arate files and composed in the finest way possible. Writing all such categories
in a single file should be supported as well.

The DSL should support an explicit notion of environment, which in turns
supports the pluggability of custom external actions – i.e., custom functionalities
that agents may invoke to support perception and actuation – as well as the
pluggability of custom message passing mechanisms—hence virtually supporting
distributed communication among agents. As far as pluggability is concerned,
MAS specification written in JaKtA should also support the addition of custom
internal actions on individual agents – i.e., custom functionalities supporting the
inspection/modification of agents’ internals –, as well as the choice of the most
adequate concurrency model for the MAS at hand—i.e., roughly, the strategy
by which agents’ concurrent execution is scheduled by the OS.

Finally, the DSL should support full-fledged logic programming syntax and
semantics in dealing with BDI data structures representation and manipulation.

A more nuanced pick is the selection of the target host language. There are
several elements to consider, including the target platform and its portability
across multiple platforms (as we want to maximise the range of potential target
runtimes), the existing ecosystem (as we want to leverage existing libraries and
tools), the language’s popularity (as we want to let the agent-orientation be
available to the widest possible audience), the type safety, and, of course, the
specific language features that could be leveraged for the construction of a DSL.

We considered several languages, including Java, Scala, Kotlin, Python, Ruby,
C#, and Typescript. From the point of view of syntactic flexibility we favored
Scala, Kotlin, and Ruby, as they provide machinery specifically meant to allow

8 Baiardi et al.

the construction of DSLs. We then discarded Ruby, as we wanted a statically
typed language. We picked Kotlin over Scala despite the latter having a bet-
ter type system (supporting, for instance, path-dependent and higher-kinded
types [14]) for merely practical reasons: (i) Scala 3 recently broke retro-com-
patibility with Scala 2, and, at the time this work was realised, many libraries
and tools were not yet available for the new version; (ii) we expect Kotlin pop-
ularity to grow faster than Scala’s in the future, as Google picked Kotlin as
reference language for the Android ecosystem2, and (iii) there are emerging li-
braries in Kotlin that are meant for data science, e.g.: KotlinGrad3, KMath [18],
KotlinDL4, and Kotlin Dataframe5. Combined with a Kotlin-based solution for
MAS, these tools may hopefully pave the way towards the combination of MAS
and data science.

3.1 Architecture and Implementation Details

It is worth mentioning that some required features are not merely syntactical as
they require support from the underlying BDI agent interpreter. This is the case,
for instance, of features supporting the pluggability of custom message passing
mechanisms as well as the choice of the most adequate concurrency model for
the MAS at hand. For this reason, JaKtA comes with its own BDI execution
engine. Designing from scratch required significant effort, but it also allowed us to
decouple agent specifications and their execution, and opened to the possibility
to target multiple platforms by leveraging the Kotlin capability to do so.

The JaKtA framework then includes three main modules, namely: (i) the
JaKtA DSL, (ii) the JaKtA BDI interpreter, and (iii) the concurrency manage-
ment module. Notably, the DSL is built on top of the BDI interpreter, which in
turn is built on top of the concurrency management module.

In principle, other languages could reuse the BDI interpreter by replacing the
DSL module. For instance, a Jason’s parser or a new Scala internal DSL for AOP
could be plugged on top of the existing BDI interpreter, enjoying, respectively,
the Kotlin debug tools and a reduced implementation effort.

The concurrency management module defines how agents are coupled with
threads, allowing the same specification to be executed on one or more threads,
depending on the application at hand. However, because of space limitations,
in the remainder of this paper we focus upon the syntactical aspects of JaKtA,
leaving the discussion of the underlying interpreter and concurrency module –
as well as the challenges and the opportunities they bring – to future works.

The framework has been released, free and open-source. It is available on
GitHub6 and Maven Central7 and archived on Zenodo [2].

2 https://developer.android.com/kotlin/first
3 https://github.com/breandan/kotlingrad
4 https://github.com/Kotlin/kotlindl
5 https://github.com/Kotlin/dataframe
6 https://github.com/jakta-bdi/jakta
7 https://search.maven.org/artifact/it.unibo.jakta/jakta-dsl

https://archive.is/C8aR8
https://archive.is/PHH5m
https://archive.ph/PxsOD
https://archive.ph/70DWL
https://github.com/jakta-bdi/jakta
https://search.maven.org/artifact/it.unibo.jakta/jakta-dsl

JaKtA: BDI agent-oriented programming in pure Kotlin 9

3.2 JaKtA’s syntax

JaKtA DSL syntax is strongly inspired by Jason and it is AgentSpeak(L)-
compliant. The entry point is the mas block, inside whose scope all the elements
composing a BDI MAS can be defined:
mas { environment { ... }; agent("jedi") { ... }; agent("sith") { ... } }

In the environment block, users define the external actions that agents can use,
as well as what agents can perceive. External actions include communication
primitives that can be implemented to send messages of a predefined type to
agent message boxes that are reified as part of the environment. Achieving com-
pliance with different agent communication languages (e.g. KQML [11] as used
in Jason) requires a further definition of the types of messages an agent can send
and how such types are interpreted in the agent lifecycle.
mas { environment {

actions { // definition of the external actions for this environment
action(create , ...) { addAgent (...) }
action(talk , ...) { sendMessage(recipient , ...) }

}
}}

Agents are named entities created with the agent function. These few syntactic
elements are enough to show a hint of how blending paradigms can be leveraged
to build complex systems in a few lines of code. In the following example, we mix
OOP, FP, and AOP: we fetch the rooster of three Italian football teams from a
public website, we extract the names through a regular expression, and then we
create one agent for each player:
mas { // BDI specification

fun allPlayers(team: String) = // Object -oriented style
Regex("""((\w+|\s)+) <\/span >""").findAll(

URL("https :// analytics.soccerment.com/en/team/$team").readText ()
).map { it.groupValues [1] } // Monadic manipulation (functional)

listOf("napoli", "milan", "juventus")
.flatMap (:: allPlayers) // Functional style (higher -order function)
.forEach { agent("$player playing for $team") { ... }/* BDI style */}

}

In this example, we exploit JaKtA for the MAS definition, the OOP paradigm
to deal with the regular expression match and data extraction from the group,
and the functional paradigm to monadically map teams to players.

Agents’ body is a collection of beliefs, goals, internal actions and plans
defined in homonym blocks. Beliefs are represented as a logic theory, namely a
collection of facts and rules expressed in a logic programming fashion. JaKtA
directly leverages, and exposes as API, the logic programming toolkit for Kotlin
2P-Kt [6] and its internal DSL for Prolog [7].

For instance, in the following, we define one fact (zero is a natural number)
and a logic rule defining the ‘successor’ relation among natural numbers:
mas { agent("gauss") { beliefs {

fact { natural_number(zero) }
rule { natural_number(successor(X)) impliedBy natural_number(X) }

}}}

10 Baiardi et al.

Goals can indicate either something that the agent wants to achieve or some-
thing that it wants to test (discover). Test goals prioritize the consultation of
the knowledge base over the execution of plans.
mas { agent("player1") { goals { achieve(victory(X)); test(has_won(Y)) } } }

Internal actions can access and modify the agent’s state. In the following snippet,
an internal action is used to modify the knowledge base of an agent, changing
the team it cheers for:
mas { agent("turncoat fan") { actions {

action(changeTeam , 1 /*this parameter is the arity*/) {
removeBelief(cheeringFor(X))
addBelief(cheeringFor(argument (0) /* positional access to parameters */))

}
}}}

Finally, plans describe which operations the agent is capable to perform; inherit-
ing the successful model of Jason, in JaKtA they are composed of a triggering
event deciding whether the plan is relevant, an optional context restricting
its applicability, and a body with the implementation. The triggering event
can be a goal/belief invocation/addition (+) or failure/deletion (-), in the form:
[+|-]<triggering event> onlyIf {<context>} then {<body>}. If a logical
expression is present in the context block (prefixed by onlyIf), it is then used
to vet the relevant plan; and if the plan is selected for execution the sequence
of operations and actions contained in its body (prefixed by then) is performed.
In the following example, we showcase the expressivity of blended paradigms
by creating a Kotlin function using AOP in JaKtA to verify the Collatz conjec-
ture [1] for a given number:
fun collatz(number: Int) = mas { agent(collatz) {

goals { achieve(collatz(number)) }
plans {

+achieve(verify(X)) // We reached 4 for the second time: it ’s a cycle
.onlyIf { found (4).fromSelf }
.then { Print("Collatz Conjecture verified!"); execute(stop) }

+achieve(collatz(X)) // We reached an even number: divide by 2
.onlyIf { X.isEven () and (R ‘is‘ X.intDiv (2)) }
.then { achieve(verify(R), true); +found(X); achieve(collatz(R)) }

+achieve(collatz(X)) // We reached an odd number: multiply by 3 and add 1
.onlyIf { X.isOdd() and (R ‘is‘ ((X * 3) + 1)) }
.then { achieve(verify(R), true); +found(X); achieve(collatz(R)) }

}
}}}

4 JaKtA in practice: running example

In this section, we show how JaKtA compares with a reference AOP technology
(Jason) through a running example in terms of (i) multi-paradigm integration,
and meta-programming, (ii) abstraction, re-use and type safety; and (iii) tooling
and ecosystem. The case we select is meant to highlight the benefits of paradigm
blending: we want to write a multi-agent modelling a TicTacToe match played on
a N ×N board, where N is only known at runtime. For the sake of conciseness,

JaKtA: BDI agent-oriented programming in pure Kotlin 11

we keep the example deliberately minimal, and we only report the code of a
single player. The full code of the example is available on a public repository8.

The agent may perceive the environment (the board) via percepts of the form
cell(X,Y, Z), where X and Y are the coordinates of the cell, and Z ∈ {e, x, o} is
the symbol contained in the cell. The agent may also perceive the beginning of a
turn via the turn(x) (resp., turn(o)) percept, and may place a symbol in a cell
of the environment using the put(X,Y, Z) external action—which also passes
the turn. The agent’s play strategy is the following: (i) if there are N of your
(resp. the other player’s) marks aligned in a row, declare victory (resp. defeat);
(ii) if there are N − 1 of your (resp. the other player’s) marks aligned and the
N th cell in the same direction is empty, write your mark in that cell; (iii) put a
cross in random empty cell.

There are four alignement directions, so the agent’s belief base can host:
aligned(Cells) :- vertical(Cells) | horizontal(Cells) | diagonal(Cells) |

antidiagonal(Cells).

The critical part of the scenario, however, is dealing with a grid of unknown size.
For a simple 3× 3 case, the problem can be dealt with via four couples of rules
in the form:
⟨alignment⟩([cell(X, Y, S)]) :- cell(X, Y, S).
⟨alignment⟩([cell(X, Y, S1), cell(A, B, S2) | OtherCells]) :-

cell(X, Y, S1) & cell(A, B, S2) & A-X=⟨dx⟩ & B-Y=⟨dy⟩ &
⟨alignment⟩([cell(A, B, S2) | OtherCells]).

where meta-variable ⟨alignment⟩ can be: vertical, horizontal, diagonal, and
antidiagonal, while ⟨dx ⟩, ⟨dy⟩ are in 1, 0, or -1. Under these premises, for a
3× 3 simplified scenario, the plans dealing with victory, loss, and random choice
may be written in Jason as:
+turn(x) : aligned ([cell(_,_,x),cell(_,_,x),cell(_,_,x)]) <- .print('I won')
+turn(x) : aligned ([cell(_,_,o),cell(_,_,o),cell(_,_,o)]) <- .print('I lost')
+turn(x) : cell(X,Y,e) <- put(X,Y,x)

whereas plans making the final move can be written as:
+turn(x) : aligned ([cell(_,_,x),cell(_,_,x),cell(X,Y,e)]) <- put(X,Y,x)
+turn(x) : aligned ([cell(_,_,x),cell(X,Y,e),cell(_,_,x)]) <- put(X,Y,x)
+turn(x) : aligned ([cell(X,Y,e),cell(_,_,x),cell(_,_,x)]) <- put(X,Y,x)

Plans impeding the victory of the opponent would be very similar.
This way of writing plans, however, does not scale well with the size of

the board: a N × N board would count 2N + 3 plan statements with a guard
mentioning N cells. There are no good strategies to handle these situations in
pure Jason (i.e. without using external tools to generate code), while they can
be managed by relying on alternative paradigms in JaKtA.

Multi-paradigm integration and meta-programmability The same appli-
cation in JaKtA could be created by defining a parametric MAS via an ordinary
Kotlin function with a parameter:

8 https://github.com/jakta-bdi/jakta-examples

https://github.com/jakta-bdi/jakta-examples

12 Baiardi et al.

fun ticTacToe(gridSize: Int = 3) = mas {
require(gridSize > 0);
environment { from(GridEnvironment(gridSize)) ; actions { action(Put) } }
player(mySymbol="x", otherSymbol="o", gridSize=gridSize)
player(mySymbol="o", otherSymbol="x", gridSize=gridSize)

}

The function declares a MAS whose environment of type GridEnvironment of
size gridSize supporting an external action Put (defined elsewhere). The two
players are agents returned by the player extension function:
fun MasScope.player(mySymbol: String , otherSymbol: String , gridSize: Int) =

agent("$mySymbol -agent") {
beliefs {

alignment("vertical",dx=0,dy=1); alignment("horizontal",dx=1,dy=0)
alignment("diagonal",dx=1,dy=1); alignment("antidiagonal",dx=1,dy=-1)
setOf("vertical", "horizontal", "diagonal", "antidiagonal")

.forEach { rule { aligned(L) impliedBy it(L) } }
}
plans {

detectVictory(mySymbol , gridSize)
detectDefeat(mySymbol , otherSymbol , gridSize)
makeWinningMove(mySymbol , gridSize)
preventOtherFromWinning(mySymbol , otherSymbol , gridSize)
randomMove(mySymbol)

}
}

Notably, the function exploits multiple paradigms to construct agent speci-
fications via AOP meta-programming. For instance, predicate aligned/1 is
defined in a forEach loop, while predicates vertical/1, horizontal/1, and
(anti)diagonal/1 are defined by calling the alignment function, which para-
metrically builds rules to compute alignments along the four major directions:
fun BeliefsScope.alignment(name: String , dx: Int , dy: Int) {

val first = cell(A, B, C); val second = cell(X, Y, Z)
rule { name(listOf(second)) impliedBy second }
rule { name(listFrom(first , second , last = W)) .impliedBy(

first , second , (X - A) arithEq dx, (Y - B) arithEq dy ,
name(listFrom(second , last = W))) }

}

With no paradigm blending, based on the bare AgentSpeak(L) syntax, the rules
would have needed to be copied and modified to support multiple cases instead.

Plans are defined by means of Kotlin functions as well: JaKtA plans can have
names, meta-parameters, and leverage decomposition. For instance, victory and
defeat detection are implemented with functions parametric in the symbol of the
player and size of the grid:
fun PlansScope.detectVictory(myMark: String , size: Int) =

detect(myMark , myMark , size) { Print("I won!") }
fun PlansScope.detectDefeat(myMark: String , otherMark: String , size: Int) =

detect(mySymbol , otherMark , size) { Print("I lost!") }

and both rely on a generic detect function implementing a template plan:
fun PlansScope.detect(me:String ,oth:String ,s:Int ,action:BodyScope .() ->Unit) =

+turn(me) onlyIf { aligned ((1..s).map { cell(oth) }) } then(action)

Finally, we show how plan generation can be realised in JaKtA by showing the

JaKtA: BDI agent-oriented programming in pure Kotlin 13

implementation of makeWinningMove:
fun PlansScope.winningMove(myMark:String , gridSize:Int , mark:String=myMark) =

allPermutationsOf(cell(X, Y, e), cell(mark), size - 1).forEach {
+turn(myMark) onlyIf { aligned(it) } then { Put(X, Y, myMark) }

}

There, gridSize plan statements are generated, one for each possible position of
the empty cell in a line containing N − 1 cells with the same mark. Once again,
the definition is parametric in the size of the grid and the symbol of the current
agent. In this way, the JaKtA code would work with all possible values N > 0,
whereas the corresponding AgentSpeak(L) code would need to be tailored on a
single value of N .

We believe that reusable units of agent behaviour such as template plans
and plan generation, made possible by intertwining multiple paradigms, promote
abstraction, reuse, and allow for improved code-organization.

Code organisation, reuse, and type safety Proper organisation is important
to the understandability and extensibility of any program. For instance, in our
example, separating the belief base from the plan library may be useful to change
the latter in order to implement different strategy. The main reuse technique
in Jason (similar for many other external AOP DSLs) is plain file inclusion,
performed with statements of the form include("path/to/file.asl"). The
mechanism is simple, but arguably limited and relatively unsafe, as the actual
result of the inclusion will be known at runtime.

Instead, JaKtA inherits the abstraction mechanisms of Kotlin: programs can
be suitably split into different pieces, at different levels of granularity (package,
file, class, function). Pieces may be either individual beliefs, plans, actions, or
agents, or even groups of them. Furthermore, JaKtA’s (Kotlin’s) reusable ab-
stractions are type-safe: one cannot, for instance, include a belief where a plan
is expected, and consistency is verified at compile time by the Kotlin compiler.

Tooling and ecosystem An indirect benefit of internal DSLs is the availabil-
ity of inheriting the rich ecosystem of tools of the host language. We quickly
exemplify in Figure 1 comparing how JaKtA and Jason are supported by two
commonly used IDEs: Visual Studio Code (VSCode) and IntelliJ Idea. We in-
stall, in both cases, the latest version of the Jason and Kotlin plugins; notably,
we developed nothing specific for JaKtA, so everything that is displayed came
with no development and maintenance cost. As the figure shows, we get code
highlighting and content assist for both languages in VSCode, although, thanks
to Kotlin’s type system, we obtain better completion suggestions. It is also worth
noting that the suggestions for Jason are in the form of code snippets and have
no real contextual relevance. On IntelliJ Idea, however, we have no highlighting
or assist of any kind for Jason beyond the tools the IDE provides for plain text
files: in fact, no Jason plugin for Idea exists, users coming from that IDE need
to adapt to a new one, or developers need to invest time and resources into de-
veloping one. Opposedly, JaKtA is fully supported in any IDE featuring Kotlin

14 Baiardi et al.

Fig. 1: IDE support for Jason and JaKtA compared Visual Studio Code (top)
and IntelliJ Idea (bottom). By inheriting the tools made for Kotlin, JaKtA
is fully supported in both IDEs with no need for additional development or
maintenance.

(a) Jason on Visual Studio Code (b) JaKtA on Visual Studio Code

(c) Jason on IntelliJ Idea (d) JaKtA on IntelliJ Idea

support (at the time of writing, this includes VSCode, Idea, Android Studio,
Eclipse, and Atom9).

Additionally, leveraging Kotlin as host language allows JaKtA code to be
smoothly embedded in Android applications. The TicTacToe example described
above has also been tested on Android10, as demonstrated by fig. 2. JaKtA is
available on Maven Central, and can thus be imported as an ordinary dependency
in any Android project, at the cost of a single line in the projects’ Gradle build
file.

Fig. 2: The TicTacToe MAS running on Android.

5 Conclusion, limitations, and future work

In this paper, we introduce JaKtA: an internal DSL for BDI agent program-
ming, written in Kotlin, that strives to achieve true paradigm blending of AOP,
OOP, and FP in a mainstream language. We show how JaKtA can be used
9 https://kotlinlang.org/docs/kotlin-ide.html

10 code available at: https://github.com/jakta-bdi/jakta-android-example

https://archive.is/eXUuT
https://github.com/jakta-bdi/jakta-android-example

JaKtA: BDI agent-oriented programming in pure Kotlin 15

to implement a simple BDI agent, and how paradigm blending can be used to
achieve improved modularity, and to build reusable BDI elements, thus provid-
ing value to the authors of AOP software. Moreover, we show that, with no need
for dedicated components or tools, and thus with no additional development and
maintenance cost for the language developers, JaKtA is already supported by
most popular IDEs, as it can rely on the existing infrastructure of its host lan-
guage. Additionally, we argue that JaKtA could enable more developers to get
in touch with AOP, since it does not require newcomers to learn a new language,
and/or adopt new tools.

Limitations. Approaching the problem through internal DSLs provides several
benefits already discussed, but they come at the expense of syntactic flexibility
induced by the host language (with different languages having imposing different
constraints). Thus, due to the features of Kotlin, differences among JaKtA and
AgentSpeak(L) are unavoidable. Indeed, only a fixed subset of symbols can be
overloaded in Kotlin. For instance, while the unary logical operator ! can be
overridden in Kotlin, the binary Elvis operator ?: cannot. Thus, JaKtA’s syntax
favors explicit keywords such as achieve and test to represent achievement and
test goals, respectively. Many syntactical design choices in JaKtA were driven by
the need to find appropriate Kotlin representations of Jason-inspired entities. As
a result, JaKtA’s syntax may be more verbose than Jason’s: the choice between
external and internal DSLs, in general, imposes a trade-off between conciseness
and reuse.

Concerning runtime behaviour, JaKtA’s architecture has been designed to
separate the concurrency model from the agent specification. The implementa-
tion discussed in this work relies on a sequential implementation, but different
concurrency models are under active development and will be explored in a
future work.

Future work. In the future, our research efforts will follow four main direc-
tions. Firstly, we plan to improve JaKtA to fully support Kotlin multiplat-
form facilities, thus enabling the exploitation of a single language and inter-
preter for running BDI systems on top embedded devices (Kotlin/Native) as well
as in Web (Kotlin/JavaScript), mobile (Kotlin/Android), and general-purpose
(Kotlin/JVM) applications. Second, with the help of the concurrency manage-
ment module developed for JaKtA (which we plan to describe in detail in another
work), we intend to investigate how different concurrency models may impact
the design and performance of MASs, both in real-world and simulated scenar-
ios. Along this line, we will also investigate how JaKtA can be integrated with
mainstream simulation frameworks, to provide better support to the develop-
ment of distributed MASs and we will attempt to compare how JaKtA relates
to other AOP technologies in terms of performance to understand whether the
possibility to change the concurrency model can achieve performance gains. Fi-
nally, we will look for ways to improve the syntax of the DSL, in order to increase
its readability and to thin the gap between the OOP and AOP.

16 Baiardi et al.

References

1. Andrei, S., Masalagiu, C.: About the collatz conjecture. Acta Informatica 35(2),
167–179 (1998). https://doi.org/10.1007/s002360050117

2. Baiardi, Martina, Ciatto, G., Pianini, D., Semantic Release Bot: jakta-bdi/jakta:
v0.3.0 (2023). https://doi.org/10.5281/zenodo.7900584

3. Bordini, R.H., Hübner, J.F., Wooldridge, M.J.: Programming Multi-Agent Systems
in AgentSpeak using Jason. John Wiley & Sons, Ltd (Oct 2007), http://eu.wiley.
com/WileyCDA/WileyTitle/productCd-0470029005.html

4. Bratman, M., et al.: Intention, plans, and practical reason, vol. 10. Harvard Uni-
versity Press Cambridge, MA (1987)

5. Calegari, R., Ciatto, G., Mascardi, V., Omicini, A.: Logic-based technolo-
gies for multi-agent systems: A systematic literature review. Autonomous
Agents and Multi-Agent Systems 35(1), 1:1–1:67 (2021). https://doi.org/10.1007/
s10458-020-09478-3

6. Ciatto, G., Calegari, R., Omicini, A.: 2P-Kt: A logic-based ecosystem for symbolic
AI. SoftwareX 16, 100817:1–100817:7 (Dec 2021). https://doi.org/10.1016/j.softx.
2021.100817

7. Ciatto, G., Calegari, R., Siboni, E., Denti, E., Omicini, A.: 2P-Kt: logic pro-
gramming with objects & functions in Kotlin. In: Calegari, R., Ciatto, G., Denti,
E., Omicini, A., Sartor, G. (eds.) WOA 2020 – 21th Workshop “From Objects
to Agents”. CEUR Workshop Proceedings, vol. 2706, pp. 219–236. Sun SITE
Central Europe, RWTH Aachen University, Aachen, Germany (Oct 2020), http:
//ceur-ws.org/Vol-2706/paper14.pdf, 21st Workshop “From Objects to Agents”
(WOA 2020), Bologna, Italy, 14–16 Sep. 2020. Proceedings

8. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artif. Intell.
42(2-3), 213–261 (1990). https://doi.org/10.1016/0004-3702(90)90055-5

9. Collier, R.W., Russell, S.E., Lillis, D.: Reflecting on agent programming with
AgentSpeak(L). In: PRIMA 2015: Principles and Practice of Multi-Agent Systems,
pp. 351–366. Lecture Notes in Computer Science, Springer International Publishing
(2015). https://doi.org/10.1007/978-3-319-25524-8_22

10. D’Urso, F., Longo, C.F., Santoro, C.: Programming intelligent iot systems with a
python-based declarative tool. CEUR Workshop Proceedings, vol. 2502, pp. 68–81.
CEUR-WS.org (2019), https://ceur-ws.org/Vol-2502/paper5.pdf

11. Finin, T., Fritzson, R., McKay, D., McEntire, R.: Kqml as an agent communication
language. In: Proceedings of the Third International Conference on Information
and Knowledge Management. p. 456–463. CIKM ’94, Association for Computing
Machinery, New York, NY, USA (1994). https://doi.org/10.1145/191246.191322,
https://doi.org/10.1145/191246.191322

12. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning. In: AAAI. vol. 87,
pp. 677–682 (1987)

13. Hindriks, K.V.: Programming rational agents in GOAL. In: El Fallah Seghrouchni,
A., Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming: Lan-
guages, Tools and Applications, pp. 119–157. Springer, Boston, MA (May 2009).
https://doi.org/10.1007/978-0-387-89299-3_4

14. Johann, P., Polonsky, A.: Higher-kinded data types: Syntax and semantics. In:
34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019,
Vancouver, BC, Canada, June 24-27, 2019. pp. 1–13. IEEE (2019). https://doi.
org/10.1109/LICS.2019.8785657, https://doi.org/10.1109/LICS.2019.8785657

https://doi.org/10.1007/s002360050117
https://doi.org/10.1007/s002360050117
https://doi.org/10.5281/zenodo.7900584
https://doi.org/10.5281/zenodo.7900584
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470029005.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470029005.html
https://doi.org/10.1007/s10458-020-09478-3
https://doi.org/10.1007/s10458-020-09478-3
https://doi.org/10.1007/s10458-020-09478-3
https://doi.org/10.1007/s10458-020-09478-3
https://doi.org/10.1016/j.softx.2021.100817
https://doi.org/10.1016/j.softx.2021.100817
https://doi.org/10.1016/j.softx.2021.100817
https://doi.org/10.1016/j.softx.2021.100817
http://ceur-ws.org/Vol-2706/paper14.pdf
http://ceur-ws.org/Vol-2706/paper14.pdf
https://doi.org/10.1016/0004-3702(90)90055-5
https://doi.org/10.1016/0004-3702(90)90055-5
https://doi.org/10.1007/978-3-319-25524-8_22
https://doi.org/10.1007/978-3-319-25524-8_22
https://ceur-ws.org/Vol-2502/paper5.pdf
https://doi.org/10.1145/191246.191322
https://doi.org/10.1145/191246.191322
https://doi.org/10.1145/191246.191322
https://doi.org/10.1007/978-0-387-89299-3_4
https://doi.org/10.1007/978-0-387-89299-3_4
https://doi.org/10.1109/LICS.2019.8785657
https://doi.org/10.1109/LICS.2019.8785657
https://doi.org/10.1109/LICS.2019.8785657
https://doi.org/10.1109/LICS.2019.8785657
https://doi.org/10.1109/LICS.2019.8785657

JaKtA: BDI agent-oriented programming in pure Kotlin 17

15. Körner, P., Leuschel, M., Barbosa, J., Costa, V.S., Dahl, V., Hermenegildo, M.V.,
Morales, J.F., Wielemaker, J., Diaz, D., Abreu, S.: Fifty years of prolog and be-
yond. Theory Pract. Log. Program. 22(6), 776–858 (2022). https://doi.org/10.
1017/S1471068422000102, https://doi.org/10.1017/S1471068422000102

16. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The ocaml
system: Documentation and user’s manual. INRIA 3, 42

17. Mazinanian, D., Ketkar, A., Tsantalis, N., Dig, D.: Understanding the use of
lambda expressions in java. Proc. ACM Program. Lang. 1(OOPSLA), 85:1–85:31
(2017). https://doi.org/10.1145/3133909

18. Nozik, A.: Kotlin language for science and Kmath library. AIP Conference Pro-
ceedings 2163(1) (10 2019). https://doi.org/10.1063/1.5130103, https://doi.org/
10.1063/1.5130103, 040004

19. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the a&a meta-model for multi-
agent systems. Auton. Agents Multi Agent Syst. 17(3), 432–456 (2008). https:
//doi.org/10.1007/s10458-008-9053-x

20. Palanca, J., Rincon, J.A., Carrascosa, C., Julián, V., Terrasa, A.: A flexible agent
architecture in SPADE. Lecture Notes in Computer Science, vol. 13616, pp. 320–
331. Springer (2022). https://doi.org/10.1007/978-3-031-18192-4_26

21. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In:
Håkansson, A., Nguyen, N.T., Hartung, R.L., Howlett, R.J., Jain, L.C. (eds.)
Agent and Multi-Agent Systems: Technologies and Applications, Lecture Notes
in Computer Science, vol. 5559, pp. 149–174. Springer, Berlin, Heidelberg (June
3–5, 2005). https://doi.org/10.1007/0-387-26350-0_6

22. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a bdi-architecture. In:
Allen, J.F., Fikes, R., Sandewall, E. (eds.) Proceedings of the 2nd International
Conference on Principles of Knowledge Representation and Reasoning (KR’91).
Cambridge, MA, USA, April 22-25, 1991. pp. 473–484. Morgan Kaufmann (1991)

23. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems
– an artifact-based perspective. Autonomous Agents and Multi-Agent Systems
23(2), 158–192 (Sep 2011). https://doi.org/10.1007/s10458-010-9140-7

24. Riti, P.: Practical Scala DSLs: Real-World Applications Using Domain
Specific Languages. Apress, Berkeley, CA (2018). https://doi.org/10.1007/
978-1-4842-3036-7

25. Stroustrup, B.: The C++ programming language. Addison-Wesley, 3rd edn. (1997)
26. Winikoff, M.: JACKTM intelligent agents: An industrial strength platform. vol. 15,

pp. 175–193. https://doi.org/10.1007/0-387-26350-0_7

https://doi.org/10.1017/S1471068422000102
https://doi.org/10.1017/S1471068422000102
https://doi.org/10.1017/S1471068422000102
https://doi.org/10.1017/S1471068422000102
https://doi.org/10.1017/S1471068422000102
https://doi.org/10.1145/3133909
https://doi.org/10.1145/3133909
https://doi.org/10.1063/1.5130103
https://doi.org/10.1063/1.5130103
https://doi.org/10.1063/1.5130103
https://doi.org/10.1063/1.5130103
https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1007/978-3-031-18192-4_26
https://doi.org/10.1007/978-3-031-18192-4_26
https://doi.org/10.1007/0-387-26350-0_6
https://doi.org/10.1007/0-387-26350-0_6
https://doi.org/10.1007/s10458-010-9140-7
https://doi.org/10.1007/s10458-010-9140-7
https://doi.org/10.1007/978-1-4842-3036-7
https://doi.org/10.1007/978-1-4842-3036-7
https://doi.org/10.1007/978-1-4842-3036-7
https://doi.org/10.1007/978-1-4842-3036-7
https://doi.org/10.1007/0-387-26350-0_7
https://doi.org/10.1007/0-387-26350-0_7

	Copertina_postprint_IRIS_UNIBO
	paper-2023-paams-kotlin-bdi (2)
	 JaKtA: BDI agent-oriented programming in pure Kotlin

