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Background: The Epidemic Intelligence from Open 
Sources (EIOS) system, jointly developed by the World 
Health Organisation (WHO), the Joint Research Centre 
(JRC) of the European Commission and various part-
ners, is a web-based platform that facilitate the moni-
toring of information on public health threats in near 
real-time from thousands of online sources. Aims: To 
assess the capacity of the EIOS system to strengthen 
data collection for neglected diseases of public health 
importance, and to evaluate the use of EIOS data 
for improving the understanding of the geographic 
extents of diseases and their level of risk. Methods: 
A Bayesian additive regression trees (BART) model 
was implemented to map the risk of Crimean-Congo 
haemorrhagic fever (CCHF) occurrence in 52 countries 
and territories within the European Region between 
January 2012 and March 2022 using data on CCHF 
occurrence retrieved from the EIOS system. Results: 
The model found a positive association between all 
temperature-related variables and the probability of 
CCHF occurrence, with an increased risk in warmer 
and drier areas. The highest risk of CCHF was found 
in the Mediterranean basin and in areas bordering the 
Black Sea. There was a general decreasing risk trend 
from south to north across the entire European Region. 
Conclusion: The study highlights that the information 
gathered by public health intelligence can be used to 
build a disease risk map. Internet-based sources could 
aid in the assessment of new or changing risks and 
planning effective actions in target areas.

Introduction
The Epidemic Intelligence from Open Sources (EIOS) 
[1] platform is a unique collaboration between vari-
ous public health stakeholders around the globe. 

The initiative is led by the World Health Organization 
(WHO) and brings together new and existing networks 
and systems to create a unified all-hazards, One Health 
approach to early detection, verification and assess-
ment of public health risks and threats. The EIOS 
system, jointly developed under the EIOS initiative by 
WHO, the Joint Research Centre (JRC) of the European 
Commission and partners is a web-based platform that 
enables monitoring of information in near real-time 
from around 15,000 publicly accessible sources world-
wide (e.g. news media, social media, scientific papers), 
using specific search algorithms. EIOS promotes and 
catalyses new and innovative collaborative develop-
ment, appealing and connecting several actors, institu-
tions and countries [2].

Information collated from open sources is automati-
cally processed, analysed and enriched with metadata 
including classifications based on more than 600 cat-
egories representing different concepts (for example: 
diseases, variants, public health measures). Other 
meta information relevant for this study is the detec-
tion of mentioned geolocations. Geolocations are 
identified using named entity recognition with disam-
biguation (NEROne) [3], mapped to the geographical 
database GeoNames [4].

In order to facilitate detection of new relevant threats 
or monitoring of ongoing threats, the EIOS system pro-
vides the user with several filter options to focus on, for 
the given user, most relevant information. Specifically, 
data can be filtered by time period, mentioned coun-
tries, geolocations, region, language, source of the 
data, as well as categories. All these filters can be com-
bined to create a tailored search and filter capabilities 
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which can be saved. These characteristics positioned 
the EIOS as one of the most relevant systems for event-
based surveillance [5].

EIOS collects information from a wide range of unof-
ficial and official sources (e.g. official channels from 
national authorities) on animal and human diseases. 
The World Organisation for Animal Health (WOHA) and 
the WHO, organisations that disseminate officially 
confirmed information on animal and human diseases 
respectively, have different mechanisms and systems 
for collecting and disseminating this official informa-
tion. In the field of animal health, the World Animal 
Health Information System (WAHIS) is the WOAH refer-
ence global database that gathers information on the 
official animal disease situation as reported by the 
National Veterinary Services [6]. This database has 
been proved to be particularly useful to understand 
the evolution of animal diseases at global and regional 
level [7-12]. Information on human health is available 
through different mechanisms, with varying cover-
age, completeness, and update frequency (accessible 
for example through the Global Health Observatory 
[13], the Global Influenza Programme [14], Disease 
Outbreak News [15] among others). Data from media 
sources, expert networks and social media can be 
pivotal to identify significant disease outbreak infor-
mation in a near real-time way [16], but they also repre-
sent critical sources to understand the spatio-temporal 
distribution of diseases when official data are lack-
ing. Nevertheless, information from unofficial sources 
needs to be verified and confirmed.

In this study, we used internet-based data retrieved from 
the EIOS system to model the risk of Crimean-Congo 
haemorrhagic fever (CCHF) occurrence in the European 
Region. The objectives were (i) to assess the capacity 
of the EIOS system to strengthen data collection for 

neglected diseases of veterinary and public health 
importance and (ii) to evaluate the use of the EIOS 
data for improving the understanding of the geographic 
extents of diseases and their level of risk. CCHF is a tick-
borne disease caused by the arbovirus Crimean-Congo 
haemorrhagic fever virus (CCHFV; family  Nairoviridae) 
transmitted by ticks of the genus  Hyalomma  [17-20]. 
A previous study attempted to model the risk of CCHF 
infection in humans using reported cases in literature 
[21]. However, thus far, no study has used epidemic 
intelligence tools investigating publicly available 
sources to create a database of occurrence points with 
the view of building a disease risk map.

Methods

Geographical setting and definitions
The study area is represented by the territories of 52 
countries and territories within the European Region 
below ~60 ◦North latitude (see Supplementary Material 
A, Table S1  for a list of the countries and territories 
considered in this study).
An occurrence point was defined as a geographical 
point where a case of CCHF in humans or an isolation 
of CCHFV from ticks was detected during the timeframe 
considered. This latitude was defined considering the 
gaps in satellite normalised difference vegetation index 
(NDVI) coverage at regions near the poles because of 
the long-lasting accumulation of snow or clouds, as 
well as the stable presence of the CCHF vector (ticks of 
genus Hyalomma) [22,23].

Data sources and approach
Data on CCHF occurrence (January 2012–March 2022) 
were retrieved from the EIOS system using a specific 
category (‘CCHF category’) that implemented an algo-
rithm to detect mentions of CCHF cases in humans 
or vectors. In practice, a list of predefined keywords 
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Table
Variables collated for use in the spatial model on Crimean-Congo haemorrhagic fever occurrence in 52 countries and 
territories within the European Region, 2012–2022

Definition Code Source
Annual mean temperature WC_bio1 WorldClim [27]
Mean diurnal range (mean of monthly (max temperature − min temperature)) WC_bio2 WorldClim [27]
Isothermality (bio2/bio7) (x 100) WC_bio3 WorldClim [27]
Temperature seasonality (standard deviation x 100) WC_bio4 WorldClim [27]
Max temperature of the warmest month WC_bio5 WorldClim [27]
Min temperature of the coldest month WC_bio6 WorldClim [27]
Temperature annual range (bio5 –bio6) WC_bio7 WorldClim [27]
Mean temperature of the wettest quarter WC_bio8 WorldClim [27]
Mean temperature of the driest quarter WC_bio9 WorldClim [27]
Mean temperature of the warmest quarter WC_bio10 WorldClim [27]
Mean temperature of the coldest quarter WC_bio11 WorldClim [27]
Annual precipitation WC_bio12 WorldClim [27]
Precipitation of the wettest month WC_bio13 WorldClim [27]
Precipitation of the driest month WC_bio14 WorldClim [27]
Precipitation seasonality (coefficient of variation) WC_bio15 WorldClim [27]
Precipitation of the wettest quarter WC_bio16 WorldClim [27]
Precipitation of the driest quarter WC_bio17 WorldClim [27]
Precipitation of the warmest quarter WC_bio18 WorldClim [27]
Precipitation of the coldest quarter WC_bio19 WorldClim [27]

Thornthwaite aridity index: index of the degree of water deficit below water need ER_aridityIndexThornthwaite ENVIREM dataset 
[28]

A metric of relative wetness and aridity ER_climaticMoistureIndex ENVIREM dataset 
[28]

Average temperature of the warmest month − average temperature of the coldest 
month ER_continentality ENVIREM dataset 

[28]
Sum of mean monthly temperature for months with mean temperature greater than 
0 °C multiplied by number of days ER_growingDegDays0 ENVIREM dataset 

[28]
Sum of mean monthly temperature for months with mean temperature greater than 
5 °C multiplied by number of days ER_growingDegDays5 ENVIREM dataset 

[28]

Count of the number of months with mean temperature greater than 10 °C ER_monthCountByTemp10 ENVIREM dataset 
[28]

Compensated thermicity index: sum of mean annual temperature, min temperature 
of the coldest month, max temperature of the coldest month x 10, with 
compensations for better comparability across the globe

ER_thermicityIndex ENVIREM dataset 
[28]

SAGA GIS topographic wetness index ER_topoWet ENVIREM dataset 
[28]

Terrain roughness index ER_tri ENVIREM dataset 
[28]

Principal component 1 of NDVIa time series ndvi.pca1
Copernicus Global 

Land Service 
[29]

Principal component 2 of NDVIa time series ndvi.pca2
Copernicus Global 

Land Service 
[29]

Principal component 3 of NDVIa time series ndvi.pca3
Copernicus Global 

Land Service 
[29]

Principal component 4 of NDVIa time series ndvi.pca4
Copernicus Global 

Land Service 
[29]

max: maximum; min: minimum; NDVI: normalised difference vegetation index.
a NDVI is an indicator of the greenness of the biomes.
A list of the countries and territories included can be found in Supplementary Material A Table S1 A.
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and keyword combinations in different languages was 
used (see  Supplementary Material B  for an example 
of keywords in English). The EIOS system collates 
information from a broad range of sources including 
news media, social media and expert networks and 
news aggregator websites (e.g. ProMed, HealthMap and 
the Global Public Health Intelligence Network (GPHIN). 
The EIOS system is constantly updated, collecting 
‘close to real-time’ events. Data included in this study 
have incorporated the information available up to 2 
March 2022. Since EIOS only started a consistent data 
retrieval in November 2017, we coupled these data with 
the information on CCHF cases during the period 2012–
17 obtained from scientific literature.

The approach was based on the following steps: (i) 
building a filter in EIOS to detect all the news items 
falling under ‘CCHF category’, (ii) retrieving and dou-
ble checking the geographical coordinates detected in 
the news items by EIOS, (iii) assessing the reliability 
of the data, (iv) complementing the occurrence data 
extracted from EIOS with the information retrieved 
from scientific literature, (v) retrieving and process-
ing the rasters used as predictors and (vi) building a 

spatial model. Details of the methodology applied are 
provided hereunder.

Filter criteria and data processing
Firstly, a filter was created in EIOS to identify and pin 
all news items that mentioned CCHF cases in humans 
or vectors to the ‘CCHF category’. Secondly, a spatial 
selection was applied, and a target area was drawn on 
the interface map provided by the system to include 
only the information relevant to the European Region. 
Lastly, each piece of news, along with its ID (assigned 
by EIOS) and geographical coordinates of all the men-
tioned locations, was extracted and exported to Excel. 
If a news item contained information about more than 
one location of the disease, multiple rows were cre-
ated in the export. Each news item was thoroughly 
checked manually by the authors (AF, JCS and PT) to 
assess (i) the credibility and reliability of the website, 
(ii) the content of the news item, (iii) the accuracy and 
reliability of the source, (iv) confirmation of the same 
news item by more than one source and (v) strength of 
evidence for CCHF presence in that location. To do so, 
the map on geographic distribution of CCHF developed 
by WHO showing the areas with active CCHF circulation 
(virological and serological evidence) was consulted as 

Figure 1
Occurrence locations of Crimean-Congo haemorrhagic fever cases in humans and Crimean-Congo haemorrhagic fever 
virus isolates from ticks, European Region, 2012–2022 (n = 141 before spatial thinning)

 Occurrence locations
N
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one of the criteria to check and validate the informa-
tion retrieved [24]. News items mentioning the loca-
tions where the cases were hospitalised rather than 
the locations of the infection were discarded. Similarly, 
we did not consider news items where it was not pos-
sible to distinguish the infection site from the hospital 
location.

Given the limitations of the EIOS system before 2017, 
the dataset was completed by including information on 
CCHF cases retrieved from studies published after 2012 
(mentioned in a recent meta-analysis [25]). To better 
define the territorial entities, two columns were added 
to the database, one containing the GeoNames Feature 
Code retrieved from GeoNames website [4] and another 
containing the information on the area size (expressed 
as km2) of the territorial entity and retrieved from 
Wikipedia. After removal of duplicates (news items and 
information from scientific literature referring to more 
cases occurring in the same location), administrative 
divisions greater than 5,000 km2 were not included in 
the analysis to reduce the risk of bias in the model. If 
we had included large areas of presence, the predic-
tors would have needed to be scaled at a lower resolu-
tion. The use of highly resolved predictors is indeed an 

important prerequisite of spatial modelling since the 
detail of disease response to the environments may 
not be captured at a coarser resolution.

Predictor variables
In this study, the term pixel is used to define the level 
of detail (cell size or spatial resolution) of the rasters 
used as predictors in the model. Thirty-three explana-
tory variables were initially considered to build the 
model (Table). We used the functions in the ‘sdmpre-
dictors’ package [26] to access WorldClim [27] and 
ENVIREM [28] online datasets. For the NDVI, we down-
loaded the 10-daily data PROBAV_V2.2.1 (1 Jan 2016–31 
Dec 2020) from Copernicus Global Land Service [29]. 
One-month composites of NDVI were prepared through 
the method of the maximum pixel value to obtain the 
largest area without gaps in pixels. Principal compo-
nent analysis (PCA) was run on the monthly compos-
ites using the prcomp() function to reduce the number 
of NDVI rasters. The first four components explaining 
0.91% of the total variance were added to the set of 
explanatory variables (see  Supplementary Material A, 
Figure S1 A  for an analysis of the first four principal 
components). All the predictors were rescaled at a 
resolution of 0.044645 x 0.044645 decimal degrees 

Figure 2
Favourability predictions for Crimean-Congo haemorrhagic fever occurrence, European Region below ~60 ◦North latitude, 
2012–2022
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(corresponding to around 4 x 4 km in metric units), 
aligned and reprojected using the same coordinate 
reference system (World Geodetic System 1984 
(WGS84) EPSG:4326).

Occurrence points and pseudo-absence data
A spatial thinning procedure selecting only one pres-
ence within each pixel of the predictor variables was 
performed with gridRecords() function in fuzzySim 
package version 3.6 [30] to reduce both spatial bias 
and spatial autocorrelation. This function was used to 
obtain unique presences and absences from occurrence 
data (expressed as x and y coordinates) at the spatial 
resolution of the predictors. As absence points were 
not supplied, all pixels without any occurrence points 
were returned as pseudo-absences. Nevertheless, a 
random sample of the pseudo-absence pixels was 
selected to obtain a 1:10 ‘occurrence: pseudo-absence 
ratio’ in the model. This was done to avoid an exces-
sive number of pseudo-absences compared with the 
number of occurrences [30].

Spatial modelling
We built a Bayesian additive regression tree (BART) 
model using the embarcadero package version 
1.2.0.1003 [31]. Under the Bayesian framework, the 
initial expected value (prior) is updated by the model 
to get the posterior distribution (predicted probabili-
ties). Thus, for each pixel, a posterior distribution of 
predicted probabilities with the associated 95% cred-
ible intervals (CI) is obtained. The model was fit with 
all the variables to select the most important ones. The 
automated stepwise reduction algorithm with 50 itera-
tions and 10 trees was used to eliminate the variables 
with the lowest importance and obtain the model with 
the lowest root mean square error (RMSE). Afterwards, 
the model was rerun using only the variables selected 
in the previous step. Variable importance plot, predic-
tions and response plots were created with the in-built 
functions of the package. Finally, the probability maps 
were converted to favourability maps using modEVA 
package version 3.0 [32]. The percentage of pixels at 
different levels of risk and uncertainty were computed 
reclassifying the pixels values into three classes, i.e. 

Figure 3
Uncertainty predictionsa for Crimean-Congo haemorrhagic fever occurrence, European Region below ~60 ◦North latitude, 
2012–2022
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a Posterior width, 95% credible intervals.
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low (0 ≤ x < 0.33), medium (0.33 ≤ x < 0.66), and high 
(0.66 ≤ x), with QGIS version 3.22.4 [33].

Model performance was assessed by the area under 
the receiver operating characteristic curve (AUC), 
which measures overall discrimination capacity and 
threshold-dependent metrics and assesses how well 
the model distinguishes presence from absence. All 
the analyses were performed R software version 4.1.2 
[34].

Results
Three hundred and sixty-five news items published 
between 24 July 2012 to 22 March 2022 were retrieved 
from the EIOS system. These comprised 1,387 loca-
tions. Fifty-one additional locations were compiled 
from the meta-analysis. After removing the EIOS dupli-
cates, the irrelevant data (news items not specifically 
referring to human cases or virus isolation from ticks) 
and uncertain information (news items without clear 
indication of the localisation of human cases/virus iso-
lation from ticks), we obtained 172 records, of which 
further 31 were discarded as referring to administrative 
divisions with areas greater than 5,000 km2. Thus, 141 
occurrence points were initially considered (Figure 1). 

Following the spatial thinning, the final occurrence data-
set comprised 136 pixels with occurrence and 1,360 pix-
els with pseudo-absence of CCHF. The model with the 
lowest average RMSE selected through the automated 
procedure retained the following variables in order of 
importance: ER_growingDegDays0, ndvi.pca1, ER_
aridityIndexThornthwaite, WC_bio9, ER_continentality, 
WC_bio5, ER_tri, and WC_bio11 (see  Supplementary 
Material A, Figure S2 A and S3 A  for the variable 
selection and variable importance plots respectively). 
Only the first principal component of the NDVI was 
selected. This captures the major element of variability 
in the NDVI time series. The model performed well in 
terms of accuracy (AUC = 0.95) (see  Supplementary 
Material A, Figure S4 A  for the model diagnostics), 
correct classification rate (CCR = 0.80), correct 
prediction of presences (sensitivity/recall = 0.99), 
correct prediction of absences (specificity = 0.79), 
true skill statistic (sTSS = 0.89), Cohen’s kappa 
(skappa = 0.69), but the positive predictive value was 
low (precision = 0.31) (see  Supplementary Material A, 
Figure S5 A  for the model evaluation metrics).  Figure 
2  shows that the majority of CCHF risk is found in 
the Mediterranean basin and in the areas bordering 
the Black Sea. Considering the whole study area, the 
percentage of pixels at high risk was 16%, while 15% 
and 69% were at medium and low risk, respectively. 
There was a general decreasing risk trend from south 
to north across the entire European Region.

The uncertainty map highlights that some areas of 
predicted favourability are characterised by consider-
able uncertainty, presumably because of the lack of 
CCHF records in those zones (Figure 3). Nevertheless, 
the majority of the study area is characterised by a 
low level of uncertainty (57% of pixels), while only a 
smaller percentage of pixels are characterised by either 
medium (37%) or high (6%) levels of uncertainty.

Considering the variables retained, the model found a 
positive association between all temperature-related 
variables and the probability of CCHF occurrence, 
with an increased risk in warmer and drier areas 
(see  Supplementary Material A, Figure S6 A  for the 
partial dependence plots). In the model, there was 
no predictor that alone showed a marked and sig-
nificant effect, but rather the combination of all vari-
ables influenced the risk of CCHF across the European 
Region. Considering the bidimensional partial depend-
ence plots for the first three selected variables (Figure 
4), the occurrence probability is remarkably high in 
those areas characterised by both high values of ER_
growingDegDays0 and ndvi.pca1, both high values 
of ER_growingDegDays0 and ER_aridityIndexThorn-
thwaite, and both high values of ndvi.pca1 and 
ER_aridityIndexThornthwaite.

Discussion
In this study, we used internet-based surveillance 
data retrieved from the EIOS system to model the risk 
of CCHF occurrence within the European Region. The 

Figure 4
Bidimensional partial dependence plots of three variablesa 
showing the interactions between pairs of variables 
influencing Crimean-Congo haemorrhagic fever occurrence 
probability, European Region below ~60 ◦North latitude, 
2012–2022
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study underlines the effectiveness of the EIOS system 
in detecting, retrieving and compiling information from 
multiple sources and how these data can be used to 
build a disease risk map. CCHF was considered a good 
test case for several reasons. Firstly, the disease, 
which is endemic in many regions such as Africa, Asia, 
Eastern Europe and the Middle East, has given rise 
to many concerns over its spread outside the current 
geographical range [18]. Secondly, it is a tick-borne dis-
ease, and thus environmental variables play a pivotal 
role in shaping its geographical distribution and conse-
quently its occurrence, can be well predicted through 
spatial modelling [19]. Thirdly, it is a neglected tropi-
cal disease posing a risk to human health [20]. Results 
of the model highlight that the distribution of CCHF 
is likely to be geographically broader than expected, 
and mainly driven by temperature/climate-related pre-
dictors. Not only does the model predict areas where 
CCHF is already established (e.g. Eastern Europe and 
the Black Sea region), but also those areas at risk of 
further CCHF expansion, given their favourable envi-
ronmental conditions (e.g. Italy, France). Of note, 
during the revision of this work, author Fanelli and col-
leagues found seropositive cattle in Italy [35], confirm-
ing model predictions. It is important to stress that the 
presence probability predictions were converted into 
favourability predictions. The former are considered as 
the likelihood of finding the disease in a given environ-
ment depending on the probability of finding the dis-
ease given how rare or common it is (i.e. prevalence), 
whereas the latter do not necessarily reflect the loca-
tions where the disease is predicted to be present, but 
rather favourable areas for its occurrence, although 
the disease may be currently absent [36]. It is not sur-
prising that the model has a low precision, meaning 
that it predicts positive pixels where we do not have 
any actual observations of human cases or virus isola-
tion from ticks. These are represented by the locations 
which are likely to be favourable for CCHF occurrence, 
but where the disease or the circulation of the virus 
have yet to be recorded.

Another important consideration highlighted by this 
study is related to the countries where the disease 
seems to have a clustered distribution for which a low 
favourability and high uncertainty were found. One 
example is Georgia and its vicinity, where the pres-
ence points retrieved from the news items were limited 
to the plain areas of Khashuri and Tskaltubo. The low 
favourability and high uncertainty found in the areas 
close to the plain is not surprising given the complex 
orographic and very variable landscape-climatic condi-
tions of the area. The low favourability is likely to be 
due to the mountain areas (Caucasus mountains) with 
lower temperatures and mostly unfavourable environ-
mental conditions.
The overall percentage of areas at high favourability 
is quite low, highlighting that the risk is still low for 
most European countries. Interestingly, our predictions 
are in line with the risk estimates of authors Fanelli 
and Buonavoglia in an earlier publication [17]. In their 

assessment, a low risk of CCHFV entry and exposure 
in large part of Western Europe and a medium risk 
for France and Italy was described. The presence of 
the Hyalomma marginatum  resident population, which 
is the main vector of the virus, is the primary factor 
influencing the probability of the disease spread once 
the virus has been introduced in CCHF-free countries 
[17]. In our predictive map, the risk is high for almost 
the entire Italian peninsula, whereas France has the 
highest favourability along its Mediterranean coast. In 
line with this, Italy has a widespread population of H. 
marginatum, whereas France has only a hotspot area in 
the southern part of the country [22].

Fernández-Ruiz and Estrada-Peña [19] have recently 
assessed the expansion of suitable areas for  H. mar-
ginatum, indicating that the Mediterranean coun-
tries, south-east central Europe and the southern 
Balkans are most likely to see future spread of the 
tick. Similarly, in our study, the most important varia-
bles retained by the model define the most favourable 
areas for the spread and colonisation of  H. margina-
tum.  It is important to derive the ecological meaning 
of the predictors retained, which are likely to play an 
important role in determining the suitability of areas 
for tick development. A relevant example is the sum 
of mean monthly temperature for months with mean 
temperature greater than 0 °C multiplied by number 
of days, which may define the critical accumulated 
temperature necessary for tick spread and colonisation 
[19]. Another important predictor in our model is the 
NDVI which, at high values, contributes, along with 
the temperature variables, to increasing the probabil-
ity of CCHF occurrence, which may be explained by the 
necessity of adequate relative humidity for the vector 
development [23].

In this study, we did not include any data on CCHF 
serology in humans or animals, which are unlikely to 
be reported in near real-time news item publications, 
as are the data of the EIOS system. The information 
on serological evidence of CCHF comes mainly from 
scientific literature and may be useful to complement 
the picture of the disease distribution [16]. It is worth 
mentioning that CCHFV can circulate unnoticed in 
numerous wild and domestic animals that are asymp-
tomatic carriers of the virus and may act as reservoirs 
[37]. Cuadrado-Matías et al. [38] mapped the risk of 
exposure to CCHFV in Spain using serological data 
on red deer as an indicator of the transmission risk 
from infected ticks. Compared with their risk map, 
our predictions show a more extensive distribution of 
favourable environment in the Iberian Peninsula for 
CCHF occurrence. In particular, they found a higher 
risk mainly in the south-western part of the country, 
whereas our predictions indicate that the risk is high 
also along the Spain’s east coast. This difference is 
likely to be due to the different modelling approaches 
adopted as well as the predictors used. Indeed, not 
only did Cuadrado-Matías et al. [38] use environmental 
variables, but also host population predictors regarding 
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both wild and domestic animals, which were found to 
be significant factors behind the risk of exposure to 
CCHFV. Unfortunately, this information, which could 
have improved our predictions, is missing or outdated 
at the European level. With reference to the distribu-
tion and density of domestic animals, some data are 
available through the Gridded Livestock of the World 
(GLW3) from the Food and Agriculture Organization of 
the United Nations (FAO), but the dataset has two major 
limitations: the distribution data refer to 2010 and their 
spatial resolution is around 10 km (coarser than our 
predictions) [39]. Wildlife data are available for most of 
the European countries, but they are not collected with 
consistent and homogeneous criteria, making it very 
difficult to use for modelling purposes [40].

It is important to highlight that the model was run on 
the full dataset (resubstitution). Indeed, it was not pos-
sible to set aside some data for testing given the small 
amount of presence points. Data splitting would have 
withdrawn a lot of information from the model. This 
should be kept in mind when considering the results 
of this study. Other limitations include the category 
definition for CCHF available in EIOS, which might have 
missed some news items reporting CCHFV from ticks. 
Despite these limitations, we feel that our model is of 
great value since it provides an updated picture of the 
risk of CCHF at the regional level, with a low level of 
uncertainty associated with the majority of the pixels.
Our approach is unique in its kind, as we demonstrated 
the potential of internet-based data accessed through 
the EIOS system to create a disease risk map. In fact, 
although the traditional use of the EIOS system is to 
early detect potential public health threats through an 
event-based surveillance [41-43], their complex algo-
rithms can be also used to automatically extract the 
geographical coordinates of outbreak locations, which 
may, in turn, be used to build spatial risk models. 
These have important consequences for health-related 
decision-making and planning effective actions in tar-
get areas [44-49].

Conclusions
The practical implications of using epidemic intelli-
gence tools are considerable in terms of helping design 
effective disease control strategies. However, they 
require a reasonable effort to develop adequate and 
unbiased algorithms, to select accurate and relevant 
sources, and to extract the exact geographical coordi-
nates of disease outbreaks.

As recently mentioned in a paper on the ‘costs and 
benefits of primary prevention of zoonotic pandem-
ics’ [50], current plans to address future pandemic 
catastrophes still mainly consider the approach of 
‘detecting and containing emerging zoonotic threats’ 
[51]. However, much more must be done on the pre-
vention side. Reacting to a spillover/pandemic/epi-
demic event after it occurs can be, in fact, much more 
costly than working to prevent it. In this sense, the 
case study presented here may constitute a model to 

combine epidemic intelligence tools and advanced 
analytical approaches to detect and assess changes 
in disease distribution, allowing prevention or early 
mitigation of disease events of veterinary and public 
health importance.
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