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Abstract: Worldwide, population aging and unhealthy lifestyles have increased the incidence of high-
risk health conditions such as cardiovascular diseases, sleep apnea, and other conditions. Recently, to
facilitate early identification and diagnosis, efforts have been made in the research and development
of new wearable devices to make them smaller, more comfortable, more accurate, and increasingly
compatible with artificial intelligence technologies. These efforts can pave the way to the longer and
continuous health monitoring of different biosignals, including the real-time detection of diseases,
thus providing more timely and accurate predictions of health events that can drastically improve
the healthcare management of patients. Most recent reviews focus on a specific category of disease,
the use of artificial intelligence in 12-lead electrocardiograms, or on wearable technology. However,
we present recent advances in the use of electrocardiogram signals acquired with wearable devices or
from publicly available databases and the analysis of such signals with artificial intelligence methods
to detect and predict diseases. As expected, most of the available research focuses on heart diseases,
sleep apnea, and other emerging areas, such as mental stress. From a methodological point of view,
although traditional statistical methods and machine learning are still widely used, we observe an
increasing use of more advanced deep learning methods, specifically architectures that can handle
the complexity of biosignal data. These deep learning methods typically include convolutional and
recurrent neural networks. Moreover, when proposing new artificial intelligence methods, we observe
that the prevalent choice is to use publicly available databases rather than collecting new data.

Keywords: ECG; wearable technology; machine learning; deep learning; m-health

1. Introduction

The electrocardiogram (ECG) is among the most commonly utilized clinical tests for
patient monitoring and assessment because it is easy to acquire and provides extensive
information about patients’ cardiac health [1]. Instead, continuous, real-time, remote mon-
itoring allows for a more rigorous oversight of patients’ conditions, even compared to
in-hospital observation. Wearable devices to address monitoring are now a prominent
focus of industry [1–6], which in turn provides strong motivation for applying artificial
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intelligence (AI) algorithms to ECG signals for automated disease detection and predic-
tion [7–11].

Therefore, this review focuses on wearable medical devices for ECG acquisition fol-
lowed by AI analysis (ECG-AI) to predict and detect specific diseases (Figure 1).

Figure 1. The synergy of ECG recording wearable devices and artificial intelligence algorithms
enables disease detection and prediction.

We mainly focused on the published results obtained with single-lead ECG systems,
which are widely used in ambulatory monitoring but are not comfortable to wear for
long periods. The use of single-lead ECG has the potential to give important diagnostic
information on the user’s health [1,5] but also has some limitations compared to the
standard 12-lead ECG [6].

We examined publications on ECG signals and AI technology applied to wearable
and mobile devices for predicting and detecting diseases. Most of the included papers
are related to CVD, followed by, in order of number of published studies, the other three
groups: (1) sleep apnea, (2) mental health and epilepsy, and (3) other applications such as
hyperglycemia and hypoglycemia (Figure 2). While other diseases such as hyperkalemia,
hypokalemia, and acute pulmonary embolism are addressed in the literature related to
ECG-AI, these studies were not included here because they generally use 12-lead ECGs
and do not focus on wearable applications.
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lated to two broad categories of cardiac conditions, namely arrhythmias and coronary ar-
tery disease. 

2.1.1. Arrhythmias 
Cardiac arrhythmia is an abnormal rhythm of the heartbeat [19]. The electrical path-

way of a normal cardiac contraction has a characteristic electrical pattern on an ECG re-
cording, comprised of a “P” wave (indicating atrial depolarization), followed by a “QRS” 
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repolarization). A typical ECG is shown in Figure 3. 
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Perturbations in the ECG may indicate underlying pathophysiologic changes. Com-
mon conditions that can be discerned from ECG changes include various arrhythmias. 
The most common type of irregular arrhythmia is atrial fibrillation (AF), which is charac-
terized by disorganized electrical impulses of the atrium. AF increases the risk of stroke 
by up to 17% annually in high-risk individuals [20]. In addition, AF with sustained ven-
tricular rates greater than 110 beats per minute can lead to cardiomyopathy, heart failure 
(HF), and sudden cardiac death if not adequately treated [21]. The worldwide prevalence 

Figure 2. Main areas of electrocardiography- and artificial-intelligence-based medical application
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2. Cardiovascular System
2.1. Diseases

ECG-based monitoring technologies with disease detection and prediction capabil-
ities have been developed [12–18]. This section summarizes significant advancements
related to two broad categories of cardiac conditions, namely arrhythmias and coronary
artery disease.

2.1.1. Arrhythmias

Cardiac arrhythmia is an abnormal rhythm of the heartbeat [19]. The electrical path-
way of a normal cardiac contraction has a characteristic electrical pattern on an ECG
recording, comprised of a “P” wave (indicating atrial depolarization), followed by a “QRS”
complex (indicating ventricular depolarization), and a “T” wave (indicating ventricular
repolarization). A typical ECG is shown in Figure 3.
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Perturbations in the ECG may indicate underlying pathophysiologic changes. Com-
mon conditions that can be discerned from ECG changes include various arrhythmias. The
most common type of irregular arrhythmia is atrial fibrillation (AF), which is characterized
by disorganized electrical impulses of the atrium. AF increases the risk of stroke by up
to 17% annually in high-risk individuals [20]. In addition, AF with sustained ventricular
rates greater than 110 beats per minute can lead to cardiomyopathy, heart failure (HF), and
sudden cardiac death if not adequately treated [21]. The worldwide prevalence of AF was
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estimated at approximately 46 million individuals in 2016 [22], with up to one-third of
these individuals being asymptomatic and thus unaware they have AF while also being at
increased risk of stroke.

In addition to AF, there are other arrhythmias for which wearable ECG devices are
amenable including premature atrial contraction, premature ventricular contraction (PVC),
atrial flutter, atrioventricular reentrant tachycardia, atrioventricular nodal reentrant tachy-
cardia, and first-, second-, or third-degree heart block. Several recent papers demonstrated
the use of wearable technology capable of identifying premature atrial contractions or
PVCs with over 97% accuracy [17,18,23,24]. A class of malignant arrhythmias has a high
risk of progression to cardiac arrest or even death [25]. Examples of malignant rhythms
include ventricular tachycardia and ventricular fibrillation.

2.1.2. Coronary Artery Disease

Coronary artery disease is the insidious buildup of cholesterol plaques within the walls
of the arteries of the heart, eventually leading to a narrowing of the blood vessels [26]. When
the narrowing of blood vessels surpasses a critical threshold (often described as a narrowing
of greater than 70% of the inner lumen of the artery), symptoms such as exertional chest
pain (angina), exertional shortness of breath, and decreased exercise tolerance can occur.
Coronary artery disease accounts for the vast majority of cardiac-related deaths [27]. A
diagnosis of coronary heart disease generally requires a history and physical exam, a stress
test, and an observation of ECG changes suggestive of cardiac ischemia.

Various ECG changes are associated with acute and chronic ischemia. For instance,
the presence of Q waves in any lead other than the right-sided leads (i.e., aVR and V1, occa-
sionally in III) is often pathognomonic for prior infarction and non-viable myocardium [28].
On the other hand, chronically inverted T-waves and ST depressions are generally de-
scribed as non-specific ECG patterns and are difficult to interpret on their own, requiring
additional context. However, in the correct clinical setting, these changes can be dynamic
where they appear while the patient has active symptoms and normalize when they re-
solve. Such dynamic changes indicate significant coronary artery disease that needs to
be aggressively investigated because the sudden development of ST-segment elevation
associated with symptoms suggests an evolving coronary artery occlusion and subsequent
myocardial impairment. Such patients need to be examined then treated immediately.
Future work to develop ECG-AI wearables for real-time detection of acute ischemia will
likely improve outcomes.

2.2. Wearables

ECG-AI has been combined with wearable devices to investigate various cardiac
pathologies, including AF, stroke, cardiac arrest, and heart failure. In fact, arrhythmia
monitoring is among the most popular applications of wearable devices in medicine.
However, wearable devices are limited in their ability to detect arrhythmias other than
AF [6,29], particularly ventricular tachycardia or ventricular fibrillation, which is why
wearable technologies capable of accurately detecting either ventricular tachycardia or
ventricular fibrillation were limited in the literature.

Overall, there are a limited number of studies involving wearables. Some studies use
commercially available wearables to explore the implementation of ECG-AI. For example,
devices such as the Amazfit Band 1S (PPG and single-lead ECG) [30], the HealthyPiV3
biosensors [31], or Polar H7 HR monitor [32] have been utilized. A few research groups
have even built their own wearable ECG recording prototypes [33–35].

The Food and Drug Administration (FDA) recently approved a single-lead ECG
smartwatch proven to detect AF in the general population [36]. Another device developed
for AF monitoring and detection includes a single-lead wireless ECG patch worn over
the chest, which provides real-time ECG monitoring using cloud-based data analysis and
data sharing with medical providers [13]. Similarly, a custom wrist-based wearable ECG
recorder was compared to the standard 12-lead configuration via a prospective, registration-
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only, single-center study for the detection of AF [37]. Although a small dataset based on a
relatively low number of patients was used, a sensitivity and specificity of 99.4% and 99.8%,
respectively, were reported. The wrist-based device’s convenience and ease of use was
highlighted as an attractive modality for arrhythmia detection in the general population.
Lastly, a single-lead ECG chest belt that transmits data to a cloud service for analysis
was described, and a sensitivity and specificity of 100% and 95.4%, respectively, were
reported [38]. The study included a user experience questionnaire, showing that 77% of
participants preferred the chest belt to a standard 3-lead Holter monitor. Additional studies
detecting AF have been performed using commercially available heart rate monitors and
ECG systems [30–32,39–41].

2.3. Algorithms
2.3.1. Arrhythmia

Due to their ubiquitous availability, most ECG-AI research has been performed using
public databases such as the PhysioNet [42] MIT-BIH Arrhythmia database [43,44] while
only a few research groups have independently acquired data from patients. Curated
and publicly available datasets include physician annotations that provide a reference for
ECG-AI algorithm training (Table 1).

Machine learning (ML) and deep learning (DL) have both been extensively applied
to ECG data to detect arrhythmias. Despite being relatively poorer performing, ML is
utilized for arrhythmia detection due to some of the limitations of DL, including resource-
intensive hyper-parameters to find the optimal network configuration and the challenges
in understanding the rules underlying trained prediction models [45]. However, DL has
shown modest improvements over ML for arrhythmia detection. The varying sample
resolutions could pose a challenge for these techniques, but it was shown that it is possible
to accurately detect arrythmias using down sampled ECG data [46].

ML approaches often include the use of decision tree ensembles such as Random
Forest [13,47] or support vector machines (SVMs) [40,48] for arrhythmia classification.
Multi-stage and multi-level classification systems derive local features of atrial and ventric-
ular activity through a combination of SVMs and decision trees and global features from the
raw ECG recording, ultimately leading to classification through linear SVMs. Furthermore,
a rotated linear-kernel SVM has been proposed in which two SVM classifiers are trained,
one on the global dataset and the other on a patient-dependent dataset obtaining two
different discriminant hyperplanes. The final hyperplane, obtained by rotating the first
hyperplane by a specific amount towards the second hyperplane, resulted in an improved
sensitivity [49]. Similarly, this ML method has been used with a classifier of de-correlated
Lorenz plots of inter-beat intervals [32], and with another classifier built on features ex-
tracted through pre-processing methods from density Poincaré plots that represented the
ECG segments [23]. Alternatively, the use of SVMs through a semi-supervised learning
method was demonstrated [50], while the hybrid framework effectively combined the
advantages of ensemble learning and evolutionary computation to maximize arrhythmia
classification accuracy [51].

With regard to DL approaches, convolutional neural network (CNN) architecture was
applied to arrhythmia [52–54] and AF classifications [24,55]. Other architectures of interest
for AF classification include a deep densely connected neural network based on 12-lead
ECG [15], a feedforward neural network based on features encompassing R-R intervals [56]
and another based on the Lightweight Fusing Transformer [17]. Hybrid constructions
have also been presented, frequently involving an architecture based on a CNN and long
short-term memory (LSTM) [57–60], as well as an extension to SVM with predictions
from a CNN [41]. With a similar premise to the rotated linear-kernel SVM [49], a study
has proposed a Generic CNN suitable for all individuals, and a tuned dedicated CNN
as obtained by finetuning the previous model with respect to a specific individual [61].
Another approach of interest is the use of multi-scale (MS) CNNs to improve feature
extraction and classification from ECG data [62]. Additionally, a global hybrid multi-scale
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convolutional neural network (Acc 99.84%) was proposed as an advanced alternative to
other MS-based approaches through their hybrid multi-scale convolution module [63].

Previous research has also designed lightweight DL models using cloud-based appli-
cations to efficiently classify ECG data. These approaches utilize fused recurrent neural
network (RNN) layers instead of standard RNN layers [39]. The application of com-
pression [44,64] and conversion techniques (Acc 99.60%) [65], and model-hardware co-
optimization [66] to reduce the model’s size in terms of computational parameters, re-
sulted in lower memory consumption and inference time. Other techniques to accelerate
arrhythmia detection include real-time data compression, signal processing, and data
transmission [67–69]. Alternatively, ECG data may be compressed to enable real-time AF
classification [70,71].

In addition to directly processing ECG data, some studies focused on its two-dimensional
representation, which can be used for feature extraction and/or classification. Examples of
these representations include spectrograms [31] and iris spectrograms [72]. Alternatively, the
ECG signal may be transformed into an electrocardiomatrix, which is a two-dimensional
representation that includes the rhythm and shape of the QRS complex [73]. A beat-interval-
texture CNN was then used to process the electrocardiomatrix. In this architecture, there are
four different layers: the first two layers perform low-level feature extraction, and the two
subsequent layers perform high-level feature extraction using three types of convolution filters
(beat, interval, and texture). Next, a feature attention layer weighs the identified features
concerning the arrhythmia classes and uses such weighted features for classification.

Deep metric learning for PVC detection has also been demonstrated [18]. Such learn-
ing methods combine the mechanisms of metric learning for effective feature extraction
in which the features are processed with k-nearest neighbors for binary classification. In
comparing ML and DL, the former may use the ECG to define summary features that
provide physiologic insight, whereas the latter automatically extracts discriminating in-
formation from complete waveforms [74]. ML and DL may complement one another, as
demonstrated by the multiview fusion classification model in which both summary and
deep features from ECG signals were fused [57]. However, DL may independently offer
some physiologic information via gradient-weighted class activation mapping, which can
highlight the relative contributions of the temporal regions of the ECG signal that most
contribute to the AI-obtained classification [73].
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Table 1. Summary of ECG-based AI algorithms applied to arrhythmias.

Authors (Year) Specific Application ECG System
(Sampling Frequency)

AI
Algorithm/Method Database/Dataset

Performance (%)

Acc Sen Spe AUC F1

Jeon et al.
(2020) [39] General arrhythmias

2-lead ECG patch
[Samsung S-Patch 2]

(256 Hz)

Recurrent Neural
Networks

MIT-BIH Arrhythmia
Wearable device: S-Patch 2 99.80 - - - -

Plawiak et al.
(2020) [51] General arrhythmias -

Deep Genetic
Ensemble of
Classifiers

MIT-BIH Arrhythmia 99.37 94.62 99.66 - -

Panganiban
et al. (2021) [31] General arrhythmias

2-lead ECG
[HealthyPiV3

biosensors]
(n.s.)

CNN

MIT-BIH Atrial Fibrillation, PAF Prediction
Challenge, PTB Diagnostic ECG, Challenge 2015

Training Set, Fantasia, and PAF Prediction Challenge.
ECG signals collected for this study

98.73 96.83 99.21 - 96.83

Alqudah et al.
(2021) [72] General arrhythmias - CNN IEEE DataPort

MIT-BIH Arrhythmia 99.13 99.31 99.81 - -

Yildirim et al.
(2018) [52] General arrhythmias - CNN MIT-BIH Arrhythmia 95.20 93.52 99.61 - 92.45

Bazi et al.
(2020) [40] General arrhythmias

Wireless 3-lead ECG
sensor [Shimmer

Sensing
(100, 200 Hz)

SVM
12-lead Tech-Patient CARDIO ECG simulator

Wearable device: Shimmer Sensing
MIT-BIH Arrhythmia

95.10 95.80 - - -

Lee et al.
(2022) [44] General arrhythmias - CNN ECG from patients at the Korea University Anam

Hospital in Seoul, Korea 97.90 98.30 97.60 99.70 97.70

Itzhak et al.
(2022) [46] General arrhythmias - Random Forest Annotated Holter ECG database acquired at the

University of Virginia Heart Station 93.30 91.30 81.30 95.30 90.60

Li et al.
(2018) [61] General arrhythmias -

Generic CNN and
Tuned Dedicated

CNN
MIT-BIH Arrhythmia 96.89 - - - -

Ran et al.
(2022) [66] General arrhythmias 12-lead ECG prototype

(500Hz) Deep CNN 12-lead ECG recordings from three centers of Tongji
Hospital - 89.10 99.70 94.40 91.30

Ribeiro et al.
(2022) [65] General arrhythmias - CNN MIT-BIH Arrhythmia 99.60 98.50 99.80 - 98.80
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Table 1. Cont.

Authors (Year) Specific Application ECG System
(Sampling Frequency)

AI
Algorithm/Method Database/Dataset

Performance (%)

Acc Sen Spe AUC F1

Hua et al.
(2018) [50] General arrhythmias - SVM MIT-BIH Arrhythmia 98.58 97.70 99.62 - -

Karthiga et al.
(2021) [53] General arrhythmias - CNN MIT-BIH Arrhythmia 91.92 90.21 95.19 - 90.11

Zhang et al.
(2022) [54] General arrhythmias - CNN MIT-BIH Arrhythmia 98.74 98.11 99.05 - -

Lee et al.
(2021) [73] General arrhythmias -

Beat-Interval-
Texture
CNN

2017 PhysioNet/Computing in Cardiology Challenge - 80.73 - - 81.75

Smisek et al.
(2018) [48] General arrhythmias - SVMs Decision Tree 2017 PhysioNet/Computing in Cardiology

Challenge - - - - 81.00

Shin et al.
(2022) [58] General arrhythmias -

CNN-Bidirectional
Long Short-Term

Memory
MIT-BIH Arrhythmia 91.70 92.00 91.00 99.40 92.00

Alqudah et al.
(2021) [75] General arrhythmias - CNN MIT-BIH Arrhythmia 93.80 95.20 97.40 - 93.60

Huang, et al.
(2021) [57] General arrhythmias - CNN-LSTM MIT-BIH Arrhythmia 98.93 96.46 99.33 - -

Tang et al.
(2019) [49] General arrhythmias - SVM MIT-BIH Arrhythmia 98.90 92.80 99.40 - 92.00

Sakib et al.
(2021) [64] General arrhythmias -

Deep-Learning-
based Lightweight

Arrhythmia
Classification

(CNN)

MIT-BIH Supraventricular Arrhythmia
MIT-BIH Arrhythmia

St Petersburg INCART 12-lead Arrhythmia
Sudden Cardiac Death Holter

96.67 - - 97.96 -

Shao et al.
(2020) [13] AF

Custom 1-lead ECG
patch

(250 Hz)

Decision Tree
Ensemble

2017 PhysioNet/Computing in Cardiology Challenge
MIT-BIH Atrial Fibrillation

Simulated ECG signals from generator FLUKE
MPS450

99.62 99.61 99.64 - 92.00
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Table 1. Cont.

Authors (Year) Specific Application ECG System
(Sampling Frequency)

AI
Algorithm/Method Database/Dataset

Performance (%)

Acc Sen Spe AUC F1

Chen et al.
(2020) [30] AF

PPG & 1-lead ECG
[Amazfit Health Band

1S]
(250 Hz)

CNN PPG and single-channel ECG data 94.76 87.33 99.20 - -

Cai et al.
(2020) [15] AF 12-lead ECG

(500 Hz)

Deep Densely
connected Neural

Network

12-lead ECG 10s recordings collected from multiple
hospitals and wearable ECG devices (3 different data

sources)
99.35 99.19 99.44 - -

Cheng et al.
(2020) [70] AF - Deep Learning

Neural Networks MIT-BIH Atrial Fibrillation 97.52 97.59 97.40 - 98.02

Fan et al.
(2018) [62] AF - Multi-Scale CNN 2017 PhysioNet/Computing in Cardiology Challenge 98.13 93.77 98.77 - -

Ramesh et al.
(2021) [55] AF - CNN

Train: MIT-BIH Normal Sinus Rhythm, MIT-BIH
Atrial Fibrillation, MIT-BIH Arrhythmia

Test: UMass PPG, acquired from wrist-worn
wearable devices

95.50 94.50 96.00 95.30 93.40

Ma et al.
(2020) [41] AF SmartVest system

(400 Hz)
SVM extended with

CNN predictions

Train: MIT-BIH Atrial Fibrillation
Test: PhysioNet/Computing in Cardiology Challenge
2017, China Physiological Signal Challenge (CPSC)

2018, 24-h ECG recording (12 h before and 12 h after
the radio frequency ablation surgery) collected from

an AF patient with the wearable device

99.08 98.67 99.50 - -

Lown et al.
(2020) [32] AF

1. 12-lead ECG
(n.s.)

2. HR monitor [Polar H7
(PH7) HR]

(n.s.)

SVM MIT-BIH Atrial Fibrillation
MIT-BIH Arrhythmia - 100.0 97.60 - -

Zhang et al.
(2021) [63] AF -

Global Hybrid
Multi-Scale

Convolutional
Neural Network

China Physiological Signal Challenge 2018 (12-lead
ECG)

2017 PhysioNet/Computing in Cardiology Challenge
(single-lead ECG)

99.84 99.65 99.98 - 99.54

Zhang et al.
(2020) [71] AF - CNN MIT-BIH Atrial Fibrillation 96.23 95.92 96.55 - 96.25
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Table 1. Cont.

Authors (Year) Specific Application ECG System
(Sampling Frequency)

AI
Algorithm/Method Database/Dataset

Performance (%)

Acc Sen Spe AUC F1

Chen et al.
(2022) [56] AF - Feedforward

Neural Network
2017 PhysioNet/Computing in Cardiology Challenge

MIT-BIH Arrhythmia 84.00 84.26 93.23 89.40 -

Mei et al.
(2018) [47] AF - Baggin Trees 2017 PhysioNet/Computing in Cardiology

Challenge 96.60 83.20 98.60 - -

Wu et al.
(2020) [45] AF - Extreme Gradient

Boosting

2017 PhysioNet/Computing in Cardiology Challenge
MIT-BIH Atrial Fibrillation

MIT-BIH Normal Sinus Rhythm
MIT-BIH Arrhythmia

95.47 94.59 96.40 - 95.56

Bashar et al.
(2021) [23] AF, PAC and PVC - SVM Medical Information Mart for Intensive Care (MIMIC)

III 97.45 98.99 95.18 - -

Yu et al.
(2021) [18] PVCs -

Deep Metric
Learning K-Nearest

Neighbors
MIT-BIH Arrhythmia 99.70 97.45 99.87 - -

Wang (2021) [24] PVCs -

CNN with
improved Gated
Recurrent Unit

network

MIT-BIH Arrhythmia
China Physiological Signal Challenge 2018 98.30 98.40 98.20 - -

Meng et al.
(2022) [17] PVC, SPB -

Lightweight
Fussing

Transformer with
LightConv
Attention

The 3rd China Physiological Signal Challenge 2020 99.32 92.44 - - 93.63

Khan et al.
(2020) [33] CVDs - SVM Cleveland Heart Disease dataset from the UCI

repository 93.33 94.29 92.73 - -

Dami et al.
(2021) [76] CVDs - LSTM Deep Belief

Network

Four databases:
DB1—KAGGLE heart disease dataset|DB2—Shahid
Beheshti Hospital Research Center|DB3—Physionet

site—Hypertensive patients|DB4—UCI Heart
Disease dataset

88.42 85.13 85.54 - -
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Table 1. Cont.

Authors (Year) Specific Application ECG System
(Sampling Frequency)

AI
Algorithm/Method Database/Dataset

Performance (%)

Acc Sen Spe AUC F1

Khan et al.
(2020) [77] CVDs Custom 1-lead ECG

(n.s.)
Deep Convolutional

Neural Network
UCI machine learning repository, Framingham, and

Public Health Dataset 98.20 97.80 92.80 - 95.00

Tan et al.
(2021) [60] CVDs and COVID-19 - CNN-LSTM MIT-BIH Arrhythmia 99.29 97.77 99.53 - -

Mazumder et al.
(2021) [59] VT and VF - CNN-LSTM

MIT-BIH Malignant Ventricular Arrhythmia (VFDB)
Creighton University Ventricular Tachycardia

(CUDB)
- 99.21 99.68 - -

Notes: Bold type highlights the wearable device when present and used to collect data. The best AI model/algorithm and results, when different models/algorithms, datasets, signals,
and events are considered, were reported. Abbreviations: AF = atrial fibrillation; CVD = cardiovascular disease; PAC = premature atrio ventricular contractions; PVC = premature
ventricular contraction; VF = ventricular tachycardia; VF = ventricular fibrillation; SPB = supraventricular premature beat; ECG = electrocardiogram; PPG = photoplethysmography;
n.s. = not specified; HR = heart rate; CCN = convolutional neural network; LSTM = long short-term memory; SVM = support vector machine; Acc = accuracy; Sen = sensitivity;
Spe = specificity; AUC = area under the curve of receiver-operating characteristic curves.
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2.3.2. Other Cardiovascular Diseases

Other cardiovascular conditions amenable to ECG-AI include myocardial infarction
and heart failure (Table 2). Particularly with myocardial infarction detection, there has
been a shift from ML techniques towards DL techniques [16,35,78] due to their higher
performances and the fact that no handcrafted feature extraction is required. DL techniques
for myocardial infarction detection include the application of both simple and complex
models. Examples of simple DL models include an artificial neural network with only three
layers (Acc 99.10%) [79] and CNN [12,16] and LSTM [80] algorithms. More complex DL
models include a deep belief network for unsupervised heart rate variability (HRV) feature
extraction and selection with LSTM for classification [76], a multi-channel lightweight
model for the simultaneous analysis and classification of four ECG leads [81], and a two-
dimensional CNN for the classification of ECG waveform snapshots [34]. It is important to
notice that the ECG-AI determination of myocardial infarction commonly involves 12-lead
data because the different leads represent different projections of the heart’s electrical activ-
ity, which is necessary to capture region-specific ischemia [12,16,78–81]. However, some
algorithms were assessed based on data recorded from wearable single-lead devices [34,35].

The analysis of 12-lead data also enabled the screening of heart failure with reduced
ejection fraction (Acc 82.50%) [82]. Following a short-time Fourier transform in combination
with a CNN, an interpretable model highlighted the essential regions in the various ECG
leads associated with the final classification. In particular, the lateral (aVL, I, −aVR, V5, V6)
and anterior leads (V3, V4) greatly impacted heart failure with a reduced ejection fraction
detection. In contrast, the performance of the inferior leads (II, aVF, III) was relatively poor.
The findings also confirmed that a rightward T-wave axis, prolonged QT duration, and
prolonged QTc are associated with heart failure and that the T-wave axis is an independent
and strong risk factor for cardiac events in the elderly.



Sensors 2023, 23, 4805 13 of 29

Table 2. Summary of ECG-based AI algorithms applied to other cardiovascular diseases.

Authors (Year)
Specific

Application
ECG System

(Sampling Frequency)
AI

Algorithm/Method Database/Dataset
Performance (%)

Acc Sen Spe AUC F1

Gibson et al.
(2022) [12]

Myocardial
Infarction - CNN Latin America Telemedicine Infarct Network (LATIN) 90.50 86.00 94.50 - -

Baloglu et al.
(2019) [16]

Myocardial
Infarction - CNN PTB ECG: MI on standard 12-lead ECG data 99.78 99.80 - - -

Cho et al.
(2021) [82] Heart Failure

12-lead ECG [Page Writer
Cardiograph—Philips]

(500 Hz)

Short-time Fourier
transform–CNN

combination
ECG from multicenter study 82.50 92.10 82.10 92.90 -

Wasimuddin
et al. (2021) [34]

Myocardial
Infarction

Custom 1-lead ECG
(n.s.) CNN European ST-T

Custom wearable device 99.26 99.27 99.27 - -

Chowdhury
et al. (2019) [35]

Myocardial
Infarction-Cardiac

Arrest

Custom 1-lead ECG
(500 Hz)

Support Vector
Machine

MIT-BIH ST Change
Normal subjects and an ECG simulator to simulate

abnormal ST-elevated MI situations to test the
functionality of the complete system in real-time

97.40 99.10 - - 98.70

Shahnawaz et al.
(2021) [79]

Myocardial
Infarction - Artificial Neural

Network PTB (PhysioNet) 99.10 100.00 98.10 - 99.00

Sopic, et al.
(2018) [78]

Myocardial
Infarction - Random Forest PTB (PhysioNet) 80.30 87.95 79.63 - -

Martin et al.
(2021) [80]

Myocardial
Infarction - Deep Long

Short-Term Memory PTB-XL and PTB (PhysioNet) 79.69 76.59 85.89 - 83.42

Cao et al.
(2021) [81]

Myocardial
Infarction - Multi-Channel

Lightweight model PTB (PhysioNet) 96.65 94.30 97.72 96.71 -

Notes: Bold type highlights the wearable device when present and used to collect data. The best AI model/algorithm and results, when different models/algorithms, datasets, signals,
and events are considered, were reported. Abbreviations: n.s. = not specified; CNN = convolutional neural network; Acc = accuracy; Sen = sensitivity; Spe = specificity; AUC = area
under the curve of receiver-operating characteristic curves.
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3. Sleep Apnea

Sleep apnea is a sleep disorder characterized by the interruption of breath during
sleep [83]. It is divided into two subtypes: central sleep apnea (CSA) and obstructive sleep
apnea (OSA). (Figure 4). CSA is less prevalent and results from the abnormal regulation of
breathing in the brainstem respiratory centers, which leads to an absence of or diminution
in involuntary respiratory effort while asleep [84]. OSA is a highly prevalent sleep-related
disorder characterized by the repetitive complete obstruction (apnea) or partial obstruction
(hypopnea) of the upper airway that results from loss of muscle tone in anatomically
susceptible persons [85]. It is estimated that OSA affects almost 1 billion people globally [86],
with 425 million adults aged 30–69 years having moderate to severe OSA [87]. CSA is
associated with heart failure, renal failure, and the acute phases of stroke, while OSA
can lead to excessive daytime sleepiness, chronic fatigue, hypertension, stroke, and other
cardiovascular disorders. Thus, early and accurate diagnosis of sleep apnea is essential.

Figure 4. Sleep apnea and its consequences relative to diagnostics potentially enabled by continuous
real-time ECG monitoring.

Laboratory-based polysomnography has been used as a reference standard for diag-
nosing OSA. Polysomnography involves the overnight recording of: the bilateral occipital,
central, and frontal electroencephalogram; chin, leg, and surface electromyogram; left and
right eye electro-oculogram; and ECG, pulse-oximetry, airflow, and respiratory effort. Yet,
polysomnography is time-consuming, expensive, and uncomfortable for the patient and
requires a trained technician. Therefore, an ECG-AI approach to sleep apnea diagnosis is a
potentially convenient and cost-effective alternative [88].

3.1. Wearables

To our knowledge, no studies have investigated the use of wearable ECG-AI devices
for sleep apnea detection. In fact, sleep apnea ECG data analysis has solely relied on
existing datasets such as the PhysioNet Apnea-ECG database [89] or by collecting new data
based on polysomnography.

3.2. Algorithms

When automatically identifying OSA from ECG recordings, DL is preferable over
traditional ML because of its ability to automatically learn discriminating features from raw
data (Table 3). For instance, a CNN using a modified LeNet-5 architecture was compared
against five conventional approaches [90]. The superior performance of CNN (Acc 96.00%)
for OSA classification was further reinforced by the finding that short-term (30 s) ECG
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segments were classified into four (normal, mild, moderate, and severe) versus two (normal
and OSA) categories [91].

An OSA detection framework based on a multiscale dilation attention CNN and a
weighted loss time-dependent classification model for feature extraction and classification
were proposed to fully exploit ECG information via DL [92]. The novelty of the multiscale
dilation attention one-dimensional CNN lies in the parallel multi-branch structure and dila-
tion operations, which allow the model to explore the feature space efficiently by assigning
feature weight with the efficient channel attention module. The classifier addresses the
challenges following temporal dependence between ECG segments using a weighted loss
function that reduces class imbalance.

Hybrid DL methods have also been proposed in which different methods are combined.
Examples are the CNN and LSTM combination with SVM [93], a hybrid three-dimensional
CNN-LSTM combination where 20 successive single segments were analyzed simultane-
ously to include the time evolution pattern of the ECG [94], and a CNN representation
learning model for feature extraction combined with a temporal dependence model for
classification [95]. To address the limited ability of classic network architectures in feature
extraction, the use of a one-dimensional squeeze-and-excitation residual group network to
detect OSA using inter-beat intervals and R-wave and Q-wave amplitude from two-minute
ECG signal segments was proposed [96]. The network architecture is a CNN in which the
residual group convolutions are included to alleviate the computational burden whereas
the squeeze-and-excitation mechanism manages the importance of the three inputs.
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Table 3. Summary of ECG-based AI algorithms applied to sleep apnea.

Authors (Year)
ECG System

(Sampling Frequency) AI Algorithm/Method Database/Dataset
Performance

Acc Sen Spe AUC F1

Bahrami et al.
(2022) [94] -

Hybrid
three-dimensional

CNN—LSTMs
Apnea-ECG (PhysioNet) 94.95 93.92 95.63 - 93.65

Yang et al. (2021) [96] - Squeeze-and-excitation
residual group network Apnea-ECG and UCDDB dataset (PhysioNet) 90.30 87.60 91.90 96.50 87.30

Urtnasan et al.
(2020) [91] - CNN Subjects studied with overnight PSG 96.00 - - 99.00 99.00

Qin et al. (2022) [95] -

CNN—Representation
Learning model and

Temporal Dependence
model

Apnea-ECG (PhysioNet)
In-group database from The Sixth Affiliated Hospital of

Sun Yat-sen University
91.10 88.90 92.40 97.00 88.30

Almutairi et al.
(2021) [93] - CNN-LSTMs and

Support Vector Machine Apnea-ECG (PhysioNet) 90.20 91.24 90.36 - 92.76

Shen et al. (2021) [92] -

MultiScale Dilation
Attention—CNN and

Weighted Loss
Time-Dependent

Apnea-ECG (PhysioNet) 89.40 89.80 89.10 96.40 86.60

Wang et al. (2018) [90] - CNN Apnea-ECG and UCDDB dataset (PhysioNet) 87.60 83.10 90.30 95.00 -

Notes: Bold type highlights the wearable device when present and used to collect data. The best AI model/algorithm and results when different models/algorithms, datasets, signals,
and events are considered were reported. Performance is reported per-segment. Abbreviations: CNN = convolutional neural network; LSTM = long short-term memory; Acc = accuracy;
Sen = sensitivity; Spe = specificity; AUC = area under the curve of receiver-operating characteristic curves.
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4. Mental Health and Epilepsy

Another field of ECG-AI application is clinical psychophysiology, which has used
cardiovascular indicators for decades as proxies of cognitive and emotional processes [97].
The stress response is the most investigated of such processes and is characterized by a set
of physiologic changes, including increased heart and respiratory rates, skin conductance,
cortisol secretion, and muscular and pupillary dilation [98]. The individual tendency to
be either hyper- or hypo-reactive is associated with an increased risk of cardiovascular
disease and other somatic and mental health conditions [99–101]. Consequently, clinical
psychophysiology aims to identify objective signs and early biomarkers of somatic and
mental illness [102] with applications ranging from cardiovascular rehabilitation to clinical
monitoring and work-related health and safety [103–105].

The data-gathering approach in this research field commonly entails the psychophysio-
logical assessment, during which study participants are exposed to stressful tasks (e.g., men-
tal arithmetic, cold pressure test, public speech) preceded by a baseline phase and followed
by a recovery phase [106] (Figure 5). Such an evaluation is most widely implemented in a
laboratory setting; however, several variants have been proposed to improve its everyday
validity, including virtual-reality-based studies [107] and ambulatory assessments [108].

Figure 5. Stress response and its physiology relative to diagnostics potentially enabled by continuous,
real-time ECG monitoring.

Regardless of the specific focus on stress or emotions, most of the reviewed studies
(see Table 4) focused on HRV features. HRV is an index of cardiovascular flexibility and
adaptability with higher HRV being associated with more effective responsivity to stressors
and recovery in stress-free conditions [109]. Moreover, vagal tone is a main determinant of
resting-state HRV levels, and it is also associated with a network of structures involved
in emotion regulation (e.g., the amygdala) and executive functions (e.g., the prefrontal
cortex) [109,110]. Therefore, HRV is among the physiologic indicators of stress, emotions,
and other self-regulatory processes [111]. HRV indices in both the time and the frequency
domains are widely used for ECG-AI stress detection and emotion recognition [104].

HRV is also implicated in other neuropsychologic conditions such as epilepsy and
epileptic seizures, the prediction of which has profound clinical utility [112]. For instance,
epileptic patients are characterized by lower high-frequency HRV and overall sympa-
thovagal imbalance [113], and cardio acceleration (tachycardia), with HRV reductions
being typical peripheral concomitants of epileptiform electroencephalography (EEG) activ-
ity [113,114].
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4.1. Wearables

Several commercial wearable devices were used to collect ECG data for research involv-
ing stress detection and emotion recognition, including the Zephyr BioHarness 3.0 [74,115],
T-REX TR100A [116], and “LaPatch” [117]. However, the continued development of public,
disease-dedicated databases, such as the PhysioNet Driver stress dataset [118], allows for
algorithm development and evaluation without collecting data [119]. Such an approach is
mainly used for epilepsy applications, where the condition is monitored and not induced
and where the biosignals are directly evaluated from patients to detect and predict event
occurrence. In these studies, ECG and EEG data are analyzed together. An additional
two studies were reported in which the ECG signal was collected with ad-hoc wearable
prototypes alongside other biosignals such as the EEG [120,121].

4.2. Algorithms

Various ML and DL approaches are used in psychophysiological research. Conven-
tional ML techniques were adopted for mental fatigue detection and emotion classifica-
tion [117,119]. In particular, a wavelet scattering algorithm was successfully applied to
extract more complex ECG features than the standard time- and frequency-based fea-
tures [119].

ML and DL are mainly used for stress detection, as in a study where stress level was
estimated through a combination of principal component analysis for feature extraction
and SVM for classification [115]. Moreover, a two-branched deep learning neural network
(DNN) based on the deep ECG net structure was proposed [74]. Two branches are devoted
to feature extraction of ECG and respiratory features, respectively, after which they are
concatenated for classification. Of interest here are the author’s visualizations of the net-
work’s learning process, which provide insight into the network’s decision-making. In a
second DNN, two training methods were investigated: training from scratch and transfer
learning [116]. In the latter method, the pre-trained model parameters were determined
following training on one database after which they were adjusted using a second database.
Classification performance analyses indicated that the transfer learning application im-
proved the scores of all metrics (Acc 90.19%). ECG-AI algorithms for mental stress and
emotion detection are typically trained on signal segments classified as “stressed” vs. “un-
stressed” based on the experimental phase of the psychophysiological assessment (i.e.,
stressor versus baseline/recovery) [74,115–117], whereas one study labeled the segments
based on self-report measures [117], and another studies ECG activity with changes in
criterion variables such as salivary cortisol [115] and an expert rating of participants’ facial
expressions [119] (see Table 4).

For seizure detection, two different ML approaches were reported. The application of
a multivariate statistical process control was demonstrated via a technique that searches
for changes in HRV indices that could indicate seizures [120]. Nonetheless, the system had
a sensitivity of 85.7% with a false alarm rate of 0.62 times per hour, implying a need for
improvement. The use of two singular models were evaluated: the first, based on SVM, to
classify EEG signals and the second, based on random forest, to classify ECG signals [121].
The classifiers were used against a multimodal model by integrating the predictions of
the two models for seizure detection. Performance evaluation showed that integrating the
prediction results of both physiologic signals in the multimodal model increased sensitivity
while maintaining the same false alarm rate for two out of three databases. These studies
typically used data from long-term pre-surgical monitoring [120–122]. The AI algorithms
were then trained and tested against expert annotation of video-recorded EEG segments,
which were categorized as during, after, or between seizures. Overall, these studies were
characterized by lower heterogeneity in terms of research protocols and reported algorithm
performance metrics compared to stress and emotion recognition studies due to the higher
availability of research standards for clinical validation [123].
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Table 4. Summary of ECG-based AI algorithms applied to mental health and epilepsy.

Authors (Year)
Specific

Application
ECG System

(Sampling Frequency)
AI Algorithm/

Method
Sample/Database Protocol/Tasks

Performance (%)

Acc Sen Spe AUC F1

Seo et al. (2019)
[74]

Mental stress
recognition

Zephyr BioHarness
(n.s.)

Deep Neural Network
(Deep ECG-Respiration

Network)
18 healthy adults

Four randomized 5 min stress tests (math or
Stroop) with varying difficulty (easy vs. hard),

each followed by 5 min recovery
83.90 - - 92.00 81.00

Cho et al.
(2019) [116]

Stress
recognition

Training:
None

Testing:
T-REX TR100A

(256 Hz)

Deep Neural Network
with transfer learning

Training:
Driver stress database on

PhysioNet

Testing:
17 individuals

Training:
15 min resting, 20 to 60 min driving, 15 min

resting

Testing:
5 min baseline, 5 min simple math, 5 min

recovery, 5 min hard math

90.19 93.00 85.40 93.80 92.20

Betti et al.
(2017) [115]

Mental stress
monitoring

Zephyr BioHarness
(250 Hz) Support Vector Machine 12 healthy individuals

10 min resting,
15 min stress tests

(cold pressure and math),
10 min recovery

86.00 84.00 90.00 - -

Huang et al.
(2018) [117]

Mental fatigue
detection

“LaPatch”
(250 Hz)

K-Nearest Neighbors
and others 29 healthy individuals 10 min resting,

10 min quiz 74.50 - - 74.00 -

Sepulveda et al.
(2021) [119]

Emotion
recognition - Ensemble Bagged Tree

and others 2018 AMIGOS 16 short videos (<250 s) and
4 long videos (>14 min) 90.30 - - - 89.50

Yamakawa et al.
(2020) [120]

Epileptic seizure
prediction

Custom telemeter based
on portable ECG

(1 kHz)

Multivariate Statistical
Process Control

Model construction:
15 refractory epilepsy

patients

Model evaluation:
7 focal epilepsy patients,

7 healthy controls

Patients:
32 to 105 h ECG and video-EEG monitoring

during seated or supine resting

Controls:
5 to 11 h ECG ambulatory monitoring

- 85.70 - - -

Vandecasteele
et al.

(2021) [121]

Multimodal
epileptic seizure

detection

1-lead ECG
(n.s.)

Multimodal integrating
SVM (EEG) and Random
Forest (ECG) predictions

135 focal epilepsy patients
from the SeizeIT1,

Epilepsiae- Freiburg, and
Epilepsiae- Paris

Long-term
pre-surgical monitoring - 92.00 - - -

Notes: Bold type highlights the wearable device when present and used to collect data. The best AI model/algorithm and results when different models/algorithms, datasets, signals,
and events are considered were reported. Abbreviations: ECG = electrocardiogram; n.s. = not specified; EEG = electroencephalogram; Sen = sensitivity; Spe = specificity; Acc = accuracy;
AUC = area under the curve of receiver-operating characteristic curves.
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Studies involving ECG-AI wearables to detect mental health conditions are limited
in several ways. Firstly, many studies used small samples with poorly specified or even
unspecified inclusion criteria. Such low statistical power limits algorithm performance,
reproducibility, and the generalizability of results. Secondly, signal pre-processing steps,
including the detection of ECG components, artifact identification, and computation of
the ECG features, are substantially different among the reviewed studies. Some studies
used ECG tracing of 20 s or less, which excludes the use of HRV features such as the low
frequency power (requires a frequency of 0.04 Hz or oscillations as long as 25 s) because
signal segments lasting at least 10 times the lower frequency bound (about 4 min) have
been recommended to provide proper estimates [124].

5. Other Applications

Examples of ECG-AI applied to other areas are reported in Table 5. Applications
include the evaluation of blood sugar and sports medicine.

5.1. Wearables

Public databases relating to ECG and outcome data are currently available for the most
common cardiac conditions such as AF and only a minority are available for other diseases.
Therefore, consumer devices such as the Medtronic Zephyr BioPatch™ HP80 [125] and
single-lead ECG prototypes [126,127] have been used to collect patient-specific data related
to other medical conditions for subsequent AI analysis. However, the number of publicly
available datasets for tailored medical applications is increasing [42].

5.2. Algorithms

ECG-AI has been successfully used to detect hyperglycemia and hypoglycemia [125,126].
A novel feature extraction method and a ten-layer artificial neural network classifier for
the detection of hyperglycemia [126] was proposed, and it achieved an improvement of
53% versus the previous models. A person-specific system, including a DL model for each
participant, was proposed for the detection of hypoglycemia [125]. Specifically, the data
recorded from the first few days were used for training, while the rest was used for system
evaluation. Two models were investigated: a CNN and a CNN—RNN combination. The
CNN module produced a fixed-length ECG to be further processed by the next RNN module.

Another application of ECG-AI is in sports medicine to evaluate fatigue and abnor-
mal health events in real-time. The effectiveness of this approach was demonstrated
via a weighted one-class SVM using signals recorded on volunteers undergoing specific
tasks [127].
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Table 5. Summary of other applications of ECG-based AI algorithms.

Authors (Year) Specific Application ECG System
(Sampling Frequency)

AI
Algorithm/Method Database/Dataset

Performance (%)

Acc Sen Spe AUC F1

Cordeiro, et al.
(2021) [126]

Blood Sugar-
Hyperglycemia

Custom 1-lead ECG
with Analog AD-8232

(1000 Hz)

Deep Learning
Neural Network

60 s ECG, Blood glucose, and other profile
information (such as age, gender, height, weight, and

heart rate)
- 87.57 85.04 94.53 -

Porumb et al.
(2020) [125]

Blood
Sugar-Hypoglycemia

1-lead ECG [Medtronic
Zephyr BioPatch™

HP80
(250 Hz)

Convolutional
Neural Networks

+ Recurrent Neural
Networks

ECG signals and actigraphy, recorded continuously
during a nominal period of 14 nights for each subject.
8 healthy participants were recruited: 4 hypoglycemic

and 4 healthy

90.00 88.30 92.20 - -

Luo (2020) [127] Sport-Fatigue &
Abnormal Events

Smart wearable device
[based on OpenBCI]

(n.s.)

Weighted one-class
SVM 5400 sub-signals from 30 volunteers during 1 h 93.65 - - 96.70 -

Notes: Bold type highlights the wearable device when present and used to collect data. The best AI model/algorithm and results when different models/algorithms, datasets, signals,
and events are considered were reported. Abbreviations: n.s. = not specified; SVM = support vector machine; Acc = accuracy; Sen = sensitivity; Spe = specificity; AUC = area under the
curve of receiver-operating characteristic curves.



Sensors 2023, 23, 4805 22 of 29

6. General Challenges and Limitations

The clinical reliability of wearable devices is challenged by several factors including
the fact that mobile versions collect fewer data compared to their clinical analogs. An
example is that the ECGs of wearable devices are typically single to triple leads, while those
utilized clinically feature twelve leads. Wearable technologies are also intended to be worn
throughout the activities of daily living, which results in an increased likelihood of collect-
ing intermittent or noisy data. Furthermore, the real-time effectiveness of corresponding AI
algorithms are potentially compromised by processing demands relative to battery capacity
or, when the processing is to be carried out on the cloud, limited connection to wireless
networks in rural areas.

Once recorded via wearable devices, data are commonly reviewed by physicians when
such information would be valuable in order to better understand a patient’s history [128].
However, diagnoses and predictions provided by AI algorithms are less readily accepted by
clinicians [129] because the basis for these decisions is a black box. That is, an AI algorithm
may decide on a particular medical condition, but the inherent lack of physiologic insight
makes the reliability of such decisions uncertain by clinical standards. Determinations
made by supervised AI algorithms are therefore more likely to be clinically acceptable if
more insight into the physiologic mechanism by which they make their predictions can
be provided.

Two limitations result from the need to provide physiologic detail. Firstly, defining
summary domain-aware features to enable supervised AI reduces the dimensionality of
the data and may thus limit the prediction potential at the expense of a better physiologic
understanding. Indeed, to perform supervised learning and therefore satisfy clinical
standards for physiologic understanding, data should be processed to obtain translatable
summary features. Regarding ECG analysis, such characteristics may include the R–R
interval, QRS width and magnitude, and ST-segment elevation or depression, among others.
Nonetheless, this approach relies on knowing what summary features to define and doing
so comprehensively. Unfortunately, the definition of translatable characteristics relies on
those that are already known via traditional medicine. These characteristics are the most
obvious to human interpretation, which thus undermines the main advantage of using AI:
the ability to make determinations beyond the threshold of human elucidation. Secondly, it
may also be desirable to perform processing steps such as truncating, filtering, or down-
sampling data to make physiologic detail more obvious or optimize input before initiating
an AI algorithm. However, these steps also potentially remove valuable information
beyond the level of human interpretation. In moving towards a compromise of deeper
knowledge with some physiologic insight, heat maps that highlight the temporal segment
of the ECG most influential in making a classification are valuable [73].

Another challenge facing the clinical adoption of AI diagnoses is that there are no
standards for defining what level of correctness is sufficient to replace a physician as the
primary assessor. Such a threshold is particularly important to consider in the context of AI
algorithms being trained by physician specialists because AI diagnoses are then relative to
the most expert clinical standard rather than the average [128]. Additionally, this standard
assumes that all patients have access to the best physician specialist with whom the AI
algorithm is being compared. In fact, many individuals may not have any access at all,
especially in real-time. Thus, wearable devices in conjunction with AI algorithms offer far
greater monitoring of patients but have a higher standard for diagnostic reliability.

An additional limitation of current AI methods is that algorithm training requires
the availability of quality data. In most cases, such datasets need to be large enough to
be divided into training and testing sets while also being curated so that most fields are
complete and are purged of erroneous information. As shown in this review, many publicly
available, condition-specific datasets are emerging. However, developers should keep in
mind that each database has its limitations (e.g., not socioeconomically or racially diverse
enough) that narrow the database’s scope of use. After the acceptance of an algorithm,
ongoing post-application clinical validation is essential to maintaining confidence in diag-
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nostic or predictive correctness but is more challenging because these data are not curated
and may thus be noisy, discontinuous, or otherwise incomplete.

As demonstrated in the tables of this review, there are no standards for defining
correctness, and therefore, the direct comparison of various AI methods is often not possible.
However, all measures of correctness (total error rate, positive predictive value, accuracy,
sensitivity, specificity, AUC, and F1) rely on base variables including true positives, true
negatives, false positives, and false negatives [130,131]. The consistent reporting of all base
variable values or all measures of correctness would overcome this current limitation.

In general, the methods proposed in the literature are not easy to compare due to
the different datasets used in the experiments and different research targets. The most
promising algorithm for ECG applications is the deep learning CNN architecture. However,
in arrhythmias detection and classification, it is possible to have a clearer understanding and
insight of the algorithms’ performances. In fact, arrythmia detection is a common outcome
for ECG-AI technology because arrhythmias can be relatively easily identified using one-
lead ECG without the need of the standard twelve-lead ECGs, making these detection
techniques easier to transfer and deploy on wearable devices. Unsurprisingly, the most
popular application of wearable devices in medicine are arrhythmia detectors/monitors.
For the other applications, more research and datasets need to be analyzed. Based on our
work, we expect an increase in interest in the applications of wearables and ECG-AI in
sleep apnea and mental stress. Moreover, new applications of ECG-AI for other conditions,
such as hyper/hypoglycemia, will likely see an increase in data and research work as
well. Promoting challenges between research groups seems to be the best way to boost the
development of the best AI solutions. Examples of such competitions include MIT-BIH
Arrhythmia or the 2017 PhysioNet/Computing in Cardiology Challenge.

7. Towards the Future

Wearable devices will continue to have an increasing role in personalized health-
care because they enhance accessibility, reliability, and cost effectiveness. Technology
advancements that enable this expansion will include devices that acquire more reliable
and higher quality signals and those that obtain more signals simultaneously, increasingly
approximating clinical diagnostics. In terms of the wearable ECG, high-quality data will be
continuously obtained from more reliable and improved sensors with multiple leads [1,5].

In the future, AI algorithms will be trained using an increasing number of larger,
curated, condition-specific datasets. Future datasets that are more generalized to include
more covariates to capture additional peripheral information are also likely to emerge.
Data collected by wearable ECG devices will increasingly be transferred to a cloud for AI
processing because the algorithms will be too computationally intensive to be executed
locally [2,132].

Prospective wearable ECG-AI devices will normalize the near-instantaneous assess-
ment and treatment of certain acute conditions, improving outcomes. These devices and
algorithms will also more comprehensively consider whole-body physiology and health
by integrating a variety of data sources simultaneously. Ongoing successes will increase
confidence in automated decision making and reinforce its role in personalized health-
care [9,129].

8. Conclusions

The ECG contains highly valuable information. The diagnosing and predicting of
specific clinical conditions, including arrhythmias, coronary artery disease, sleep apnea,
mental health, and epilepsy are increasingly enabled via wearable devices that record
ECG data and continuously analyze it in real-time using AI algorithms. In this review,
we highlighted the current applications, with performances and limitations, of ECG-AI
applied to wearable devices for disease detection and prediction. As reported by several
other authors, the ongoing development of large, curated datasets targeting specific clinical
conditions is essential for developing and validating various AI approaches. Since ECG-AI
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is tailored to specific medical applications, the methods that are most effective for one
clinical condition are not necessarily appropriate for application to others. Advancements
in this field require a combination of knowledge domains that create a unique expertise.
Such technology is leading to a paradigm shift in personalized medicine that is making the
diagnosis of many conditions more accessible, reliable, and cost effective.
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