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Abstract. In this paper we describe a methodology for parameter estimation of multi-
variate distributions defined as normal mean-variance mixture where the mixing random
variable is rapidly decreasing tempered stable distributed. We address some numerical
issues resulting from the use of the characteristic function for density approximation.
We focus our attention on the practical implementation of numerical methods involving
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1 Introduction

The tempered infinitely divisible (TID) class of random variables introduced by Bianchi
et al. [2011] has the same desiderable properties as the tempered stable (TS) class defined
in the seminal work of Rosinski [2007] (see also Grabchak [2016]), but with the advantage
that it may admit exponential moments of any order. More precisely, in some cases the
characteristic function of a TID random variable is extendible to an entire function on
C, that is, it admits any exponential moment. As observed in Bianchi et al. [2011], some
practical problems in the field of mathematical finance have motivated the study of TID
random variables. Specifically, Bianchi et al. [2011] sought a discrete-time option pricing
model that accounts for well-known stylized facts observed about real-world stock market
returns: asymmetry, time-varying variance, and heavy tails.

The rapidly decreasing tempered stable (RDTS) random variable was originally pro-
posed in Bianchi et al. [2011] and extended by Fallahgoul et al. [2019] and Fallahgoul and
Loeper [2021] to a multivariate framework by considering a normal mean-variance mix-
ture approach with a RDTS subordinator. Recently, Grabchak [2021] proposed an exact
simulation method for RDTS random variables to alleviate the difficulties connected to
their practical use.

Over the past few years, RDTS models have proven to be useful for application to
finance. Readers are referred to Bianchi et al. [2019] to have a full understanding on
how these models can be used in financial applications such as risk management, option
pricing, and other related areas. As observed above, based on the property that a RDTS
random variable admits any exponential moment, Kim et al. [2010] defined a RDTS-
GARCH option pricing model without artificially restricting the variance process as in
the classical tempered stable (CTS) case. Bianchi [2015] empirically studied the shape
of the RDTS density function, demonstrating that the RDTS density is much closer
to the CTS density than to the normal one, even if the RDTS random variable has
exponential moments of any order as the normal random variable. Kim et al. [2019]
presented an option pricing model for a RDTS Lévy process with long-range dependence.
Fallahgoul et al. [2019] proposed a bivariate model based on a RDTS subordinator to
price quanto options, and Fallahgoul and Loeper [2021] analyzed a bivariate time-series
of indexes log-returns by replacing the physical time of the Brownian motion with a
RDTS stochastic clock. This latter approach, also known as stochastic time-change, has
been widely studied in the literature on stochastic models applied to finance (see Luciano
and Semeraro [2010], Buchmann et al. [2017] and Fallahgoul et al. [2021]).

As remarked by Xia and Grabchak [2022], it is not simple to work with the spectral
measure defined in the influential paper of Rosinski [2007]. Even if in the more general
setting the spectral measure provides a greater flexibility, since the tail behaviour depends
on the direction on the hypersphere in Rn, it is still not clear how to estimate this
spectral measure when the dimension is greater than two. For this reason, in this work
we consider a multivariate distribution defined as a normal mean-variance mixture in
which the mixing random variable is RDTS distributed and we refer to this model as
the multivariate normal rapidly decreasing tempered stable (MNRDTS) model. In this
paper we show how to estimate the parameters of a MNRDTS distribution through an
extension of the expectation-maximization (EM) maximum likelihood estimation (MLE)
method of Dempster et al. [1977], which is particularly convenient as it allows to find the
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parameters of the multivariate Gaussian distribution and those of the mixing distribution
separately, as shown in Protassov [2004] and Hu [2005] in the multivariate generalized
hyperbolic (MGH) case, and in Bianchi et al. [2016] in the multivariate normal tempered
stable case (MNTS). The evaluation of the characteristic function of a RDTS random
variable or of the margins of a MNRDTS distribution is not a simple task, because it
involves the evaluation of a confluent hypergeometric (or Kummer) function. We show
how to deal with this problem in an efficient way and we empirically assess our estimation
algorithm by considering the time-series of the main five euro area stock indexes.

It should be noted that, differently from the MNTS case, the characteristic function
of the margins of a MNRDTS random variable is an entire function, because it can be
viewed as a composition of entire functions. This properties seems particularly useful in
applications to finance (see for example Broda and Zambrano [2021]) requiring that the
characteristic function be analytic in a strip containing the real axis in its interior.

The paper is organized as follows. The multivariate model analyzed in this work
is defined in Section 2. In Section 3.1 we show how to estimate the model parameters
through an extension of the EM-MLE approach and we identify some computational
issues in the evaluation of the characteristic function of a MNRDTS random variable.
In Section 4 we describe the data analyzed in the empirical study and we discuss the
main empirical results. Finally, in Section 5 we conduct a simulation study to assess the
EM-based algorithm performance. Section 6 concludes.

2 The model

Let Y = {Yt, t ≥ 0} be an n-dimensional process defined as

Yt = µt+ θSt +DσWSt , (2.1)

where S = {St, t ≥ 0} is a one-dimensional subordinator, W = {Wt, t ≥ 0} is an n-
dimensional Wiener process with corr [Wj,t,Wk,t] = ρjk, independent from S, µ and θ are
two n-dimensional vectors containing real parameters, Dσ is a diagonal matrix of order
n with diagonal elements σj > 0, with j = 1, ..., n.
For each discrete time step, ∆t, the distribution of the increments of the process belongs
to the normal mean-variance mixture family

Y∆t = µ∆t+ θS∆t +
√
S∆tDσAZ, (2.2)

where Z is a vector of n independent standardized Gaussian random variables, S∆t denotes
the distribution of the subordinator increments where S∆t ⊥ Z, A is the lower Cholesky
decomposition of a correlation matrix Ω, that is, Ω1/2 = A and DσA = Σ1/2. The
characteristic function of Yt defined in equation (2.1) is given by

ΨYt (u) = exp (itu′µ+ tlS1(ϕ(u))) , (2.3)

where lS1 (.) is the Laplace exponent of the subordinator, and ϕ (u) is the characteristic
exponent of the multivariate Brownian motion, that is

ϕ (u) = iu′θ − 1

2
u′Σu

=
n∑
j=1

iujθj −
1

2

n∑
j=1

n∑
k=1

ujukσjσkρjk,
(2.4)
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Figure 1: Probability density function of CTS and RDTS subordinators with parameter
α = 0.75, expected value equal to 3 and unit variance.

where u ∈ Rn and the matrix Σ has elements Σjk = σjσkρjk. Since Σ is a variance-
covariance matrix, we can rewrite equation (2.4) using matrix notation, as follows

ϕ (u) = iu′θ − 1

2
u′DσΩDσu,

where Dσ is a diagonal matrix with diagonal σ ∈ Rn
+, and Ω is the correlation matrix of

the Brownian motions with elements ρjk.
A process S = {St, t ≥ 0} with Lévy measure given by

ν(dx) = C
e−

λ2x2

2

xα+1
Ix>0dx, (2.5)

where λ > 0, C > 0, 0 < α < 1 and Lévy triplet (0, ν, 0) is said to be a RDTS
subordinator. Recall that the Lévy measure of a CTS subordinator is given by

ν(dx) = C
e−λx

xα+1
Ix>0dx.

In Figure 1 we show the probability density function of CTS and RDTS subordinators
with parameter α = 0.75, expected value equal to 3 and unit variance. The right tail of
the RDTS subordinator goes faster to zero with respect to the CTS one. Readers are
referred to the Appendix A.1, to Bianchi et al. [2019] and Bianchi et al. [2022] for the
moments formulas.

The characteristic function of St is given by

ΨSt (u) = E[exp(iuSt)] = exp
(
t2−

α
2
−1CλαG (iu;α, λ)

)
, (2.6)

where

G(x;α, λ) = Γ
(
−α

2

)(
M

(
−α

2
,
1

2
;
x2

2λ2

)
− 1

)
+

+

√
2x

λ
Γ

(
1− α

2

)
M

(
1− α

2
,
3

2
;
x2

2λ2

)
,

(2.7)
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where M(a, b; z) is the confluent hypergeometric (or Kummer) function of the first kind
as defined in equation (13.1.2) in Abramowitz and Stegun [1974], that is

M(a, b; z) = 1 +
az

b
+

(a)2z
2

(b)22!
+ · · ·+ (a)nz

n

(b)nn!
, (2.8)

where
(m)n = m(m+ 1)(m+ 2) . . . (m+ n− 1),

with m ∈ R. It follows that φSt(u) is an entire function on C.
As shown in the Appendix A.3, equation (2.7) can be written in terms of the confluent

hypergeometric function of the second kind, i.e. the special function U(a, b; z),

G(x;α, λ) = −Γ
(
−α

2

)
+ π−

1
2 Γ

(
1− α

2

)
Γ

(
− α

2

)
U

(
− α

2
,
1

2
;
x2

2λ2

)
. (2.9)

This second representation is useful in the computation involving the characteristic func-
tion of the MNRDTS random variable (see equation (2.11)).

For a more simple derivatives computation, by the definition of the function M , the
function G can be written as

2−
α
2
−1λαG(x;α, λ) =

1

2

∞∑
n=2

xn

n!

(
λ√
2

)α−n
Γ

(
n− α

2

)
. (2.10)

This is useful to compute the moments of the RDTS subordinator (see the Appendix
A.1).

From equation (2.6) it is possible to compute the Laplace exponent of the RDTS
subordinator

lSt(u) = lnφSt(−iu) = t2−
α
2
−1CλαG (u;α, λ) ,

and using (2.3) we get the characteristic function of the MNRDTS process with linear
drift

ΨYt (u) = exp

(
itu′µ+ t2−

α
2
−1CλαG

(
iu′θ − 1

2
u′Σu;α, λ

))
. (2.11)

Setting ui = 0, ∀i 6= j, into (2.11) we get the characteristic function of the j-th marginal
distribution

ΨYj,t (uj) = exp

(
itujµj + t2−

α
2
−1CλαG

(
iujθj −

1

2
u2
jσ

2
j ;α, λ

))
. (2.12)

The moments of this multivariate random variable are reported in the Appendix A.2.

3 Parameter estimation

After having defined the MNRDTS model, we show how to deal with its estimation.
In Section 3.1 we describe the algorithm to estimate the parameters of the MNRDTS
distribution. Then, we show how to evaluate the characteristic function in equation (2.6)
(see Section 3.2).
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3.1 Expectation-conditional maximization either algorithm

A direct MLE for the n-dimensional multivariate model described in Section 2 is not
feasible, since the number of parameters to be estimated is (n2 + 5n)/2 + 3. The matrix
Σ has (n2 + n)/2 elements, the vectors µ and θ have n elements, and there are the three
parameters of the subordinator S (i.e. α, λ and C). For this reason, in this section
we extend the EM-based maximum likelihood algorithm of Dempster et al. [1977] (see
also Browne and McNicholas [2015]) and applied by Bianchi et al. [2016] to estimate the
parameters of the MNTS distribution. We consider the extension of the EM algorithm
proposed by Liu and Rubin [1994], that is the expectation-conditional maximization
either (ECME) algorithm.

Let h be the density function of the subordinator defined in equation (2.6), that is
the mixing random variable of the normal mean-variance mixture (2.2). Then, as shown
in Hu [2005]), the density function of a MNRDTS random variable can be written as

fY (y; Θ) =

∫ ∞
0

fY |S(y|s;µ, θ,Σ)h(s; a, λ, C)ds, (3.1)

where Y |S ∼ N(µ + θS, SΣ), and Θ is the set of model parameters (α, λ, C, θ, µ,
Σ). The integral in equation (3.1) is useful not only in the n-dimensional case, but also
in the univariate case, because it allows one to use the characteristic function of the
mixing distribution which is simpler to implement from a numerical perspective than the
characteristic function of the MNRDTS univariate component in equation (2.12).

Given a set of N observations {Y k = Ytk − Ytk−1
}k=1,...,N , instead of focusing on

the observed log-likelihood LL(Θ;Y 1, . . . , Y N), we consider the following log-likelihood
function

LL(Θ;Y 1, . . . , Y N , S1, . . . , SN) =
N∑
k=1

log fY,S(Y k, Sk; Θ)

=
N∑
k=1

log fY |S(Y k|Sk;µ, θ,Σ) +
N∑
k=1

log hS(Sk;α, λ, C)

= L1(µ, θ,Σ;Y |S) + L2(α, λ, C;S),

(3.2)

where Θ = {α, λ, C, θ, µ,Σ} is the set of parameters, {Sk = Stk −Stk−1
}k=1,...,N the latent

mixing variables coming from the representation (2.2).
We implement an iterative procedure consisting of an expectation step (E-step) in

which functions of the latent mixing variable Sk (i.e. Sk and Sk
−1

) are replaced by
expected values estimated on the basis of observed data and current parameter estimates,
and a maximization step (M-step) in which the parameter estimates are updated. Then,
instead of maximizing L2 we maximize the observed log-likelihood obtained from equation
(3.1) with respect to α, λ and C with the other parameters kept fixed at the values of
the last update. This results in an ECME algorithm.

The apparently more problematic parameters θ and Σ are in the first term of the log-
likelihood (i.e. L1) and their estimates are relatively easy to derive due to the Gaussian
form of this term. In the M-step, first we maximize L1 to find the parameters of the
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conditional normal part L1. The maximization of L1 can be performed analytically, as
proven in Chapter 2 of Hu [2005]. The estimates of θ, µ and Σ depend on Sk and

Sk
−1

that are replaced by the expected values in equation (3.4) computed numerically by
means of the conditional density in equation (3.3). This conditional density is function
of observed data Y k and current parameter estimates.

Thus, the following iterative algorithm is implemented to find a MLE based on (3.2).

1. Set i = 1 and select a starting value for Θ(1), that is µ(1) ∈ Rn is the sample mean,
θ(1) ∈ Rn is the zero vector, V ∈ Rn×Rn is the sample variance-covariance matrix.

2. By considering that

fS|Y k(s;Y
k,Θ) =

fY |S(Y k|s;µ, θ,Σ)h(s;α, λ, C)

fY (Y k; Θ)
, (3.3)

compute the following weights

δ
(i)
k = E(Sk

−1|Y k,Θ(i)),

η
(i)
k = E(Sk|Y k,Θ(i)),

(3.4)

3. Evaluate the average values

δ̄(i) =
N∑
k=1

δ
(i)
k , η̄(i) =

N∑
k=1

η
(i)
k .

4. Get the estimates

θ(i+1) =
N−1

∑N
k=1 δ

(i)
k (Ȳ − Y k)

δ̄(i)η̄(i) − 1
,

µ(i+1) =
N−1

∑N
k=1 δ

(i)
k Y

k − θ(i+1)

δ̄(i)
,

Ψ(i+1) =
1

N

N∑
k=1

δ
(i)
k (Y k − µ(i+1))(Y k − µ(i+1))′ − η̄(i)θ(i+1)θ(i+1)′,

Σ(i+1) =
|V |1/nΨ(i+1)

|Ψ(i+1)|1/n
.

5. Set
Θ(i′) = {α(i), λ(i), C(i), θ(i+1), µ(i+1),Σ(i+1)}.

6. To complete the calculation of Θ(i+1), find a, λ, and C that maximize the observed
log-likelihood function

LL(Θ(i+1);Y 1, . . . , Y N) =
N∑
k=1

log fY (Y k; Θ(i+1)), (3.5)

where Θ(i+1) = {α, λ, C, θ(i+1), µ(i+1),Σ(i+1)} and LL(i) is the value of the observed
log-likelihood function at the point of maximum.
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7. If i < 100 and LL(i)−LL(i− 1) > 0.01, increment iteration count i and go to step
2, otherwise, stop the algorithm.

While point 2 represents the E-step, points from 4 to 6 describe the M-step. The algo-
rithm converges to the maximum likelihood estimate because the observed log-likelihood
is continually increased (see Liu and Rubin [1994]). We set the maximum number of
iterations i equal to 100. However, if the following inequality LL(i)−LL(i− 1) ≤ 0.01 is
satisfied, we stop the algorithm. We point out that in the empirical exercise we conduct
in this work the algorithm converges after a few iterations, usually less than 10.

The last equality in Step 4 is needed to constrain the determinant of Σ to be the
determinant of the sample variance-covariance matrix V . While the starting values of
the conditional normal part are defined in Step 1, we select α = 0.75, and λ = C = 1
as starting values for the parameters of the subordinator. These values show a good
performance in the practical application we are interested in.

Because it is not possible to find a closed-form solution for fY and h, to evaluate these
two functions numerical methods based on the characteristic function of the subordina-
tor must be employed. The characteristic function of the RDTS subordinator is given
in equation (2.6) and a discrete evaluation of the density function h together with an
interpolation algorithm is used to evaluate fY . More in details, the fast Fourier trans-
form (FFT) procedure applied to the characteristic function (2.6) allows one to evaluate
the density function h, as described by Stoyanov and Racheva-Iotova [2004]. Thus, given
a discrete evaluation of the function h, the density fY in equation (3.1) is obtained by
numerical integration. As described in Section 3.2.2, the same approach can be imple-
mented to evaluate the density function of the j-th marginal distribution in equation
(2.12).

Since closed-form solutions are not available, the expectations in equation (3.4) and
the ratio in equation (3.3) are also evaluated through numerical integration algorithms.
While fY |S in equation (3.3) can be written in closed-form, since Y |Sk ∼ N(µ+θSk, SkΣ)
(see Hu [2005]), the density h is computed by means of a FFT procedure, and the de-
nominator which is the density function given in equation (3.1) is evaluated by numerical
integration.

3.2 Evaluating the function G

The evaluation of the characteristic function in equation (2.6) is connected with the
function G involving the confluent hypergeometric (or Kummer) function M defined in
equation (2.8) and with the confluent hypergeometric function U (see Beals and Wong
[2010]). These functions belong to the special function class and often occur in many
practical computational problems. Except for specific situations, computing confluent
hypergeometric functions is difficult in practice (see Pearson et al. [2017]). The numerical
reliability and the efficiency of a computational method implemented to evaluate these
functions depends on the parameters and on the variable regimes. It should be noted
that for any characteristic function the following equality holds

Ψ(−u) = Ψ(u), (3.6)

where z means the complex conjugate of z. As explained in Section 3.2.1, we consider
equation (3.6) to halve the computational burden of the characteristic function evaluation.
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3.2.1 The RDTS case

In the applications involving only the RDTS random variable or the RDTS subordinator
one does not need a general algorithm to evaluate the function G on the entire complex
plane C, but just on a subset of it, that is on the straight line represented by the subset
I = {iy | y ∈ R} of the complex plane C (see Bianchi et al. [2019]).

In this particular case there is an x2 as argument of the function M in equation (2.7)
and an efficient algorithm to evaluate the characteristic function in equation (2.6) can be
constructed. It is not difficult to see in equation (2.6) that if one evaluates the function
G on I, the function M is evaluated only on the real line. Equation (3.6) allows us to
evaluate the function Ψ(·) only on the negative part of the real line and we obtain the
evaluation on the positive part of the real line simply by conjugating. This allows us to
determine the values of G(x;α, λ) only for the subset I− = {iy | y ∈ R−} and then to
simply consider the conjugate for the set I+ = {iy | y ∈ R+}.

For the Kummer function M in equation (2.8) the following equalities hold

M(a, b; z) = ezM(b− a, b;−z),

M(a, b; z) =
Γ(b)

Γ(b− a)
(−z)−a

∞∑
n=0

(−1)n
(a)n(a− b+ 1)n

znn!

+ cos π(b− a)
Γ(b)

Γ(a)
exp(z)za−b

∞∑
n=0

(b− a)n(1− a)n
znn!

.

(3.7)

Thus, in order to obtain a fast convergence of the series (2.10), we split the negative
imaginary line I and the negative real line R into two subsets without intersection,

I1
− = {iy | − 30 < y ≤ 0},
I2
− = {iy | y < −30},

and

R1
− = {y | − 30 < y ≤ 0},

R2
− = {y | y < −30}.

Then we use the first equality in (3.7) and (2.8) to evaluate G in I1
− (i.e. M in R1

−). The
second equality of (3.7) is enough to evaluate G in I2

− (i.e. M in R2
−). This subdivision

allows one to truncate the series (2.8) to the integer N = 1000 and obtain the same results
as other algorithm implemented in ad-hoc R or Python libraries to evaluate special func-
tions. This method increase considerably the speed with respect to algorithms available
in commonly used R or Python libraries, since it is grounded only on basic summations
and multiplication.

The evaluation through the FFT algorithm of the density function of the RDTS
subordinator (α = 0.75 and both λ and C equal to 1) on 10,000 equally spaced points in
the interval between 0 and 10 while is almost instantaneous with the ad-hoc algorithm
described above, it takes around 50 seconds with a parallel code written in R and calling
the Python mpmath library. This Python library implements a huge number of special
functions, with arbitrary precision and full support for complex numbers. The R reticulate
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package provides an R interface to Python modules, classes, and functions, allowing one
to call user-defined Python functions in an R script. The code is run on a Linux desktop
with an AMD FX-6300 processor with 16 GB of RAM (R 4.1.2 and Python 3.8.12). The
parallelization is obtained with the foreach and doParallel libraries of R. Even if with a
modern processor the computing time of this second approach can be much lower than
50 seconds, it does not become instantaneous as the ad-hoc algorithm.

3.2.2 The MNRDTS case

The algorithm described in Section 3.2.1 cannot be considered for the evaluation of the
characteristic functions of a MNRDTS random variable in equations (2.11) and (2.12). To
compute these characteristic functions it is necessary to implement an efficient algorithm
for the evaluation of the function M or U on the whole complex plane. In this more
general case, the arguments of the function G have non zero real and imaginary parts.
The representation of the function G in equation (2.9) involving only a single Kummer U
function instead of two different Kummer M functions simplifies the numerical evaluation
of the MNRDTS characteristic function.

The series in equation (2.8) together with the equality (2.7) generates numerical errors
when the real part of the argument of the function G increases. Additionally, even if the
Kummer M converges on the whole complex plane, its value increases exponentially
creating instability and cancellation issues (depending on the value of the argument, the
function G is the difference between two Kummer M functions). In this more general
case we are not able to find a smart solution as in the RDTS case.

It should be noted that there are two alternative approaches to evaluate the density
of the j-th marginal distribution of a MNRDTS random variable: (1) it is possible to
consider the integral in equation (3.1) and relying on the algorithm described in Section
3.2.1 for the characteristic function of the RDTS subordinator needed to obtain the
density h by means of the FFT procedure; (2) it is possible to apply the FFT procedure
by directly evaluating the characteristic function of the j-th marginal distribution in
equation (2.12).

As in Section 3.2.1, to evaluate the characteristic function (2.12), we consider the
Kummer U function implemented in the Python mpmath library and equation (3.6) to
halve the computational burden of the characteristic function evaluation. This approach
is fast enough to be used in practical applications to finance. Furthermore, the evaluation
of the Kummer U function on a vector can be easily parallelized to speed up the R code
(e.g. with the foreach and doParallel libraries of R) or the Python code (e.g. with the
multiprocessing library of Python).

4 Empirical analysis

The analysis is performed on Refinitiv daily dividend-adjusted closing prices from Decem-
ber 31, 2014 through December 31, 2021 for five stock indexes: the Deutsche Aktienindex
30 (ticker DAX), the Cotation Assistée en Continu 40 (ticker CAC), the Financial Times
Stock Exchange Milano Indice di Borsa (ticker FTSEMIB), Índice Bursátil Español (ticker
IBEX), Amsterdam Exchange Index (ticker AEX) representing five major European in-
dexes. The time period in this study includes the recent Covid-19 pandemic event. In

10



100

150

200

2016 2018 2020 2022

pr
ic

e 
in

de
x

AEX CAC DAX FTSE MIB IBEX

−0.1

0.0

0.1

2016 2018 2020 2022

lo
g−

re
tu

rn
s

AEX CAC DAX FTSE MIB IBEX

Figure 2: For each index we report the performance and the log-returns from December
31, 2014 to December 31, 2021.

Figure 2 we report the performance of the indexes over the time span considered in this
work and the corresponding log-returns.

We consider the constant condition correlation (CCC) model described in McNeil et al.
[2005] (see also Paolella et al. [2021]). After having estimated the volatility model we
define the devolatized process and on this process we estimate the proposed multivariate
model. Model estimation is divided into two steps. In the first step, we estimate a
univariate AR-GARCH model on the time series of log returns. In the second step, we
estimate on the 5-dimensional filtered innovations (or devolatized) data the dependence
structure by applying different multivariate approaches: the multivariate normal to which
we refer to as MNormal, the MGH, the MNTS and the MNRDTS model. As in Bianchi
et al. [2016], from the continuous time Yt model defined in Section 2, it is straightforward
to define the corresponding multivariate random variable, that is the distribution of the
increments defined for each discrete-time step ∆t. With an abuse of notation, we refer
to the discrete time-series of index log-return as yt.

For each index log-return time-series yt we assume an AR(1)-GARCH(1,1) model
with Glosten-Jagannathan-Runkle (GJR) dynamics for the volatility (see Glosten et al.
[1993]), that is

yt = ayt−1 + σtεt + c

σ2
t = ξ0 + ξ1 (|σt−1εt−1| − γ (σt−1εt−1))2 + η1σ

2
t−1,

(4.1)

where εt is are temporally independent and identically distributed random variables with
zero mean and unit variance. Additionally, at each estimation step we test if the autore-
gressive component is statistically significant: if it is not, we estimate the model without
the autoregressive component.

We perform the empirical analysis on 515 rolling windows (between December 31, 2019
and December 31, 2021 there are 515 trading days). Each rolling window has a 5-year
length (1,278 trading days): the first window has as starting point December 31, 2014
and ending point December 31, 2019. To assess the extent to which the estimates and
the goodness-of-fit vary over time, we repeat the same empirical study on each window.
Since we estimate the parameters of each multivariate non-normal model for a total of 515
rolling-window periods, the overall computing time is considerable in both the MNTS and

11



0.00

0.25

0.50

0.75

1.00

D
A

X

C
A

C

F
T

S
E

M
IB

IB
E

X

A
E

X

M
N

or
m

al
 K

S
 te

st

0.00

0.25

0.50

0.75

1.00

D
A

X

C
A

C

F
T

S
E

M
IB

IB
E

X

A
E

X

M
G

H
 K

S
 te

st

0.00

0.25

0.50

0.75

1.00

D
A

X

C
A

C

F
T

S
E

M
IB

IB
E

X

A
E

X

M
N

T
S

 K
S

 te
st

0.00

0.25

0.50

0.75

1.00

D
A

X

C
A

C

F
T

S
E

M
IB

IB
E

X

A
E

XM
N

R
D

T
S

 K
S

 te
st

0.00

0.25

0.50

0.75

1.00

D
A

X

C
A

C

F
T

S
E

M
IB

IB
E

X

A
E

X

M
N

or
m

al
 A

D
 te

st

0.00

0.25

0.50

0.75

1.00

D
A

X

C
A

C

F
T

S
E

M
IB

IB
E

X

A
E

X

M
G

H
 A

D
 te

st

0.00

0.25

0.50

0.75

1.00

D
A

X

C
A

C

F
T

S
E

M
IB

IB
E

X

A
E

X

M
N

T
S

 A
D

 te
st

0.00

0.25

0.50

0.75

1.00

D
A

X

C
A

C

F
T

S
E

M
IB

IB
E

X

A
E

XM
N

R
D

T
S

 A
D

 te
st

Figure 3: For each index and each model we report the boxplot of the p-value of the KS
and the AD tests from December 31, 2019 to December 31, 2021.

the MNRDTS case, even if the MNTS algorithm is two times faster than the MNRDTS
one. To deal with this issue we rely on an efficient R code making use of the packages
foreach and doParallel and run it on a multi-core Linux based system and we use all
available cores contemporaneously.

For the assessment of the goodness-of-fit, for each margin of our multivariate distri-
butions (i.e. each index εt) we conduct the Kolmogorov-Smirnov (KS) and the Anderson-
Darling (AD) test over the entire estimation window from December 31, 2019 to December
31, 2021 for a total of 2,575 KS and AD tests for each model (515 for each index). In
Figure 3 the p-values of the tests are reported. As far as the KS test is concerned, while
the normal model is almost always rejected, for non-normal models the null hypothesis
is never rejected. We consider a significance level equal to 0.05. There are not remark-
able differences in term of KS and AD statistics between the three non-normal models:
the test statistics are almost indistinguishable (see Figure 4). The KS (AD) statistic is
on average 0.0202 (0.5702) for the MGH model, 0.0199 (0.5674) for the MNTS model,
and 0.0202 (0.5810) for the MNRDTS model. The KS (AD) statistic is larger for the
MNormal model, i.e. it is equal to 0.0505 (6.104).

In Figure 5 we show the time-series of the parameters of the mixing random variable
of the three normal mean-variance mixture models estimated from December 31, 2019 to
December 31, 2021: λ, ψ and χ in the MGH case, α, λ e C in the MNTS and the MNRDTS
case. Even if much of the stock market volatility is captured by the discrete-time volatility
model in equation (4.1), the estimated parameters of the mixing random variable vary
over time. This empirical finding suggests that this additional source of randomness could
be captured by assuming a time-varying parameters approach as recently proposed by
Kim et al. [2022]. With the exception of a few outliers around June 2021, we observe
smooth dynamics for these estimates even during the market turmoil in March 2020.
The dynamics of the α estimates of the two tempered stable models slightly differs and
this difference is reflected also in the dynamics of λ and C estimates. Nevertheless, on
the basis of the values of the AD statistics in Figures 3 and 4, there are not remarkable
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Figure 4: We report for each model the average KS and AD statistics and the g-distance
over the five indexes from December 31, 2019 to December 31, 2021. For the MNormal
model the values of the statistics are reported on the right side.

differences in the tail behavior of the three non-normal models.
Additionally, we evaluate the average distance between the empirical and theoretical

characteristic function and we refer to it as g-distance. For a given grid uj ∈ Rn, with j
from 1 to q, g is defined as

g (Θ, Y, uj) = ei〈uj ,Y 〉 −ΨY,Θ (uj) ,

where 〈 , 〉 is the scalar product and the distance is the norm of the vector

ḡT,j (Θ) =
1

T

T∑
k=1

(
ei〈uj ,Y k〉 −ΨY k,Θ (uj)

)
. (4.2)

It is evident that the choice of the grid is crucial. For the first dimension we consider a
vector of q equally spaced points in the interval between minimum and maximum observed
returns. Then, after having fixed a seed, to obtain the vector representing the second
dimension, we randomly permute the vector obtained for the first dimension. The same
approach is considered for all other dimensions up to five. The value of q is set equal to
50. In Figure 4 we report the time-series of the g-distance from December 31, 2019 to
December 31, 2021: it is on average 0.0359 for the MGH model, 0.0359 for the MNTS
model, and 0.0358 for the MNRDTS model. It is larger for the MNormal model (0.0439).

Next, as proposed in Xia and Grabchak [2022], we test all components together, using
the nonparametric test for equality of densities, which was introduced in Li et al. [2009]
and is implemented in the npdeneqtest function of the R package np. The test statistic is
based on the integrated squared difference between two densities and it is evaluated by
considering the kernel estimates of these densities (see Li et al. [2009]). We test if this
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Figure 5: We report the time-series of the estimates of the parameters of the mixing
random variable of the three multivariate normal mean-variance mixture models in the
time span from December 31, 2019 to December 31, 2021.

estimated distance between observed and simulated data is significantly different from
zero. As the computing time of the test is around 25 minutes for each model, we conduct
it only on the last estimation date. For each model, we compare the 5-dimensional filtered
market data to the simulated samples based on estimated parameters. The number of
observations of the simulated sample is the same of the observed one (i.e. 1,278 trading
days). While the null hypothesis of equality is rejected in the MNormal case, in all non-
normal cases is not possible to reject it at the 10% tail probability level. The p-value of
the test is 0 for MNormal model, 0.81 for the MGH model, 0.60 for the MNTS model and
0.78 for the MNRDTS model. It should be noted that the stochastic representation in
equation (2.2) allows one to simulate random variates from these non-normal models by
drawing random samples from the multivariate normal and the mixing random variable.
While in the MGH the simulation of the mixing random variable is obtained through the
rgig function of the ghyp package of R, the simulation of CTS and RDTS random draws
is not a simple task and an ad-hoc implementation is needed (see Bianchi et al. [2017]
for a detailed description).

The margins of the MNormal model are normally distributed and they do not assign
enough weight to tail events and are not able of explaining negative skewness. A visual
assessment of these empirically observed facts is provided in Figure 6 where we show the
simulated innovations drawn from a MNormal (MNRDTS) model fitted on filtered market
data and compare them to observed filtered market data. The number of simulations is
equal to the number of observed market data.

5 A simulation study

After having conducted in Section 4 an extensive empirical analysis of the MNRDTS
model on the time-series of observed log-returns, we empirically study through a sim-
ulation exercise the estimation algorithm presented in Section 3.1. A similar exercise
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Figure 6: Bivariate scatterplots of filtered market data and simulated innovations from
the MNormal and the MNRDTS. Depicted market data are daily log-returns from De-
cember 31, 2017 to December, 31 2021.
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α λ C µ θ Σ

MSE 0.029 0.576 0.041 [0.053, 0.055] [0.194,0.208] [0.218,0.265]
ARPE 0.060 0.215 0.226 [0.161,0.212] [0.191,0.254] [0.067,0.076]
RE0.9 0.115 0.411 0.480 [0.253,0.337] [0.329,0.419] [0.115, 0.4725]

Table 1: Errors between true parameters and estimates of a MNRDTS distribution. Mean square error
(MSE), root mean square error (RMSE), and relative error (RE). For the parameters µ, θ and Σ we
report the range of variation of the errors.

conducted on the MNTS model is described in Bianchi et al. [2016]. More specifically,
we generate MNRDTS random numbers by considering the set of parameters estimated
on the devolatized time-series of the main European stock indexes from December 31,
2016 through December 31, 2021 (see Section 4), and then we estimate the parameter by
following the extension of the EM algorithm defined in Section 3.1. To simulate the uni-
variate RDTS mixing distribution we consider the inverse transform algorithm described
by Bianchi et al. [2017]. We repeat the exercise 1,000 times by considering samples with
1,278 observations (i.e. the number of trading days between December 31, 2016 and
December 31, 2021).

Table 1 contains the value of the mean square error (MSE), the average relative
percentage error (ARPE), and the relative error (RE) of the parameter estimators. The
MSE and the ARPE of the parameter p are defined by

MSE(p) =
1

Nsim

Nsim∑
i=1

(p− p̂i)2 (5.1)

and

ARPE(p) =
1

Nsim

Nsim∑
i=1

∣∣∣∣p− p̂ip

∣∣∣∣ , (5.2)

where Nsim is the number of simulations, which is equal to 1,000, and p̂i is the estimate
of p in the i-th simulated scenario. Finally, the RE of the parameter p is defined by

RE1−δ(p) = max

{∣∣∣∣p− qδ/2(p̂)

p

∣∣∣∣ , ∣∣∣∣p− q1−δ/2(p̂)

p

∣∣∣∣} , (5.3)

where qβ(p̂) represents the β-th quantile of the empirical distribution of p̂. We select δ
equal to 0.2. It should be noted that by following the same approach it is possible to
obtain the standard errors of the estimates.

In Figure 7 we show the violin plot of the empirical distribution of the relative dif-
ference between the true values and the estimated parameters. The relative difference
is defined by the ratio of p − p̂i to p, where i range from 1 to Nsim. We observe that
medians (the central mark) are close to zero, that is the estimated parameters are close
to the corresponding true values. Based on the errors reported in Table 1, the accuracy
of the estimator α is higher than the one for C and λ, and the one for Σ is higher than
the one for µ and θ. The errors of C, λ, µ, and θ are generally high. Similar results were
observed in the MNTS case (see Bianchi et al. [2016]). This may be caused by the large
number of model parameters and the relative small number of simulations. As shown in
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Figure 7: Violin plots of the relative difference between true parameters and estimates of a MNRDTS
distribution. Each plot consists of 1,000 estimates. MNRDTS random numbers are generated by con-
sidering the set parameters estimated on the time-series with 1,278 log-return observations ending on
December 31, 2021. While the central mark represents the median value, the horizontal upper (lower)
line identifies the 0.9 (0.1) quantile. For the matrix Σ we report only the diagonal and the lower diagonal
values.

Bianchi et al. [2017] for tempered stable models, a large number of simulations is needed
to obtain small errors. We also conducted the same exercise on a multivariate normal
distribution. In particular, the accuracy of the correlation Σ̂ in the normal case is only
slightly better than that of the Σ̂ in the MNRDTS case.

6 Conclusions

In this work, we have focused our attention on the practical implementation of numer-
ical methods involving the use of RDTS random variables in the field of finance. Basic
definitions and formulas are given and possible algorithms to evaluate the characteristic
function of a MNRDTS random variable and its density function are discussed. Fur-
thermore, an empirical analysis on a five-dimensional time series of index log-returns is
conducted to compare the MNRDTS model with possible competitor multivariate models.
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A Appendix

A.1 RTDS subordinator moments

A process S = {St, t ≥ 0} with Lévy measure given by

ν(dx) = C
e−

λ2x2

2

xα+1
Ix>0dx, (A.1)

where λ > 0, C > 0, 0 < α < 1 and Lévy triplet (0, ν, 0) is said to be a RDTS
subordinator. The characteristic function of St is given by

ΨSt(u) = E[exp(iuSt)] = exp (tl(iu)) = exp

[
t

∫ +∞

0

(eiux − 1)C
e−

λ2x2

2

xα+1
dx

]
. (A.2)

To semplify, we set s = iu and the characteristic function can be obtained by evaluating
the integral (see also Bianchi et al. [2011] and the online Appendix of Fallahgoul et al.
[2019]) ∫ +∞

0

(esx − 1)C
e−

λ2x2

2

xα+1
dx = C
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0
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+∞∑
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k!
− 1)
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= C
λα

2
α
2

+1

+∞∑
k=1

1

k!

(√
2

λ
s

)k

Γ

(
k − α

2

)
.

The infinite sum

C
λα

2
α
2

+1

+∞∑
k=1

1

k!

(√
2

λ
s

)k

Γ

(
k − α

2

)
(A.3)

has to be split into the infinite sum of even and that of odd terms. The sum of even
terms can be written as

+∞∑
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The sum of odd terms can be written as

+∞∑
n=0

1

(2n+ 1)!

(√
2

λ
s

)2n+1

Γ

(
2n+ 1− α

2

)

22



=
+∞∑
n=1

1

Γ(2(n+ 1))

(√
2

λ
s

)2n+1

Γ

(
n+

1− α
2

)

=

√
2

λ
s

+∞∑
n=1

Γ
(

1
2

)
Γ(n+ 1)Γ(n+ 3

2
)22n+1

(√
2

λ
s

)2n

Γ

(
n+

1− α
2

)

=

√
2

2λ
s

+∞∑
n=1

Γ
(

1
2

)
Γ(n+ 1)Γ(n+ 3

2
)4n

(
2

λ2
s2

)n
Γ

(
n+

1− α
2

)

=

√
2

2λ
s

+∞∑
n=1

Γ
(

1
2

)
n!Γ(n+ 3

2
)

(
1

2λ2
s2

)n
Γ

(
n+

1− α
2

)

=

√
2

2λ

Γ
(

1−α
2

)
Γ
(

1
2

)
Γ
(

3
2

) s

+∞∑
n=0

1

n!

(
1

2λ2
s2

)n Γ
(

3
2

)
Γ
(
n+ 1−α

2

)
Γ
(

1−α
2

)
Γ(n+ 3

2
)

=

√
2

2λ

Γ
(

1−α
2

)
Γ
(

1
2

)
1
2
Γ
(

1
2

) sM

(
1− α

2
;
3

2
;
s2

2λ2

)
=

√
2

λ
Γ

(
1− α

2

)
M

(
1− α

2
;
3

2
;
s2

2λ2

)
s.

Combining the previous equations, we get∫ +∞
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(A.4)

Taking into account equations(A.2) and (A.4), and substituting s with iu, we get the
characteristic function of St

ΨSt(u) = exp
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tC
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2
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Furthermore, defining

G(x;α;λ) =
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k=1

xk

k!

(√
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Γ

(
k − α

2

)
, (A.5)

we can write the characteristic function as

ΨSt (u) = E[exp(iuSt)] = exp
(
t2−

α
2
−1CλαG (iu;α, λ)

)
. (A.6)
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Then, by using the cumulant characteristic function

gSt(u) = tC
λα

2
α
2

+1
G(iu;α;λ), (A.7)

one can derive the cumulant of order n as
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(A.8)

where
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.

Therefore,
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A.2 MNRTDS moments

The Laplace exponent of the RDTS subordinator is

lSt(u) = lnφSt(−iu) = t2−
α
2
−1CλαG (u;α, λ) ,

and by considering equation (2.3) we get the characteristic function of the MNRDTS
process with linear drift

ΨYt (u) = exp

(
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α
2
−1CλαG

(
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2
u′Σu;α, λ

))
. (A.9)

Setting ui = 0, ∀i 6= j, into (A.9) we get the characteristic function of the j-th marginal
distribution
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From the cumulant characteristic function
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,

we can derive the first four cumulants. Therefore,
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and the moments are given by the following formulas

E [Yj,t] = c1(Yj,t),

var [Yj,t] = c2(Yj,t),

skew [Yj,t] =
c3(Yj,t)

c2(Yj,t)3/2
,
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The covariances and the correlations are
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 , (A.10)
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where g1 = Γ
(

1−α
2

)
, and g2 = Γ

(
2−α

2

)
.

A.3 Function G

In this Section we show how to write the function G in equation (2.7) in terms of the
confluent hypergeometric function of second kind. The following equality holds
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where M(a, b; z) is the Kummer’s or confluent hypergeometric function of the first kind
as defined in equation (13.1.2) in Abramowitz and Stegun [1974]. We can write
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From equation (13.1.3) in Abramowitz and Stegun [1974], the following equality holds
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and if we set z = x2
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it is possible to write
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and

G(x;α, λ) = −Γ
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