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Abstract. In this study we suggest a portfolio selection framework based on time se-
ries of stock log-returns, option-implied information, and multivariate non-Gaussian pro-
cesses. We empirically assess a multivariate extension of the normal tempered stable
(NTS) model and of the generalized hyperbolic (GH) one by implementing an estimation
method that simultaneously calibrates the multivariate time series of log-returns and,
for each margin, the univariate observed one-month implied volatility smile. To extract
option-implied information, the connection between the historical measure P and the
risk-neutral measure Q, needed to price options, is provided by the multivariate Esscher
transform. The method is applied to fit a 50-dimensional series of stock returns, to eval-
uate widely-known portfolio risk measures and to perform a forward-looking portfolio
selection analysis. The proposed models are able to produce asymmetries, heavy tails,
both linear and non-linear dependence and, to calibrate them, there is no need of liquid
multivariate derivative quotes.
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1 Introduction

A portfolio selection problem is by its nature a multi-dimensional problem, and it is
usually investigated by considering a multivariate Gaussian model for the description of
assets log-returns. The complexity of the problem increases if one moves from a normal
distributional assumption to a non-normal one. Additionally, if one wants to define a
multivariate non-Gaussian option pricing model, the complexity increases further because
the asset return dynamics specified under the historical (or physical) measure P cannot
be directly used to price options, and a risk-neutral measure Q cannot, in general, be
specified by simply mean-correcting the physical process. Implied volatilities extracted
from option prices contain information about the future behavior of asset returns and for
this reason they should be considered in portfolio selection (see DeMiguel et al. [2013]
and Kempf et al. [2015]). As observed by Cecchetti and Sigalotti [2013], risk-neutral
distributions extracted from option prices reflect market participant expectations and,
accordingly, they are inherently forward-looking. Thus, risk-neutral information may
provide more accurate estimates of risk factors distribution and related moments, and
they can be used to infer market beliefs about economic events of interest both in portfolio
management, where they can be used in portfolio selection, and in central banks, where
they are routinely used for monetary policy and financial stability purposes (see Taboga
[2016]).

In this paper we propose a portfolio selection framework that takes into account time
series of stock log-returns, option-implied information and multivariate non-Gaussian
processes. We empirically assess a multivariate extension of the normal tempered stable
(NTS) model and the generalized hyperbolic (GH) one. More precisely, we improve and
extend the works of Tassinari and Bianchi [2014] and Bianchi et al. [2016] under different
perspectives: (1) we discuss the change of measure problem for multivariate GH and
multivariate NTS models; (2) we conduct a large scale estimation that considers stock
log-returns and option-implied information; and (3) we apply the estimated models to
perform an effective forward-looking portfolio selection analysis. In this paper we start
with theoretical models and then we explore the way to turn them into a potential
portfolio selection strategy.

The multivariate normal tempered stable (MNTS) and the multivariate generalized
hyperbolic (MGH) distributions are generalizations of the multivariate normal distribu-
tion known as multivariate normal mean-variance mixtures. These distributions can be
viewed as an enhancement of the multivariate normal distribution allowing for asymme-
tries, heavy tails, and both linear and non-linear dependence. According to Frahm [2004],
both the MNTS and the MGH distributions belong to the class of elliptical variance-mean
mixture. Elliptical and generalized elliptical heavy tail distributions have been discussed,
for example, by Kring et al. [2009], Dominicy et al. [2013], Zhou et al. [2014], and Fallah-
goul et al. [2016]. The MNTS has been introduced by Kim et al. [2012] and extensively
studied by Bianchi et al. [2016], Fallahgoul et al. [2019] and Bianchi et al. [2019]. The
MGH is a popular choice when deviating from the multivariate normal distribution to-
wards fatter tailed multivariate distributions (see Protassov [2004], Hu [2005], McNeil
et al. [2005], Hu and Kercheval [2007], and Hu and Kercheval [2010], Hellmich and Kass-
berger [2011]). From a dynamic perspective, the MNTS and the MGH processes are
more general Lévy processes than the multivariate arithmetic Brownian motion. These
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processes are known as time-changed Brownian motions.
In non-Gaussian continuous-time models, given a historical measure P , the change of

measure needed to price options is not unique. This means that to find a proper risk-
neutral measure Q it is necessary to estimate the model by also considering the quotes of
options traded in the market. In this study the change of measure between the historical
measure P and the risk-neutral measure Q is given by the Esscher transform (see Gerber
and Shiu [1994], Sato [1999], Tassinari and Corradi [2013], Tassinari and Corradi [2014],
and Tassinari and Bianchi [2014]). We discuss a possible approach to jointly estimate
multivariate asset log-returns under the historical measure and calibrate, for each margin,
option implied volatilities under the risk-neutral measure. Tassinari and Bianchi [2014]
proposed a joint calibration-estimation of the univariate option surfaces (one surface for
each margin) and of the multivariate time series of log-returns by considering the EM-
based maximum likelihood estimation method together with the multivariate Esscher
transform applied to find the link between historical and risk-neutral parameters. The
authors have referred to this joint calibration-estimation as double calibration. A similar
calibration procedure which rests on a joint calibration of univariate option surfaces and
pairwise correlations has been introduced by Guillaume [2012] and Guillaume [2013].
Recently, Ballotta et al. [2017] proposed a joint calibration to market quotes for both FX
triangles and quanto products. In this paper we apply the double calibration approach
to the MNTS and MGH case by considering the same dataset of Tassinari and Bianchi
[2014]. Then, we assess the same calibration procedure to fit both the MGH and the
MNTS models on all Euro denominated stocks included in the EuroStoxx 50. In this
second empirical application, the models are fitted on the time series of stock log-returns
and on the 50 one-month implied volatility smiles. As observed by Carr et al. [2007]
and Guillaume [2012], Lévy processes are suited to replicate option prices for one single
maturity, but are generally not able to reproduce quoted univariate option prices in both
the strike and time-to-maturity dimensions (i.e. for the whole set of quoted maturities)
with sufficient precision, particularly during investor fear periods.

Most of the papers on multivariate models of stock log-returns are mainly theoretical
(e.g. Luciano and Semeraro [2010]) or conduct empirical studies on few assets (e.g. four in
Hellmich and Kassberger [2011], five in Hu and Kercheval [2010]) with some exceptions
(ten in Luciano et al. [2016] and 20 in Fallahgoul et al. [2016]). We conduct a large
scale empirical application and show that with 50 stocks our models work properly (at
least for the data considered in this study). Furthermore, the multivariate non-Gaussian
models mentioned above are estimated by considering historical information only. The
main advantage of our approach is that our estimates are based on both historical and
risk-neutral information. Additionally, our approach can also be used in the pricing of
multivariate derivative contracts. In most of the papers on multivariate non-Gaussian
option pricing models, a multivariate stochastic process is calibrated using a limited
number of assets (e.g. three in Ballotta and Bonfiglioli [2016] and four in Guillaume
[2013]). The margins are calibrated using univariate options quotes and the parameters
characterizing the joint distribution are estimated by minimizing the distance between the
empirical and theoretical correlation matrix. The so called mean-correcting martingale
method is applied to price derivatives (see Schoutens [2003]), that is only the mean of the
physical process is changed to ensure that the discounted price process of every assets is
a martingale under the pricing measure, all other moments, co-moments, and parameters
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are left unchanged and the historical correlation matrix can be used to calibrate the risk-
neutral one. The models described in this paper are based on the Esscher transform that
allows one to properly combine risk-neutral and historical information.

After having defined the multivariate model, we consider a minimum-risk portfolio
selection approach. The risk measure we select is the average value at risk (AVaR), the
average of the values-at-risk (VaRs) greater than the VaR at a given tail level. AVaR, also
called conditional value-at-risk (CVaR) or expected shortfall, is a superior risk measure
to VaR because it satisfies all axioms of a coherent risk measure and it is consistent with
preference relations of risk-averse investors (see Rachev et al. [2008]). Thus, we follow
a mean-AVaR portfolio selection criterion which, by construction, not only takes into
consideration the first two moments of the log-returns distribution but also the heaviness
of its left tail. In the models we propose, the AVaR has a closed formula (up to a
numerical integration), which can be easily cast into a portfolio optimization problem.
In the empirical analysis we consider minimum-AVaR (MA) portfolios (see Stoyanov
et al. [2010]) under the normal, the MNTS and the MGH distributional assumption,
respectively, and, as done in similar studies (e.g. DeMiguel et al. [2007] and Mainik
et al. [2015]), we compare them with two benchmark portfolios: the minimum-variance
portfolio (MV) and the equally weighed portfolio (EW). Then, as robustness check, we
perform a portfolio selection analysis by maximizing the portfolio expected return under
different levels of risk, where the risk is measured by the portfolio AVaR.

The paper is organized as follows. In Sections 2.1 and 2.2, we introduce the MNTS
model and the MGH one, respectively. For both models we also show how to get the risk-
neutral parameters knowing the historical ones through the multivariate Esscher trans-
form, and how to find the historical parameters knowing the risk-neutral ones by means
of the inverse Esscher transform. In Section 3, we briefly describe the data analyzed in
the empirical study and, in Section 4, after having reviewed the double calibration algo-
rithm, we compare the calibration errors of both the MGH and the MNTS models with
those reported in Tassinari and Bianchi [2014], that is, with the ones of the multivariate
Gaussian, the multivariate variance gamma (MVG) and the multivariate normal inverse
Gaussian (MNIG) models, and we conduct a large scale empirical test on a 50-dimensional
series of stock returns. In Section 5, after having explained the minimum-AVaR portfolio
selection approach, we describe the main computational aspects of our forward-looking
approach and we discuss the results. Section 6 resumes the main contributions of the
paper and contains the conclusions.

2 Time-changed Brownian motion

In this section we review the model described in Tassinari and Bianchi [2014]. Consider
a market with n equities, with continuous dividend yields d = [dj]n×1, and one risk-
less asset, which guarantees a constant continuously compounded rate of return r. The
evolution of equity log-returns is driven by a multivariate generalized Brownian motion,
with correlated components, stochastically time-changed by an independent univariate
subordinator. Formally, the log-returns process Y = {Yt, t ≥ 0} is defined as

Yt = µt+ θSt +DσWSt , (2.1)

where

4



• W = {Wt, t ≥ 0} is an n-dimensional Brownian motion with correlation matrix
Ω = [ρjk]n×n;

• S = {St, t ≥ 0} is a one-dimensional subordinator independent of W , with Laplace
exponent lS1 (.);

• WS = {WSt , t ≥ 0} is the Brownian motion W time-changed with the subordinator
S;

• Dσ is a diagonal matrix having on its main diagonal the elements of the vector
σ = [σj]n×1 ∈ Rn

+;

• µ = [µj]n×1 and θ = [θj]n×1 are vectors in Rn.

There exists a relation between subordinated multivariate Brownian motions and multi-
variate distributions defined as normal mean-variance mixtures. More precisely, for each
discrete time step ∆t, the distribution of the log-returns is given by

Y∆t = µ∆t+ θS∆t +
√
S∆tDσAZ, (2.2)

where

• Z is a n-dimensional standard normal random vector with uncorrelated components;

• S∆t is the random variable describing the subordinator increments and it is inde-
pendent of Z;

• A is the lower Cholesky decomposition of the correlation matrix Ω;

• Dσ, µ and θ are the matrix and the vectors defined above.

The representation (2.2) is useful to implement the expectation-maximization (EM) max-
imum likelihood estimation on the time series of log-returns (see McNeil et al. [2005] and
Bianchi et al. [2016]).

As shown in Tassinari and Bianchi [2014], the characteristic function of the log-returns
process is given by

ΨYt (u) = exp

[
itu′µ+ tlS1

(
iu′θ − 1

2
u′Σu

)]
, (2.3)

where Σ = DσΩDσ = [σjk]n×n ∈ Rn×n and u = [uj]n×1 ∈ Rn.
As already explained, we want to perform a portfolio selection analysis based on the

physical log-returns model (2.1) using both time series of stock log-returns and option-
implied information. To reach this objective, we implement the double calibration proce-
dure of Tassinari and Bianchi [2014], an estimation method that simultaneously calibrate
the multivariate time series of log-returns and, for each of the n stocks, the univariate
observed volatility smile. To extract option-implied information, the connection between
the historical measure P and the risk-neutral measure Q, needed to price options, is
provided by the multivariate Esscher transform. In particular, given the historical pa-
rameters, this change of measure allows to get the risk-neutral ones and, conversely, given
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the risk-neutral ones, through the inverse Esscher transform, it allows to get the historical
parameters. Specifically, if one can find a vector h = [hj]n×1 ∈ Rn solving the system

ln ΨY1

(
−ih(j)

)
− ln ΨY1 (−ih) = r − dj, j = 1, 2, ...n, (2.4)

where h(j) = [h1, ..., hj−1, hj + 1, hj+1, ..., hn]′, then the Esscher equivalent martingale
measure exists and the characteristic function of the log-returns process under the risk-
neutral probability Qh is given by

ΨQh
Yt

(u) = ΨYt (u− ih) /ΨYt (−ih) . (2.5)

On the other hand, given the risk-neutral parameters, the inverse Esscher transform
allows to get the physical ones, by finding the vector h that solves the system

ln ΨQ

Y j1
(−i) = r − dj, j = 1, 2, ..., n, (2.6)

with the additional constraints on the relations between historical and risk-neutral pa-
rameters that are obtained from the comparison between (2.5) and (2.3) for each specific
model. This procedure is extensively explained in Tassinari and Bianchi [2014] and ap-
plied to the multivariate variance gamma (MVG) and to the multivariate normal inverse
Gaussian (MNIG) models. In this paper we extend the framework to the MNTS and the
MGH models.

2.1 The multivariate NTS model

The tempered stable family was introduced by Barndorff-Nielsen [1997], Barndorff-Nielsen
and Levendorskii [2001], Boyarchenko and Levendorskii(2000, 2002) from both a univari-
ate and multivariate perspective, further studied on a theoretical level by Rosinski [2007],
Bianchi et al. [2010] and Grabchak [2016] and applied to finance in numerous empirical
studies principally under a univariate framework (see Carr et al. [2002], Cont and Tankov
[2003], Kim et al. [2010a], Rachev et al. [2011], Bianchi [2015] and references therein).
In this section we study the multivariate extension of the normal tempered stable model
proposed by Kim et al. [2012] and extensively studied by Bianchi et al. [2016], Anand
et al. [2016], Fallahgoul et al. [2019] and Bianchi et al. [2019]. Let S = {St, t ≥ 0}
be a classical tempered stable process, that is, a process which starts at zero and has
stationary and independent increments, in which the law of S1 is classical tempered sta-
ble (CTS) with parameters λ > 0, C > 0 and 0 < α < 2. We refer to the law S1 as
CTS(α, λ, C). The characteristic function of the random variable S1 is

ΨS1(v) = exp [CΓ(−α)((λ− iv)α − λα))] . (2.7)

From (2.7) it is possible to derive the Laplace exponent of the classical tempered
stable subordinator

lS1(v) = ln ΨI1

(v
i

)
= CΓ(−α)((λ− v)α − λα),

and the main moments of S1

E [S1] = −αCΓ(−α)λα−1,
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var [S1] = α(α− 1)CΓ(−α)λα−2,

skew [S1] = (2− α) [α(α− 1)CΓ(−α)λα]−
1
2 ,

kurt [S1] = 3 + (α− 2)(α− 3) [α(α− 1)CΓ(−α)λα]−1 .

Using (2.1), we obtain the characteristic function of the multivariate normal tempered
stable (MNTS) process

ΨYt (u) = exp

{
t

[
iu′µ+ CΓ (−α)

((
λ− iu′θ +

1

2
u′Σu

)α
− λα

)]}
. (2.8)

If we set α = 1/2, S1 follows an inverse Gaussian distribution with parameters γ =

−CΓ(−α)√
2

and η =
√

2λ. If α → 0, S1 follows a gamma distribution with parameters

α′ = −CΓ(−α)√
2

and β′ =
√

2λ. In the first case, the MNTS model becomes the multivari-

ate normal inverse Gaussian (MNIG) and, in the second case, the multivariate variance
gamma (MVG) considered in Tassinari and Bianchi [2014].

Using (2.8), the log-returns moments can be derived

E
[
Y j
t

]
= µjt+ E [St] θj,

var
[
Y j
t

]
= var [St]

(
θ2
j +

σ2
jλ

1− α

)
,

skew
[
Y j
t

]
= skew [St]

(
θ3
j +

3θjσ
2
jλ

2− α

)(
θ2
j +

σ2
jλ

1− α

)− 3
2

,

kurt
[
Y j
t

]
= 3 + (kurt [St]− 3)

[
θ4
j +

3σ2
jλ

3− α

(
2θ2

j +
σ2
jλ

2− α

)](
θ2
j +

σ2
jλ

1− α

)−2

,

cov
[
Y j
t ;Y k

t

]
= var [St]

(
θjθk +

σkjλ

1− α

)
,

corr
[
Y j
t ;Y k

t

]
=

θjθk +
σjσkρjkλ

1−α√(
θ2
j +

σ2
jλ

1−α

)(
θ2
k +

σ2
kλ

1−α

) , (2.9)

where Y j
t and Y k

t denote the log-return of the j-th and the k-th stock, respectively, on
time intervals of lenght t.

To perform the change of probability measure, we follow the procedure described in
Tassinari and Bianchi [2014]. By considering equations (2.4) and (2.8), to find the vector
h we need to solve the following system

(λ− l (h))α −
(
λ− θ1 − 1

2
σ2

1 − l (h)−
∑n

j=1 hjσ1σjρ1j

)α
= (µ1 + d1 − r)/CΓ(−α)
...

(λ− l (h))α −
(
λ− θn − 1

2
σ2
n − l (h)−

∑n
j=1 hnσnσjρnj

)α
= (µn + dn − r)/CΓ(−α),

(2.10)
where

l (h) = h′θ +
1

2
h′Σh.
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Although it is difficult to prove the existence of a solution, in all of our applications we
were able to find it through numerical methods. This ensures that at least an equivalent
risk-neutral measure exists.

Using equation (2.5), we get the characteristic function under the risk-neutral measure
Qh

ΨYt (u) = exp

{
t

[
iu′µQh + CQhΓ

(
−αQh

)((
λQh − iu′θQh +

1

2
u′ΣQhu

)αQh
− λQhα

Qh

)]}
,

(2.11)
where

µQh = µ,

CQh = C,

αQh = α,

λQh = λ− h′θ − 1

2
h′Σh,

θQh = θ + Σh,

DσQh = Dσ,

αQh = α.

(2.12)

By comparing (2.8) with (2.11), it is evident that the risk-neutral log-returns dy-
namics is still described by a MNTS process. The Esscher change of measure modifies
only the parameter λ and the vector θ. Even if the correlation matrix of the underlying
Brownian motion is not affected by the change of measure, the historical and risk-neutral
correlations are different (see (2.9) and (2.12)). Furthermore, all risk-neutral marginal
moments differ from the historical ones since they depend on the whole historical depen-
dence structure. More precisely, the risk-neutral moments of each margin are a function
of all the elements of the vector θ and the matrix Σ through the vector h, which in turn
depends on the joint physical log-returns process.

The inverse Esscher transform allows one to find the parameters under the physical
measure Ph starting from the ones under the risk-neutral measure Q. By considering
equations (2.6) and (2.12), it follows that to find h the following system has to be solved

µQ1 + CQΓ
(
−αQ

)((
λQ − θQ1 − 1

2
σQ1

2
)αQ
− λQα

Q
)

= r − d1

...

µQn + CQΓ
(
−αQ

)((
λQ − θQn − 1

2
σQn

2
)αQ
− λQα

Q
)

= r − dn

µPh = µQ

CPh = CQ

αPh = αQ

λPh = λQ + h′θQ − 1
2
h′ΣQh

θPh = θQ − ΣQh

DσPh = DσQ

αPh = αQ.

(2.13)
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Since the system must satisfy the constraints in (2.12), the unknowns to be found are the
vector h together with the parameters λPh and θPh .

2.2 The multivariate GH model

The generalize hyperbolic (GH) distribution has received a lot of attention in the financial-
modeling literature (see for example Eberlein and Keller [1995], Prause [1999], and Eber-
lein et al. [2002]). The GH parametric family includes many familiar distributions such
as for example the Student’s t, the skew-t, the hyperbolic, the variance gamma, and
the normal inverse Gaussian. In this section we study the multivariate generalized hy-
perbolic (MGH) distribution. Let G = {Gt, t ≥ 0} be a generalized inverse Gaussian
process (GIG), i.e., a process which starts at zero and has stationary and independent
increments, in which the distribution of G1 is generalized inverse Gaussian with param-
eters ε, ψ, χ. ψ and χ are are both nonnegative and not simultaneously 0. We refer to
the law of G1 as GIG (ε, χ, ψ). The density function of the random variable G1 is

f(x; ε, ψ, χ) =
1

2Kε

(√
χψ
) (ψ

χ

) ε
2

xε−1 exp

[
−1

2

(χ
x

+ ψx
)]

, x > 0, (2.14)

and its characteristic function is

ΨG1(v) =

(
1− 2iv

ψ

)− ε
2 Kε

(√
χ(ψ − 2iv)

)
Kε

(√
χψ
) . (2.15)

From (2.15) it is possible to derive the Laplace exponent of the generalized inverse
Gaussian subordinator

l(v) = ln ΨG1

(v
i

)
= − ε

2
ln

(
1− 2v

ψ

)
+ ln

Kε

(√
χ(ψ − 2iv)

)
Kε

(√
χψ
) , (2.16)

and from (2.16) the cumulants of G1

c1 [G1] = E [G1] =

(
χ

ψ

) 1
2 Kε+1

(√
χψ
)

Kε

(√
χψ
) ,

c2 [G1] = var [G1] =

(
χ

ψ

)Kε+2

(√
χψ
)

Kε

(√
χψ
) −(Kε+1

(√
χψ
)

Kε

(√
χψ
) )2

 ,
c3 [G1] =

(
χ

ψ

) 3
2

Kε+3

(√
χψ
)

Kε

(√
χψ
) − 3Kε+2

(√
χψ
)
Kε+1

(√
χψ
)

K2
ε

(√
χψ
) + 2

(
Kε+1

(√
χψ
)

Kε

(√
χψ
) )3

 ,
c4 [G1] =

(
χ

ψ

)2
Kε+4

(√
χψ
)

Kε

(√
χψ
) − 4Kε+3

(√
χψ
)
Kε+1

(√
χψ
)

K2
ε

(√
χψ
) − 3

(
Kε+2

(√
χψ
)

Kε

(√
χψ
) )2

+

+ 6

(
χ

ψ

)2
2Kε+2

(√
χψ
)
K2
ε+1

(√
χψ
)

K3
ε

(√
χψ
) −

(
Kε+1

(√
χψ
)

Kε

(√
χψ
) )4

 .
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Using (2.1), we obtain the characteristic function of the multivariate generalized hy-
perbolic (MGH) process

ΨYt (u) = exp (iu′µt)

[
1− 2

ψ

(
iu′θ − 1

2
u′Σu

)]− εt
2

Kε

(√
χ
(
ψ − 2

(
iu′θ − 1

2
u′Σu

)))
Kε

(√
χψ
)


t

.

(2.17)

If we set ε = −1/2, G1 follows an inverse Gaussian distribution with parameters
γ =
√
χ and η =

√
ψ. If we set χ = 0, G1 follows a gamma distribution with α′ = ε and

β′ = ψ/2. In the first case, we get the MNIG model and, in the second one, the MVG
analysed by Tassinari and Bianchi [2014].

From equation (2.17), the following marginal and joint moments of the log-returns
distribution can be obtained

E
[
Y j
t

]
= µjt+ E [Gt] θj,

var
[
Y j
t

]
= E [Gt]σ

2
j + var [Gt] θ

2
j ,

skew[Y j
t ] =

c3[Y j
t ]

var[Y j
t ]3/2

,

kurt[Y j
t ] = 3 +

c4[Y j
t ]

var[Y j
t ]2

,

cov
[
Y j
t ;Y k

t

]
= E [Gt]σjk + var [Gt] θjθk,

corr
[
Y j
t ;Y k

t

]
=

θjθkΥ
√
χ+
√
ψσjσkρjk√[

θ2
jΥ
√
χ+ σ2

j

√
ψ
] [
θ2
kΥ
√
χ+ σ2

k

√
ψ
] , (2.18)

where

c3

[
Y j
t

]
= 3var [Gt] θjσ

2
j + c3 [Gt] θ

3
j ,

c4

[
Y j
t

]
= 3var [Gt]σ

4
j + 6c3 [Gt] θjσ

2
j + c4 [Gt] θ

4
j ,

and

Υ =

(
Kλ+2

(√
χψ
)

Kλ+1

(√
χψ
) − Kλ+1

(√
χψ
)

Kλ

(√
χψ
) ) .

As observed in Bianchi et al. [2019], in contrast to the MVG, the MNIG and the
MNTS cases, assuming that Y0 = 0 by equation (2.15) it follows that if Y1 is MGH
distributed with parameters (λ, χ, ψ, µ, θ, Σ) then the increments Y∆t = Yt+∆t − Yt are
no longer MGH distributed. This in practice means that for a different time scale we do
not know the distribution of the increments but only their characteristic function.

As described in Section (2.1) for the MNTS case, to obtain that the discounted price
process of each stock is a martingale under the measure Qh and, by considering equation

10



(2.17), the system to solve to find the vector h may be written as

[
1− 2(θ1+0.5σ2

1+
∑n
j=1 hjσ1j)

ψ−2l(h)

]− ε
2 Kε

(√
χ(ψ−2l(h)−2(θ1+0.5σ2

1+
∑n
j=1 hjσ1j))

)
Kε
(√

χ(ψ−2l(h))
) = exp(r − µ1 − d1)

...[
1− 2(θn+0.5σ2

n+
∑n
j=1 hjσnj)

ψ−2l(h)

]− ε
2 Kε

(√
χ(ψ−2l(h)−2(θn+0.5σ2

n+
∑n
j=1 hjσnj))

)
Kε
(√

χ(ψ−2l(h))
) = exp(r − µn − dn)

(2.19)
where

l (h) = h′θ +
1

2
h′Σh.

As for the system (2.10), a solution for the system (2.19) is found through numerical
methods.

By considering equations (2.5) and (2.17), we get the risk-neutral characteristic func-
tion

ΨQh
Y1

(u) = exp
(
iu′µQh

) [
1− 2

ψQh

(
iu′θQh − 1

2
u′ΣQhu

)]− εQh
2

×

KεQh

(√
χQh

(
ψQh − 2

(
iu′θQh − 1

2
u′ΣQhu

)))
KεQh

(√
χQhψQh

) ,

(2.20)

where

µQh = µ,

χQh = χ,

εQh = ε,

ψQh = ψ − 2

(
h′θ +

1

2
h′Σh

)
,

θQh = θ + Σh,

DσQh = Dσ,

αQh = α.

(2.21)

Similarly to the MNTS case, by comparing equation (2.17) with equation (2.20), it is
evident that the Esscher change of measure does not modify the nature of the log-returns
process which is still an MGH one. Only the parameter ψ and the vector θ change.
Even if the correlation matrix of the underlying Brownian motion is not affected by the
change of measure, the historical and risk-neutral correlations are different (see (2.18) and
(2.21)). Finally, observe that all risk-neutral marginal moments differ from the historical
ones and they depend on the full physical log-returns process.

To get the parameters under the probability measure Ph, starting from the risk-neutral

11



measure Q, we need to solve the system

µ1
Q − εQ

2
ln
[
1− 2

ψQ

(
θ1
Q + 1

2
σQ1

2
)]

+ ln
K
εQ

(√
χQ
(
ψQ−2

(
θ1
Q+ 1

2
σQ1

2
)))

K
εQ

(√
χQψQ

) = r − d1

...

µn
Q − εQ

2
ln
[
1− 2

ψQ

(
θn

Q + 1
2
σQn

2
)]

+ ln
K
εQ

(√
χQ
(
ψQ−2

(
θn
Q+ 1

2
σQn

2
)))

K
εQ

(√
χQψQ

) = r − dn

µPh = µQ,

εPh = εQ

χPh = χQ

ψPh = ψQ + 2
(
h′θQ − 1

2
h′ΣQh

)
θPh = θQ − ΣQh

DσPh = DσQ

αPh = αQ.

(2.22)
The system must satisfy the constraints in equation (2.21) and, therefore, the unknowns
are the vector h, the parameters ψPh and θPh .

3 Data

In this section we describe the data used in the empirical analysis. In the first empirical
test we consider the same dataset analyzed in Tassinari and Bianchi [2014], that is, daily
dividend adjusted closing prices from January 2, 1990 through December 31, 2012 and
implied volatilities from January 2, 2008 to December 31, 2012 obtained from Bloomberg
for five selected companies included in the S&P 500: Apple Inc. (ticker APPL), Dell Inc.
(ticker DELL), International Business Machines Corp. (ticker IBM), Hewlett-Packard
Comp. (ticker HPQ), Microsoft Corp. (ticker MSFT). The implied volatilities are ex-
tracted from European call and put options with a maturity between one month and one
year and with moneyness between 80% and 120%. That dataset is made up of more than
50,000 observations for each company.

Then, for further empirical investigations we use the daily logarithmic return series
for all Euro denominated stocks included in the EuroStoxx 50 on April 30, 2017.1 We
obtained from Datastream daily dividend-adjusted closing prices from June 30, 2002
through April 30, 2017. Furthermore, implied volatilities were extracted from European
call and put options written on the selected stocks from June 30, 2009 to April 30, 2017
with a one month maturity and with moneyness between 80% and 120%. As risk-free
interest rate we take the Euribor rate. Since we considered dividend adjusted closing
prices, we assumed that dj = 0 for each stock j. By an empirical test it follows that
under this assumption on dividends the put-call parity continues to be fulfilled.

1 We select Unicredit Bank and Assicurazioni Generali instead of CRH and Engie.
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4 Double calibration

In this Section we consider a calibration framework in which we jointly (1) estimate the
model parameters on the multivariate time series of log-returns, by minimizing, for each
margin, the Kolmogorov-Smirnov distance under the historical measure, and (2) cali-
brate the implied volatility surface, by minimizing the average relative percentage error
(ARPE), under the risk-neutral measure. We refer to this method as double calibration
(see Tassinari and Bianchi [2014] for a detailed description of the calibration approach).
By following this approach, for each margin, both the implied volatility and log-return
calibration-estimation errors are minimized: we find a set of parameters such that the
model implied volatilities are as close as possible to the market implied volatilities and, at
the same time, the theoretical univariate distribution of log-returns is as close as possible
to the empirical distribution.

Specifically, on each trading day we estimate the model parameters by solving the
following minimization problem

Θ̂Q = min
ΘQ

(∑
j

(
ARPEj(Θ

Q) + ξ1KSj(Θ
Ph)
))
, (4.1)

where

ARPEj(Θ
Q) =

1

number of observations

∑
Tn

∑
Km

|iV olmarketTnKm
− iV olmodelTnKm

(ΘQ)|
iV olmarketTnKm

, (4.2)

in which iV olmarketTnKm
(iV olmodelTnKm

) denotes the market (model) implied volatility of the option
with maturity Tn and strike Km, the index j represents the stock j, and ΘQ is the vector of
the risk neutral parameters. Furthermore, KSj(Θ

Ph) in (4.1) indicates the Kolmogorov-
Smirnov distance associated to the j-th margin, given the set of parameters ΘPh derived
from the risk-neutral parameters ΘQ by means of the inverse Esscher transform. To
perform the inverse Esscher transform, we solve the systems (2.13) and (2.22) in the
MNTS and in the MGH model, respectively. As done in Tassinari and Bianchi [2014], ξ1

is fixed to 3. Additionally, the algorithm is implemented by following the pricing method
for standard vanilla options proposed in Carr and Madan [1999] and the expectation-
maximization (EM) maximum likelihood estimation method as described in Tassinari and
Bianchi [2014] and Bianchi et al. [2016]. We point out that the matrix A, representing
the lower triangular Cholesky factor of the matrix Ω, is estimated through the EM-based
maximum likelihood method before running the double calibration approach and it is
kept fixed in the optimization algorithm. Therefore, all model parameters may change
during the optimization procedure except for the elements of the correlation matrix of the
underlying Brownian motion. However, we want to emphasize that this in no way implies
the constancy of log-returns correlations during the optimization phase of the double-
calibration (see (2.9) and (2.18)). For further technical and computational details on the
double calibration approach see Tassinari and Bianchi [2014]. A detailed error analysis
of the EM-based ML estimation method for the MNTS and MGH random variables has
been conducted in Bianchi et al. [2016]. The double calibration approach is more robust
since at each step considers also option implied data. The calibration conducted using
only option implied data may be problematic. Here the numerical errors are controlled
by construction (see also Chapter 11 in Bianchi et al. [2019]). We start with the historical
estimation and jointly minimize the objective function in equation (4.1).
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Figure 1: Implied volatility calibration error (ARPE) for all stocks and models analyzed under the
double calibration approach (20-day moving average). The calibration was conducted on a daily basis
for each trading day between January 2, 2008 to December 31, 2012.

4.1 Comparison with the MNIG and the MVG model

In this section we compare the calibration errors of the MGH and of the MNTS mod-
els with those reported in Tassinari and Bianchi [2014], that is, with the multivariate
Gaussian, the multivariate variance gamma (MVG) and the multivariate normal inverse
Gaussian (MNIG) models. Based on the ARPE evaluated over the entire sample on suc-
cessive cross-sections of implied volatilities and stocks, the MGH model shows a smaller
calibration error in fitting implied volatilities. The error is larger for IBM (in median,
9.25 per cent in MGH model, and 10.20 per cent in the MNTS model) and smaller for
Dell (in median, 6.40 per cent in the MGH model, and 6.50 per cent in the MNTS model).
The time series of the ARPE computed across all five stocks simultaneously ranges from
3.16 per cent to 21.38 per cent (in median, 7.18 per cent) for the MGH model, and from
3.34 per cent to 32.71 per cent (in median, 7.74 per cent) for the MNTS model.

On October 17, 2008 (March 19, 2009) the MGH (MNTS) model reaches the largest
calibration error. As already observed in Guillaume [2012], multivariate models based
on Lévy processes performed badly during the crisis period. In Figure 1 we report the
time series of the 20-days moving average of the median ARPE computed across all five
stocks, for both the MGH model and the MNTS one, and compare them with the MNIG
and MVG models analyzed in Tassinari and Bianchi [2014]. For each stock and for each
model we evaluate the ARPE over the entire period. The 20-days moving average ranges
from 3.88 per cent and 17.42 per cent (on average, 7.61 per cent) in the MGH case, from
4.51 per cent and 16.24 per cent (on average, 8.05 per cent) in the MNTS case, from 4.54
per cent and 15.72 per cent (on average, 8.18 per cent) in the MNIG case, and from 4.71
per cent and 15.97 per cent (on average, 8.47 per cent) in the MVG case. As expected

14



AIC BIC
-4.3

-4.2

-4.1

-4

-3.9
10 4 Gaussian

AIC BIC
-4.3

-4.2

-4.1

-4

-3.9
10 4 MVG

AIC BIC
-4.3

-4.2

-4.1

-4

-3.9
10 4 MNIG

AIC BIC
-4.3

-4.2

-4.1

-4

-3.9
10 4 MGH

AIC BIC
-4.3

-4.2

-4.1

-4

-3.9
10 4 MNTS

AAPL DELL IBM HPQ MSFT
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Gaussian - KS distance

AAPL DELL IBM HPQ MSFT
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
MVG - KS distance

AAPL DELL IBM HPQ MSFT
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
MNIG - KS distance

AAPL DELL IBM HPQ MSFT
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
MGH - KS distance

AAPL DELL IBM HPQ MSFT
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
MNTS - KS distance

Figure 2: Goodness of fit statistics of the models estimated using the double calibration approach for
each trading day from January 2, 2008 to December 31, 2012. For each trading day, a window of fixed
size is considered (1,500 trading days) for a total of 1,259 rolling windows estimations for each model.
For each model the boxplots of the AIC, the BIC and the univariate KS distance are reported. On
each boxplot, the central mark is the median, the edges of the box are the 25-th and 75-th percentiles,
the whiskers extend to the most extreme data points not considered outliers, and outliers are plotted
individually.

the MGH model has a smaller average implied volatility calibration error than both the
MNIG and the MVG model. The MNTS model has also a slightly better performance
compared with both the MNIG model and the MVG one. Additionally, by considering
similar studies on this subject (see Bianchi et al. [2018]), the implied volatility calibration
error, for the MGH and the MNTS models, is satisfactory.

After having analyzed the implied volatility calibration error, we study the ability
in fitting time series of log-returns of the MGH and the MNTS models and compare
their performace with that of the MNIG and the MVG models analyzed in Tassinari
and Bianchi [2014]. For all calibrated models, in Figure 2 we report the boxplot of both
the Akaike information criterion (AIC) and the Bayesian information criterion (BIC).
According to both the AIC and the BIC, the MGH is the best performing model and
the Gaussian is the worst one. We point out that we conducted a maximum likelihood
estimation for Gaussian model, without computing the corresponding implied volatility
calibration error. Additionally, Figure 2 shows the boxplots of the KS statistic for each
margin. The average p-value ranges from 2.34 (APPL) to 45.79 (DELL) per cent in the
MGH model, and from 5.51 (APPL) and 43.46 (DELL) per cent in the MNTS model.

We remind that the historical parameters ΘPh are computed through the inverse
Esscher transform. Except for Apple and, particularly for the MNTS model, the KS
statistics are smaller compared to the KS statistics computed under the multivariate
normal assumption. As shown in Figure 2, the MNIG and the MVG models exhibit a
worst performance than both the MGH and MNTS model. The average p-value ranges
from 1.59 (APPL) to 45.19 (DELL) per cent in the MNIG model, and from 0.88 (APPL)
and 35.48 (DELL) per cent in the MVG model. While the MGH model outperforms its
competitor models in calibrating the volatility surface, the MNTS model is slightly better
in explaining the behaviour of time series of log-returns, at least for the data considered in
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Figure 3: Implied volatility calibration error (ARPE) for each stock and each model analyzed under
the double calibration approach (boxplot). For each stock the boxplot of the ARPE of a given model is
compared to the median values of the ARPE of the competitor models. The calibration was conducted
on a weekly basis for each Wednesday between June 30, 2009 to April 31, 2017.

this section. In Section 5 we further analyze these models in a portfolio selection exercise.
Finally, to perform a double calibration on a given trading day, that is to calibrate the

five observed volatility surfaces and simultaneously estimate the five time series of log-
returns, the computing time is, in median, 90 seconds in the MNIG case, and 190 seconds
in the MVG case. The computing time for both the MGH and the MNTS model is larger
(respectively, 200 and 400 seconds). This procedure was run on an 8 cores AMD FX 8120
processor with 16GB of Ram with a Linux based 64-bit operating system. Most of the
computing time is spent on the optimization part of the code. The optimization algorithm
applied in this study is a sequential quadratic programming method implemented in the
fmincon Matlab function in which the option active-set is selected with the UseParallel
option always switched on (i.e. the optimization function makes use of the Matlab Parallel
toolbox).

In the optimization algorithm, we constrain the three MGH parameters (λ, χ, ψ) in
the region between (-4.5, 1e-2, 1e-2) and (-0.5, 5, 2), and the three MNTS parameters
(α, λ, C) in the region between (0.75, 1e-2, 1e-2) and (1.75, 5, 100). While in the MGH
(MNTS) case the parameter σj ranges between 0.01 and 0.15 (0.01 and 0.2), θj ranges
between -0.1 and 0.01 (-0.15 and 0.01).

4.2 A large scale empirical test

For further empirical investigation, we apply the calibration described in Section 4 to
a large scale case. That is, we assess the double calibration approach to fit both the
MGH and the MNTS model on all Euro denominated stocks included in the EuroStoxx
50 and we compare them with the multivariate Gaussian model with parameters µ and
Σ. As usual, µ represents the annualized mean vector and Σ is the annualized variance-
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Figure 4: Implied volatility calibration error (ARPE) for all stocks and models analyzed under the
double calibration approach (10-weeks moving average). The calibration was conducted on a weekly
basis for each Wednesday between June 30, 2009 to April 31, 2017.
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Figure 5: Log-likelihood of the models estimated using the historical and the double calibration ap-
proach for each Wednesday from June 30, 2009 to April 31, 2017. For each trading day, a window of
fixed size is considered (1,500 trading days) for a total of 409 rolling windows estimations for each model.

covariance matrix. Both parameters are calibrated only to the time series of stock log-
returns. We point out that the two non-Gaussian models have 53 more parameters
compared to the Gaussian model, that is, the three parameters of the subordinator and
the 50-dimensional vector θ.

The calibration is conducted for each Wednesday from June 30, 2009 to April 31, 2017.
For each Wednesday, a window of fixed size is considered (1,500 daily observations) for
a total of 409 rolling windows estimations for each model. The models are fitted on
these time series of stock log-returns and to the 50 one-month implied volatility smiles
observed at each given Wednesday. While in Section 4.1 we calibrate the models to the
entire volatility surface, here we consider only the one-month maturity implied volatility
smile.

Based on the ARPE evaluated over the entire sample of implied volatilities and stocks,
the MGH model shows a smaller calibration error in fitting implied volatilities, as shown
in Figure 3, in which the boxplots of the ARPE computed across the 409 rolling windows
are reported. While in the MGH case the median error ranges from 9.95 (Telefonica -
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Figure 6: Goodness of fit statistics of the models estimated using the double calibration approach for
each Wednesday from June 30, 2009 to April 31, 2017. For each trading day, a window of fixed size is
considered (1,500 trading days) for a total of 409 rolling windows estimations for each model. For each
model the boxplots of the AIC, the BIC and the univariate KS distance are reported. For each stock the
boxplot of the KS distance of a given model is compared to the median values of the KS distance of the
competitor models. On each boxplot, the central mark is the median, the edges of the box are the 25-th
and 75-th percentiles, the vertical line extend to the most extreme data points not considered outliers,
and outliers are plotted individually.
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E:TEF) to 19.03 (Ahold Delhaize - H:AD) per cent, in the MNTS case it ranges from
10.99 (Airbus - F:AIRS) to 19.76 (Ahold Delhaize - H:AD) per cent. In 8 cases over 50
the median calibration error of the MNTS model is smaller compared to the error of the
MGH model.

As shown in Figure 4, the time series (10-weeks moving average) of the median ARPE
computed across all 50 stocks ranges from 8.80 per cent to 20.20 per cent (on average,
13.94 per cent) for the MGH model, and from 7.77 per cent to 22.30 per cent (on average,
14.64 per cent) for the MNTS model.

In Figure 5 we report the time series of the log-likelihood for all competitor models
and estimation methods. The maximum likelihood estimation is considered in the normal
case, the EM-based maximum likelihood estimation method in the MGH historical and
MNTS historical cases, the double calibration approach is applied in the MGH double
and MNTS double cases. Even if the double calibration approach is not focused on
maximizing the likelihood, there are only few days when the log-likelihood of the MNTS
model is smaller that the likelihood of the normal model (the log-likelihood of the MGH
model is never smaller). This shows the great flexibility of the MGH and MNTS models
with respect to the normal one: they are able to jointly calibrated log-returns and implied
volatility smile and their log-likelihood is still greater than the estimated log-likelihood
under the normal framework. As expected, in both MGH and MNTS cases, the log-
likelihood of the models estimated by considering only historical information is larger.
The log-likelihoods of MGH historical and MNTS historical are almost indistinguishable.

As far as the double calibration is concerned, according to both the AIC and the BIC,
the MNTS model is better because its AIC and BIC average values are smaller compared
with all other competitor models, and the Gaussian one is the worst (see Figure 6).
Additionally, Figure 6 shows the boxplots of the KS statistic for each margin. In 18 cases
over 50 the calibration error (average values) of the MNTS model is smaller compared to
the error of the MGH one. For all stocks and for both the MGH and the MNTS model,
the KS statistic is smaller compared to that of the Gaussian model. The p-value (average
value) is bigger than 5 per cent in 44 cases over 50 for the MNTS model, in 49 cases for
the MGH model and never for the Gaussian one.

Finally, to perform a double calibration on a given Wednesday, that is to calibrate
the 50 observed volatility surfaces, and simultaneously estimate the time series of log-
returns, the computing time is, in median, 350 seconds in the MGH case, and 1,350
seconds in the MNTS case. The procedure is run on the same machine and with the
same implementation described in Section 4.1.

5 A portfolio selection analysis

In this section we provide the necessary definitions needed to implement a minimum-
AVaR portfolio selection criterion and show the backtest of a portfolio selection strategy
applied to the 50-dimensional case investigated in Section 4.2.

The value at risk (VaR) of a continuous random variable X, representing the profit-
and-loss or the return of a portfolio, at tail probability level δ is

V aRδ(X) = − inf{x|P (X ≤ x) > δ} = −F−1
X (δ)
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Figure 7: Portfolio selection backtest with weekly rebalacing for each Wednesday from June 30, 2009
to April 31, 2017 (for a total of 409 rebalancing days) for the MV, EW and MA strategies. The resulting
portfolio values are scaled to 100 for the first date of the backtest period. For the MGH and the MNTS
both the historical and the double calibration approaches are considered to find the MA weights.

and it can be computed by inverting the cumulative distribution function FX . The AVaR
of a continuous random variable X with finite mean (i.e. E[X] <∞) at tail level δ is the
average of the VaRs that are greater than the VaR at the same tail level, that is

AV aRδ(X) =
1

δ

∫ δ

0

V aRp(X)dp = −E
[
X
∣∣X < −V aRδ(X)

]
.

Thus, the AVaR measures the expected loss, given that the loss has exceeded the VaR
at the same probability level. We refer to V aR0.05(X) and AV aR0.05(X) as 5% VaR and
5% AVaR, respectively.

By considering the result of Proposition 1 in Kim et al. [2012] (see also Bianchi et al.
[2016]), it follows that if Y = {Yt, t ≥ 0} is a MNTS process, Y∆t is the distribution of
its increments with discrete time step ∆t, and w ∈ Rn, then w′Y∆t is a univariate NTS
random variable with characteristic function

Ψw′Y∆t
(v) = exp

{
∆t

[
ivµ̃+ CΓ (−α)

((
λ− ivθ̃ +

1

2
v2σ̃2

)α
− λα

)]}
, (5.1)

where
θ̃ = w′θ, µ̃ = w′µ, σ̃ =

√
w′Σw.

This means that a portfolio of margins with joint MNTS distribution is a NTS random
variable. This property is very useful for computing portfolio risk measures, since it
reduces the dimension of the problem from n to 1 and the portfolio distribution belongs
to the same parametric family. Furthermore, from Kim et al. [2010b] and Kim et al. [2011]
it is possible to obtain a closed formula (up to an integration) to compute the average
value at risk (AVaR) in the NTS case. Since it is a standard practice in the industry to
consider VaR and AVaR as positive numbers to be converted in capital requirements for
trading book positions, we consider the formulas of Kim et al. [2010b] changed by sign.
In the MGH case, the VaR and AVaR computation is simpler, since a portfolio of MGH
margins is a GH random variable and a closed-form expression for the density function
can be used. In the normal case, the VaR and the AVaR can be easily evaluated.
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Figure 8: AVaR estimates for the MA portfolio strategy with weekly rebalacing for each Wednesday
from June 30, 2009 to April 31, 2017 (for a total of 409 rebalancing days). For the MGH and the MNTS
both the historical and the double calibration approach are considered to find the MA weights.

The portfolio selection strategy proposed here is based on the minimum-AVaR (MA)
approach. Given a distributional assumption, we find the weights minimizing the AVaR
(see Stoyanov et al. [2010]) at a given tail level. We suppose that short selling is not
allowed and that it is not possible to invest more than 10% of the wealth in a specific
stock (i.e. 0 ≤ wj ≤ 0.1). Then, we consider δ = 0.05. Due to the convexity property of
AVaR, the problem has a unique minimum which can be obtained through the standard
first-order optimality conditions for constrained optimization problems. We apply this
approach to the Gaussian, the MGH and the MNTS models. In the non-Gaussian cases we
consider both the historical and the double calibration approach. The former calibration
is based on the time-series of stock log-returns only, for this reason we refer to it as
historical. As described in Section 4, the latter uses both time-series of stock log-returns
and option implied volatility, and we refer to it as double.

The performance of the proposed long-only strategy is benchmarked against the
minimum-variance (MV) portfolio and the equally weighted (EW) portfolio with rebalanc-
ing. These fundamental strategies are important benchmarks for large-scale applications.
As done in Mainik et al. [2015], the comparison includes annualized portfolio returns,
maximum drawdowns, transaction costs, portfolio concentration, and asset diversity in
the portfolio. Note that none of the three compared methods (MV, EW, and MA) looks
at expected returns.

The analysis is based on the estimates described in Section 4.2. The computation of
portfolio weights utilizes the estimates based on the time series of stock log-returns from
the six years prior to each Wednesday and the one-month implied volatility smile observed
on that Wednesday. For example, the optimal portfolio for July 1, 2009 is estimated from
the stock price data for the period from July 2, 2003 to July 1, 2009 and the one-month
implied volatilities observed on July 1, 2009. While the estimates are based on daily
data, the rebalancing is performed on a weekly basis. Estimating both the MGH and the
MNTS model on each trading day is too time-consuming for our computing resources. As
observed in Section 4.2, for each estimation day, it needs around half an hour to calibrate
the two non-Gaussian models (MGH and MNTS).

In Figure 7 we report the behavior of the total wealth for all strategies and for the
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TR AR Sharpe MaxDD CC PT Z1 Z2

EuroStoxx 50 81.6% 10.4% 7.2% 27.1% - - - -
EW 69.1% 8.8% 5.9% 27.7% 50.0 0.0202 - -
MV normal 93.0% 11.8% 10.7% 15.8% 12.3 0.0161 - -
MA normal 98.3% 12.5% 11.3% 15.2% 12.4 0.0160 0.0004 0.4322
MA MGH historical 101.3% 12.9% 11.6% 16.6% 12.1 0.0157 0.3459 0.5249
MA MGH double 123.7% 15.7% 14.1% 16.1% 11.8 0.0162 0.7677 0.9814
MA MNTS historical 101.3% 12.9% 11.6% 16.6% 12.2 0.0157 0.4201 0.5743
MA MNTS double 107.5% 13.7% 12.3% 14.5% 11.8 0.0158 0.8978 0.9847

Table 1: Portfolio selection backtest with weekly rebalacing for each Wednesday from June 30, 2009
to April 31, 2017 (for a total of 409 rebalancing days) for the MV, EW and MA strategies. We consider
the following performance measures: total return (TR), annualized return (AR), Sharpe ratio (Sharpe),
maximal drawdown (MaxDD), concentration index (CC) and portfolio turnover (PT). The AVaR is
computed by considering a 5% tail level. The p-values of the AVaR back-tests proposed by Acerbi and
Székely [2014] are also reported.

EuroStoxx 50 index. The estimated optimal AVaR of the MA strategy applied to different
distributional assumptions (Gaussian, MGH and MNTS) and estimation methods (his-
torical and double) is reported in Figure 8. The dynamics of the AVaR are compared with
the at-the-money (ATM) implied volatility. By construction the optimal AVaR obtained
by considering MGH and MNTS estimates based on the double calibration approach is
more volatile. Note that the double calibration approach takes into consideration the
behavior of the implied volatility, that is usually less smooth than the historical one.

In Table 1 we show the results of the MA approach compared to its competitor strate-
gies and to the EuroStoxx 50 index. We report the total return (TR) over the observation
period, the corresponding annualized return (AR), the Sharpe ratio, the maximum draw-
down (MaxDD), the concentration coefficient (CC) and the portfolio turnover (PT).

The TR is the logarithmic return over the entire observation period, and the AR is
the TR divided by the number of years, that is 409 over 52 weeks. The Sharpe ratio is
estimated on the portfolio returns over the observation period (409 weeks). To measure
the portfolio stock concentration, we compute the concentration coefficient (CC) defined
in Mainik et al. [2015] as

CCt =

(
n∑
j=1

(
wjt
)2

)−1

,

where wjt is the portion of portfolio wealth invested in the j-th stock at time t. The
CC of an equally weighted portfolio is the number of assets n. As the portfolio becomes
concentrated on fewer assets, the CC decreases.

As a proxy for transaction costs, we consider the portfolio turnover (PT) defined as

PTt =
n∑
j=1

|wjt − w
j
t− |,

where wjt is the portfolio weight of the asset j after rebalancing (according to the portfolio
selection strategy) at time t, and wjt− is the portfolio weight of the asset j just before
rebalancing.
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The results show that the MA strategy indeed outperforms MV and EW portfolios in
many respects. In particular, the MA optimal portfolio gives higher total returns, higher
Sharpe ratios, and lower maximal drawdowns. Furthermore, the use of the information
content of the implied volatility largely improve the portfolio performance. The strategies
where the parameters are estimated with the double calibration approach outperforms
all competitor strategies.

The best performer is the MA MGH double portfolio with the highest returns (15.7
per cent on an annual basis) and the highest Sharpe ratio (14.1 per cent). The overperfor-
mance on a yearly basis with respect to the EuroStoxx 50 index is 5.3 (3.3) per cent in the
MA MGH (MNTS) double case, 2.5 per cent in the MA MNTS (MGH) historical case,
2.1 per cent in the MA Gaussian case and 1.4 in the MV Gaussian case. The EW strategy
underperforms the EuroStoxx 50 index. The lowest maximal drawdown is obtained for
the MA MNTS strategy (14.5 per cent), even if the value obtained for the MA normal
strategy is quite close (15.2 per cent). It is slightly higher in the other non-Gaussian MA
cases: it ranges from 16.1 to 16.6 per cent.

The results in Table 1 indicate that the MA and the MV strategies are quite selective,
whereas the number of stocks in the MA portfolio under the double calibration approach
is slightly smaller. The average turnover of MA optimal portfolios ranges from 0.0157 to
0.162 and it is close to that of the MV portfolio (0.0161). Surprisingly the EW strategy
shows the highest PT (0.0202).

For all proposed strategies involving AVaR minimization, we back-test the portfolio
AVaR model as suggested by Acerbi and Székely [2014]. In particular, the last two
columns of Table 1 contain the p-value of the test 1 and the test 2 of Acerbi and Székely
[2014], to which we refer to as Z1 and Z2. While test 2 allows to accept all AVaR models,
test 1 rejects only the normal one. To compute the p-values we simulated 10,000 random
variates for each time t. As shown in Table 1, the p-value varies accross different models
and calibration approaches. Before performing test 1, we conducted a preliminary VaR
back-test as proposed by Christoffersen [2010]. In all cases the VaR models show a good
performance.

As a further empirical investigation, we switch from weekly to monthly (four weeks),
quarterly (13 weeks), semi-annually (26 weeks), annually (52 weeks), biennially (104
weeks), quadrennially (208 weeks) rebalancing and the buy-and-hold (no rebalacing over
the entire observation period). The calculation of portfolio weights is still based on the
estimates provided in Section 4.2. This allows using all observations in the historical
window, and not only a subset. The Sharpe ratio is estimated on the portfolio returns
over the observation period (409 weeks). Both the AR and the Sharpe ratios are re-
ported in Figure 9. While for the strategies based only on historical information, the
performance decreases if one decreases the rebalacing frequency, for both strategies that
use also the implied volatility information, the performance seems to be less affected by
the rebalancing frequency.

As robustness check, we perform a portfolio selection strategy in which the expected
return is maximized subject to a constraint on the AVaR. It is well established that
investors typically maximize portfolio expected returns subject to a constraint on the
amount of risk. We refer to this strategy as MR. Four different amounts of risk are
tested: 1.5, 2, 2.5 and 3 per cent (in the optimization algorithm we constrain the AVaR
to be less or equal to the given amount of risk).
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Figure 9: For each model we compare the portfolio strategy performance by switching from weekly to
monthly (four weeks), quarterly (13 weeks), semi-annually (26 weeks), annually (52 weeks), biennially
(104 weeks), quadrennially (208 weeks) rebalancing and the buy-and-hold (no rebalacing over the entire
observation period). Total annualized returns and Sharpe ratios are reported.

TR AR Sharpe MaxDD CC PT Z1 Z2

EuroStoxx 50 81.6% 10.4% 7.2% 27.1% - - - -
1.5%

MR normal 76.1% 9.7% 11.6% 11.0% 18.4 0.2603 0.0013 0.2756
MR MGH historical 68.5% 8.7% 11.9% 10.2% 22.9 0.3525 0.2104 0.5757
MR MGH double 78.5% 10.0% 17.3% 9.6% 29.2 0.4551 0.9405 0.9524
MR MNTS historical 69.6% 8.8% 11.9% 10.2% 22.8 0.3441 0.2742 0.6085
MR MNTS double 64.3% 8.2% 14.6% 6.7% 29.9 0.4663 0.9574 0.9321

2%
MR normal 99.3% 12.6% 11.5% 14.4% 13.3 0.0510 0.0033 0.2859
MR MGH historical 89.8% 11.4% 11.7% 13.6% 15.3 0.1410 0.2760 0.5646
MR MGH double 99.2% 12.6% 16.3% 12.6% 18.6 0.2700 0.9235 0.9745
MR MNTS historical 90.8% 11.5% 11.7% 13.5% 15.6 0.1401 0.4109 0.5725
MR MNTS double 79.6% 10.1% 13.6% 9.0% 19.6 0.2919 0.9353 0.9795

2.5%
MR normal 130.3% 16.6% 13.0% 18.2% 14.2 0.0178 0.0001 0.5791
MR MGH historical 108.7% 13.8% 11.6% 17.0% 13.2 0.0204 0.2285 0.4911
MR MGH double 109.4% 13.9% 14.4% 16.0% 14.2 0.1060 0.7975 0.9915
MR MNTS historical 110.5% 14.0% 11.8% 16.9% 13.2 0.0216 0.4155 0.4854
MR MNTS double 97.1% 12.3% 13.5% 11.6% 15.1 0.1346 0.9361 0.9514

3%
MR normal 150.1% 19.1% 14.3% 18.5% 13.0 0.0179 0.0005 0.3396
MR MGH historical 140.0% 17.8% 13.6% 18.2% 13.1 0.0177 0.1776 0.3781
MR MGH double 106.3% 13.5% 12.4% 19.9% 14.7 0.0377 0.7639 0.9842
MR MNTS historical 146.0% 18.6% 14.2% 18.4% 12.8 0.0178 0.1995 0.4800
MR MNTS double 98.5% 12.5% 11.7% 16.2% 14.6 0.0403 0.8579 0.8601

Table 2: Portfolio selection backtest with weekly rebalacing for each Wednesday from June 30, 2009
to April 31, 2017 (for a total of 409 rebalancing days) for the MR strategies with the constraint on the
maximum amount of risk (i.e. 1.5%, 2%, 2.5% and 3%). We consider the following performance mea-
sures: total return (TR), annualized return (AR), Sharpe ratio (Sharpe), maximal drawdown (MaxDD),
concentration index (CC) and portfolio turnover (PT). The AVaR is computed by considering a 5% tail
level. The p-values of the AVaR back-tests proposed by Acerbi and Székely [2014] are also reported.
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The results are reported in Table 2. As expected, total returns increase as the amount
of risk increases. Even if the MR strategy is not always able to overperform the EuroStoxx
50, it has a better Sharpe ratio. At an amount of risk corresponding to a maximum AVaR
of 1.5 per cent, the best performance in terms of total return among the MR strategies
is reached by the MR MGH double portfolio with a 10 per cent annualized return. For
higher amounts of risk, the MR normal portfolios exhibit higher total returns, with an
annualized return of 12.6 per cent for a maximum AVaR of 2 per cent, 16.6 per cent
for a maximum AVaR of 2.5 per cent, and 19.1 per cent for a maximum AVaR of 3 per
cent. Conversely, the worst results in terms of total return are achieved by the MR MNTS
double portfolios for all four levels of risk. However, a further inspection of Table 2 reveals
that both MR double portfolios have better performances in terms of Sharpe ratios for
the three lowest levels of risk considered. As we move from the lowest to the highest
AVaR level, the over-performances in terms of Sharpe ratios of the MR MGH (MNTS)
double model with respect to the EuroStoxx 50 index are 10.1 (7.4), 9.1 (6.4), 7.2 (6.3),
and 5.2 (4.5) per cent. Notice that as the AVaR level increases the over-performance
of the MR double portfolios in terms of Sharpe ratio decreases. When the maximum
amount of risk is 3 per cent, MR double portfolios have the worst performance. All MR
portfolios have lower maximal drawdown compared to the EuroStoxx 50 index and all
maxima drawdowns increase as the portfolio risk rises. In all four cases the MR MNTS
double portfolios have the lowest maximal drawdowns and, for the three smallest AVaR
level (i.e. 1.5, 2, 2.5 per cent), the MR MGH double portfolios are the second best in
terms of MaxDD. We observe also that both MR double strategies lead to portfolios with
higher CC and PT indexes and that their value decreases as we increase the AVaR. In the
last two columns of Table 2 the p-values of the AVaR back-tests Z1 and Z2 are reported.
The first test rejects only the normal AVaR model while the second one refuses none.

As far as the optimization algorithm is concerned, it should be noted that when the
amount of risk is high (i.e. 3 per cent), the upper bound of the AVaR constraint is
not always reached. Additionally, the optimization algorithm based on MA seems to be
more stable compared to the MR one. As observed in Bianchi et al. [2019] and reference
therein, in portfolio construction there is the issue of the sensitivity to mention. This
phenomenon was studied by Merton [1980], who among others argued that the estimates
of the variances and the covariances of the asset returns are more accurate than the
estimates of the means. Best and Grauer [1991] showed that the sample efficient portfolio
is extremely sensitive to changes in the asset means. Chopra and Ziemba [1993] concluded
for a real data set that errors in means are over 10 times as damaging as errors in variances
and over 20 times as errors in covariances. For this reason many authors do not consider
asset expected returns and choose portfolio weights by minimizing a given risk measure.

6 Conclusion

The objective of this paper is threefold. First, we propose a multivariate option pricing
framework based on heavy tails, negative skewness and asymmetric dependence. The
connection between the historical measure and the risk-neutral measure is given by the
Esscher transform. This link allows one to take into account simultaneously both multi-
variate time-series of log-returns and implied volatility smiles.
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Second, we conduct a large scale empirical study based on a joint calibration-estimation
of the univariate option surfaces time series of log-returns has been proposed. The model
is calibrated without the need of multivariate derivative quotes. The EM-based maximum
likelihood estimation method is applied to have a first estimate of the historical param-
eters. Thus, we jointly estimate the model parameters on the time series of log-returns
by minimizing (1) the average relative percentage error, which is a measure of the dis-
tance between model and observed implied volatilities, and (2) the Kolmogorov-Smirnov
distance between the theoretical and empirical historical distributions. The historical
measure and the risk-neutral one are connected through the Esscher transform.

Third, we show how to use the proposed framework to evaluate portfolio risk mea-
sures. The models analyzed allow for a quasi-closed form solution for the evaluation of
both VaR and AVaR. Forecasts of risk measures for portfolios of assets can be obtained
in a computationally straightforward manner and the model can be cast into a portfolio
optimization algorithm to efficiently solve a portfolio selection problem. We empirically
assess the importance of considering the information coming from implied volatility smiles
under a minimum-risk portfolio selection strategy with multivariate non-Gaussian distri-
butions.

The jumps allowed in both the NTS and the GH model may cause that during the
day, especially for complex trading positions, the portfolio losses exceed a specified level
and then at the end of the day the portfolio value increases back. For this reason Bakshi,
G. and Panayotov, G. [2010] suggested the intra-horizon VaR (VaR-I). Unlike the VaR
and the AVaR measure, VaR-I reflects the magnitude of losses within a trading horizon,
and not just at the end of the horizon. The calibration technique proposed in this paper
could be extended to the VaR-I. Currently, there are methods for fast computing VaR-I
for Lévy models in the univariate case only (see Kudryavtsev and Levendorskii [2009]
and Kudryavtsev [2016]).

Finally, the multivariate non-Gaussian models proposed in this work together with
the double calibration approach can be used to explore the interdependencies in financial
markets, not only for solving portfolio selection problems, but also as a statistical tool for
financial stability purposes. This tool for dependence modeling does not only allow for
an accurate analysis beyond the linear correlation matrix and the common multivariate
Gaussian distribution, but it is also able to incorporate market expectations through the
use of option implied volatilities.
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