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A scheme for the game p-Laplacian and its application

to Image Inpainting

Elisabetta Carlinia,∗, Silvia Tozzab

aDept. of Mathematics, Sapienza University of Rome, P.le Aldo Moro
5, Rome, 00185, Italy

bDept. of Mathematics, Alma Mater Studiorum University of Bologna, Piazza di Porta
S. Donato 5, Bologna, 40126, Italy

Abstract

We propose a new numerical scheme for the game p-Laplacian, based on a
semi-Lagrangian approximation. We focus on the 2D version of the game
p-Laplacian, with the aim to apply the new scheme in the context of image
processing. Specifically, we want to solve the so-called inpainting problem,
which consists in reconstructing one or more missing parts of an image using
information taken from the known part. The numerical tests show the relia-
bility of the proposed method and the advantages of taking a p > 1 in terms
of execution time and accuracy.

Keywords: game p-Laplacian, Semi-Lagrangian scheme, Inpainting,
Viscosity solution

1. Introduction1

In this paper we address the following problem: Given two bounded open2

domains D,Ω ⊂ R2 such that D ⊂ Ω with Ω ∩ D = ∅, and two functions3

f : D → R and F : Ω \ D → R, the goal is to find a function u : Ω → R4

solution of the following problem5 {
−∆G

p u = f in D,

u = F in Ω \D.
(1)
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The operator ∆G
p denotes the game p-Laplacian and it has been intro-6

duced for the first time in [25] to model a stochastic game. The interest in7

such an operator derives from the observation that it can include in itself8

various operators as particular cases (i.e. the operator in the Aronsson equa-9

tion [3], the infinity Laplacian [26], the mean curvature motion operator [20],10

or, in the case p = 2, a multiple of the ordinary Laplacian).11

Our final aim is to deal with problem (1) with f ≡ 0 in the context of the12

inpainting problem. Inpainting in image processing consists in reconstructing13

one or more missing or damaged parts of an image using information taken14

from the known part. A grayscale image is interpreted as a bounded function15

u : Ω → [0,+∞). Typically, Ω is a rectangular domain and u(x) represents16

the intensity of the gray level at the point x. Usually, the missing part17

is called inpainting domain and it is denoted by D. Recently, the image18

inpainting has been also applied as a decoding step for image compression,19

see e.g. [19] and references therein for more details.20

The numerical image inpainting methods can be roughly separated into21

two categories: variational and non-variational ones. In both methods the22

reconstructed image is obtained as solution of a partial differential equation23

(PDE). The first approach is based on a energy minimization model and the24

PDE is the Euler-Lagrange equation associated to the optimality condition.25

In the non-variational approach, the PDE does not necessarily derives from26

a variational principle. For a complete survey, we refer the interested reader27

to the books by Aubert and Kornprobst and by Schönlieb [2, 27].28

In the context of differential approaches for facing the inpainting problem,29

the 1-Laplacian is used in order to propagate information in the directions of30

the isophotes, i.e. the direction orthogonal to the gradient of the image, ∇u⊥,31

see [5]. Anisotropic diffusion processes have been also considered. Among32

these we mention [6], where the anisotropic process is applied to the whole33

original image, with the purpose of minimizing the influence of noise on the34

estimation of the direction of the isophotes arriving at the damaged portion35

of the image. More recently, fourth order anisotropic diffusion processes have36

been proposed, in order to achieve better accuracy with respect to second37

order operator, see [21] and references therein.38

Image inpainting was also addressed through the p-Laplacian in [28],39

showing better results than the performance of the 1-Laplacian. Here, we40

want to follow this idea by using the game p-Laplacian and explore the be-41

havior for different values of p in terms of accuracy and execution time, as42

we will see later in the section related to numerical tests. Note that the game43

2



p-Laplacian has been already used in image processing (see e.g. [15] for its44

application on weighted graphs with applications in image inpainting and45

data clustering).46

With the aim to present some recent advances in the numerical discretiza-47

tion of (1), here we propose a new scheme, applying it to the inpainting48

problem for improving results.49

Numerical schemes for second order possibly degenerate equations have50

been presented by several authors. We focus our attention on semi-Lagrangian51

(SL) discretization, which have been shown to be particularly suitable for the52

numerical treatment of degenerate diffusions, see [10]. For a comprehensive53

introduction to SL scheme, we refer to the book by Falcone and Ferretti54

[17]. A SL scheme for the mean curvature motion has been proposed in [11].55

High-order SL techniques to treat possibly degenerate advection-diffusion56

equations are analyzed in [18], whereas SL methods for diffusion equation57

with non linear reaction term are addressed in [7]. A SL scheme for the58

game p-Laplacian has been proposed and analyzed in [16]. Compared to this59

scheme, we propose a method that does not require a minimization procedure60

to find the direction of diffusion, which is instead obtained explicitly using61

the numerical gradient. For this reason, the scheme here proposed results to62

have a lower computational cost with respect to the SL scheme proposed in63

[16]. The scheme we propose is much more in the spirit of [11, 13], where the64

second order operator is approximated by means of directional second finite65

differences.66

The theoretical convergence of the scheme is beyond the scope of this67

work and will be addressed in the future.68

The paper is organized as follows: in Section 2 we recall the definition of69

the game p-Laplacian and how we can rewrite it as a convex combination of70

the ∞-Laplacian and 1-Laplacian operators. In Section 3 we propose a new71

SL scheme, showing its performance in Section 4. In Section 5 we apply the72

SL scheme to the inpainting problem. The paper ends with final comments73

and future perspectives contained in Section 6.74

2. Game p-Laplacian operator75

Let us recall the definition of the so-called game p-Laplacian operator76

introduced by Peres and Sheffield [25], that is77

∆G
p u :=

1

p
|∇u|2−pdiv(|∇u|p−2∇u) for 1 < p < ∞. (2)
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With respect to the variational p-Laplacian operator, in the game version78

appears the multiplicative term 1
p
|∇u|2−p before the divergence. This term79

causes the game p-Laplacian to be singular at critical points (∇u = 0) for80

every p ̸= 2, whereas the variational p-Laplacian is singular for any 1 < p < 2.81

Both are degenerate for p > 2.82

Well-posedness for this kind of problem should be understood in a weak83

sense, we refer to [24, 12, 4, 23] for the weak and viscosity theory framework.84

In [26], authors shows that problem (1), for the case of the infinity Laplacian,85

has a unique viscosity solution when F, f are uniformly continuous and f does86

not change sign, i.e. infΩ f > 0 or supΩ f > 0. See also [22] for an overview87

on the basic results of Tug-of-War games.88

If u is a smooth function, by expanding the derivative in (2), we obtain89

∆G
p u =

1

p
∆2u+

p− 2

p
|∇u|−2

∑
i,j

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj

. (3)

At that point, if we formally take the limit for p → ∞, one can define the90

game ∞-Laplacian operator as91

∆G
∞u := |∇u|−2

∑
i,j

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj

. (4)

Finally, at the points where |∇u| ≠ 0, the game ∞-Laplacian can be viewed92

as the second derivative in the direction of ∇u, that is93

∆G
∞u = σ∞(∇u)TD2u σ∞(∇u), (5)

where D2u denotes the Hessian matrix, and σ∞ : R2 → R2 is defined as94

σ∞(a) :=
1

|a|

(
a1
a2

)
. (6)

The game 1-Laplacian is defined as95

∆G
1 u := ∆2u−∆G

∞u. (7)

If u is a smooth function, by using (3) and the definition (7), the game p-96

Laplacian can be expressed as a convex combination of the ∞-Laplacian and97

1-Laplacian as98

∆G
p u =

1

p
∆G

1 u+
1

q
∆G

∞u, (8)

4



with q such that 1
p
+ 1

q
= 1. Note that the game 1-Laplacian, at the points99

where |∇u| ̸= 0, can be viewed as the second derivative in the direction of100

(∇u)⊥, that is101

∆G
1 u := σ1(∇u)TD2u σ1(∇u), (9)

where σ1 : R2 → R2 is defined as102

σ1(a) =
1

|a|

(
−a2
a1

)
. (10)

3. A new semi-Lagrangian scheme for the game p-Laplacian103

A simple way to construct a semi-Lagrangian scheme for (1) consists in104

discretizing the second order operators by a directional second finite differ-105

ence. Supposing σ ∈ R2 is given, let us introduce a discretization parameter106

δ > 0 and let us consider the following approximation:107

σTD2u(x) σ ≈ 1

δ2
(u(x+ δσ) + u(x− δσ)− 2u(x)) . (11)

A similar approximation with σ replaced by σ∞(∇u) and σ1(∇u) can be108

considered in order to approximate (5) and (9), respectively. Such approxi-109

mations are valid only in the non-singular case, i.e. when ∇u ̸= 0. By using110

(8) we derive, for x such that ∇u(x) ̸= 0, an approximation for (2) given by111

∆uG
p (x) ≈

1

pδ2
(u(x+ δσ1(∇u(x))) + u(x− δσ1(∇u(x)))− 2u(x)) + (12)

1

qδ2
(u(x+ δσ∞(∇u(x))) + u(x− δσ∞(∇u(x)))− 2u(x)) .

For simplicity, let us suppose Ω be the unit square, Ω := (0, 1)×(0, 1). Given112

a integer Nh, we define a space discretization step h = 1
Nh

. Let us introduce113

a uniform grid Gh(Ω) = {xj = jh, j ∈ {0, . . . , Nh}2} and let us consider the114

following sets of indexes:115

Q = {j ∈ Z2 such that xj ∈ D}, Qb = {j ∈ Z2 such that xj ∈ Ω \D}.
(13)

For any j ∈ Q, we denote by Dj[u] a centered finite difference approximation116

of ∇u(xj) and we define two couples of discrete characteristics as117

y±∞(xj) := xj ± δσ∞(Dj[u]), y±1 (xj) := xj ± δσ1(Dj[u]). (14)
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Since |σ∞| = |σ1| = 1, for δ small enough, characteristics never leave from118

Ω. In the case the characteristics are points which belong to D, we need to119

introduce an interpolation operator in order to reconstruct the value of u at120

these points. Given a grid function v : Gh(Ω) → R, we denote by I[v] : Ω → R121

a piecewise polynomial interpolation of v in Ω. Note that, in the case y±1 (xj)122

or y±∞(xj) lies in Ω\D, there is no need to interpolate since the data F is given.123

The knowledge of F in Ω \D avoids extrapolation techniques, truncation or124

reflection of the characteristics, as done, respectively, in [7, 17, 9] in order to125

numerically treat boundary conditions in the context of SL schemes. Then,126

we define127

Ĩ[v](x) :=

{
I[v](x) x ∈ D,

F (x) x ∈ Ω \D.
(15)

In order to deal with the singular case, we consider a finite difference ap-128

proximation of 1
2
∆u = ∆G

2 u(x) at the points x where ∇u(x) ≈ 0. This is129

in agreement with the definition of viscosity solution at points where the130

gradient vanishes, see Remark 2.1 in [16].131

Summing up, we propose the following scheme to approximate (1). Find132

v : Gh(Ω) → R such that, for any xj ∈ Gh(Ω),133

Gρ(xj, v) = 0, (16)

where134

Gρ(xj, v) :=

{
Sρ(xj, v)− fj j ∈ Q,

v(xj)− F (xj) j ∈ Qb,
(17)

with ρ := (h, δ), and Sρ defined as135

Sρ(xj, v) :=
1

pδ2

(
Ĩ[v](y+1 (xj)) + Ĩ[v](y−1 (xj))

)
+

1

qδ2

(
Ĩ[v](y+∞(xj)) + Ĩ[v](y−∞(xj))

)
− 2

δ2
vj,

for j ∈ Q such that |Dj[u]| > Chs, where s > 0 is a fixed parameter, and

Sρ(xj, v) :=
1

2δ2

 ∑
i∈D(j)

vi − 4vj

 ,

for j ∈ Q such that |Dj[v]| ≤ Chs, with D(j) = {i ∈ Q such that |i−j| = 1}.136
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4. Numerical Results137

In this section we show the performance of the scheme in solving two138

problems for which the exact solution is known. We approximate heuristically139

the solution v of (16) by a fixed point iteration method based on a time140

marching approximation. Given ∆t > 0 and an initial condition v0 : Gh(Ω) →141

R, we compute the sequence (vn)n∈N with vn : Gh(Ω) → R by the following142

iterative scheme143 {
vnj = vn−1

j +∆tSρ(xj, v
n−1), j ∈ Q,

vnj = F (xj) j ∈ Qb.
(18)

Then the solution v of (16) is approximated as vj ≃ limn→∞ vnj for any144

j ∈ Q ∪Qb.145

The errors are obtained by comparing the numerical solution vn with the
exact solution u on the grid nodes using the following discrete norms

∥u(·)− vn(·)∥∞ := max
j∈Q

|u(xj)− vnj |,

∥u(·)− vn(·)∥1 := h2
∑
j∈Q

|u(xj)− vnj |.

We denote by r∞, r1 the corresponding rates. For the fictitious time
iteration, we consider the following stopping criterion

∥vn+1 − vn∥1 ≤ ε,

where ε > 0 is a given tolerance. Since we take a time step of size ∆t and146

δ represents the size of a diffusion (mean squared displacement of Brownian147

walk in the direction of the gradient), δ should be proportional with
√
2∆t.148

We expect rate one of convergence, which will be confirmed by the simulations149

in the following two tests. The first problem is related to the case p = ∞150

and the solution is not smooth. The second problem has smooth solution151

and it is tested with p = 1.2 and p = ∞. We observe that in Test 1 a152

smaller time step have to be considered, in addition to a regularization of153

the discrete gradient, in order to obtain the expected convergence rate. The154

restriction on the time step is due to accuracy reasons and not to stability155

reasons, as point out also in [18]. Heuristically, supposing that the direction156

σ is computed exactly, for smooth solution and for the choice δ = O(
√
∆t)157
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the truncation error has order given by ∆t+ h2

∆t
(the first term is due to the158

remainder of the Taylor expansion and the second term is due to the linear159

interpolation). Then, the choice ∆t = h would optimize the consistency160

order, but, at the same time, would produce a stencil of size 2δ which can161

lead to low accuracy, especially when the solution to be reconstructed has162

a high gradient or is, in general, not smooth. This motivates the choice of163

∆t = h2 in Test 1, since the solution is non-differentiable, and ∆t = h in164

Test 2, where the solution is smooth. In Test 2, scheme (18) is therefore165

implemented without the usual parabolic CFL condition. This remark seem166

to confirm that the proposed scheme retains a main advantage of SL schemes,167

with respect to explicit difference schemes, [14]. In particular, the results in168

the next tests indicate that the scheme (18) does not need to be implicit in169

order to be absolute stable.170

4.1. Test 1171

We compute the solution of problem (1) on D = (−1, 1) × (−1, 1) with172

f = 0, Ω = [−1.5, 1.5]× [−1.5, 1.5], p = ∞ and173

F (x) = |x1|4/3 − |x2|4/3.

We recall that this classical benchmark has an explicit solution, which
is u(x) = |x1|

4
3 − |x2|

4
3 , known as Aronsson function. The solution is only

continuous and is not differentiable in x1 = 0 and x2 = 0. For this reason,
we need to regularize the gradient as following

D̃j[u] =
1

9

 ∑
i∈D9(j)

Di[u]


with

D9(j) = {i ∈ Q such that ∥i− j∥∞ ≤ 1, j ∈ Q}
andDi[u] is computed by centered finite difference with step 2h. We compute174

the errors in the ∞ and 1 norm, with parameters δ = 2
√
2∆t, ∆t = h2,175

C = 1, s = 0.5, v0 = 0, and ε = 1e − 8. In Table 1, we show errors,176

convergence rates, and number of iterations needed to verify the stopping177

criterion. Rates greater than one are obtained in both norms, except in the178

last refinement where a degradation of the rate with respect to the 1 norm is179

shown, compared to an almost two order visible for the previous refinements.180

181
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Table 1: Test1. Errors and rates for p = ∞.

h ∥ · ∥∞ ∥ · ∥1 r∞ r1 n
1.00 · 10−1 7.65 · 10−2 3.35 · 10−2 115
5.00 · 10−2 3.06 · 10−2 1.12 · 10−2 1.32 1.58 311
2.50 · 10−2 1.21 · 10−2 3.08 · 10−3 1.33 1.82 1055
1.25 · 10−2 4.72 · 10−3 2.27 · 10−3 1.35 0.44 3630

4.2. Test 2182

We approximate the solution of problem (1) on D = (−1, 1) × (−1, 1)
with f = 1, Ω = [−1.5, 1.5]× [−1.5, 1.5] and

F (x1, x2) =
1− x2

1 − x2
2

2
.

This problem has an exact solution given by u = F for any p > 1. We183

consider p = 1.2 and we compute the errors in the ∞ and 1 norm, with184

parameters δ =
√
2∆t, ∆t = h, C = 0.1, s = 1, v0 = 0, and ε = 1e − 5. In185

Tables 2 and 3, we report errors, convergence rates, and number of iterations186

needed to verify the stopping criterion, for the choices p = 1.2 and p = ∞,187

respectively. Both tables show a rate of convergence mostly close to 1 in both188

norms. Note that, since this test has a smooth exact solution, much larger189

time step ∆t is allowed.190

Table 2: Test2. Errors and rates for p = 1.2.

h ∥ · ∥∞ ∥ · ∥1 r∞ r1 n
1.00 · 10−1 1.03 · 10−2 1.89 · 10−2 33
5.00 · 10−2 5.28 · 10−3 9.69 · 10−3 0.96 0.96 66
2.50 · 10−2 2.75 · 10−3 5.17 · 10−3 0.94 0.90 125
1.25 · 10−2 1.35 · 10−3 2.58 · 10−3 1.022 1.00 323

5. Application to the inpainting problem191

In this Section we apply the new proposed SL scheme to the inpainting192

problem. The purpose is also to compare different choices of values for p,193

considering both, a qualitative and a quantitative analysis of the results. As194
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Table 3: Test2. Errors and rates for p = ∞ .

h ∥ · ∥∞ ∥ · ∥1 r∞ r1 n
1.00 · 10−1 1.08 · 10−2 2.53 · 10−2 78
5.00 · 10−2 7.98 · 10−3 1.36 · 10−2 0.43 0.89 139
2.50 · 10−2 4.56 · 10−3 8.97 · 10−3 0.80 0.60 262
1.25 · 10−2 2.11 · 10−3 4.18 · 10−3 1.11 1.10 498

Image Quality Metrics for a quantitative evaluation, we consider the follow-195

ing:196

• The Mean Squared Error (MSE), defined as197

MSE =
1

MN

M∑
i=1

N∑
j=1

(Itrue(i, j)− Iapprox(i, j))
2 (19)

where Itrue represents the original image not damaged (if given), Iapprox198

denotes the image resulting after the iterative process of our scheme,199

M ×N indicates the size of the image.200

• Peak Signal-to-Noise Ratio (PSNR) computed via the Matlab routine201

peaksnr = psnr(I approx, I true).202

A greater PSNR value indicates better image quality. PSNR is the203

ratio between the maximum possible power of an image and the power204

of corrupting noise that affects the quality of its representation. In205

formula, we can define it as206

PSNR = 10 log10(
R2

MSE
) (20)

where R is the maximum fluctuation in the input image data type (if207

the input image has a double-precision floating-point data type, then208

R = 1. If it has an 8-bit unsigned integer data type, R = 255, etc.).209

• Structural Similarity Index Measure (SSIM) defined as follows:210

SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (21)
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where µx is the average of Itrue, µy is the average of Iapprox, σ
2
x is the211

variance of Itrue, σ
2
y is the variance of Iapprox, σxy is the covariance of212

Itrue and Iapprox, c1 and c2 are constants that are proportional to the213

dynamic range of the pixel values. SSIM is a perception-based model214

which takes into account inter-dependencies between pixels as index of215

information on the structure of the objects under observation. Greater216

value of SSIM, closer to 1, corresponds to a better quality of the image217

in terms of similarity with the reference image Itrue. (SSIM = 1 means218

that the two considered images are equal).219

These Full-Reference Quality Metrics are the most common used in inpaint-220

ing papers [1].221

For all the tests illustrated in this section, we consider f = 0, and we fix the222

following parameters: h = ∆t = 1, δ =
√
2∆t, s = 1.223

5.1. Test 1: Robin Hood with lettering224

We start the numerical experiments related to the inpainting problem225

considering a real image representing a statue of Robin Hood (size 500×667),226

visible in Figure 1. The missing part is behind the writings and the purpose227

of this test is to compare the results obtained from the new proposed scheme228

with respect to different choices of the parameter p. The results obtained229

choosing p = 1 and p = 1.2 are visible in Figure 2, first row. The qualitative230

comparison is enough in this case to conclude that the case with a bigger231

value of p is better, as also stressed in the second row of the same figure,232

where artifacts are visible in the results related to the case with p = 1 which233

are not present in the case p = 1.2. Some of these artifacts are highlighted234

inside the red circles and compared with the absence of them in the case235

with p = 1.2 (zooming in for a better comparison is recommended). As236

stopping rule, we fix a common number of iterations to be done, equal to237

itermax = 1000.238

5.2. Test 2: Sleeping dog239

For this second test, we consider a real image of a sleeping dog (size240

601×421), for which we know the original image (see Figure 3). We damaged241

the original image Itrue in two different ways, visible in Figure 4: adding three242

small ellipses or three larger hearts. The results related to the first damaged243

image, i.e. the sleeping dog with three ellipses, are visible in Figure 5. For244

this numerical test, one needs a quantitative evaluation in addition to the245
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qualitative comparison done by the human visual perception. In fact, looking246

at the results in Figure 5, it is almost impossible to distinguish which value247

of p leads to the best performance. For this reason, we compute the Image248

Quality Metrics introduced at the beginning of Subsect. 5.2. The errors are249

reported into Table 4. Looking at Table 4, we can observe that comparable250

results with a fixed common tolerance (ε = 0.001) are achieved with a much251

smaller number of iterations choosing a p > 1 (193 using p = 1.2, and 85 with252

Figure 1: Test 1: Damaged real image of a statue of Robin Hood.
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Figure 2: Test 1: First row: Restored images obtained with p = 1 (on the left) and p = 1.2
(on the right), and itermax = 1000. Second row: The same results visible in the first row
with some artifacts highlighted in red related to the results with p = 1, which disappear
with p = 1.2. Zooming in for a better visualization.

p = 2.0). Analyzing the errors reported in Table 4, we see that best results253

are achieved choosing p = 1.2, but all the errors related to the three cases254

are of the same order of magnitude. The big difference lies in the number of255

iterations.256

Starting from the second damaged image, i.e. the sleeping dog with three257

hearts visible in Figure 4 on the right, we want to illustrate the behavior258
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Figure 3: Test 2: Original real image of a sleeping dog.

Figure 4: Test 2: Damaged images. On the left, three ellipses representing the missing
part of the sleeping dog image. On the right, three hearts are the missing part.

Table 4: Test 2: Image Quality Metrics MSE, PSNR, and SSIM related to the results
visible in Figure 5.

Game p-Laplacian iter MSE PSNR SSIM
p = 1.0 1000 3.34E-05 4.48E+01 9.95E-01
p = 1.2 193 2.56E-05 4.59E+01 9.95E-01
p = 2.0 85 2.89E-05 4.54E+01 9.95E-01

of the proposed scheme varying much more the value of p. We considered259

p = 1, p = 1.2, p = 2, p = 5, p = 10. The achieved results obtained260
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Figure 5: Test 2. From left to right: Restored images obtained with p = 1, p = 1.2, p = 2,
respectively, starting from the sleeping dog with three ellipses. Tollerance ε = 0.001,
C = 0.01. Zooming in for a better visualization.

with the chosen values of p are visible in Figure 6. The associated quality261

metrics are reported in Table 5. Looking at the table, we can observe that262

as p value increases, comparable accuracy is obtained with fewer iterations,263

which decreasing by increasing p. The MSE error decreases by increasing the264

value of p, whereas the PSNR and SSIM metrics are almost the same for all265

the p. The big advantage is, hence, in terms of the execution time.

Table 5: Test 2: Image Quality Metrics MSE, PSNR, and SSIM related to the results
visible in Figure 6.

Game p-Laplacian iter MSE PSNR SSIM
p = 1.0 191 8.37E-05 4.08E+01 9.91E-01
p = 1.2 77 8.23E-05 4.08E+01 9.91E-01
p = 2.0 66 8.09E-05 4.09E+01 9.91E-01
p = 5.0 62 8.06E-05 4.09E+01 9.91E-01
p = 10.0 62 8.05E-05 4.09E+01 9.91E-01

266

15



Figure 6: Test 2. From left to right: Restored images obtained with p = 1, p = 1.2, p = 2,
p = 5, p = 10, respectively, starting from the sleeping dog with three hearts. ε = 0.001,
C = 0.1. Zooming in for a better visualization.

6. Conclusions and future perspectives267

In this work we have presented a new semi-Lagrangian scheme for the268

game p-Laplacian equation, by observing that the game p-Laplacian oper-269

ator can be expressed as a convex combination of the ∞-Laplacian and270

1-Laplacian. We have applied the new proposed scheme to the inpainting271

image problem, analyzing the results in terms of both qualitative and quan-272

titative accuracy. The numerical simulations have showed the behavior of273

the proposed scheme, with the advantage of considering larger values of p,274

which allows one to obtain good accuracy in fewer iterations. In the future,275

we would like to investigate theoretically the numerical scheme introduced276

in this work and its properties, such as stability and convergence. More-277
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over, a high order extension of the scheme could be addressed, in particular278

implicit-explicit Runge-Kutta schemes for the fictitious time marching (see279

for instance [8]) coupled with a high order approximation of the p-Laplacian280

may be considered.281
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