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Abstract—The majority of road traffic crashes worldwide are
caused by driver drowsiness. For this reason, it is necessary to
recognize an incoming drowsiness status for alerting the driver
as early as possible, preventing serious accidents. Variation of
physiological signals can result from incipient drowsiness that
the driver is unaware of, so it is worth investigating if such
variation may be exploited for early drowsiness detection, in
order to raise a warning. To such an aim, several studies involved
mainly bulky and intrusive multimodal acquisition systems to
collect driver-related information from several sensors, either
worn by the individual and embedded in the car-cabin. The
aim of this study is to detect the driver drowsiness through
a comfortable wrist-worn device, by analysing only the Skin
Conductance (SC) physiological signal. To automatically classify
the drowsiness status, three ensemble algorithms have been tested,
among which Random Forest results to be the best, featuring
an overall accuracy of 84.1%. The obtained results prove that
it is possible to classify the drowsy status of a driver from SC
signals only, collected on the wrist, and motivates further research
aimed at the early identification of the incipient drowsiness, for
the implementation of a real-time warning system.

Index Terms—Internet of Things, Machine Learning,
wearable devices, driver monitoring, drowsiness detection, Skin
Conductance.

I. INTRODUCTION

The last available report from the World Health Organization
(WHO), in 2018, estimated that approximately 1.35 million
people die each year because of car accidents worldwide
[1]. Several studies demonstrate that deaths and injuries from
road traffic crashes are mainly caused by human factors,
such as distraction and fatigue [2], strictly related to driver
drowsiness. As a result, research in the field of driving safety is
moving towards the detection of the drowsiness status through

the use of Machine Learning (ML) and artificial intelligence
algorithms, to alert the driver as soon as possible through
Internet of Things (IoT)-oriented systems.

Existing safety technologies, based on the monitoring of
lane departure combined with the analysis of the steering
wheel rotation, can detect a sleepy driving behaviour and
warn the driver. Ford Motor Company and Volkswagen
are two examples of multinational automobile manufacturers
that embedded these alert systems in their vehicles [3],
[4]. These systems detect the sleep status, not the drowsy
one. Other solutions exploit the cameras embedded in the
car-cabin, to track the driver behaviour (e.g., eye-movements,
facial expressions and head positions) [5], as the driver
attention monitoring system developed by Lexus and Toyota
[6]. Camera-based solutions are more trustworthy, but they
may suffer several limitations or impairments due to the
operating conditions (e.g. different and variable light scenarios,
possible face occlusions such as glasses or sunglasses).
For these reasons, researchers and car-makers have explored
different and innovative solutions. As a condition affecting the
driver behaviour, drowsiness is associated to the Autonomous
Nervous System (ANS) activity that reflects on physiological
changes [2]. Such variations can be monitored by means of
comfortable wearable systems available either on the market
or as research prototypes (e.g., bracelet [7], double ring [8]
and wristband [9]). To collect biomarkers strictly related
to the ANS, the electroencephalography (EEG) is generally
used as the reference method, often in conjunction with the
electrocardiography (ECG, from which heart rate and heart
rate variability can be derived), in drowsiness studies [10]–[12].



For example, Awais et al. [11] proposed the combined EEG
and ECG for discriminating between alert and drowsy states,
revealing a level of accuracy equal to 80.90% with the
support vector machine ML classifier. Similarly, in [12],
the authors present a drowsiness detection model including
physiological (from ECG, respiration sensor and camera),
postural and vehicular information. Recently, Arjunan et al.
[13] proposed a monitoring system with a combination of
multiple wearable sensors (i.e. blood pressure, heart rate,
blood oxygen, body temperature, electroencephalography and
electromyography sensors) to detect the status of drivers. By
focusing on the skin, ANS activity can be explored with the
analysis of Skin Conductance (SC), a biomarker which varies
as a consequence of the sweat glands secretion. The SC signal
can be decomposed in two main components: a tonic one,
slowly varying, also known as Skin Conductance Level (SCL)
[14], and a phasic component, characterized by rapid changes
in signal amplitude, also known as Skin Conductance Response
(SCR) [15], which is typically associated to stimuli-related
events.

Several studies propose the analysis of SC to investigate a
subject’s drowsiness, either alone or in conjunction with other
physiological signals, with or without automatic classification
performed by ML algorithms. For example, in [16], an
SC-based wearable device designed by the authors is described,
along with the physiological variation evident in drowsy
driving. Similarly in [17], significant changes in SC are
visible when the subject was falling asleep, acting as a
meaningful property to graphically identify the drowsiness.
In both the studies, no classification is performed. Contrarily,
Horng et al. [18] and Choi et al. [19] focused on physiological
prediction of drowsiness by using a multimodal system
with several sensors. Both works used ML classifiers to
recognise the driver status. Results shown a good accuracy,
by exploiting several physiological signals, such as SC,
EEG and ECG. However due to the bulky setup (e.g.,
EEG electrodes placed on the head, ECG on the chest
and SC sensors on the fingers/wrist), multimodal systems
are uncomfortable and intrusive arrangements for real-life
application in driving. Moreover, when multiple signals are
used (from both wearable and ambient sensors), the acquisition
system complexity increases by affecting the data analysis
procedure; consequently the driver status assessment becomes
more time-consuming and this could lead to a delay in warning
generation, thus becoming less safe for the driver.

The aim of this work is to explore the real-life application of
a wearable device to detect the driver drowsiness, by using the
SC physiological signal only, exosomatically collected from
the wirst. The proposed approach exploits a non-invasive and
relatively simple system with respect to SC acquisition boards
(e.g., ProComp Infinity [20]) and the above mentioned systems.
In conjunction, three ML approaches (namely Random Forest
(RF), Bagging and Boosting - the most common ensemble
algorithms used for multiclass classification purposes in
previous similar works [21], [22]) were tested and compared

in terms of classification performance.
The paper is structured as follows. In Section II, the

acquisition methodology is described, including the description
of the driving simulator, the acquisition device and the test
procedure. Section III presents the data analysis. Section
IV discusses the experimental results. Conclusions and
perspectives for future studies are explained in Section V.

II. ACQUISITION METHODOLOGY

A. Driving Simulator and Acquisition Device

The experiments were conducted in a room hosting a driving
simulator (see Figure 1). The driving simulator showed an
overnight driving path, realised as a three-lane highway with no
traffic and a length of around 80 km. The average temperature
in the room hosting the driving simulator was maintained
quite stable (around 23 °C) to reduce the influence of ambient
temperature on SC signals.

The idea presented in this paper was to emulate an
approach similar to the real-life context, where a driver can
wear the own smartwatch, equipped with the capability to
monitor physiological parameters. In particular, a multi-sensor
Empatica E4 [9] wrist-worn device was used for collecting the
user’s skin conductance changes during the driving simulation,
through the SC sensor. A very small amount of alternating
current (maximum peak-to-peak value of 100 µA) passes at a
frequency of 8 Hz between two Ag/AgCl electrodes located on
the bottom side of the bracelet, and the electric conductance
across the skin is recorded in µS. The sampling frequency of
the SC sensor is set at 4 Hz with a resolution of 900 pS and
a dynamic range of [0.01-100] µS.

B. Test Procedure

Nine volunteer healthy subjects, 4 males and 5 females, were
enrolled in this study. Age and gender can highly influence the
physiological data changes. Therefore, a male and a female
were selected in each cohort of 10 years width, from 20 to
60 years of age, to cover a wide range of active drivers. The
test procedure was explained in detail to the subjects before

Fig. 1. Experimental setup: driving simulator, monitor with overnight
simulation, Empatica E4 device position and tablet with KSS scale.



signing an informed consent. The driving simulation, lasting
around 40 min, involved the usage of Empatica E4 device worn
on the dominant wrist. During the whole driving recording
session, participants were provided with a tablet where, every
10 min, they were requested to assess their own perceived
alertness/drowsiness status through the 9-point Karolinska
Sleepiness Scale (KSS) questionnaire [23], that matches verbal
sentences to the psycho-physical status experienced.

III. DATA ANALYSIS

To examine the feasibility of the proposed approach for
detecting driver drowsiness, data analysis was performed first
in MATLAB environment and then by using the WEKA tool
[24] for the ML performance evaluation.

A. Artifacts removal

Movements of the wrist while driving, and undesirable
electrodes contact losses, can strongly affect the quality of
SC signal acquired from the wrist-band, and consequently
the performance of ML algorithms in classifying the driver
drowsiness. Therefore, according to the literature [25], the
Stationary Wavelet Transform (SWT) denoising with haar
mother wavelet (7 levels of decomposition) was implemented
to detect, and then remove, changes in the SC signal typically
due to motion artifacts. In particular, according to a previous
similar study [26], the N wavelet coefficients dj were modelled
using a zero-mean Laplace distribution, where j is the wavelet
decomposition level. Motion artifacts were removed from the
samples if the corresponding coefficents are out of the two
thresholds, namely Thigh and Tlow, calculated for every level
and defined as in [26]:{

Tlow = ( 1
N

∑N
n=1 |dj |) · loge(δ)

Thigh = −Tlow

(1)

where δ is the proportion of motion artifacts in the original
signal and it quantifies how much motion artefacts affect the
signal. As in [25], [26], δ is set by exploiting the 3-axial
accelerometer embedded in Empatica E4, which collects wrist
acceleration values simultaneously with the SC samples: thus,
δ can assume two different values depending on the subject’s
wrist movement amplitude. In our study, the value of δ depends
on the standard deviation (σ) of the acceleration samples
from each single directional component (accx, accy , accz),
as follows:{

δ = 0.01, σ(accx,accy,accz) < 0.04 m/s2

δ = 0.10, otherwise
(2)

The limit on the value of σ has to be satisfied by all the three
acceleration components. The acceleration threshold of 0.04
m/s2 was heuristically selected by joint visual inspection of
acceleration and SC signals. As a matter of facts, similarly
to [25], the presence of motion artifacts was defined by the
σ of one of the three acceleration components. As a matter
of facts, similarly to what was done in [25], the presence of
motion artifacts has been located by evaluating the σ of the

TABLE I
FEATURES EXTRACTED FROM THE SC SIGNAL AND ITS COMPONENTS

Type
of signal Domain Features

SC
signal

Time

Mean (µS), standard deviation (µS),
minimum (µS), maximum (µS),
kurtosis (µS), skewness (µS),
variance ((µS)2), range (µS), median (µS)

Frequency

Mean (µS/Hz), standard deviation (µS/Hz),
minimum (µS/Hz), maximum (µS/Hz),
kurtosis (µS/Hz), skewness (µS/Hz),
variance ((µS/Hz)2), range (µS/Hz),
median (µS/Hz)

SC
components

Time
SCR number of peaks, SCL mean (µS),
SCL standard deviation (µS),
SCL minimum (µS), SCL maximum (µS)

acceleration components: if just one out of the three is greater
than 0.04 m/s2 then the motion artifact is identified. Inverse
SWT is applied to reconstruct the denoised signal.

B. Segmentation and feature extraction

After the filtering phase, both SC signal and its components
(SCR and SCL) were divided in short-term time windows
with fixed size of 15 s [22], corresponding to 60 samples;
then, each segment was labeled with the KSS scale’s response
given by the users. To investigate the drowsiness prediction, the
KSS scores were grouped from the original 9 possible values
into three classes, depending on the drowsiness level: KSS
scores between 1 and 5 in class 1 (labelled as alert), 6 and
7 in class 2 (labelled as slightly drowsy), 8 and 9 in class 3
(labelled as drowsy). Then, from samples contained in each
window, a total of 23 features listed in Table I (some used in
previous study [15], [27], [28], [29]) were estimated in time
and frequency domains to explore the temporal and spectral
information content. For what concerns the frequency domain,
before computing the features, the Fast Fourier Transform
(FFT) was applied on the original data. Finally, each feature
was associated to the related label.

C. Features selection

Among the features extracted, some might have similar
information content, resulting in high correlation, and hence in
redundancy for discriminating classes with an ML algorithm
[30]. As a result, to select only the relevant features, the
correlation coefficient (ρ), quantifying the strength of the
features relationship, was computed; ρ > 0.90 was assumed
as the condition for a strong correlation among the features
tested. According to this, five features, namely SC mean, SC
maximum, SC median, SCL mean and SCL maximum, were
discarded, resulting in 18 features to use.

D. Machine learning algorithms

Once selected the relevant features, three ML algorithms
were tested and their classification performances were
compared. In particular, RF, Bagging and Boosting were
considered, as in previous similar works [21], [22]. The
proposed ML-based drowsiness detection models were



evaluated through the 10-fold cross-validation method. Then,
according to [31], the classification performance was assessed
by using accuracy (number of correctly classified instances
related to driver status over the total number of instances).
Values of precision (number of correctly classified instances
over the total number of instances labelled as belonging to
the correct class) and recall (number of correctly classified
instances over the total number of instances that actually
belong to the correct class) result from the average of three
classes. Moreover, the confusion matrix was computed to
summarise the classification performance of the best ML
algorithm.

IV. EXPERIMENTAL RESULTS

The figures used to evaluate the classification performance
are summarised in Table II. The overall accuracy in the
identification of alert (class 1), slightly drowsy (class 2) and
drowsy (class 3) is equal to 84.1% for RF, 83.2% and 82.8%
are obtained for Bagging and Boosting, respectively. Precision
and recall are equal to 84.2% and 84.1%, respectively, for RF;
they amount to 83.3% and 83.2% for Bagging, and they are
both equal to 82.8% for Boosting. The RF classifier proves
to be the best one, among those tested, according to all
the performance figures evaluated. Table III represents the
confusion matrix related to the RF algorithm, performing as
the best classifier. The main diagonal indicates the number
of instances correctly classified, hence those for which the
predicted instances equal the actual ones. The values outside
the diagonal identify the prediction errors. It can be observed
from the matrix that, if considered together, class 2 and
class 1, representing the slightly drowsy and alert conditions
respectively, are well-distinguished (867 instances classified,
out of the 1045 actual instances), except for a few instances.
This means that there are clear and meaningful physiological
variations captured by the collected signals, which characterise
the alert and the slightly drowsy statuses. Such changes allow
the ML classifier to discriminate the features extracted from
the two conditions, against the drowsy class, and this capability
could be exploited in the future to design automatic systems
to warn the driver. Contrarily, the instances related to class
2 (slightly drowsy) alone, are often misclassified with those
labelled as class 3, i.e. drowsy status. Features related to the
drowsy stages of the acquisition sessions are quite similar to
those computed over the data collected during the slightly
drowsy ones. Anyway, from a possible real-life application
point of view, the most important challenge in this kind of
safety systems is the capability to detect the physiological

TABLE II
CLASSIFICATION PERFORMANCE OF PROPOSED APPROACH

Classifier Accuracy (%) Precision (%) Recall (%)
Random Forest 84.1 84.2 84.1
Bagging 83.2 83.3 83.2
Boosting 82.8 82.8 82.8

variation in short-terms between the alert and the slightly
drowsy conditions.

TABLE III
CONFUSION MATRIX FOR RF ALGORITHM

Actual Instances
1 2 3

Pr
ed

ic
te

d
In

st
an

ce
s 1 85.7% 11.7% 2.6%

2 6.1% 83.0% 10.9%
3 3.9% 12.2% 83.9%

V. CONCLUSION

This study was focused on detection of driver drowsiness
based on SC physiological variation, recorded through a
wrist-worn device. In particular, the alert status, the slightly
drowsy status and the drowsy status were classified, by testing
three ML algorithms. A total of 18 features have been extracted
from SC signals obtained from a realistic data collection
conducted during an overnight driving simulation by the 9
subjects involved in the study.

The considered classifiers, namely RF, Bagging and
Boosting, achieved accuracy values over 82.0%, in
distinguishing the alert, slightly drowsy and drowsy classes.
Among them, RF provided the highest accuracy, equal to
84.1%, along with the figures quantified to evaluate the
classification performance (i.e., precision and recall equal to
84.2% and 84.1%, respectively). It should be underlined that,
based on a heterogeneous population, in terms of gender and
age, the findings demonstrate the feasibility of detecting driver
drowsiness exploiting only SC signals, acquired from a single
wrist-worn device. Moreover, the classification performance
is obtained with short-term time windows, essential for
detecting short-term events as the natural drowsiness onset.
This way, when abnormal changes in skin conductance are
detected, proper timely alert can notify the driver, for example
suggesting to take a short break to rest.

Future experimental activity will consider a wider test
population to expand the dataset and improve the detection
accuracy, especially for distinguishing the two classes alert
and drowsy. Besides, different cross validation techniques
(e.g., Leave-One-Subject-Out Cross Validation, LOSO) will be
employed.
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