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Abstract 13 

The transcritical CO2 cabin thermal management system has gained significant 14 

attention in the field of electric vehicles due to its outstanding heating performance and 15 

environmental advantages. However, ensuring its optimal operation in real-time during 16 

vehicle operation poses a challenge. Amongst these challenges, controlling the optimal 17 

discharge pressure is particularly difficult. In this paper, we propose a novel model 18 

predictive controller that focuses on the cabin cooling mode. The controller utilizes a 19 

high-fidelity data-driven dynamic model of the transcritical CO2 system, coupled with 20 

a dynamic thermal model of the cabin. By simultaneously controlling the compressor, 21 

electronic expansion valve, and indoor fan, the proposed controller enables the cabin 22 

thermal management system to operate in real-time at the optimal discharge pressure 23 

while ensuring passenger comfort, thereby minimizing the total power consumption of 24 

the system. Additionally, two model predictive control strategies, focused on comfort 25 

and energy-saving, respectively, are introduced. Through simulations under various 26 

conditions over a 6-hour period, comparing the PI controller, the comfort priority model 27 

predictive controller reduces energy consumption by 13.33%, and the energy-saving 28 

priority model predictive controller achieves a 20.27% reduction. The proposed novel 29 

model predictive controller exhibits energy-saving advantages.  30 

 31 
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Nomenclature    
A Area, (m2) 𝑉ௗ௦ Displacement, (m3) 

AC Air conditioning   
CLTC China Automotive Test Cycle Greek symbols  

COP Coefficient of performance α 
Surface heat transfer 

coefficient, (W/(m2·K)) 

𝑐 
Specific heat capacity, 

(J/(kg·K)) 
𝜉 Pressure ratio of compressor 

EEV Electronic expansion valve 𝜂 Compressor motor efficiency 

EV Electric vehicle 𝜂௦ 
Compressor isentropic 

efficiency 

ESC Extreme seeking control 𝜂 
The ratio of the theoretical 

volume of the expander to the 
compressor 

HFC Hydrofluorocarbon ρ Density, (kg/m3) 
GA Genetic algorithm τ Time, (s) 

GWP Global warming potential   
h Enthalpy, (J/kg) Subscripts  

HP Heat pump a Ambient 
IHX Internal heat exchanger air Air 

𝐼௦ 
Intensity of solar radiation, 

(W/m2) 
cabin Cabin 

MPC Model predictive controller cl Clothes 

M 
Metabolic rate of the 
passenger, (W/m2) 

com Compressor 

m Mass, (kg) dis Discharge of Compressor 
�̇� Mass flow rate, (kg/s) evap Evaporator 

Ncom Speed of compressor, (RPM) EEV Electronic expansion valve 
P Pressure, (bar) fan Indoor fan 

PMV Predicted Mean Vote hp High pressure 
�̇� Quantity of heat, (W) in Inlet 

𝑅 
clothes thermal resistance of 

the passenger, (m2·℃/W) 
lp Low pressure 

rH Relative humidity out Outdoor 
T Temperature, (℃) send Out let air of evaporator 

TCCTMS 
Transcritical CO2 cabin 

thermal management system 
suc Suction of the compressor 

v̇car Vehicle speed, (m/s)   
 4 
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1. Introduction 1 

The thermal management systems of electric vehicles (EVs) have raised numerous 2 

concerns regarding energy conservation and environmental protection [1]. 3 

Hydrofluorocarbons (HFCs) refrigerants, with R134a being a representative example, 4 

are widely used as working fluids. However, they have high global warming potential 5 

(GWP) values, which necessitates their gradual replacement [2]. Furthermore, due to 6 

their low evaporating pressure and low suction density, heat pump systems with HFCs 7 

have limited heating capacity and high-power consumption in colder winter conditions, 8 

exacerbating range anxiety for electric vehicles during winter seasons. However, as a 9 

natural refrigerant, CO2 has gained more attention from an environmental protection 10 

standpoint. And transcritical CO2 heat pump (HP) systems provide significant benefits 11 

in terms of heating performance, particularly under low-temperature heating 12 

circumstances [3-6]. Transcritical CO2 systems thus have a tremendous deal of potential 13 

to develop into the most effective thermal management systems for electric vehicles. 14 

Due to the characteristics of supercritical CO2 fluid, experiments and theoretical 15 

research have shown that the discharge pressure in the transcritical CO2 system must 16 

be optimized in order to maximize the coefficient of performance (COP) [7-8]. The 17 

system power consumption will be significantly decreased at the optimal discharge 18 

pressure. Therefore, the control strategy is very important for the transcritical CO2 cabin 19 

thermal management system (TCCTMS).  20 

Model predictive controllers (MPC) with flexible control framework, automatic 21 

optimization capabilities, and strong robustness are more suitable for thermal 22 

management systems [9]. Many scholars have applied MPC technology to subcritical 23 

refrigeration systems represented by R134a. Xie et al. [10-11] established models for 24 

the R134a AC and HP systems. They proposed the selection of state variables and 25 

designed an MPC predictive controller to control the compressor and fan speeds, while 26 

the control of the throttle valve still adopted PID control. Moreover, Glos et al. [12] 27 

proposed a MPC scheme for cabin temperature and air quality control, which is 28 

applicable for vehicle standstill conditions, assuming that the COP values are constant. 29 

A stochastic MPC is proposed by He et al. [13] to enhance the energy efficiency of the 30 
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AC systems, they established a thermal load model and employed a topological graph 1 

to search for the value of COP. Schaut and Sawodny [14] proposed and validated an 2 

optimization-based TCCTMS that minimized energy consumption and maximized 3 

thermal comfort. MPC combined with different forecast methods of passenger number 4 

was prepared in [15-16] for cabin temperature control of an electric bus. In their 5 

modeling of the AC system, they introduced the compressor volumetric efficiency and 6 

suction gas density to determine the compressor's speed. Hemmati [17] et al. developed 7 

fast and efficient thermal dynamics models of vehicle cabin, powertrain, and exhaust 8 

aftertreatment system for a test vehicle, and used them for multi-objective optimization 9 

of vehicle operation. For the thermal management system, the scholars developed more 10 

detailed thermal models for both the battery and the cabin. Regarding the COP, they 11 

considered using fixed values or empirical formulas. A hierarchical MPC strategy is 12 

developed by Zhang and Tong [18] for the cooperative control of vehicle speed and 13 

cabin temperature. Xie et al. [19] developed an MPC for the battery thermal 14 

management system, considering both energy saving and battery lifespan. In a similar 15 

vein, Liu et al. [20] proposed a self-adaptive intelligent neural network-based MPC 16 

specifically designed for an air-based battery thermal management system; Park et al. 17 

[21] introduced a stochastic algorithm to the MPC strategy. MPC schemes were also 18 

proposed for combined cabin and battery thermal management in [22]. Guo et al. [23], 19 

Gong et al. [24] and Guo et al. [25] demonstrated the energy-saving superiority of MPC 20 

controllers applied to hybrid electric vehicles.  21 

However, the control of CO2 transcritical systems is more complex than that of 22 

HFC refrigerant systems, such as R134a, because the expansion valve in HFC systems 23 

is usually used to regulate the evaporator outlet superheat to a constant value, while the 24 

CO2 system needs to adjust the expansion valve to achieve the optimal discharge 25 

pressure. Moreover, it is very laborious to establish the topology map and correlation 26 

of the optimal COP of the transcritical CO2 system under various operating conditions. 27 

For the optimal control of the transcritical CO2 system, some scholars fit a variety of 28 

empirical correlations and various intelligent algorithms to characterize the optimal 29 

discharge pressure in order to determine the PID controller's control goals [26-36]. 30 
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However, the empirical formulaes, demand a lot of experimental data and artificially 1 

seek the optimal value, and these PID-based controllers are all feedback control 2 

schemes and often introduce a little delay. In addition, extreme seeking control (ESC) 3 

has been widely concerned because of its optimization function [37-40]. But the 4 

convergence time problem prevents ESC from being used in situations when the 5 

disturbance is rapidly fluctuating, especially for automotive air-conditioning systems. 6 

Besides, it is difficult to increase the output variables of ESC to more than 2 for the 7 

optimization process. Researchers have started to introduce MPC control methods into 8 

the control of transcritical CO2 systems. Wang et al. [41] applied a data-driven MPC to 9 

the transcritical CO2 heat pump water heater and realized the control of the throttle 10 

valve area and water flow. However, it does not consider the adjustment of compressor 11 

speed, which is a very important control target. Zhang et al. [42] used MPC to control 12 

the compressor speed and indoor fan speed in the transcritical CO2 system of the 13 

railway air conditioning, but this MPC does not have the function of finding the optimal 14 

discharge pressure. 15 

It can be seen from previous studies that MPC is an advanced algorithm to solve 16 

the control problem of cabin/battery thermal management system. However, for 17 

transcritical CO2 systems, it is very difficult to establish an empirical formula or a 18 

topology map of the optimal COP that covers all operating conditions. And as far as we 19 

know, no scholar has proposed the model predictive control method to realize 20 

simultaneous control of the compressor, fan and throttle valve in TCCTMS. This study 21 

proposes a data-driven nonlinear MPC that has the following features: (1) It can operate 22 

the compressor, throttle valve, and indoor fan to meet passengers comfort requirements 23 

while saving power consumption; (2) It does not need an additional PI controller, nor 24 

does it require extensive experiments to manually search for the optimal discharge 25 

pressure; (3) It accurately considers the dynamic COP of the transcritical CO2 system 26 

in cabin cooling mode. In addition, to compare the control effect of MPC, we installed 27 

the traditional feedback controllers-On/Off-PI controller and PI controller-in the same 28 

system. The data-driven model can be updated according to the changes in the system 29 

to avoid the inaccurate optimization problem caused by the performance changes of 30 
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system components. 1 

 2 

2. System description and modeling details 3 

2.1 Simulation model 4 

In Fig. 1, a schematic representation of a typical transcritical CO2 AC system is 5 

displayed. In addition to the compressor, evaporator, gas-cooler, and electronic 6 

expansion valve (EEV) used in the refrigeration system, internal heat exchangers (IHX) 7 

and accumulators are parts of the transcritical CO2 system. IHX is used to lower the 8 

gas-cooler's outlet temperature in order to increase COP. Additionally, using an 9 

accumulator can prevent the liquid CO2 from being sucked into the compressor under 10 

a number of operational conditions.  11 

Accumulator
EEV

Evaporator

Gascooler 

IHX

Indoor fan

Outdoor fan

 12 

 13 

Fig. 1 schematic representation of a typical transcritical CO2 AC system. 14 

 15 

The current research uses GT-Suite, a tool that is often used in the analysis of 16 

thermal management systems for EVs, in order to build the simulation models for the 17 

transcritical CO2 AC systems. Table 1 displays the modeling specifics of each 18 

component. Table 2 presents the component parameters of the AC system designed by 19 

the authors. 20 

Table 1 21 

The modeling specifics of components. 22 

Equipment name Modules in GT Specification 

Compressor 
CompPosDispRefrig and 

SpeedBoundaryRot 

�̇�ைమ
= 𝑉ௗ௦ ∙ 𝜂௩ ∙ 𝑁 ∙ 𝜌௦௨ 

�̇� = �̇�ைమ
∙

ℎௗ௦ − ℎ௦

𝜂௦

∙
1

𝜂
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𝜂௦ = 𝑓(𝑁 , 𝜉, 𝑇௦௨) 

𝜂௩ = 𝑓(𝑁 , 𝜉, 𝑇௦௨) 

𝜂 = 𝑓(𝜉) 

Evaporator and 

Gascooler 
HxMaster and HxSlave 

�̇�ு = �̇�ைమ
൫ℎைమ ,௨௧ − ℎைమ,൯ = �̇�𝑐,൫𝑇,௨௧ − 𝑇,൯  

�̇�ு =  𝛼୨𝐴𝑖,𝑗൫𝑇ைమ,𝑗 − 𝑇𝑎𝑖𝑟,𝑗൯

ே

୨ୀଵ

 

𝛼୨ = ቆ
1

𝛼େమ,୨

+
𝐴୧୬,୨

𝛼ୟ୧୰,୨𝐴୭୳୲,୨

ቇ

ିଵ

 

IHX HxMaster and HxSlave 

�̇�ு = �̇�ைమ
൫ℎைమ,,௨௧ − ℎைమ,,൯ = �̇�ைమ

൫ℎைమ,,௨௧ − ℎைమ,,൯  

�̇�ு =  𝛼𝐴𝑖,𝑗൫𝑇ைమ,ℎ𝑝,𝑗 − 𝑇ைమ,𝑙𝑝,𝑗൯

ே

୨ୀଵ

 

𝛼୨ = ቆ
1

𝛼ைమ,ℎ𝑝,𝑗
+

1

𝛼ைమ,𝑙𝑝,𝑗
ቇ

ିଵ

 

 

 

EEV OrificeConn �̇�ைమ
= 𝐶 ∙ 𝐴ாா ∙ ඨ

2∆𝑃 ∙ 𝜌ாா,

𝑘ௗ

 

Accumulator 
AccumulatorRefrig 

 

Indoor Fan 
FanFlow 

�̇�ୟ୬ = 𝑓(�̇�) 

 1 

Table 2  2 

The parameters of the components for the designed transcritical CO2 AC system. 3 

Equipment name Specification 

Compressor 
Displacement: 8.2 cm3 

Speed range: 1000~8000 RPM 

Evaporator 
Type: Micro-channel fin-tube; 

Dimension: 230 mm (length), 230 mm (height), 32 mm (width) 

Gascooler 
Type: Micro-channel fin-tube;  

Dimension: 660 mm (length), 515 mm (height), 16 mm (width) 

Internal Heat Exchanger 

Type: concentric tube heat exchanger; 

Length: 1600 mm;  

Outer pipe diameter: 22 mm, Inner pipe diameter: 16 mm  
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Accumulator 1.1 L 

Indoor Fan 0~0.18 kg/s 

 1 

The compressor isentropic efficiency  𝜂
𝑖𝑠

, volumetric efficiency 𝜂௩  and motor 2 

efficiency 𝜂  are determined by compressor speed (𝑁 ), pressure ratio (𝜉 ), and 3 

suction temperature (𝑇௦௨). The power consumption of the indoor fan is determined by 4 

the mass flow of air (�̇�). The correlations are fitted from the experimental data. 5 

 6 

2.2 Experimental verification of the transcritical CO2 system 7 

Two separate enthalpy difference chambers were used for a series of experimental 8 

tests on the transcritical CO2 system's test rig. Fig.2 depicts the photo of the test rig and 9 

the configuration of the enthalpy difference chamber. The principles of the experimental 10 

setup and the specific parameters of its components have been described in detail in 11 

Section 2.1. The surrounding environment's temperature and humidity may be 12 

separately controlled by each enthalpy difference chamber. During the experiment, the 13 

temperature of the outdoor chamber was set at 30 ℃ ~ 40 ℃, and the compressor speed 14 

varied from 1000 RPM to 4000 RPM. Under these test conditions, the power 15 

consumption and cooling capacity were assessed. Table 3 displays the parameters 16 

experimental measurement devices and uncertainties. 17 

 18 

(a) Photo of the test rig. 19 
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EEV

Cooling Heater humidifier

Dry bulb temperature

Temperature  sensor

Pressure and temperature sensor

Outdoor ChamberIndoor Chamber

IHX

Cooling Heater humidifier

�P

WBDB

�P

WB

DB

DB

WB

PT

PT

PT

T

PT

PT

PT

PT

T

Compressor

Gascooler

Accumulator

Evaporator

Indoor
 fan

M

M Mass flowmeter 

DB WB

Wet bulb temperature

DB WB

 1 

(b) Configuration of the enthalpy difference chamber. 2 

Fig.2 The photo and the schematic diagram of the test rig. 3 

 4 

Table 3  5 

The parameters experimental measurement devices, and uncertainties. 6 

Parameter Component Range and uncertainties 

Air wet/dry bulb 

temperature 

PT100 thermoelectrical 

resistance 

-50~200 ℃, ± (0.15 + 0.0002 × 

reading) ℃ 

CO2 fluid temperature K-type thermocouple -50~200 ℃, ±0.5 ℃ 

Pressure MPM489 transmitter 0~20 MPa, 2.5 ‰ of the range 

Power WT500 
15~1000 V and 0.5~40 A, ± 0.1% 

of reading + 0.1% of the range. 

Mass flow rate Micro Motion Mass flowmeter 11500 kg·h−1, ±1% 

 7 

The error propagation for the cooling capacity and COP was calculated using the 8 

Kline and McClintock [43] method. The largest uncertainty of the cooling capacity and 9 

COP (the cooling capacity divided by the compressor power consumption) were 3.83% 10 

and 3.85%, respectively. Fig. 3 shows that all the data deviation ranges for power 11 

consumption and cooling capacity are within 5%, demonstrating the viability of the 12 

simulation model. 13 
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 1 

Fig.3 Experimental verification of physical model. 2 

 3 

3. Model predictive controller for TCCTMS 4 

3.1 Dynamic thermal model of Cabin 5 

The surrounding environment, the speed of the vehicle, and the cooling 6 

capabilities of AC system all affect the temperature within the cabin of the EV. The 7 

variation in cabin temperature can be written as follows: 8 

ௗ்ೌ್

ௗఛ
=

ொ̇ೌ್

ೌೝ∗,ೌೝ
                         (1) 9 

�̇� is made up of a number of loads, including heat input from solar radiation 10 

(�̇�ௗ), convective heat moving between the interior air and the cabin surfaces (�̇�), 11 

load from passengers ( �̇� ) and electronic equipment ( �̇�ௐ ), heat load from 12 

ventilation and air leakage (�̇�), and heat removed by the air conditioning system 13 

(�̇�). 14 

�̇� = �̇�ௗ + �̇� + �̇� + �̇�ௐ + �̇� − �̇�           (2) 15 

The heat input load from solar radiation is 16 

�̇�ௗ = 𝜀௧ ∗ 𝐼௦ ∗ 𝐴௦௦                    (3) 17 

where 𝐴௦௦ is the area of the glass, m2; 𝜀௧ is the transmission factor; 𝐼௦ is the 18 

intensity of solar radiation, W/m2.  19 

�̇� is the thermal convection between the cabin air and the glass, the roof, the 20 

body side and the floor, 21 

�̇� = ∑ 𝐴 ∗ 𝛼 ∗ (𝑇 − 𝑇)                  (4) 22 

where 𝑇 and 𝐴 are the average temperature and total area of the four parts, ℃ and 23 
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m2, respectively. 1 

The temperature variation of these parts can be written as follows: 2 

ௗ்

ௗఛ
=

ொ̇ೌ್ೞ,ାொ̇ೝ,ିொ̇,,ିொ̇,ೠ,

∗,
                     (5) 3 

�̇�௦ = 𝜀 ∗ 𝐼௦ ∗ 𝐴                        (6) 4 

�̇� = 𝜎 ∗ 𝜀 ∗ 𝐴 ∗ ൫𝑇
ସ − 𝑇

ସ൯                    (7) 5 

�̇�, = 𝐴 ∗ 𝛼 ∗ (𝑇 − 𝑇)                   (8) 6 

�̇�,௨௧ = 𝐴 ∗ 𝛼௨௧ ∗ (𝑇 − 𝑇)                    (9) 7 

where 𝜀 and 𝜀 are the absorption factor and equivalent emission factor; 𝛼 is the 8 

convective heat transfer coefficient between cabin surface and cabin air, W/(m2·K); 9 

𝛼௨௧ is the convective heat transfer coefficient between the cabin surface and ambient, 10 

which mainly depends on the speed of the vehicle, W/(m2·K). The �̇�, �̇�ௐ and 11 

�̇� are considered constants [10]. 12 

The heat removed by the AC system can be calculated as, 13 

�̇� = �̇� ∗ 𝑐, ∗ (𝑇 − 𝑇௦ௗ)               (10) 14 

where 𝑇௦ௗ represents the temperature of the cold air sent into the cabin by the indoor 15 

fan, ℃; �̇� is the air mass flow passing through the evaporator, kg/s. 16 

 17 

3.2 Nonlinear transcritical CO2 system identification 18 

This work employs a data-driven nonlinear state-space model to depict the 19 

transcritical CO2 system owing to its high level of nonlinearity. The nonlinear model 20 

builds on a range of nonlinear candidate functions to identify the original system from 21 

the simulation data. The transcritical CO2 system can be described by, 22 

𝒙(𝑘) = 𝑓൫𝒙(𝑘 − 1), 𝒖(𝑘 − 1), 𝒅(𝑘 − 1)൯             (11a) 23 

𝒚(𝑘) = 𝑔൫𝒙(𝑘), 𝒖(𝑘), 𝒅(𝑘)൯                   (11b) 24 

where 𝒙, 𝒖, 𝒅 and 𝒚 represent system state vector, inputs vector, disturbance 25 

vector, and output vector.  26 

For the transcritical CO2 system, it is possible to control the cooling capacity and 27 

COP by modifying the N  and the flow area of EEV (𝐴ாா ). 𝑇௦ௗ  accurately 28 
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measures the system's cooling capacity when both the evaporator inlet air temperature 1 

( 𝑇 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑝𝑎𝑝𝑒𝑟 ) and �̇�  are constant. Meanwhile, the most significant 2 

variables influencing the system COP are 𝑃ௗ௦ , 𝑃௩ , and Tாா . As external 3 

disturbances to the transcritical CO2 system, the �̇� , the 𝑇, and the ambient 4 

temperature 𝑇 are all taken into consideration.  5 

𝐱 = ൣ𝑇௦ௗ 𝑃ௗ௦ 𝑃௩ Tாா ൧
்
                (12a) 6 

𝐮 = [ N 𝐴ாா]்                     (12b) 7 

𝐝 = [�̇� 𝑇 𝑇]்                    (12c) 8 

𝐲 = ൣẆ  𝐶𝑂𝑃൧
்
                        (12d) 9 

where, 10 

 Ẇ = Ẇ + Ẇ                     (12e) 11 

𝐶𝑂𝑃 =
ொ̇

̇
                           (12f) 12 

Genetic Algorithm (GA) may be attributed as a method for optimizing the search 13 

tool for difficult problems based on the genetics selection principle [44]. The advantage 14 

of the GA algorithm is model-free. Here, the model-free means that we can skip the 15 

process of the design of the numerical model and pre-selected parameters. For example, 16 

the ref. [10] shows a flowchart of a complex process of design and pre-selected 17 

parameters. However, in this strategy, we introduce a simple numerical model but 18 

obtain a promising result (i.e., reach above 95% accuracy). The comparison results 19 

show that the GA algorithm has an advantage in model design.  20 

Fig.4 shows the workflow of searching for the optimal control-oriented model of 21 

the transcritical CO2 system using the GA. The 𝛽 , coefficients for the linear 22 

combination, required to be estimated for nonlinear system identification. The first step 23 

in determining the best nonlinear model is to pick the initial population and evaluate 24 

the fitness factor of each chromosome to select the next-generation parent. The 25 

coefficient of determination, R-square, has been selected to determine the optimal 𝛽,   26 

𝑅 − 𝑠𝑞𝑢𝑎𝑟𝑒 =
ௌௌோ

ௌௌ்
                      (13a) 27 

Sum of squares of the regression, 28 
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𝑆𝑆𝑅 = ∑ 𝑤 ∗ (𝑦ො − 𝑦ത)
ଶ

ୀଵ                   (13b) 1 

The total sum of squares, 2 

𝑆𝑆𝑇 = ∑ 𝑤 ∗ (𝑦 − 𝑦ത)
ଶ

ୀଵ                    (13c) 3 

Where 𝑦 is the real system output value; 𝑦ത is the average of 𝑦; 𝑦ො presents 4 

the estimated system output value. 5 

Crossover is the second step, which produces new offspring. After the crossover 6 

operation, mutation takes place to prevent all population solutions from settling into a 7 

local optimum of the solved issue. Up until the ideal nonlinear model is discovered, 8 

these procedures are repeated. 9 

1
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2
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3
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Fig.4 Workflow of searching for the optimal control-oriented model of the 11 

transcritical CO2 system using the GA. 12 

 13 

The Physical model verified by the experiment in Fig. 2 is used to produce the 14 

training and validation data. To represent a wide spectrum of system nonlinear 15 

dynamics, various operations are simulated under varying ambient temperatures, 16 

indoor fan air flow rates and cabin temperatures. The finalized data-driven model is: 17 
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 4 

Fig.5 shows the validation of the finalized data-driven model. The physical 5 

model's running outcomes in GT-Suite are shown by the blue solid line, while the red 6 

dashed line shows the outputs predicted by the data-driven model using the same 7 

inputs and disturbance. The relative errors for Tsend, Pdis, Pevap, TEEVin, �̇�, and 8 

COP are 94.17%, 97.94%, 98.40%, 98.62%, 99.22%, and 96.26%, respectively. It is 9 

evident that the properties of the transcritical CO2 system can be adequately described 10 

by the control-oriented model. 11 

 12 

 13 
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 1 

 2 

 3 

 4 

Fig.5 The validation of the model. 5 

 6 

3.3 MPC controller for TCCTMS 7 

Fig. 6 shows the TCCTMS controlled by the MPC. The system states are 8 

represented by the vector x=ൣTsend Pdis Pevap TEEVin Tcabin൧
T
, and the control inputs are 9 

denoted by u=[ṁair Ncom AEEV]T. The system outputs are total power consumption and 10 

COP，y=ൣẆ  COP൧
T
. The disturbance vector is given by d=[Irad v̇car Ta]T. 11 
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 1 

Fig.6 TCCTMS with MPC controller 2 

 3 

The main objective of the data-driven MPC is to maximize system COP while 4 

maintaining the target cabin temperature: 5 

min J
௨

= 𝑟ଵ  ቀ𝑇ୡୟୠ୧୬(𝑘 + 𝑖|𝑘) − 𝑇ୡୟୠ୧୬,୲ୟ୰ୣ୲(𝑘 + 𝑖|𝑘)ቁ
ଶே

ୀଵ
+ 𝑟ଶ ∑ −𝐶𝑂𝑃(𝑘 + 𝑖|𝑘)ே

ୀ      (15a) 6 

𝑠. 𝑡. ቐ

𝑥 ≤ 𝑥(𝑘 + 𝑖|𝑘) ≤ 𝑥௫     ∀𝑖 ≤ 𝑁

𝑢 ≤ 𝑢(𝑘 + 𝑖|𝑘) ≤ 𝑢௫     ∀𝑖 ≤ 𝑁

∆𝑢 ≤ ∆𝑢(𝑘 + 𝑖|𝑘) ≤ ∆𝑢௫     ∀𝑖 ≤ 𝑁

                 (15b) 7 

where 𝑁  is the preceding horizon, selected as 4; 𝑟ଵ  and 𝑟ଶ  represent the weight 8 

coefficients of the two objectives respectively, selected as 10 and 0.1; The state vector 9 

at the time 𝑘 + 𝑖  predicted at the moment 𝑘  is denoted by 𝑘 + 𝑖|𝑘 . State vector 10 

𝑥(𝑘 + 𝑗|𝑘) , input vector 𝑢(𝑘 + 𝑗|𝑘), and the variation of input vector ∆𝑢(𝑘 + 𝑗|𝑘) 11 

are limited by (15b). 12 

In addition, the 𝑇ୡୟୠ୧୬,୲ୟ୰ୣ୲  is calculated by the Predicted Mean Vote (PMV) 13 

calculator, which can represent the comfort level of passengers [45].  14 

𝑃𝑀𝑉 = (0.303 ∗ 𝑒ି.ଷெ + 0.028) ∗ (𝑀 − ∑ 𝑓

ୀଵ )              (16a) 15 

𝑓ଵ = 3.05𝑒ିଷ ∗ (5733 − 6.99𝑀 − 𝑃𝑟𝐻)               (16b) 16 

𝑓ଶ = 0, 𝑀 < 58.15                               (16c) 17 

𝑓ଷ = 1.7𝑒ିହ𝑀(5867 − 𝑃𝑟𝐻)                       (16d) 18 
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𝑓ସ = 1.4𝑒ିଷ𝑀(34 − 𝑇)                          (16e) 1 

𝑓ହ = 3.96𝑒ି଼𝑓[(𝑇 + 273.15)ସ − (𝑇 + 273.15)ସ]             (16f) 2 

𝑓 = 𝑓𝛼(𝑇 − 𝑇)                            (16g) 3 

𝑇 = 35.7 − 0.028𝑀 − 𝑅(𝑓ହ + 𝑓)                    (16h) 4 

where M, the metabolic rate of the passenger, is selected as 1 met; 𝑅, clothes thermal 5 

resistance of the passenger is selected as 0.7 clo [46]; 𝑇 is the surface temperature of 6 

the passenger’s clothes, ℃; 𝑇  and 𝑇  are the mean radiation temperature and 7 

cabin temperature, ℃. For simplification, 𝑇 can be set to be same as 𝑇 [46]. 8 

The PMV value calculated using the aforementioned method represents the average 9 

comfort level of all passengers and the driver. The main control target in this study is 10 

the dry-bulb temperature obtained from the PMV calculator. The relative humidity is 11 

used as an input to the PMV calculator, as it has a minor impact on the PMV value [47]. 12 

The solution vector at time k can be written as 𝑢ାଵ
∗ = ൛𝑢ାଵ|

∗ , … , 𝑢ା|
∗ ൟ, where 13 

the first element was integrated into the TCCTMS at 𝑘 + 1. A receding horizon control 14 

technique was developed to constantly improve the system by repeating the 15 

optimization problem at time 𝑘 + 1. 16 

The PMV value is regarded to be within the range of -0.5 to 0.5, indicating that 17 

the passengers are at a comfortable level. Among these, PMV=0 denotes the greatest 18 

level of comfort, while PMV=0.5 and PMV=-0.5 are regarded as the degrees of warmth 19 

or coldness that passengers experience. Two MPC strategies are used in this paper:  20 

(1) Comfort priority MPC: The goal of PMV is set to 0 to ensure that passengers 21 

are in the most comfortable state; 22 

(2) Energy saving priority MPC: reduce the cooling load as much as possible to 23 

save energy when ensuring passengers' comfort. The PMV objective is set at 0.47 to 24 

prevent small temperature variations in the vehicle as a result of abrupt speed changes. 25 

 26 

4. Traditional controllers for TCCTMS 27 

4.1 On/Off – PI Controller 28 

Fig.7 shows the TCCTMS controlled by an On/Off-PI Controller. The system 29 

incorporates two On/Off controllers to regulate the Ncom and the �̇� to maintain the 30 
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cabin temperature within a specific range. Additionally, a PI controller is employed to 1 

control the EEV to optimize the discharge pressure. In this study, the control objective 2 

of the Pdis is solely influenced by the ambient temperature, considering the impact of 3 

frequent starts and stops of the compressor on the PI controller. The control objective 4 

formula is derived from extensive simulations conducted to obtain reliable results. 5 
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 6 

Fig.7 TCCTMS with On/Off-PI controller. 7 

 8 

𝑁 = ቐ

3500                                      𝑇 > 𝑇,௧௧ + 1℃
𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑              𝑇,௧௧ − 1℃ < 𝑇 < 𝑇,௧௧ + 1℃

0                                  𝑇 < 𝑇,௧௧ + 1℃
    (17) 9 

 10 

�̇� = ቐ

1.8                                      𝑇 > 𝑇,௧௧ + 1℃
𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑              𝑇,௧௧ − 1℃ < 𝑇 < 𝑇,௧௧ + 1℃

0                                  𝑇 < 𝑇,௧௧ + 1℃
    (18) 11 

 12 

𝑃ௗ௦,௧௧ =  2.70 ∗ 𝑇 − 2.16                  (19) 13 

 14 

4.2 PI Controller 15 

Three PI controllers are intended to operate the TCCTMS, as depicted in Fig. 8. 16 

By adjusting �̇�, PI controller 1 brings Tcabin to the desired value. By changing 17 
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Ncom, PI controller 2 causes Tsend to attain the goal value. The goal value is often set 1 

to 8 °C, as it is in this study, to guarantee that the cabin can be cooled to the desired 2 

temperature under all operational circumstances. By regulating AEEV, PI controller 3 

3 maintains the Pdis in the optimal range. The most important variables influencing 4 

the optimal discharge pressure are ambient temperature and outlet temperature of the 5 

gascooler, hence eq. 20 calculates Pdis, target in real-time. Eq. 20 was developed from 6 

several high-fidelity models' data fits. 7 
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 8 

Fig.8 TCCTMS with PI controllers. 9 

 10 

𝑃ௗ௦,௧௧ =  −2.69 ∗ 𝑇 + 2.23 ∗ 𝑇,௨௧ − 7.13                (20) 11 

 12 

5. Study Case 13 

In this section, we use the four control strategies mentioned in Section 4 to run the 14 

TCCTMS for 6 hours, from 9:00 to 15:00 on a certain summer day. The vehicle is 15 

operated according to the road conditions specified by the China Automotive Test 16 

Cycle (CLTC). Fig. 9 shows the changes in solar radiation intensity, ambient 17 

temperature and vehicle speed during the test. 18 
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 1 

 2 
Fig.9 Trajectories of solar radiation, ambient temperature, and speed of the 3 

vehicle. 4 

 5 

Fig. 10 illustrates the PMV values under the control of different strategies. The 6 

graph shows that the strategy using On/Off-PI controller causes fluctuations in the PMV 7 

range of -0.565 to 0.689 due to the hysteresis involved in the heating and cooling 8 

process. This fluctuation fails to ensure passenger comfort. Conversely, both the 9 

strategy using PI controller and the comfort priority MPC keep the PMV close to 0 10 

during operation, with slight fluctuations influenced by the vehicle speed. However, the 11 

former may result in an overshoot of the cabin temperature during startup, temporarily 12 

reducing passenger comfort. In contrast, the comfort priority MPC successfully avoids 13 

this issue, ensuring a smoother and more comfortable experience for passengers. 14 

Furthermore, the energy saving priority MPC consistently maintains the PMV within 15 

the range of 0.385 to 0.499, ensuring continuous passenger comfort throughout the 16 

operation. Therefore, MPCs demonstrate advantages in ensuring passenger comfort. 17 

 18 
Fig.10 Trajectories of the PMV values under the control of On/Off -PI 19 

controller, PI controller, comfort priority MPC and energy saving priority MPC. 20 

 21 

Fig. 11(a) shows the changes of the Tsend values under the 4 control strategies. It 22 

can be seen that the strategies using MPC adjust Tsend automatically based on the cabin’s 23 
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heat load, and the Tsend values initially decrease and then rise. In addition, the Tsend value 1 

with the energy-saving priority MPC (10.77 °C to 15.89 °C) is higher than that with the 2 

comfort priority MPC (9.26 °C to 13.80 °C). This results in the increase of the 3 

evaporation temperatures, as shown in Fig. 11(b). The comfort priority MPC keeps Pevap 4 

between 39.65 bar and 42.31 bar, while the energy-saving priority MPC maintains it 5 

between 41.41 bar and 45.83 bar. Besides, compared to the strategy using PI controller, 6 

both MPC strategies increase the maximum evaporation pressure by 5.02 bar (13.6%) 7 

and 8.67 bar (23.5%), respectively, contributing significantly to energy savings in the 8 

TCCTMS. In Fig. 11(c), Pdis controlled by the strategy using On/Off-PI controller, 9 

remains close to the optimal value determined by ambient temperature alone. However, 10 

the strategies using PI controller and MPC consider the influence of solar radiation, 11 

causing Pdis values to follow the cabin’s heat load trend. The maximum values of Pdis 12 

occur at 13151s (when Ta is high and Isolar reaches its peak value) in all three strategies, 13 

measuring 98.75 bar, 95.03 bar, and 97.00 bar, respectively. 14 

 15 

(a) 16 

 17 
(b) 18 

 19 

(c) 20 

Fig.11 Trajectories of the (a) Tsend (b) Pevap and (c) Pdis values under the control 21 

of On/Off -PI controller, PI controller, comfort priority MPC and energy saving 22 
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priority MPC. 1 

 2 

Fig. 12(a) and Fig. 12(b) indicate that the values of 𝑁 and �̇� increase first 3 

and then decrease under the control of the PI controller and two MPCs. It can be 4 

observed that the compressor speed is higher under the PI control compared to the 5 

𝑁 under the two MPC controls. Notably, the energy-saving priority MPC control 6 

demonstrates the lowest compressor speed among the three control strategies. 7 

Conversely, the �̇� value under the PI control remains at the lowest. This can be 8 

attributed to the lower Tsend and Pevap values with the PI controller compared to the two 9 

MPCs. In addition, as shown in Fig.12(c), the �̇� under the PI controller consistently 10 

surpasses that of the comfort priority MPC due to the low evaporation pressure and the 11 

heavy dehumidification load. Conversely, the energy-saving priority MPC exhibits the 12 

lowest power consumption. Overall, compared to the PI controller, both the comfort 13 

priority MPC and energy-saving priority MPC can achieve power consumption 14 

reductions of 7.89% to 17.58% and 15.17% to 29.99%, respectively. 15 

 16 

 17 

(a) 18 

 19 
(b) 20 

 21 
(c) 22 
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Fig. 12 Trajectories of (a)Ncom, (b) ṁair, (c) Ẇ under the control of On/Off -PI 1 

controller, PI controller, Comfort priority MPC, and energy saving priority MPC. 2 

 3 

Fig. 13 illustrates the energy consumption of the TCCTMS under the four 4 

controllers over a 6-hour period. It is evident that from 2500s to 17000s, the energy 5 

consumption of the On/Off-PI controller is lower than that of the PI controller. This is 6 

due to the On/Off-PI controller sacrificing some passenger comfort during periods of 7 

high cabin heat load. Furthermore, the comfort priority MPC demonstrates significant 8 

energy-saving advantages as it automatically determines the optimal Tsend and Pdis. 9 

Compared to the On/Off-PI controller and PI controller, it achieves energy savings of 10 

14.51% and 13.33%, respectively. In the case of energy-saving priority MPC, further 11 

optimization is achieved by increasing evaporation pressure and reducing heat load. 12 

This results in a total energy consumption reduction of 2.71 kWh/2.54 kWh 13 

(21.38%/20.27%) over the 6-hour period,  compared to the On/Off-PI controller and 14 

PI controller. 15 

 16 

Fig. 13 Energy consumption trajectories of the TCCTMS under four controllers. 17 

 18 

6. Conclusion  19 

In this study, we provide a comfort priority model predictive controller and an 20 

energy saving priority model predictive controller for the transcritical CO2 system that 21 

focuses on the cabin cooling mode. Based on the genetic algorithm, an orienting control 22 

data-driven model is created for transcritical CO2 air conditioning system. Through 23 
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rigorous validation, we confirm the model's ability to accurately capture the dynamic 1 

behavior of the system. Besides, A dynamic cabin thermal model and a predicted mean 2 

vote calculator are established to predict and evaluate passenger comfort. In addition, 3 

comparisons are made between the proposed MPCs and traditional feedback control 4 

strategies, including On/Off-PI control and PI control, under various conditions such as 5 

variable ambient temperature, solar radiation, and vehicle speed over a 6-hour 6 

evaluation period. Key findings are reached and given as follows: 7 

(1) The proposed model predictive controller enables simultaneous control of the 8 

compressor, expansion valve, and indoor fan under operating condition disturbances, 9 

without the need for an additional PI controller. This allows the transcritical CO2 system 10 

to operate the optimal discharge pressure and optimal supply air temperature, without 11 

the need for extensive experimental selection of optimal values.  12 

(2) The two model predictive controllers improve passenger comfort by maintaining 13 

stable PMV values, overcoming PMV fluctuations in On/Off-PI control, and 14 

eliminating PMV overshoot issues during startup in PI control. 15 

(3) Both comfort priority model predictive controller and energy-saving priority model 16 

predictive controller exhibit notable reductions in power consumption compared to the 17 

PI controller. Comfort priority model predictive controller can achieve power savings 18 

of 7.89% to 17.58%, while energy-saving priority model predictive controller can 19 

achieve even greater power savings of 15.17% to 29.99%. Furthermore, the transcritical 20 

CO2 cabin thermal management system equipped with two MPCs exhibits a significant 21 

reduction in total energy consumption, with a decrease of 13.33% (equivalent to 1.67 22 

kWh) and 20.27% (equivalent to 2.54 kWh) observed over a 6-hour duration.  23 

This study represents an ongoing effort, with the current paper focusing solely on 24 

the cabin cooling mode. However, future research will encompass other aspects such 25 

as cabin heating, coordinated cooling and heating between the cabin and the battery, as 26 

well as cabin dehumidification. Exploring these areas could potentially lead to 27 

substantial modifications in the conclusions drawn from this study. 28 
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