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Abstract—We consider the problem of designing and training
a neural network-based orchestrator for fog computing service
deployment. Our goal is to train an orchestrator able to optimize
diversified and competing QoS requirements, such as blocking
probability and service delay, while potentially supporting thou-
sands of fog nodes. To cope with said challenges, we implement
our neural orchestrator as a Deep Set (DS) network operating on
sets of fog nodes, and we leverage Deep Reinforcement Learning
(DRL) with invalid action masking to find an optimal trade-off
between competing objectives. Illustrative numerical results show
that our Deep Set-based policy generalizes well to problem sizes
(i.e., in terms of numbers of fog nodes) up to two orders of
magnitude larger than the ones seen during the training phase,
outperforming both greedy heuristics and traditional Multi-Layer
Perceptron (MLP)-based DRL. In addition, inference times of our
DS-based policy are up to an order of magnitude faster than an
MLP, allowing for excellent scalability and near real-time online
decision-making.

Index Terms—Fog Computing, Reinforcement Learning, Or-
chestration, Optimization, Deep Learning

I. INTRODUCTION

Fog Computing (FC) is a distributed computing paradigm

that extends Cloud Computing (CC) by offloading tasks to

devices situated in close proximity to the user, making use

of their computing, storage, and communication resources

[1]. FC can provide, among other benefits, lower latency

for service access and fruition compared to CC. As FC is

meant to handle heterogeneous devices with context-specific

constraints (e.g., limited power, unstable connectivity, etc.),

an orchestration layer, represented by an entity referred to as

the fog orchestrator, is required to oversee the management of

resources and the deployment of services. As such, a proper

node selection policy is crucial in the effectiveness of FC

systems, as multiple factors must be considered, including but

not limited to the available computing power and the proximity

of the service to the consumer.

Deep Reinforcement Learning (DRL) is a rapidly growing

field that has the potential to revolutionize the way FC net-

works are optimized and controlled. Thanks to its capability of

learning without explicit human supervision, DRL has found

broad applications in networking, such as in traffic control [2],

routing optimization [3], [4], and resource allocation [5], [6].

However, one severe limitation of traditional DRL-based

approaches, often based on Multi-Layer Perceptron (MLP)
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neural networks, is their inability to deal with variable-sized

input and output spaces. For instance, in the context of service

orchestration in FC, the same DRL-based orchestrator must

be applicable to clusters of fog nodes of arbitrary size, as

the number of fog nodes is bound to change over time due

to random connections/disconnections. Unfortunately, since

the input and output dimensionalities of MLPs are defined

on fixed-dimensional vector spaces, it is often impossible

to generalize DRL-based approaches without retraining from

scratch. These limitations may prevent the deployment of

DRL-approaches in real application scenarios.

In this work, to cope with this fundamental challenge, we

formulate the problem of online service orchestration in FC

networks as a Machine Learning problem defined on sets. In-

deed, we argue that a cluster of fog nodes is better represented

as a set, i.e., as an arbitrary-size collection of distinct elements,

rather than as a fixed-dimensional vector representation (as in

traditional MLP-based approaches). Following this intuition,

we leverage Deep Sets (DS) neural networks [7] to implement

our DRL-based policy. DS are a family of neural networks

tailored for processing data structured as sets. Once trained,

DS networks can perform inference to sets of arbitrary size

without the need for retraining, with a computational com-

plexity linear in the number of elements in the input set.

Therefore, integrating DS into FC networks allows for learning

generalizable policies independently of the number of nodes

available at a particular time in the network.

As a reference application scenario, we build upon the state-

of-the-art FORCH orchestrator [8], a service orchestration

system specifically designed for flexibility, which extends

the Everything-as-a-Service (XaaS) model to fog computing

environments. At each service request arrival, telemetry data

together with service specifications are fed to a DRL-based

policy, which selects the best node for serving the request.

The choice of the nodes is driven by a properly-shaped reward

signal, which in this work aims to find an optimal trade-off

between blocking probability and requested service latency.

Our illustrative numerical results on a simulation environment

show that our DS-based policy is able to generalize its

knowledge for numbers of fog nodes up to two orders of

magnitude larger than training, outperforming both standard

greedy heuristics and MLP-based policies. We, therefore, lay

the foundations for implementing DRL-based intelligence in

real orchestration software.



II. RELATED WORK

DRL, thanks to its capability of optimizing long-term objec-

tives in dynamical systems, has found broad application in the

context of resource allocation in FC networks. In this Section,

we briefly survey recent literature on the topic and highlight

our main contributions compared to the state-of-the-art.

Literature sharing the most similarity with our work consid-

ers the problem of resource allocation in FC networks. In [9],

authors investigate the task of placing service containers in fog

nodes given a list of service demands to minimize the number

of deployed containers and optimize QoS metrics. An MLP-

based Deep-Q Learning (DQN) agent is proposed, outperform-

ing traditional optimization methods. In [10], authors consider

the task of allocating service requests in a Fog Radio Access

Network (F-RAN). An MLP-based DQN agent is proposed

to optimize the utilization of edge resources, the utility of

the served requests, and the acceptance probability. In [11],

authors propose an intelligent Reinforcement Learning (RL)-

based resources management at the network controller side,

for sustainable Fog Radio Access Networks. Authors devise

an MLP-based DQN to minimize the energy consumption in

the network. In [12], authors propose three MLP-based DRL

scheduling algorithms for the cloud-fog continuum, minimiz-

ing both the makespan and processing cost of workflows.

A second relevant body of literature considers the task

offloading/migration/caching problem in FC networks. In [13],

authors deal with the issues of content caching strategy,

computation offloading policy, and radio resource allocation in

Fog Computing networks, with the objective of minimizing the

end-to-end delay. Authors develop an MLP-based DRL algo-

rithm for solving the proposed optimization problem. In [14],

authors focus their attention on offloading device-to-device

issues in FC industrial applications. In particular, they make

use of two different scheduling algorithms based on RL called

Dynamic Reinforcement Learning Scheduling (DRLS) and

Deep Dynamic Scheduling (DDS), showing how these two al-

gorithms can drastically reduce energy costs compared to other

offloading/non-offloading schemes. In [15], authors consider

the problem of many-to-many task offloading in a dynamic

vehicular environment. In particular, they adopt a Multi-Agent

Gated actor Attention Critic (MA-GAC) approach, leading to

an efficient offloading optimization process in a distributed

manner. In [16], authors propose a decentralized task offload-

ing method based on Transformer and Policy Decoupling-

based Multi-Agent Actor-Critic (TPDMAAC), highlighting the

flexibility of this algorithm, as it can be adapted to other

scenarios by the fine-tuning of its parameters even with an

uncertain load in the edge server. In [17], authors present a

new component migration strategy in an NFV-based hybrid

cloud/fog system considering the mobility of both end users

and fog nodes. In particular, they propose a DRL approach,

based on a Double Deep-Q Network (DDQN), to decide where

and when to migrate application components, achieving better

results in both delay and power consumption compared to

other state-of-the-art application migration strategies. In [18],

authors deal with the cooperative edge caching problem in

F-RANs to minimize the content transmission delay. Authors

propose a Multi Agent Reinforcement Learning (MARL)-

based cooperative caching scheme, that applies a DDQN on

each Fog Access Point (F-AP).

While all of the aforementioned works comprise significant

advances in the application of DRL in FC environments, they

do not address the problem of zero-shot generalization on

unseen (and possibly more complex) deployment environ-

ments. Most state-of-the-art DRL approaches for FC make

use of MLP deep neural networks for implementing their

DRL policy. As MLPs operate on fixed-dimensional vector

spaces, it is impossible to generalize their learned knowledge

to different deployment scenarios without retraining. Multi-

agent approaches such as in [15], [18] partially address the

scalability issue of state/action spaces by distributing con-

trol over multiple learning agents. However, a distributed

MARL-based approach is fundamentally incompatible with

centralized service orchestration, and limitations in zero-shot

generalization due to fixed input/output dimensionalities of

MLPs still stand. In contrast, [16] explicitly considers the

problem of fixed input/output dimensionality of MLPs, but

their countermeasure still requires fine-tuning when applied to

testing scenarios different than training. Overall, the intrinsic

difficulty of zero-shot generalization makes deployment of

DRL-based orchestrators in real scenarios problematic.

In this work, to cope with this scalability challenge, we

consider online service orchestration in FC networks as a

Machine Learning problem defined on sets of fog nodes. We

make use of deep neural network architectures tailored for

processing data structured as sets, enabling generalization to

numbers of fog nodes of arbitrary size, possibly significantly

larger than training. To illustrate our findings, we build on

the FORCH [8] orchestrator, abstract its core functionalities

into online decision-making, and train via DRL a DS neural

network to optimize the process of service allocation.

III. BACKGROUND

In this Section, we provide some background on the basics

of DRL and on permutation-equivariant/invariant Deep Sets

[7] neural networks, and we discuss how DS can be leveraged

for learning DRL-based policies that can deal with variable

state/action spaces without the need for retraining.

A. Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) is a Machine Learning

paradigm that targets sequential decision-making problems

[19]. A DRL agent learns by trial-and-error via repeated

interactions with a dynamic environment, with the objective of

maximizing the accumulation of rewards. Specifically, a DRL

environment is often modeled as a Markov Decision Process

(MDP). An MDP consists in a tuple 〈S,A, P,R, γ, µ〉, where

S is the state space, A is the action space, P is the transition

probability matrix, R is the reward function, γ is the discount

factor, and µ is the initial state distribution. The goal of DRL is

to learn a neural network-based policy πθ(a|s), a ∈ A, s ∈ S ,



parameterized by θ, such that the discounted accumulation of

rewards over a time-horizon T is maximized:

θ = argmax
θ

J(πθ) = E

[

T
∑

t=0

γtRt

∣

∣

∣

∣

∣

πθ

]

(1)

Additionally, we define the discounted return at time step t

as Gt =
∑

∞

k=t+1
γk−t−1Rk. Moreover, given a policy π, we

define its value function Vπ(s) = Eπ[Gt|st = s].
While small-size MDPs can be solved to optimality with

tabular RL methods, the state/action spaces of real-world

MDPs may grow prohibitively large. In the context of FC,

the resource occupation of fog nodes, which in its simplest

form can be represented by a real number in [0, 1], may take

an infinite amount of possible values. As such, one needs to

leverage function approximation via deep neural networks for

solving large-size MDPs.

In the following, we will refer to Actor-Critic DRL algo-

rithms, specifically to Proximal Policy Optimization (PPO)

[20]. PPO is among the most widely used DRL algorithms

thanks to its training efficiency and robustness to the choice

of hyperparameters. Briefly, training Actor-Critic algorithms

requires defining both a policy πθ(a|s) and a value function

approximator Vξ(s), parameterized by θ and ξ, respectively.

Once the policy is trained, the value function approximator is

discarded, and only the policy is kept for inference.

While traditional DRL-based approaches in FC employ

MLP neural networks for implementing πθ(a|s) and Vξ(s),
the input/output spaces of said functions are limited by the di-

mensionality of state/action spaces in the training environment.

For instance, if the dimensionality of the state/action space

depends on the number of fog nodes, MLP networks cannot be

applied without retraining on a different number of fog nodes,

as in MLPs the dimensionality of the input space is hard-coded

in the neural network architecture. In the following, we will

tackle this problem by formulating the problem of resource

allocation in FC as a problem defined on sets, and we will

employ neural network architectures tailored for processing

data structured as sets.

B. Deep Set Neural Networks

We now consider the case in which the input data to our

neural network can be represented as a set. Formally, we

consider our input as a set of n elements X = {x1, . . . , xn}.
Our goal is to design neural networks that are insensitive

to the ordering of elements in the set. Formally, we would

like neural networks that are either permutation-equivariant

or permutation-invariant with respect to the ordering of the

elements in the input sets. We define a function f to be

permutation-invariant if f(X) = f(p(X)) for any permutation

p, i.e., if the output of the function does not depend on the

ordering of the input set elements. Similarly, we define a func-

tion f to be permutation-equivariant if f(p(X)) = p(f(X))
for any permutation p, i.e., if the permutation on the input set

elements is reflected on the output.

In this work, we choose Deep Sets (DS) [7] as the blueprint

for implementing permutation-equivariant and permutation-

0.9 0.3 0.5

0.7 0.9 0.8

0.6 0.5 0.4

Element features

0.9 0.9 0.8

0.9 0.9 0.8

0.9 0.9 0.8

0.9 0.9 0.8

Row-wise

Row-wise

Element-wise

subtraction

S
e
t 

e
le

m
e
n
ts

(a) Permutation-equivariant Deep Set.

0.9 0.3 0.5

0.7 0.9 0.8

0.6 0.5 0.4

Element features

S
e
t 

e
le

m
e
n

ts

Equivariant

Deep Set
MLPPooling

(b) Permutation-invariant Deep Set.

Fig. 1. Computational flow of permutation-equivariant and permutation-
invariant Deep Set neural networks.

invariant deep neural networks. The properties of Deep Sets

that make them an attractive choice for implementing scalable

and intelligent fog orchestrators are: i) Deep Sets implement

either permutation-equivariant or permutation-invariant neural

networks, i.e., the learned functions are not bound to a specific

indexing of the fog nodes; ii) the time complexity of Deep Sets

scales linearly with the number of fog nodes, and computations

can be trivially parallelized over different elements in the set;

and iii) Deep Sets can infer on sets with an arbitrary number

of elements, allowing generalization to different numbers of

fog nodes. Formally, considering sets of n elements each one

characterized by m features, Deep Sets realize a permutation-

equivariant function f(x) : Rn×m → R
n×k as follows:

f(x) = σ(xΛ− 1TΓmaxpool(x)) (2)

where x ∈ R
n×m are the input features, Λ, Γ ∈ R

m×k are

trainable parameters, and σ(·) is an element-wise nonlinearity

(e.g., ReLU). The above equation realizes a permutation-

equivariant function with respect to the rows of x. The product

xΛ consists in applying the same linear transformation Λ to

each row of x. The function maxpool extracts the maximum

of each column of x, thus being permutation-invariant. One

can therefore stack multiple layers in the form of Eq. (2) to

build Deep Set permutation-equivariant neural networks. The

update rule of Deep Sets is closely related to Message Passing

Graph Neural Networks (MPNNs) [21]. Briefly, Deep Sets can

be seen as MPNNs where at each message-passing iteration

all nodes receive the same message. Since in this work we do

not assume an adjacency model among fog nodes, we found

Deep Sets more suitable to our needs than the more general

MPNNs. The computational flow of permutation-equivariant

Deep Sets is illustrated in Fig. 1a.

The computations in Eq. (2) do not assume a fixed value

for n, i.e., the matrix multiplications appearing in Eq. (2) can

be performed irrespectively from the size of the input set.



As such, once a Deep Sets networks are trained, they can

perform inference on input sets of arbitrary size. Moreover,

their computational complexity is linear in the number of

elements in the set, and computations can be parallelized over

the elements in the set (i.e., the rows of x) in a similar fashion

to “batching” in deep neural networks.

In the context of Actor-Critic DRL algorithms, permutation-

equivariant Deep Sets can be leveraged to implement a policy

πθ(a|s) : R
n×m → R

n for a discrete action space over the

set elements. In particular, the state s ∈ R
n×m represents a

set of n elements each characterized by m features, and the

action a ∈ R
n represents a categorical distribution over the n

elements in the input set.

In a similar fashion, one can leverage permutation-invariant

Deep Sets to implement the value function approximator

Vξ(s) : R
n×m → R. In this case, one requires permutation

invariance as the output of Vξ(s) is a scalar. To realize

permutation-invariant Deep Sets, one can apply a permutation-

invariant pooling operator pool : Rn×m → R
m to the final

layer of an equivariant Deep Set network (e.g., max, sum or

mean pooling). The pooling operator yields a fixed-size repre-

sentation of an arbitrary-size set. Said representation can then

be further transformed by a function f : Rm → R (e.g., a small

MLP) to yield the desired output scalar. The computational

flow of permutation-invariant Deep Sets is illustrated in Fig.

1b.

IV. DRL-FORCH: DEEP REINFORCEMENT

LEARNING-BASED FOG ORCHESTRATOR

A. System Model

Our reference environment is the FORCH orchestration

system [8], designed to provide services to users in a dynamic

way, with a focus on resource utilization efficiency and service

fruition latency. In principle, the orchestrator listens for service

requests from the users and attempts to activate said services

on the available fog nodes. In this context, one of the key

issues is how to properly select the node on which to deploy

the service. This problem is made even more delicate by the

nature of the fog environment, where available nodes may

change over time due to current nodes disconnecting and new

ones joining. Therefore, in the context of DRL for service

orchestration in FC scenarios, designing a generalized policy

that is able to handle the variable number of fog nodes is a

crucial research challenge.

The main entities in the DRL-FORCH system architec-

ture are illustrated in Figure 2. Our proposed DRL-FORCH

orchestrator leverages retrieved telemetry data from the fog

network to perform online decision-making. In the current

implementation, FORCH employs Prometheus [22], paired

with a simple Python-based system monitoring routine, to

collect and store information on the resource utilization of

the fog nodes, including usage data on CPU, RAM, disk, and

network interfaces.

Formally, we consider an orchestrator managing a set V of

fog nodes. Service requests from users arrive randomly, upon

which the orchestrator chooses either to serve them in one of

Deep Reinforcement Learning-based Fog Orchestrator
(DRL-FORCH)
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Fig. 2. Service deployment decision making in DRL-FORCH.

the available fog nodes or to reject them (e.g., by blocking

the service request or by sending it to a cloud infrastructure).

The FORCH system maintains an index of all the services it

supports, including information needed to refer to each service

in the orchestration context (name, identifier, service type),

as well as to activate it (virtualization technology-specific

details). Each request specifies the service the user needs,

which is associated with a specific service type. In FORCH,

services are classified into different types based on their

deployment model, within the XaaS paradigm. Specifically,

with references to the FORCH architecture introduced in [8]

and extended in [23], we consider the following types of

service:

• Fog Virtualization Engine (FVE), instantiated according

to the Infrastructure-as-a-Service (IaaS) model. It enables

the deployment of a variety of computing environments

on top of a generic virtualization layer available on a fog

node (e.g., Docker).

• Software Development Platform (SDP), instantiated ac-

cording to the Platform-as-a-Service (PaaS) model. It

allows the node to provide the user with a set of tools,

including libraries, platforms, or interpreters to develop

and run generic applications (e.g., Python SDK).

• Application (APP), instantiated according to the

Software-as-a-Service (SaaS) model. It lets a fog

node host a specific application that can be accessed by

consumers through a specific interface (e.g., a Web-based

application).

• Lightweight Atomic Functions (LAF), instantiated ac-

cording to the Function-as-a-Service (FaaS) model.

Based on the event-driven serverless computing execution

model, this service is fully managed by the fog node and

activated at need (e.g., real-time multimedia transcoding).

We presume that nodes that make their resources available

to the fog orchestration system support at least one of the

services that FORCH recognizes. Nodes offering SDP, APP,



and/or LAF services will only be able to be employed to serve

requests for the specific type of service they offer. Conversely,

we expect that nodes able to instantiate FVE services (i.e.,

nodes capable of deploying virtualized platforms) can instan-

tiate any other type of services, provided a suitable source

(e.g., a container image) exists for them.

Generally, we assume FaaS and SaaS elements to be the

ones with tighter requirements on latency and softer needs in

terms of computational power, while PaaS and IaaS elements

to be less strict in terms of latency requirements but more

demanding in terms of computational power. We argue that

this is a sensible rationale, as the former two services types are

generally associated with on-demand fast service provisioning,

reflected in their looser requirements in terms of computational

power, and their tighter requirements regarding latency times;

on the opposite, the latter two service types usually correspond

to a need for more computation power at the expense of service

latency.

In our system model, we view fog nodes as heterogeneous

devices with inherent limits on computational resources [24].

Specifically, we consider two classes of fog nodes: fixed

nodes and mobile nodes. Fixed nodes are specialized nodes

located at the edge of the local infrastructure, that assist

the orchestrator whenever no suitable mobile node can be

selected for the provisioning of services. As such, they possess

vast computational resources, and provide services with lower

latency times compared to the mobile ones. Mobile nodes,

instead, represent devices that make their resources available

to the orchestrator for a limited time, generally not known a

priori, as they are reachable only when connected to the same

local network of the orchestrator, before disconnecting, either

logically or physically. As such, those nodes are likely to offer

fewer computational resources than fixed nodes, and are gen-

erally expected to exhibit less predictable latency performance.

However, mobile nodes are expected to provide valuable

support in handling services that have softer constraints in

terms of latency and required computational power, allowing

the orchestrator to reserve fixed nodes for more demanding

tasks, thereby improving resource usage efficiency.

In this work, we assume that resource occupation in terms of

CPU, RAM, disk, and bandwidth of fog nodes is represented

as normalized values in [0, 1]. We assume that fog nodes are

available if their resource occupation does not exceed 0.95 and

0.5 for fixed and mobile nodes, respectively, i.e., we assume

that mobile nodes have approximately half the overall capacity

of fixed nodes in terms of CPU, RAM, disk, and bandwidth.

Furthermore, we make some assumptions regarding the

service latency that each fog node can provide and those

required by each service class. In this work, we assume that

each service belongs to a “latency class” that goes from

1 to 10, where class 1 includes services with the tightest

requirements on latency, and 10 denotes best-effort. Each fog

node in the system is also associated with a latency class,

representing the lowest latency value the node can support

(i.e., the services it can deploy satisfying their requirements

on latency). Specifically, we randomly assign a latency class

in the range from 5 to 10 for mobile nodes and from 1 to 5 for

fixed ones, respectively, consistently with the above rationale.

This information is leveraged in the process of choosing on

which node to activate a requested service.

Finally, we assume that, for each service FORCH supports,

upper bounds on the requested computational resources are

known a priori by the orchestrator.

B. Formulating Orchestration in Fog Computing as an MDP

To train a DRL-based orchestrator for FC networks, we

must provide an MDP formulation for our FC environment.

In particular, we need to provide suitable definitions for the

state space S , the action space A, and the reward function R.

Crucially, we need to engineer our state and action spaces

to be compatible with our Deep Sets-based permutation-

equivariant policy and permutation-invariant value function

neural networks.

Action Space: we consider a discrete action space of

dimension |V | + 1. Given a service request, the orchestrator

either allocates it to one of the |V | fog nodes or rejects it.

Rejection can be due to a lack of computational resources in

the fog nodes, or proactive, i.e., rejecting a service request with

the long-term goal of serving more in the future. Rejection can

be intended as offloading the service request to the cloud, in

which the availability of computational resources is assumed

to be unconstrained.

We note that the action space grows linearly with |V |, which

may pose scalability issues for large numbers of fog nodes.

Still, not all actions may be simultaneously permitted given

a specific state. Indeed, a fog node may not have enough

computational resources to satisfy a service request or may not

host the appropriate containerized service. A simple solution

found in previous literature [9], [10] is to issue negative

rewards (i.e., penalties) whenever an invalid action is chosen.

Even though penalties discourage the agent from choosing

invalid actions, it is well-known that in DRL sparse (i.e.,

infrequent), large rewards are detrimental to convergence. As

invalid actions are a priori known by the orchestrator, we

leverage invalid action masking in policy gradient algorithms,

which has been found to yield significantly better performance

and sample efficiency than invalid action penalties [25]–[27].

Action masking works by setting the log-probabilities of

invalid actions to −∞ before sampling an action, according

to a state-dependant action mask. As such, we ensure that our

orchestrator never chooses invalid actions. Formally, we define

the action mask of node i ∈ {0, . . . , |V |} at state s as follows:

mask(s)[i] =







true if i has enough resources and hosts

the appropriate service container

false otherwise
(3)

Whereas for action |V |+ 1, i.e., rejection, the action mask

is always set to true. The possibility of rejection ensures that

in all states, at least one action is permitted. In this way, we

exclude the possibility that the agent may “lock itself” in states

where all actions are invalid.



-1 -1 -1

Node features

Request features

dummy "reject" node

Set of |V|+1 elements (rows)

Fig. 3. Building a state for DRL-FORCH. The state s consists of a set of
|V |+ 1 elements, each element having a fixed number of features m.

State Space: we consider a state space of dimension

(|V |+1)×m, where m is the number of features per node. For

each fog node, we choose the normalized CPU, RAM, disk,

bandwidth utilization, and its measured delay as features. As

our Deep Set-based policy returns a categorical probability

distribution over the set elements (i.e., choosing a fog node),

we must also introduce a “dummy” node representing the

reject action. Therefore, we include an additional “reject”

node with all features set to −1. Furthermore, we consider

request-specific features, namely, the CPU, RAM, disk, and

bandwidth required by the current request. Finally, since the

orchestrator is invoked at each service request arrival, the time

interval ∆t between two consecutive environment steps is not

constant. Therefore, we also consider ∆t as an input feature.

The inclusion of ∆t allows the agent to learn the traffic dy-

namics, as it explicitly conveys the inter-arrival time between

subsequent requests, and implicitly the service duration time

(by looking at the difference in resource occupation in fog

nodes between two consecutive states). The request-specific

features and ∆t are replicated n + 1 times and concatenated

to the node-specific features. Fig. 3 illustrates how the set-

based state representation is built.

Reward Function: we consider a bi-objective optimization

problem, such that i) the average blocking probability is

minimized, and ii) the latency QoS requirements of each

service are satisfied as much as possible. As such, upon either

choosing a fog node or rejecting a service request, our reward

function is shaped as follows:

rt =











1 if accepted and Lnode ≤ Lservice

−Lnode−Lservice

Lnode
if accepted and Lnode > Lservice

−1 if rejected

(4)

where Lnode is the maximum latency class satisfiable by

the chosen fog node, and Lservice is the latency class required

by the orchestrated service. When Lnode > Lservice, we define

the latency penalty Lpen = Lnode − Lservice as a measure of

the QoS degradation. As such, the reward function is shaped

such that it penalizes both i) blocking and ii) violation of

latency service requirements. We note that, our reward shaping

strategy is akin to assigning different objective priorities in

multi-objective optimization, which depend on the specific

application scenario [28]–[30]. In our case, we normalize the

latency penalty such that the associated reward is always

greater than −1, meaning that rejecting a service request is

(a) Training blocking probability.

(b) Training latency penalty

Fig. 4. Training blocking probability and QoS metrics for PPO-DeepSet and
the considered greedy heuristics and DRL-based baselines.

always considered more undesirable than accepting it with a

degradation in the latency requirements.

We underline that objectives i) and ii) compete with each

other. For instance, the blocking probability can be minimized

by a deterministic load-balancing policy that distributes the

requests evenly among all the available fog nodes, but this

would very likely break the QoS requirements of the most

latency-constrained service requests. Conversely, one may

ensure QoS satisfaction by greedily filling the fixed nodes

first, but failing to exploit the additional capacity provided

by mobile modes will lead to larger blocking probabilities.

Therefore, learning an online orchestration policy that finds a

good long-term trade-off between load balancing and latency

constraints is not a trivial optimization task.

V. ILLUSTRATIVE NUMERICAL RESULTS

The goal of our illustrative numerical results is to empiri-

cally show that our Deep Set-based orchestrator can:

1) outperform standard greedy heuristic approaches in

terms of QoS metrics optimization;

2) match or outperform a traditional MLP-based orchestra-

tor with inference times up to an order of magnitude

faster and lower memory occupation;

3) generalize its learned policy without the need for re-

training (i.e., zero-shot generalization) to numbers of fog

nodes up to two orders of magnitude larger than training.

In our simulation, for each service request, we assume the

demanded computational resources (CPU, RAM, disk, and

bandwidth) to be uniformly distributed in [0.15, 0.3], [0.1, 0.2],



(a) Average resource utilization on fixed fog nodes. (b) Average resource utilization on mobile nodes.

Fig. 5. Average resource utilization of fixed and mobile nodes for |V | = 100 fog nodes, mean arrival rate λ = 1000, and mean service duration µ = 1. The
dashed line indicates the 0.95 and 0.5 saturation thresholds for fixed and mobile fog nodes, respectively.

[0.01, 0.1], and [0.01, 0.02] for FVE, SDP, APP, and LAF

service types, respectively. Similarly, we assume the requested

latency classes to be uniformly distributed in [4, 10], [3, 7],
[1, 4], and [1, 4] for FVE, SDP, APP, and LAF service types,

respectively. Our training and evaluation protocol is structured

as follows.

Training: we train on a small set of 10 fog nodes, with a

fixed amount of offered traffic equal to 100 service requests.

We used PPO for training our DRL-based policy. Specifically,

we consider an episodic learning setting with episode length

equal to 100, i.e., where the policy and the value function

networks are updated every 100 request arrivals. Empirically,

choosing an episode length equal to 100 provided the best

trade-off between the convergence times of the policy network

and the long-term optimization of our objective function. For

implementing PPO, we borrowed from CleanRL [31] and

Stable-Baselines3 [32]. Training times were in the order of

ten minutes on a Macbook Pro M1 CPU.

Evaluation: we evaluate on environments with numbers of

fog nodes |V | = 50, 100, 500 and 1000, with a mean arrival

rate λ = 500, 1000, 5000 and 10000 time-units, respectively,

and a mean service duration µ = 1 time-units for all cases.

Thus, we evaluate zero-shot generalization of DS on instances

up to two orders of magnitude larger than training.

Baselines: we compare our DS-based orchestrator with the

following baseline orchestration policies:

• LB-Greedy: assigns the service request to the available

node with the lowest current resource occupation. This

policy aims at minimizing the blocking probability, at

the expense of the latency penalties.

• QoS-Greedy: assigns the service request to the available

node with the lowest measured service delay. This policy

aims at minimizing the latency penalties, at the expense

of the blocking probability.

• MLP: DRL-based orchestrator optimizing the same re-

ward function as DS, but using an MLP neural network to

implement the policy and the value networks. In contrast

to DS this baseline is evaluated on the same settings

in which it was trained, due to the fixed input/output

dimensionalities of MLPs.

We consider average blocking probability and latency

penalty (as defined in (4) as performance metrics. For DS

and MLP, numerical results are aggregated over five different

random training seeds.

Numerical Results: Fig. 4 illustrates the evolution during

training of blocking probability and latency penalty of DS and

MLP, alongside the average values of QoS-Greedy and LB-

Greedy. DS attains approximately 3% lower blocking proba-

bilities than the greedy heuristic baselines, achieving a relative

15% improvement. Moreover, the average latency penalty of

DS stands lower than 1.5, which is only 0.5 away from the

QoS-Greedy policy. Overall, DS achieves the best trade-off

between blocking probability and latency penalty, illustrating

the capability of DRL to efficiently learn an effective online

optimization strategy for both QoS metrics. Moreover, while

DS and MLP learn similar policies, we observe that the

policy learned by DS is slightly better than MLP for both the

considered metrics. This result illustrates that the choice of

a DS-based policy for orchestration in FC networks is indeed

more desirable than a traditional MLP. Furthermore, other than

outperforming an MLP, DS can be applied to an arbitrary

number of fog nodes without the need for retraining.

Fig. 5 illustrates the resource occupation (CPU, RAM, disk,

and bandwidth) of DS and the considered baselines in the

training environment. We observe that, as expected, QoS-

Greedy tends to favor fixed nodes, as they provide on average

lower latency. Conversely, LB-Greedy tends to distribute the

load between mobile and fixed nodes evenly, irrespective of

the latency requirements. As illustrated in Fig. 4, both greedy

approaches fail to provide a competitive blocking probability,

as they do not take into account the dynamics of the traffic

and cannot issue tactical proactive rejections. DS and MLP, on



Fig. 6. Test blocking probabilities and latency penalties of DeepSet and the considered greedy heuristics and DRL-based baselines.

the other hand, make smart use of the available mobile nodes

(without getting too close to overloading them), allowing them

to achieve better resource utilization than both greedy heuris-

tics. We note that the occupation of both fixed and mobile

nodes is relatively far from their 0.95 and 0.50 threshold,

respectively. This suggests that blocking mainly happens due

to the unavailability of nodes hosting a specific containerized

service rather than the unavailability of raw computational

resources. This consideration reinforces the need for smart

resource allocation policies in FC networks.

Fig. 6 illustrates the blocking probabilities and latency

penalties of DS, MLP and the greedy baselines for test

environments with |V | = 50, 100, 500, and 1000 fog nodes,

with mean inter-arrival rates equal to λ = 500, 1000, 5000,

and 10000 time-units, respectively, and service duration equal

to µ = 1 time-unit for all cases. We underline that for

DS the same policy trained on |V | = 10 is reused in a

zero-shot fashion, whereas for MLP a new policy must be

trained from scratch due to the different dimensionalities of

the input spaces, with training times spanning several hours

for |V | = 1000. In particular, due to the growing complexity

of the input space, MLP is unable to learn a competitive policy

for large numbers of fog nodes. Conversely, DS extrapolates

well its learned policy without the need for retraining, attaining

the best trade-off between blocking probabilities and latency

penalty up to |V | = 1000. In particular, up to |V | = 100, DS

significantly outperforms all baselines in terms of blocking

probability, and achieves latency penalties slightly worse than

QoS-Greedy. For |V | = 500, 1000 LB-Greedy closes the gap

with DS in terms of blocking probability, but DS achieves sig-

nificantly lower latency penalties. We conclude that DS learned

an effective and generalizable orchestration policy, achieving

a smart trade-off between load balancing and satisfying QoS

latency requirements.

Fig. 7 illustrates the blocking probability of DS and the

other baselines for |V | = 100, µ = 1 while varying λ.

We can observe that both DS and MLP generalize well

Fig. 7. Blocking probability of DeepSet and the considered baselines for
|V | = 100 fog nodes, varying the service arrival rate λ.

Fig. 8. Inference times (ms) of DeepSet and MLP with two hidden layers of
size 512, for a varying number of fog nodes and 100 features per node.

with respect to the amount of offered traffic, with blocking

probabilities scaling linearly as expected. Consistently with

previous results, DS outperforms all other baselines in terms

of blocking probability.

We conclude our scalability analysis by evaluating the

inference times of the proposed Deep Set-based orchestrator

for large numbers of fog nodes and features per node. Fig.

8 illustrates the inference times of DS-based and MLP-based

policies with two hidden layers of dimension 512 and 100

features per fog node. Inference times were measured on a

Macbook Pro M1 CPU. While DS and MLP show similar



inference times for smaller numbers of fog nodes, DS scales

significantly better, with inference times approximately equal

to 0.01ms for 104 fog nodes, an improvement of an order of

magnitude compared to MLP. This is expected, as the size of

MLP grows with the number of fog nodes, while the size of

DS is independent of the number of fog nodes. As such, our

DS-based policy provides excellent scalability in both time

and memory complexity.

VI. CONCLUSION

In this work, we proposed DRL-FORCH, a Deep Rein-

forcement Learning-based orchestrator for Fog Computing net-

works built on top of the state-of-the-art FORCH orchestration

system. To deal with the limitations of standard DRL-based

solution for dealing with variable numbers of fog nodes, we

engineered the online orchestration problem as a Machine

Learning problem on sets, and we proposed the use of Deep

Sets neural networks for implementing our DRL-based orches-

tration policy. Our illustrative numerical results demonstrate

that our Deep Sets-based policy yields excellent zero-shot

generalization for numbers of fog nodes up to two orders

of magnitude larger than training, providing the best trade-

off between blocking probability and satisfaction of service

latency constraints. As future work, we plan on integrating

a realistic fog node energy consumption model in the DRL

reward function, and evaluating the performance of our DRL

agent in large-scale smart city environments.
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