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Abstract  1 

As the global population faces a progressive shift towards a higher median age, understanding the 2 
mechanisms underlying healthy brain ageing has become of paramount importance for the preservation of 3 
cognitive abilities. The first part of the present review aims to provide a comprehensive look at the 4 
anatomical changes the healthy brain endures with advanced age, while also summarizing up to date 5 
findings on modifiable risk factors to support a healthy ageing process. Subsequently, we describe the 6 
typical cognitive profile displayed by healthy older adults, conceptualizing the well-established age-related 7 
decline as an impairment of four main cognitive factors and relating them to their neural substrate 8 
previously described; different cognitive trajectories displayed by typical Alzheimer’s Disease patients and 9 
successful agers with a high cognitive reserve are discussed. Finally, potential effective interventions and 10 
protective strategies to promote cognitive reserve and defer cognitive decline are reviewed and proposed. 11 

 12 

  13 



1. Introduction – Defining Healthy Brain Ageing 14 

The past 250 years have seen a steady increase in the average human life expectancy and, although this 15 
trajectory has been temporarily altered by the recent Covid-19 pandemic1, this trend is projected to 16 
continue in the coming years in most industrialized countries2. This notion is a compelling call to address 17 
the issue of promoting and supporting a healthy ageing process.  Indeed, a lengthening lifespan does not 18 
necessarily align with an equally prolonged healthspan3, defined as the average length of a healthy life. 19 
Postponing the onset and attenuating the severity of late-life morbidity, aptly defined as ‘compression of 20 
morbidity’4, has subsequently become a health priority. 21 

The World Health Organisation (WHO) defines healthy ageing as “the process of developing and 22 
maintaining the functional ability that enables wellbeing in older age”5. Therefore, the WHO’s definition 23 
emphasizes that a healthy ageing trajectory is a ‘process’, a goal achieved throughout the lifespan to ensure 24 
the best possible outcome for one’s later years. The definition relies on the concept of ‘functional ability’, 25 
qualified as “having the capabilities that enable all people to be and do what they have reason to value”. 26 
This notion epitomizes the influential model proposed 25 years ago by Rowe and Kahn6, which lists three 27 
main components of successful ageing: maintenance of physical and cognitive function, minimised risk of 28 
disability and continued engagement with life. 29 

Embracing this framework, a significant spotlight should be afforded to healthy brain ageing. Seminal 30 
studies tackling the topic of ageing have traditionally focussed on cognitively disabled older individuals7 31 
and, more recently, individuals displaying extraordinarily positive ageing outcomes (so called super-32 
agers)8,9. The present review, instead, concentrates on usual healthy brain ageing7, which we define as the 33 
composite pattern of modifications the human brain physiologically endures with advancing age, from the 34 
anatomical, functional and cognitive standpoint, when adequate typical functional ability and adaptability 35 
are retained. 36 

The first portion of our descriptive review will provide a synopsis of the anatomical transformations 37 
observed in the brain with advanced age, while also summarizing current findings on modifiable risk 38 
factors. Subsequently, we will relate these neural substrate modifications with the associated typical 39 
cognitive decline profile displayed by older individuals10 and propose potential beneficial active 40 
interventions to support cognitive reserve11, a mitigating factor preventing pathologic decline discussed in 41 
Paragraph 6. 42 

2. Structural changes associated with healthy brain ageing.  43 

Ageing physiologically causes a whole host of anatomical and functional modifications in the brain, ranging 44 
from the intracellular to macrostructural12 levels. For the scope of this narrative review, we will discuss 45 
these changes in terms of microscale (i.e., intracellular), mesoscale (i.e., intercellular or local circuitry) and 46 
macroscale (i.e., whole brain, large scale networks) changes (Figure 1). However, it is important to note 47 
that we are not implying that these three levels are separate, nor that they should be studied as such. 48 
Indeed, they are better understood as an interconnected and mutually influential continuum. 49 

2a. Predisposing genotypes 50 

Several studies have investigated the heritability of longevity, estimating that around 25% of the variation 51 
in lifespan is caused by genetic differences13; similar efforts have been made to estimate the heritability of 52 
healthy cognitive ageing14–18. A meta-analysis of genome-wide association studies of 31 cohorts, 53 
considering a total sample size of almost 54 thousand healthy individuals, found a significant relationship 54 
between general cognitive function and four genes known to be related to the development of Alzheimer’s 55 
disease (TOMM40, APOE, ABCG1 and MEF2C)16. Among them, the APOE e4 genotype was found by later 56 
studies to predict steeper cognitive decline in older adults even when not affected by Alzheimer’s 18–21. The 57 



meta-analysis results indicate a polygenic model of inheritance16; in recent years the calculation of 58 
polygenic scores (PGS) has become common in research aiming to investigate genetic predictors of disease, 59 
health or, more generally, traits 22. PGSs are extracted from published genome-wide association studies 60 
that have tested the correlation of millions of single-nucleotide polymorphisms with specific phenotypes 61 
(e.g., disease, educational attainment…); scores can then be computed on any individual genotype to 62 
measure the genetic probability of specific traits or the liability to a specific disease. However, although 63 
PGSs were found to predict cognitive performance across several domains in old age, evidence of their 64 
effectiveness in predicting cognitive decline is still lacking18. 65 

----------------------------------------------- Please insert Figure 1 near here ------------------------------------------------ 66 

2b. The Micro scale 67 

A prominent review published almost ten years ago narrowed down the complex biology of ageing by 68 
identifying nine hallmarks of it 23, which represent widely investigated common denominators of the ageing 69 
process24: genomic instability, telomere attrition, epigenetic alterations, cellular senescence, altered 70 
intercellular communication, loss of proteostasis, stem cell exhaustion, deregulated nutrient sensing and 71 
mitochondrial dysfunction. These hallmarks are integrated, co-occurring and mutually causing one another, 72 
and can be adopted as a roadmap to discuss the microscale level changes occurring in the ageing brain. 73 

DNA damage is considered among the primary23 hallmarks of ageing, initiating a signalling cascade that 74 
reverberates through cells, driving them into apoptosis or senescence to avoid the replication of damaged 75 
genetic information24,25. Genomic instability is the increased tendency of the DNA to mutate, in response to 76 
both exogenous and endogenous factors, and the subsequent accumulation of genetic damage23. Even 77 
under physiological conditions, the DNA is not chemically stable26; additionally, it is vulnerable to chemical 78 
attacks by agents such as reactive oxygen species, resulting in prominent oxidative stress and consequent 79 
high levels of DNA mutations recorded in advanced age25,27.  Indeed, older brain tissue presents increased 80 
DNA deletions rates (the removal of at least one nucleotide in a gene during DNA copying) and reduced 81 
ability for DNA repair12,28. Although spontaneous DNA damage occurs randomly in all cell types on the order 82 
of tens of thousands of times per day26, some chromosomal regions are more prone to age-induced 83 
deterioration, such as telomeres, the terminal ends of DNA molecules29 . Most mammalian cells do not 84 
express telomerase, the enzyme responsible for the replication of telomeres30; this results in telomere 85 
attrition, the physiological gradual and cumulative loss of chromosomes’ ends protective caps during DNA 86 
replication29. Telomere attrition limits the overall number of times any cell can replicate, slowly leading to 87 
cell loss in all organs with advancing age; thus, telomere attrition has been studied as a biomarker of brain 88 
age24,31. Notably, promising genetic interventions are being studied in animal models, and indicate that 89 
premature ageing can be reverted in mice through telomerase reactivation32.  90 

A further aspect of genomic instability are epigenetic alterations33. Epigenetic mechanisms regulate gene 91 
expression by changing the chemical structure of the DNA without affecting its coding sequence; epigenetic 92 
alterations consist of either the addition/removal of methyl groups from DNA (DNA methylation) or of 93 
changes to the histones, proteins that bind to DNA molecules in chromosomes (PARylation and acetylation 94 
of DNA and histones) 12,24,34.  Epigenetic mechanisms determine both the development and the 95 
deterioration of brain tissues (see here34 for a review on epigenetics in neurodegeneration and 96 
neuroprotection) and are crucial for higher cognitive functions (e.g., memory)35. Multiple lines of evidence 97 
suggest that ageing is accompanied by epigenetic changes23; epigenetic clocks, thought to capture 98 
molecular ageing, are among the best-studied ageing biomarkers36,37. 99 

DNA damage too extensive to be quickly repaired induces signalling events that can results in senescence, 100 
which plays a causal role in ageing25. Cellular senescence is a stable arrest of the cell cycle, an adaptive 101 
mechanism by which the organism prevents the proliferation of damaged genetic material. Due to the 102 
phenomenon of ‘contagious ageing’, senescent cells induce senescence in neighbouring ones. The increase 103 



in senescent cells generation, coupled with their deficient clearance results in their deleterious 104 
accumulation23. Because senescent cells secrete high levels of proinflammatory cytokines38, cellular 105 
senescence contributes to inflammation. Tissue inflammation is so typical of ageing that the term 106 
‘inflammageing’ was coined39, and upregulated neuroinflammation studied as a marker of brain age24. 107 
Multiple other causes concur to the chronic inflammatory state observed in the ageing brain, such as 108 
invading pathogens, the accumulation of damaged tissue, neuronal injury, a decrease in the immune 109 
system efficacy12, the occurrence of improper autophagy40, and loss of proteostasis (i.e., the balance 110 
between protein synthesis, folding, trafficking, aggregation, disaggregation, and degradation) 41. The 111 
proteostasis network becomes increasingly less efficient with age42, and the subsequent deposition of 112 
proteins is among the best-known correlates of normal ageing43. A recent review of proteomic studies has 113 
identified over a thousand proteins that, across the whole human organism, including the brain, undergo 114 
modifications with age and are relevant to ageing and age-related disease 44. Thus, proteomic clocks could 115 
be implemented and serve a similar purpose to epigenetic clocks36.  116 

Neuroinflammation is initiated by microglia, the immune cells in the central nervous system and primary 117 
source of proinflammatory cytokines. Under non-damaged conditions, microglia are physiologically in a 118 
homeostatic “resting” state; they become activated in response to exposure to pathogen-associated or 119 
damage-associated molecular patterns45. While microglia cells have a neuroprotective role in the young 120 
brain, multiple studies have shown that they gradually transition to a chronically activated and neurotoxic 121 
state in older adults46, irrespective of their cognitive status47,48. Pathological microglia activation is believed 122 
to promote neurodegeneration46 and an experimental intervention based on the induction of high 123 
frequency activity in the gamma frequency band has proven effective in modifying microglia, reducing 124 
inflammation and improving protein clearance49. 125 

To counteract tissue inflammation, the use of stem cells has been proposed50. The role of stem cells in 126 
healthy ageing51 has been at the forefront of the scientific debate for a number of years, and exhaustively 127 
discussing it is beyond the scope of this review. Stem cells have been found in most tissues and organs in 128 
adult humans including, notably, the brain52. A stable populations of proliferating stem cells is necessary to 129 
the ability of tissues to recover from damage; however, with advanced age the number and proliferative 130 
capacity of stem cells decline, a phenomenon called stem cell exhaustion24,29,51. 131 

Neuroinflammation is one of the most important alterations in intercellular signalling related to ageing. A 132 
second one is deregulated nutrient sensing 23, which alters the metabolism and plays a critical role in the 133 
ageing process53. Nutrient sensing is the ability of all cells, including neurons, to recognize nutrient levels 134 
within them and in the bloodstream and respond accordingly by absorbing, storing and converting 135 
nutrients to ensure energy provision and maintain blood nutrient levels within safe ranges (e.g., blood 136 
sugar levels). A wide range of nutrient signalling pathways, especially those involving insulin, are 137 
deregulated in ageing54. Excessive activation of nutrient-signalling pathways has been linked with negative 138 
ageing outcomes: genotypes that determine a lowered activity of nutrient-signalling pathways are also 139 
predictive of successful ageing55 and calorie restrictive diets, which downregulate nutrient signalling, have 140 
well-established neuroprotective effects56.  141 

One further source of metabolism imbalance in ageing is mitochondrial dysfunction53. With advancing age, 142 
the efficacy of the respiratory chain dwindles, reducing ATP generation57; this phenomenon is particularly 143 
relevant in brain cells, as neurons are highly metabolically active58. Although the link between 144 
mitochondrial dysfunction and ageing has not been fully elucidated yet, it is known that in the elderly brain 145 
damaged mitochondria overproduce reactive oxygen species24, adding to the oxidative damage of DNA and 146 
aggravating genomic instability. Among its consequences, persistent DNA damage depletes the coenzyme 147 
NAD+59; indeed, an age-dependent reduction of NAD+ has been demonstrated in healthy humans60. NAD+ is 148 
an oxidation-reduction factor essential to energy metabolism and mitochondrial homeostasis59 so that its 149 



depletion further aggravates mitochondrial dysfunction, in a detrimental loop that contributes to the 150 
ageing process. 151 

2c. The Meso scale  152 

Age-driven mesoscale modifications (i.e., impacting the intercellular or local circuitry level) are among the 153 
most studied phenomena concerning the ageing brain. The best known of them is the formation of 154 
neurofibrillary tangles (NFT) and amyloid plaques (AP), a firmly established characteristic of brains 155 
affected by dementia of the Alzheimer’s type which is also observed in healthy ageing12,43. Neurofibrillary 156 
tangles form in the intracellular space; they are insoluble twisted fibres made mostly of tau protein, an 157 
essential building block of the microtubular structure that allows intracellular molecular transport. Amyloid 158 
plaques, instead, accumulate in the extracellular space; while protein fragments (i.e., amyloids) are broken 159 
down and removed in the healthy young brain, ageing causes protein clearance to decline, resulting in the 160 
accumulation of hard insoluble plaques of protein fragments between neurons41,43. One the one hand, the 161 
pathological misfolding of tau protein impacts the microtubule structures, which collapse and disrupt the 162 
intracellular trafficking of materials; on the other, plaques around nerve cells induce their death, 163 
conceivably by triggering an immune response. Thus, AP and NFT lead to local hypoactivation and 164 
atrophy61 in older brains. Although manifesting on different timescales62, atrophy is observed across 165 
different multimodal associative brain regions, particularly the medial temporal and parietal cortex63. 166 
Because episodic memory loss is among the cognitive functions most susceptible to ageing, medial 167 
temporal (i.e., hippocampal, entorhinal and parahippocampal) grey matter atrophy 64 and 168 
hypoactivation65 have been especially extensively studied and reported.  169 

The cerebrovascular system is impacted by age. Vessels tend to diminish in size 12,66,67 , capillaries to reduce 170 
in number68 and microbleeds and small infarctions are common69 with advanced age, causing overall 171 
decreases in cerebral perfusion: blood flow to both the grey and white matter lowers by an estimated 0.5% 172 
every year from early adulthood onwards70. Cerebrovascular causes have been indicated for the white 173 
matter lesions commonly observed in ageing12: an age-related loss of myelinated axons71 and a decline in 174 
fractional anisotropy72 have been observed; the periventricular and deep subcortical white matter lesions 175 
in particular are thought to likely arise as a result of hypoperfusion and microvascular disease68,73,74.  176 

Intercellular communication impairment is one of the hallmarks of ageing discussed in the previous section 177 
with regards to inflammageing and deregulated nutrient sensing. At the larger neural population scale, 178 
intercellular communication is impaired by neurotransmitter imbalances. Most neurotransmitters show 179 
decrements with age (e.g. dopamine and serotonine63) with cascade effects on cognitive function; 180 
GABAergic and glutamate dysregulation75 are of particular interest because of their implication in brain 181 
plasticity76 and on local oscillatory activity changes. EEG and MEG studies found that healthy ageing is 182 
characterized by changes in several metrics of resting state oscillatory activity (frequency, power, 183 
morphology and distribution). Background oscillatory activity tends to slow down in the elderly, with the 184 
alpha rhythm (8-13 Hz) becoming dominant, and an increase in delta (0.1-4 Hz) and theta (4-8 Hz) power 185 
with respect to young adults77; this is coupled with decreased activity in the gamma frequency band (30-80 186 
Hz)78. The decrease in oscillatory activity in the gamma band is particularly interesting; previous studies 187 
have tied local activation in the gamma frequency band to peri-somatic inhibition79, which relies on the 188 
activation of Parvalbumin-positive intracortical inhibitory GABAergic nets whose dysfunction accounts for 189 
the reduction in gamma power observed in the elderly80. Moreover, their impairment leads to aberrant 190 
modulation of intrinsic neuronal excitability and, subsequently, aberrant neuronal plasticity81. Indeed, local 191 
mechanisms of brain plasticity, and particularly synaptic plasticity82,83, are impaired in the ageing brain84,85. 192 

2d. The Macro scale  193 



On a macroscale level (i.e., whole brain, large scale networks), the modifications that impact the brain 194 
during ageing are well characterized, and the relevance of these changes on cognitive functions is widely 195 
recognized in the scientific literature.  196 

Recently, a brain-wide cerebrospinal fluid and interstitial fluid drainage pathway was characterized, the 197 
glymphatic system. The glial-lymphatic system of vessels channels extracellular fluid within the central 198 
nervous system to clear interstitial metabolic waste from the brain parenchyma; recent evidence suggests 199 
that ageing leads to an abnormal glymphatic function86, which results in the accumulation of metabolic 200 
waste in the extracellular space, such as amyloid fragments which, as discussed in paragraph 2c, contribute 201 
to neuronal death and cortical atrophy (for a review see87). 202 

As discussed in the previous paragraph, cellular loss and widespread hypoperfusion70,88 result in local 203 
atrophy61 across the entire brain; therefore, an overall decrease in cortical volume and thickness is 204 
observed in older individuals. A recent study, which pooled structural MRIs of more than 100,000 human 205 
participants, measured brain volumes during the lifespan and found that both grey and white matter 206 
volumes decline over time, with steeper declines for the grey matter89, accompanied by an increase in 207 
ventricular size and cerebrospinal fluid volume89. Cortical atrophy is particularly interesting because of its 208 
strong correlation with cognitive performance90.  209 

Moreover, whole-brain structural and functional connectivity are similarly and coherently impacted by 210 
ageing91. Findings on structural metrics consistently describe widespread decreases in fractional 211 
anisotropy in older compared to younger adults72,91,92 and age-related reduction in structural connectivity 212 
and efficiency starting from early adulthood93,94. Studies focussing on functional connectivity also report 213 
age-related modifications: first, the ageing brain is characterized by within network effects, i.e., alterations 214 
of synchronized activity between nodes of cortical networks. Key brain networks such as the default mode 215 
network (DMN), the frontoparietal network (FPN) and the salience network (SN) all show a decreased 216 
within network connectivity in the elderly95–98. Second, between-network effects have been found in 217 
normal ageing. These include increased between network-connectivity (i.e., increased positive correlations 218 
between networks that are not typically coupled and decreased anticorrelations between networks)91,99. 219 
This has been interpreted as a loss of functional system segregation between large-scale networks 220 
subserving cognition and it may potentially reflect an over-recruitment compensatory strategy91,100,101. It is 221 
worth noting that functional connectivity studies systematically measuring its changes during the lifespan 222 
are still scarce and not always consistent in their results102. Recent systematic reviews and meta-analyses 223 
have validated the findings described above, especially confirming the reported disruption of within 224 
network connectivity in the DMN103 and reduced network-to-network segregation99, but further second 225 
level evidence is still needed. 226 

3. Modifiable risk factors 227 

Based on the most recent report from the Lancet commission on dementia prevention, twelve modifiable 228 
risk factors have been identified which might delay or avoid dementia and promote healthy ageing: 229 
excessive alcohol consumption, history of traumatic brain injury (TBI), exposure to air pollution, lower 230 
education level, hypertension, hearing impairment, smoking, obesity, depression, physical inactivity, 231 
diabetes and infrequent social contact 104. After reviewing the available literature, we propose two 232 
additional modifiable risk factors: high stress exposure and sleep fragmentation/sleep disorders (Figure 1, 233 
top arrow). In this revised framework, we included depression into the broader construct of negative 234 
psychological traits. Furthermore, we integrate low education level into the wider concept of cognitive 235 
reserve105, which is also related to IQ, occupational attainment, physical fitness, and several other lifelong 236 
exposures discussed in paragraph 6. 237 

Some authors propose that several risk factors for cognitive decline could be traced to low socioeconomic 238 
status106. For example, low income is associated with worse eating habits107, increased rate of school 239 



dropout108, a higher probability of living in densely polluted areas109 and diminished life expectancy110. A 240 
recent longitudinal study found that lower wealth predicts a steeper decline in physical, sensory and 241 
cognitive health, as well as in emotional well-being 111. In the United States, such factors are inextricably 242 
linked to disparities in health care delivery and economic status in racial and ethnic minorities112,113. 243 
Therefore, when considering risk and protective factors to improve healthy ageing in the whole population, 244 
bridging disparities in social and racial inequalities must be considered. 245 

The analysis of predisposing risk factors and beneficial interventions protecting from cognitive decline is for 246 
the most part based on observational studies; although the preferred research design, at least for 247 
interventions, would be a randomized clinical trial (RCT), it is often complex to build a study to be able to 248 
evaluate them in trials (e.g., educational attainment, lifelong physical fitness exercise). This can impact the 249 
quality of the available evidence on predisposing risk factors and beneficial interventions, which is 250 
sometimes low20. Because study designs are mainly limited to observational designs, improvements in 251 
research methods are needed, such as better validated standardized metrics of cognitive decline and 252 
exposure to risk/protective factors, as well as confirmatory second level evidence. 253 

Risk Factor Level Evidence 
Air Pollution Micro Animal models suggest airborne particulate pollutants accelerate 

neurodegenerative processes through cerebrovascular and 
cardiovascular disease, Aß deposition, and amyloid precursor protein 
processing104. A systematic review including 13 longitudinal studies 
found that exposure to air pollutants was associated with increased 
dementia risk114.   

Smoking Micro Different systematic reviews confirm that active smoking increases the 
risk of dementia20,115. Indeed, smoking increases oxidative stress and is 
a risk factor for multiple vascular conditions (e.g., high blood pressure, 
high cholesterol) as well as for insomnia and sleep apnea, all linked to 
an increased probability of pathological cognitive decline. 

History of TBI Micro Evidence indicates that even one single severe TBI is associated in both 
humans and mouse models with widespread hyperphosphorylated tau 
pathology104. Multiple studies and meta-analyses have confirmed that 
a history of TBI increases the risk of dementia116,117, even reporting a 
two-fold surge117. It is worth noting that data from the National 
Alzheimer's disease Coordinating Center database suggest that the 
clinical profiles of older adults with and without a history of TBI differ 
significantly and can be distinguished, suggesting that TBI is not 
necessarily just a risk factor for other known dementia subtypes, but 
rather that TBI-induced dementia should be considered a subtype of 
his own118. 

Sleep 
fragmentation/Sleep 
disorders 

Micro Insomnia is associated with increased AD risk, while Sleep disordered 
Breathing correlates with a higher incidence of all-cause dementia119. 
Because of the critical role afforded to sleep in protein and neurotoxic 
waste clearance120, the primary proposed pathway revolves around 
diminished protein clearance function and subsequent pathological 
accumulation121. 

Obesity/weight Micro/Meso Metabolic morbidity accelerates most of the hallmarks of brain ageing 
(e.g., neuroinflammation, impaired neuronal homeostasis)56. 
Moreover, studies have documented reduced grey matter volume122 
and white matter integrity123 in multiple brain regions and reduced 
functional connectivity124 in obese individuals. 

Chronic Stress Micro / 
Meso 

Chronic stress leads to the secretion of glucocorticoids, such as 
cortisol, whose excessive level is harmful to brain structures; research 



has especially focussed on the deleterious effects of stress on the 
hippocampal formation. Animal studies found that stress impairs 
hippocampal synaptic plasticity and neuronal proliferation, resulting in 
hippocampal atrophy125. In humans, high stress levels were found to be 
associated with increased neural inflammation and diminished immune 
responses126 as well as decreased brain volume and more prominent 
white matter lesions127. 
In contrast hormesis, i.e., the steady prolonged exposure to mild levels 
of stress, increases stress resilience and reduces vulnerability, with 
positive effects on cognitive ageing126. 

Diabetes Micro/Meso Diabetes leads to vascular pathology128 and to reduced hippocampal 
neurogenesis and neuroplasticity129. A systematic review of 
observational studies totalling a sample size of over 32 thousand 
individuals has confirmed the increased risk of cognitive decline in 
diabetic patients20. 

Hearing impairment Meso A US prospective cohort study of 194 adults found that midlife hearing 
impairment is associated with steeper temporal lobe volume loss, 
including in the hippocampus and entorhinal cortex130. 

Excessive Alcohol 
consumption 

Meso/Macro According to the UK Whitehall study, with 23 years follow-up, drinking 
more than 14 alcohol units per week is associated with right-sided 
hippocampal atrophy131 and increased dementia risk. Moreover, 
alcohol consumption is linearly negatively associated with grey and 
white matter volume132, so that high alcohol consumption correlates 
with increased atrophy. 

Physical inactivity Meso/Macro Exercise yields an increase in brain plasticity, indexed by heightened 
BDNF concentration, and has a protective role against brain volume 
loss and AD pathology, as well as cardiovascular pathologies, that are 
risk factors for dementia127. 

Hypertension Meso/Macro Midlife hypertension is associated with reduced brain volumes and 
increased white matter hyperintensity volume104. 

Negative 
Psychological Traits 

Macro Psychological and personality attributes such as optimism, positivity, 
and a sense of purpose have been associated with healthy ageing. One 
review reported that both early and late-life depression correlate with 
increased in dementia risk20,133. Proposed pathways  
include the direct effects of depression on stress hormones, neuronal 
growth factors and hippocampal atrophy134. 

Social isolation Macro Low social interaction is associated with increased stress, disrupted 
sleep patterns and inflammation, leading to more prominent AD brain 
pathology and steeper rates of brain volume loss127. Additionally, social 
contact enhances cognitive reserve by encouraging beneficial 
behaviours (e.g., physical activity, cognitive stimulation). 

Low Cognitive 
Reserve 

Macro Individuals with higher Cognitive Reserve display lower task related 
cortical activation, more robust connectivity in key brain networks, and 
a better compensatory activation in response to ageing and 
pathology105,135,136. 
Additionally, higher cognitive activity levels, especially in early life and 
in middle age, correlate with decreased Aβ deposition127. 

Table 1 - Modifiable risk factors impacting healthy brain ageing. 254 

------------------------------------------------ Please insert Figure 2 near here -------------------------------------------------- 255 

4a. Cognitive hallmarks of healthy ageing 256 



The physiological brain changes associated with age, described in paragraphs 2b, 2c and 2d, are 257 
accompanied by a typical decline in cognitive functions, which follow different trajectories137 (Figure 2a). 258 
Note that the profile described here is a correlate of normal ageing, rather than a pathological outcome: it 259 
represents a natural decay in cognitive functions, similar to expected declines in physical functioning that 260 
accompany normal ageing. As such, the cognitive declines outlined here do not prohibit functional 261 
independence, particularly when compensatory strategies are engaged. 262 

When reviewing the literature on the cognitive correlates of ageing, it is necessary to consider some 263 
methodological issues. Ageing cognitive trajectories can be studied adopting cross-sectional or longitudinal 264 
study designs, whose findings can sometimes be inconsistent. Inconsistencies can be ascribed, on the one 265 
hand, to cross-sectional study designs being flawed by well documented biases and inferential problems 266 
such as cohort effects, resulting in inappropriate estimations of the effect of age on cognition during the 267 
lifespan138–142. However, on the other hand, they could due to longitudinal study designs presenting retest 268 
or practice effects; positive gains due to retest have been reported even when time intervals are of 269 
considerable magnitude (above 5 years)143,144, and could therefore be very complex to minimize in 270 
longitudinal study designs. Moreover, previous evidence indicates retest effects to have a rather large 271 
positive effect size, potentially masking age-related decline 144–146 and, critically, that it is hard to build a 272 
statistical model to effectively control for retest effects147. Based on these considerations on the impact of 273 
cohort and retest/practice effects, we included in the literature informing this section of the review on 274 
cognitive ageing both longitudinal and cross-sectional evidence with large sample sizes, and report findings 275 
with convergent support in both kinds of study designs. 276 

Cognitive functions broadly follow three patterns of age-related change: some decline across the lifespan, 277 
some in late-life, and others are relatively stable, or even moderately increase over time137. Performance in 278 
life-long declining cognitive abilities decreases from its peak throughout the adult lifespan. The hallmark of 279 
cognitive ageing is decreased processing speed, which slowly declines in early adulthood and linearly 280 
recedes after age 40148–150. Similarly, working memory performance also linearly declines, both in its 281 
visuospatial and in its verbal components151–153. Critically, and in part due to the deterioration of working 282 
memory abilities, memory encoding abilities also decline from a very young age, resulting in worsened 283 
performance both in long term148,152,154–156 and short-term memory157,158 tasks. 284 

Most cognitive functions, however, experience only slight declines until later in life. Numerical ability, 285 
measured through mathematical tests, is stable until one’s mid-fifties148. Spatial orientation seems to 286 
slightly increase until age 30148, then plateaus and only declines after one’s sixties154,159. A similar pattern 287 
has been reported for reasoning abilities, which undergo a significant decline after the age of 50148,151,154,160. 288 
Shifting (i.e. mental set shifting) and inhibition abilities (i.e. inhibition of prepotent responses)161 also 289 
display a late-life decrease150,154: performance steeply declines after 50 and 70 years of age, respectively. 290 
These late-life declining abilities are the ones most affected by discrepancies in results between 291 
longitudinal and cross-sectional measurements; indeed, although cross-sectional estimates demonstrate 292 
clear declines in spatial orientation and reasoning with ageing, longitudinal assessments support a 293 
maintenance of these functions at the individual level145. 294 

Cognitive functions which remain stable in life have been termed “crystallized intelligence”149. Semantic 295 
knowledge is one of them, increasing until the mid-fifties and only slightly lowering after age 70 148,154–157,159. 296 
Emotional regulation and processing seem to be maintained, or even improved, with age: for instance, 297 
performance in theory of mind tasks which require the attribution of mental states to others remains 298 
intact162, and data suggests that the elderly attend to the emotional content  of memories more than young 299 
adults do137,163. Although the most characteristic and recognisable symptom of old age is memory loss, not 300 
all memory functions decline with age. Autobiographical memory is largely preserved164, especially for 301 
events occurring in young adulthood (for a review see165). Automatic memory, measured as the magnitude 302 
of priming effects, seems to remain intact until late age as well156,166. 303 



Declining and stable cognitive functions are broadly referred to as fluid and crystallized, respectively149, and 304 
it has been put forth that fluid declines might be compensated for by retained crystallized abilities. 305 
According to the ‘dedifferentiation hypothesis’, however, all abilities deteriorate after the age of 85, 306 
potentially because of vision and hearing loss167; however, this generalized decline has not been 307 
consistently confirmed168. Moreover, recent studies have moved past this classical distinction and reported 308 
that, although they diverge in the steepness of their decline, rates of change correlate across all cognitive 309 
domains, so that individuals with greater losses in fluid abilities also display smaller gains, or even losses, in 310 
crystallized abilities169,170.  311 

4b. The four components of cognitive decline  312 

The profile of physiological cognitive decline described in paragraph 4a can be characterized with a four-313 
factor model (Figure 2C). Previous studies that have applied latent component analyses to both longitudinal 314 
171 and cross-sectional data160 report that, although the bulk of individual differences in cognitive decline 315 
can be attributed to domain general processes, a significant amount of it is accounted for by four distinct 316 
domains: processing speed, memory, reasoning and visuospatial function. 317 

Processing speed, i.e. the ability to carry out mental operations quickly and efficiently, has been proposed 318 
as the prime indicator of cognitive ageing and the driving cause of other impairment 172. Interestingly, 319 
however, some studies suggest that the impairment in other cognitive tests, especially memory and 320 
reasoning, emerges sooner in life than processing speed deficits145,148,151; yet, this could be accounted for by 321 
the fact that pure processing speed tests (e.g., letter or pattern comparison, finding A’s) are very simple, 322 
and may be prone to ceiling effects. Because processing speed is known to heavily rely on general white 323 
matter integrity173, interventions known to promote its health, such as physical activity174, might be 324 
beneficial, as reported by a meta-analysis of randomized clinical trials on the effect of aerobic exercise 325 
training, which found it to be associated with improvements in processing speed175. 326 

Declarative memory, i.e. the ability to retrieve and state previously encoded information after a brief 327 
(short term memory) or long (long term memory) time interval, is notoriously linked to the activity and 328 
integrity of medial-temporal structures, which are essential nodes of the DMN. Although research on the 329 
definitive benefits of memory training is still underway176, promising results hint that mnemonic stimulation 330 
could be a tool for long time memory maintenance177. 331 

The aforementioned studies that have investigated latent components of cognitive decline160,171 include  332 
visuospatial function, i.e. the ability to mentally rotate 2D and 3D patterns, as one of their components. In 333 
the present review, we revisit this concept in light of novel findings that tightly link this capacity with 334 
numerical abilities178. Although they are two separate functions, numeric and spatial abilities rely on the 335 
same neural substrate, centred around the frontoparietal network 179, which can be preserved and 336 
enhanced through cognitive training149,180,181. 337 
 338 
Reasoning requires a complex and composite definition: it is the ability to divergently think, make use of 339 
unfamiliar information, identify relations, form concepts and draw inferences171. However, taking into 340 
consideration the overlapping neural substrates underlying these processes182, we believe reasoning 341 
comprises the three “frontal lobe” executive functions: mental set shifting (‘Shifting’), information updating 342 
and monitoring (‘Working Memory’), and inhibition of prepotent responses (‘Inhibition’)161. This high-order 343 
reasoning factor has widespread neural bases, which mainly rely on the dorsal attention network, and to a 344 
lesser extent on both the left and right fronto-parietal control networks 183,184. Reasoning abilities, too, 345 
draw positive benefits from cognitive training149,180,181. 346 

5. Entering the era of personalized brain health tracking 347 

In light of the critical relevance of implementing any intervention with prompt timing, the issue of tracking 348 
brain and cognitive health is pivotal. A new wave of technological progress is opening the stimulating 349 



prospect of designing innovative tools to measure and track health daily, increasing the temporal resolution 350 
of traditional cognitive check-ups and giving access to an abundance of digital biometric measures so far 351 
undetected185. 352 

Shifting from pen and paper cognitive assessment and stimulation tools to computerized methods, besides 353 
potentially yielding better results186 because of the increased interactive engagement, allows for the 354 
collection of more informative data. Eye-tracking technologies to assess dynamic vision and measure 355 
attention allocation through recording of fixation and saccades187, biomarkers derived from human voice188, 356 
the use of wearables such as actigraphs to track sleep and other health parameters189 and the recording of 357 
pen pressure or speed in drawing and writing tasks190 are all examples of viable metrics and potential 358 
proxies of general health and cognitive functioning; their application to tracking healthy brain ageing may 359 
become a key component of health monitoring . 360 

6. From structural to cognitive: how well can the brain adjust to change? 361 

Brain age may or may not align with chronological age, but it can be estimated by measuring structural and 362 
functional brain markers36. This roughly falls within the ambit of estimating one’s brain reserve, defined as 363 
the ‘neurobiological capital’, or the quantifiable brain resources (e.g., synaptic count, intracranial volume, 364 
white and grey matter integrity) necessary to maintain adequate function191. The extent to which individual 365 
brains preserve their neurochemical, structural and functional integrity, at micro, meso and macro-scale 366 
levels, has also been referred to as “brain maintenance” in longitudinal studies192.  367 

The concept of brain maintenance implies that variations in structural characteristics would tightly 368 
correspond to a better cognitive performance. However, this is not always the case193,194, as certain 369 
individuals display better coping abilities and mitigate the cognitive decline which would be expected based 370 
on their underlying brain damage. This raises the question of how to bridge the gap between one’s brain 371 
structure, brain function and metrics of cognition. The construct of cognitive reserve (CR) was put forward 372 
as a moderator between brain pathology and its clinical outcome11,105. While brain reserve is a passive 373 
protective factor, based on the sheer amount of expendable substrate, CR is conceptualized as the brain’s 374 
active coping in response to damage, through compensatory or pre-existing cognitive processing195. 375 
Although potentially influenced by common lifestyle factors, cognitive reserve and brain 376 
maintenance/reserve are two separate, uncorrelated processes196. 377 

One major hurdle to the research on CR is its measurement, which is to this day uneven across studies. The 378 
most frequently adopted proxy of CR is years of education193,197,198; however, high education alone is 379 
arguably a reductive index for this broader construct. Indeed, while it is true that individuals with higher 380 
education have higher scores in all cognitive domains, evidence casts doubt on the notion that high 381 
education per sé is a predictor of slower cognitive decay rates, as multiple studies on large sample sizes 382 
have reported no difference between the decline trajectories of adults of higher or lower than average 383 
education159,199. Some questionnaires have been proposed, such as the Cognitive Reserve Index 384 
questionnaire, which take into account the multiple aspects of CR 200; studies that have included social 385 
engagement and occupational attainments as components of CR have reported consistent findings of its 386 
beneficial impact on cognitive ageing 201–203. 387 

The inconsistency in defining and measuring CR has made the investigation into its neurobiological 388 
underpinnings particularly challenging191, but some findings have been replicated by different researchers 389 
and on different cohorts of participants. Although high CR does not offset structural brain ageing, as 390 
indexed by similar levels of objective brain lesions 194, protein burden 197,198 or cortical atrophy 204 391 
irrespective of CR scores, those with high CR appear to be more resilient to this brain deterioration, so that 392 
the same extent of objective substrate damage causes, comparatively, less cognitive impairment 105,193; 393 
functional imaging studies indicate that this is accompanied by more efficient patterns of metabolism in 394 
posterior brain areas and increased activation and connectivity in the frontal lobes 105.  395 



The interpretation of cognitive reserve as one’s ability to sustain a higher degree of damage before 396 
displaying overt symptoms closely resembles the definition of the metric of brain graph resilience205,206. 397 
Resilience is a concept derived from graph-theory which reflects a complex system’s robustness to 398 
progressive lesioning, i.e., the ability to compensate for the endured damage without losing its overall 399 
characteristics and efficiency207. Although the precise genetic basis of CR and brain resilience have yet to be 400 
clarified, studies suggest the heritability of both208,209. Exploring the involvement of brain graph resilience as 401 
a correlate of CR might provide interesting insights into its neurobiology. 402 

7. Deviating trajectories: cognitive performance in high CR individuals and AD patients  403 

The profile described in paragraphs 4a and 4b is typical of ordinary, cognitively healthy individuals. 404 
However, trajectories can deviate both ways, displaying a better or worse than average performance. This 405 
is the case for, respectively, individuals with high cognitive reserve (CR) and patients affected by dementia 406 
(Figure 2b). 407 

The most prevalent form of dementia is amnesic Alzheimer’s disease (AD). Its cognitive symptoms are well 408 
known and have been extensively described elsewhere210 (Figure 2b, dotted line). Memory impairment is 409 
typically the first reported symptom, although processing speed deficits seem to be the first to appear 410 
objectively211, followed closely by executive and spatial deficits210. Moreover, those crystallized functions 411 
which are spared in typical healthy ageing also become impaired in AD patients: semantic knowledge212, 412 
autobiographical memory213, automatic memory214 and emotion regulation210 all endure significant 413 
deterioration with the progression of the disease. 414 

On the contrary, individuals with high CR display particularly favourable outcomes (Figure 2b, solid line). A 415 
recent longitudinal study conducted on 1697 individuals has assessed the influence of CR on cognitive 416 
trajectories203. Measuring CR as a composite score including education, early, mid and late-life cognitive 417 
activities and social engagement, the study showed that those with higher CR experience a longer cognitive 418 
healthspan across all domains. Furthermore, having a high cognitive reserve protects from cognitive decline 419 
even in patients with AD pathology, so much so that individuals with AD pathology but high CR scores and 420 
individuals without AD pathology but low CR scores can display the exact same cognitive profile and decline 421 
trajectories. This demonstrates the practical gains derived from considering the risk factors presented in 422 
paragraph 3 and Table 1 and embracing the beneficial interventions proposed in the following paragraph.  423 

8. Beneficial active interventions to promote healthy brain ageing. 424 

Active interventions to promote healthy brain ageing can prolong the cognitive healthspan127 (Figure 1, 425 
bottom arrow). These target both cognitive and brain reserve and increase resilience to functional decline, 426 
however, to the best of our knowledge, no study has systematically compared and quantified the impact of 427 
concomitant risk and protective factors for cognitive decline. That is, how does the adoption of positive 428 
habits, such as lifelong cognitive engagement, or the fortuitous lack of risk factors, like a history of TBI, 429 
stack up with concomitant adverse conditions such as genetic predisposition, or risky behaviours such as 430 
smoking? The pursuit of this line of research would be particularly interesting, considering most elderly 431 
adult individuals present a mix of protective and risk factors in both their personal history and current 432 
lifestyle. 433 

Promising experimental interventions to prevent genetic degradation are in development. For instance, 434 
new techniques are being studied with the aim of reversing age-related decline by promoting brain tissue 435 
repair through epigenetic reprogramming215,216 and multiple clinical trials investigating the beneficial effect 436 
of administrating NAD+ precursors to increase NAD+ levels in healthy elderly adults are currently ongoing, 437 
and hold encouraging results59,217,218. 438 



The brain’s microstructure can be protected through several interventions. Among the best established of 439 
these are sleep interventions219. Disrupted sleep induces higher inflammation and decreased protein 440 
clearance127, which can be minimized by promoting slow waves during non-REM sleep219. A randomized 441 
control study (RCT) has indeed demonstrated that treating sleep disorders partially mitigates negative 442 
effects on brain health220. Managing stress and depression also represents a viable intervention. In humans, 443 
high stress levels are associated with increased oxidative stress and AD pathology, as well as decreased 444 
brain volume and more prominent white matter lesions127. RCTs demonstrate that stress reducing 445 
practices, such as yoga or meditation, lead to improved cognitive functioning in ageing221,222. On the other 446 
hand, the importance of treating depression as a beneficial preventative intervention is debatable: it is hard 447 
to disentangle the relationship between dementia and depression, because depression is considered both a 448 
risk factor for and an early symptom of dementia. However, the correlation between depression and 449 
cognitive decline is among the best-supported ones by empirical data20 and, because of the relevant impact 450 
depression has on stress and brain health and particularly on medial-temporal cortex integrity223, treating 451 
depression is likely to benefit processes of brain ageing127. 452 

Among the most robust effective interventions are physical exercise and adopting a healthy diet20. Exercise 453 
yields an increase in BDNF concentration224 and insulin-like growth factor 1, promoting a healthier 454 
metabolism225–227, and induces better sleep patterns228,229 in all age groups227. Moreover, physical exercise 455 
interventions decrease overall AD pathology and brain volume loss, while strengthening the cardiovascular 456 
system and thus decreasing the connected risks127. A recent meta-analysis conducted on 15 international 457 
cohorts has proven a direct negative association between regular daily exercise, computed as daily steps, 458 
and all-cause mortality230; trials testing exercise interventions show it has cascading effects, improving 459 
memory, mood, executive function and promoting brain plasticity127,231. Interestingly, a recent study232 that 460 
examined 1369 adults found that pet ownership, by inducing beneficial behaviours such as walking 461 
regularly and through its well-known positive effects on blood pressure and stress233, may be linked to 462 
slower cognitive decline. The benefits of adopting a balanced and heart-healthy diet throughout the 463 
lifespan, such as the Mediterranean diet234, are widely accepted235. Positively impacting cardiovascular 464 
health, a heart-healthy diet protects from brain volume loss and is associated with lesser atrophy in the 465 
hippocampal region and reduced AD pathology127; also, some emerging studies have even linked the 466 
Mediterranean diet with augmented telomere length236. RCTs have shown that these diets induce improved 467 
global cognition and executive function225. 468 

In the recent decades, several studies have focussed on behavioural interventions225 (i.e., physical activity, 469 
social interventions, cognitive stimulation), and have obtained significant and encouraging findings. The 470 
importance of the social environment should not be underestimated. Epidemiological evidence suggests 471 
that less frequent social contact and feeling lonely are associated with increased dementia risk and 472 
cognitive impairment237, although the relationship could to some extent be bidirectional. Interventions 473 
aimed at promoting social engagement hold promising results, including increases in memory and 474 
executive function238,239, which is reflected in imaging studies as increased prefrontal and anterior cingulate 475 
cortex activation240 and an overall higher brain volume241. 476 

The importance of remaining cognitively active throughout one’s life is undisputed. However, measuring 477 
the exact impact on brain health and cognitive function is somewhat challenging: the wide variety of 478 
cognitive stimulation interventions are difficult to compare and loosely defined177, ranging from daily 479 
crosswords242 to structured multisession programs181. However, converging evidence shows that late life 480 
cognitive activity is associated with improved performance in memory, processing speed and executive 481 
function, as well as reduced dementia risk149,180,181. Critically, cognitive training programs and memory 482 
training seem to be effective only if enacted before dementia onset243. The mechanisms underlying these 483 
beneficial effects are still unclear127. Potentially, it might be due to an increase in neuroplasticity, indexed 484 
by a higher BDNF concentration recorded in older individuals after an intensive cognitive training 485 



program244; other possible mechanisms include a reduction in AD pathology and maintained grey matter 486 
volume127. 487 

Although more rigorous RCTon cognitive training are still needed to clearly define its efficacy176, one RCT 488 
conducted on a cohort of 1260 elderly participants, the Finnish Geriatric (FinGer) Intervention Study to 489 
Prevent Cognitive Impairment and Disability, has found that the combination of multiple non-490 
pharmacological interventions (diet, exercise, cognitive training and vascular risk monitoring) may be 491 
especially effective and beneficial245. This finding gave rise to the creation of a global network of ongoing 492 
studies exploring the potential of multi-pronged approaches to reduce risk of cognitive impairment or 493 
dementia246.  494 

Finally, recent neuroscientific research has investigated the feasibility and efficacy of non-invasive brain 495 
stimulation (NIBS) techniques to promote and preserve cognitive abilities in the healthy ageing brain247, 496 
offering unique neuromodulation potential and minimal side effects. Transcranial magnetic stimulation 497 
(TMS) can be applied using its multiple repetitive paradigms to increase synaptic efficiency and strength 498 
(repetitive TMS, rTMS, and theta-burst stimulation, TBS)247 or to modulate cortical connectivity (cortico-499 
cortical paired associative stimulation, ccPAS)248,249. Transcranial electric stimulation (tES) is based on the 500 
application of electrical potentials with the aim of modulating intrinsic oscillatory brain activity (transcranial 501 
alternating current stimulation, tACS) or to alter membrane polarisation and the spontaneous firing rate of 502 
neurons (transcranial direct current stimulation, tDCS)247. Although both TMS and tES have been adopted to 503 
modulate brain activity and cognition in the older individuals, TMS studies are strongly skewed toward 504 
patient populations, and studied on the application of repetitive TMS protocols on healthy elderly 505 
individuals are rarer250. Anodal tDCS to increase excitability of specific brain areas is the most frequently 506 
adopted technique and evidence supports its effectiveness in improving episodic, semantic and working 507 
memory, motor and cognitive control, and the feasibility of non-invasive brain stimulation treatments in 508 
healthy older adults250,251. 509 

9. Conclusions 510 

Cognitive functions and their neural underpinning physiologically decline with ageing following 511 
characteristic trajectories, which can however be modified. In the present paper, we have summarized the 512 
modifiable risk factors and the main beneficial interventions which could promote a healthy brain ageing 513 
process and significantly cut the risk of cognitive decline in old age. Those who adhere to these 514 
recommendations, indeed, do show a longer cognitive healthspan. The critical mediating factor which 515 
moderates the relationship between structural and cognitive decline is Cognitive Reserve. A better 516 
understanding of the neural substrate of Cognitive Reserve will provide further insight into relevant 517 
markers of cognitive decline, allowing for the development of more precocious and prompt multi-pronged 518 
interventions. 519 

  520 



Figure descriptions 521 

 522 

Figure 1 – ageing from micro to macroscale. Synopsis of changes the healthy brain endures through the lifespan, from 523 
the micro to the macroscopic level and the associated modifiable risk factors and beneficial active interventions to 524 
support a healthy ageing process. 525 



 526 

Figure 2 – The cognitive hallmarks of healthy ageing. A) Trajectories displaying the typical performance across the 527 
lifespan of different cognitive functions. B) Different cognitive trajectories in crystallized (red) and fluid (blue) intelligence 528 
components in typical adults (dashed line), adults with high cognitive reserve (solid line) and adults with Alzheimer’s 529 
Disease (dotted line). C) The age-related cognitive decline can be epitomized as a model comprising four main domains: 530 
Processing Speed, Reasoning, Memory and Numeric and Spatial Abilities. 531 
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