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Detecting Double-Identity Fingerprint Attacks 
 

M. Ferrara, R. Cappelli, and D. Maltoni, Senior Member, IEEE 

Abstract— Double-identity biometrics, that is the combination 

of two subjects’ features into a single template, was demonstrated 

to be a serious threat against existing biometric systems. In fact, 

well-synthetized samples can fool state-of-the-art biometric 

verification systems, leading them to falsely accept both the 

contributing subjects. This work proposes one of the first 

techniques to defy existing double-identity fingerprint attacks. 

The proposed approach inspects the regions where the two aligned 

fingerprints overlap but minutiae cannot be consistently paired. If 

the quality of these regions is good enough to minimize the risk of 

false or miss minutiae detection, then the alarm score is increased. 

Experimental results carried out on two fingerprint databases, 

with two different techniques to generate double-identity 

fingerprints, validate the effectiveness of the proposed approach. 

 
Index Terms— Double-identity fingerprints, presentation 

attacks, ABC systems, eMRTD. 

I. INTRODUCTION 

The term double-identity biometric denotes a biometric 

sample obtained by combining features of two subjects, so that 

it has high chance to be falsely matched with both. Enrolling a 

double-identity biometric into an e-MRTD (i.e., electronic 

Machine Readable Travel Documents) poses a serious security 

threat because it enables multiple subjects to cross borders 

under false identities [1] [2]. 

While face morphing remains the best-known (and most 

alarming) attack [3] [4], the feasibly of creating double-identity 

biometrics have been proved for other modalities such as 

fingerprint [5] and iris [6] [7]. In particular, in [5] we showed 

that two fingerprints can be combined at feature level (i.e., 

minutiae) or image level (i.e., pixel intensities) to produce 

realistic impressions able to fool state-of-the-art fingerprint 

recognition algorithms with high probability (about 90% 

chance of successful attacks against a system with a security 

level tuned according to FRONTEX guidelines [8]). Figure 1 

shows an example of double-identity fingerprint obtained with 

the image-level combination method described in [5]. A well-

manufactured fake fingertip can be then synthetized [9] and 

worn by a subject before placing his finger on the scanner 

during e-MRTD enrolment. To reduce the risk of such an 

attack, the officer attending the process should carefully 

supervise the process or a presentation attack detection (PAD) 

algorithm could be installed in the fingerprint acquisition 

system. Unfortunately, the fingerprint scanner is often 
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positioned beyond a glass and it is not directly visible to the 

officer, and PAD algorithms are still far to be perfect. 

Therefore, an automated double-identity fingerprint detection 

module can provide an extra protection level. 

 

Fig. 1. Double-identity fingerprint creation using the image-

level method described in [5]. From top to bottom: two source 

images (real fingerprints of different subjects), alignment of the 

two source patterns, and the resulting double-identity 

fingerprint. The dashed line is the “cutline” along which the two 

source fingerprints are combined (the top region of the double-

identity fingerprint matches Source 2, while its bottom region 

matches Source 1. 
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In the context of face morphing, the detection approaches are 

denoted as MAD (Morphing Attack Detection) and can be 

categorized as single image (S-MAD) or differential (D-MAD) 

[10]; the former detect the alteration on a single image, while 

the latter require an additional “genuine” image to be compared 

with the probed one, to come to a final decision. 

In this paper we introduce a novel double-identity fingerprint 

detection approach that can work in conjunction with an 

existing fingerprint verification system, as illustrated in Figure 

2. According to the above MAD notation, our approach falls in 

the D-MAD category, since the detection takes place by 

comparing a second sample (i.e., the live fingerprint) with the 

probed one (i.e., the document fingerprint). Our detection 

approach was designed to defy existing fingerprint combination 

approaches whose basic idea is to combine two fingerprint 

portions. For example, in Figure 1 the lower portion of Source 

1 is combined with the upper portion of Source 2: as proved in 

[5], the selection of “compatible” patterns and the 

determination of an optimal cut-line makes the resulting pattern 

quite realistic. To tolerate involuntary finger displacement and 

to cope with lack of information in low quality regions (that can 

be produced by uneven finger pressure), state-of-the-art 

fingerprint matching algorithms usually do not enforce a strict 

feature correspondence across the entire pattern, but settle for a 

partial fingerprint matching. Hence, the basic idea of our 

method is inspecting the intersection of the foreground patterns 

(after alignment) and check the existence of good quality 

regions whose minutiae do not match (i.e., cannot be paired). 

To this purpose two maps are computed: 

• the expectation map points out the places where, according 

to the foreground intersection after alignment and the 

existence of reliable minutiae, we expect to find minutiae 

pairings;  

• the alert map, which is computed by subtracting from the 

expectation map the regions of actual minutiae pairings, and 

therefore, in case the probed fingerprint is bona fide, turns 

to be almost empty. 

In our experiments, a simple threshold applied to the alert 

map allowed us to discriminate double-identity from bona fide 

fingerprints with good accuracy.  

To the best of our knowledge, there is almost no related 

literature on this subject. In [11], two fingerprints are combined, 

but with the totally different aim of generating new virtual 

identities and cancellable templates. In [12] experiments with 

GAN-based model are reported confirming the feasibility of 

double-identity fingerprint attacks, but no countermeasures are 

proposed. The only existent double-identity detection method 

for fingerprints was introduced in [13] by training a deep 

learning model. Unfortunately, the authors did not publish the 

resulting model and the dataset, making impossible a direct and 

fair comparison. Furthermore, based on our experience on face 

morphing, overfitting is a serious problem when training a large 

model to detect image alterations and several heterogeneous 

data sources would be necessary. 

 

 
Fig. 2. Functional schema of the proposed fingerprint verification procedure (including the double-identity fingerprint detection 

module) performed at ABC gates. 
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In Section II we introduce our detection method by formally 

defining all the intermediate steps necessary to compute the 

final alert map. Section III reports and comments the 

experimental results obtained. Finally, Section IV draws some 

concluding remarks. 

II. PROPOSED APPROACH 

Given two greyscale fingerprints 𝐅1 and 𝐅2, the proposed 

approach computes the following data to calculate the alert 

score: 

1. the two minutiae templates; 

2. the parameters of the affine transform to align the 

two fingerprints; 

3. the local quality map of the two fingerprints; 

4. the minutia density map of the two fingerprints; 

5. the density map of minutiae compatibility; 

6. the expectation map; 

7. the alert map. 

 

Let 𝑇1 = {𝑚𝑖
1} and 𝑇2 = {𝑚𝑗

2} be the minutiae templates 

extracted from 𝐅1 and 𝐅2, respectively. Each minutia 𝑚 is a 

triplet 𝑚 = (𝑥, 𝑦, 𝜃) where 𝑥 and 𝑦 are the minutia location, and 

𝜃 is the minutia angle in the range [0,2𝜋[. 𝑇1 and 𝑇2 can be 

obtained using any state-of-the-art minutiae extraction 

algorithm [9]. Figure 3 shows two fingerprints and the 

corresponding minutiae templates: note that 𝐅1 is the double-

identity fingerprint in Figure 1, while 𝐅2 is a live sample from 

Source 2 (see Figure 1) different from that used to create 𝐅1. 

 

 
Fig. 3. Two fingerprints and the corresponding minutiae 

templates.  

 

With the aim of aligning the two fingerprints, a least-square 

approach is used to find an affine transform 𝑀 of 𝑇2 that 

superimposes its minutiae to 𝑇1. 𝑀 is determined starting from 

a set of minutiae correspondences 𝑃 = {(𝑖𝑘 , 𝑗𝑘)}, where 𝑖𝑘 and 

𝑗𝑘 are the minutia-indices in 𝑇1 and 𝑇2, respectively (see Figure 

4). 𝑃 can be found by any state-of-the-art minutiae comparison 

algorithm [9]. In the following, 𝑇̂2 denotes the set of minutiae 

obtained by aligning 𝑇2 according to 𝑀 (see Figure 5). 

 

 
Fig. 4. The set 𝑃 of minutiae correspondences between 𝑇1 and 

𝑇2 is graphically displayed by red lines. 

 

 
Fig. 5. The affine transform 𝑀 applied to minutiae in 𝑇2 (in 

blue color) to obtain the aligned template 𝑇̂2 (in red).  

 

The proposed method, beside minutiae, relies on the 

fingerprint local quality [9] to concentrate the analysis where 

the fingerprint pattern is more reliable. Let 𝐐1 be the local 

quality map (pixel-wise) of 𝐅1, and 𝐐2 be the one obtained by 

applying 𝑀 to the local quality map of 𝐅2. Figure 6 shows 𝐐1 

and 𝐐2 for the fingerprint images in Figure 3. 

 

 
Fig. 6. The pixel-wise local quality maps of 𝐅1 and 𝐅2. Note 

that 𝐐2 is aligned according to 𝑀. 

 

Local quality maps 𝐐1 and 𝐐2 are then binarized according 

to a fixed threshold 𝜏𝑄. Hereafter any binary image 𝐈 is formally 

𝐅1 𝐅2 
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represented as the set containing the coordinates of non-zero 

pixels: 𝕀 = {(𝑥, 𝑦)| 𝐈[𝑥, 𝑦] ≠ 0}. This makes the notation 

simpler when set operations and morphological operators are 

applied [14].   

Let ℚ1 and ℚ2 be the sets containing the coordinates of good-

quality pixels according to 𝜏𝑄: ℚ𝑡 = binarize(𝐐𝑡 , 𝜏𝑄) where 

binarize(𝐗, 𝜏) = {(𝑥, 𝑦)|𝐗[𝑥, 𝑦] ≥ 𝜏} (see Figure 7). 
 

 
Fig. 7. The binary images corresponding to sets ℚ1 and ℚ2 

obtained from 𝐐1 and 𝐐2 in Figure 6. 
 

The next step consists in computing the minutia density maps 

from 𝑇1 and 𝑇̂2. The minutia density map 𝐃1 is a matrix with 

the same size of 𝐅1 whose elements 𝐃𝑖,𝑗
1  denote the likelihood 

of finding minutiae in 𝑇1 close to position (𝑥𝑗, 𝑦𝑖):  

 

 𝐃𝑖,𝑗
1 = z𝜇𝐷,𝛽𝐷

(∑ B𝑖,𝑗(𝑚)𝑚∈𝑇1 ) (1) 

with 

 B𝑖,𝑗(𝑚) = g𝜎𝐵
(d𝑖,𝑗(𝑚)) (2) 

where: 

• d𝑖,𝑗(𝑚) is the Euclidean distance between position 

(𝑗, 𝑖) and the location of minutia 𝑚; 

• gσ(𝜈) = 𝑒
−

𝜈2

2𝜎2 is a Gaussian function with zero mean, 

𝜎 standard deviation and a maximum value of one; 

• z𝜇,𝛽(𝜈) =
1

1+𝑒−𝛽∙(𝜈−𝜇) is a sigmoid function controlled 

by two parameters (𝜇 and 𝛽), that limits the 

contribution of dense minutiae clusters, to ensure that 

the final value is in the range [0,1]. 
 

𝐃𝑖,𝑗
1  is obtained by summing the contribution B𝑖,𝑗(𝑚) of each 

minutia 𝑚 ∈ 𝑇1, which depends on the Euclidean distance 

between 𝑚 and (𝑗, 𝑖).  

𝐃2 is computed in the same way, starting from the aligned 

minutiae template 𝑇̂2 . Figure 8 shows the two maps 𝐃1 and 𝐃2 

as well as the corresponding minutiae in 𝑇1 and 𝑇̂2. 
 

 
Fig. 8. The pixel-wise density maps of 𝑇1 and 𝑇̂2. Minutiae 

points are superimposed to the two maps to better highlight how 

they have been computed. Note the saturation produced by the 

sigmoid in the overlapping regions. 

The two density maps are then binarized into 𝔻1 and 𝔻2 to 

determine high-density locations, according to a given 

threshold 𝜏𝐷: 𝔻𝑡 = binarize(𝐃𝑡 , 𝜏𝐷), see Figure 9. 

 

 
Fig. 9. The binary images corresponding to sets 𝔻1 and 𝔻2 

obtained from 𝐃1 and 𝐃2 in Figure 8. 

 

The density map of minutiae compatibility 𝐃 is a matrix with 

the same size of 𝐅1, where each element 𝐃𝑖,𝑗 is the likelihood 

of finding compatible minutiae pairs near position (𝑗, 𝑖), see 

Figure 10. Two minutiae (one from 𝑇1 and the other from 𝑇̂2) 

are considered compatible if their positions are close and their 

angles are similar.  

 

 𝐃𝑖,𝑗 = z𝜇𝐷,𝛽𝐷
(

K𝑖,𝑗(𝑇1,𝑇̂2)+K𝑖,𝑗(𝑇̂2,𝑇1)

2
) (3) 

with 

 

 K𝑖,𝑗(𝑇, 𝑇′) = ∑ B𝑖,𝑗(𝑚′) ⋅ C(𝑚′, 𝑇)𝑚′∈𝑇′  (4) 

and 

 

 C(𝑚′, 𝑇) = z𝜇C,𝛽C
(∑ g𝜎𝐸

(d𝐸(𝑚, 𝑚′)) ⋅ g𝜎𝜃
(d𝜃(𝑚, 𝑚′))𝑚∈𝑇 )(5) 

where: 

• d𝐸(𝑚, 𝑚′) is the Euclidean distance between minutiae 

𝑚 and 𝑚′; 
• d𝜃(𝑚, 𝑚′) is the difference between the angles of 

minutiae 𝑚 and 𝑚′. 
Equation (3) computes 𝐃𝑖,𝑗 similarly to how Equation (1) 

calculates each element of the minutia density map for a single 

template: the same sigmoid function (z𝜇𝐷,𝛽𝐷
) is applied to the 

sum of the contribution B𝑖,𝑗 of each minutia. In this case, 

however: 

• for each minutia 𝑚′ ∈ 𝑇′, its contribution B𝑖,𝑗(𝑚′) is 

weighted by the compatibility measure C(𝑚′, 𝑇) of 𝑚′ 
with respect to the positions and angles of all minutiae 

in the other template 𝑇, see Equations (4) and (5); 

• since function K𝑖,𝑗, defined by Equation (4) on two 

templates, is a non-commutative operation, the 

average of K𝑖,𝑗(𝑇1, 𝑇̂2) and K𝑖,𝑗(𝑇̂2, 𝑇1) is used in 

Equation (3). 

The density map of minutiae compatibility 𝐃 is then 

binarized to determine the set of pixel coordinates close to 

compatible minutiae, according the same threshold 𝜏𝐷 used to 

binarize the minutia density maps: 𝔻 = binarize(𝐃, 𝜏𝐷), see 

Figure 11. 

ℚ1 ℚ2 

𝐃1 𝐃2 

𝔻1 𝔻2 
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Fig. 10. The pixel-wise density map of minutiae compatibility 

between 𝑇1 and 𝑇̂2. Minutiae points of both templates are 

superimposed to the map (𝑇1 minutiae in blue, and 𝑇̂2 ones in 

red). 

 

 
Fig. 11. The binary image corresponding to set 𝔻 obtained from 

𝐃 in Figure 10. 

 

The last step consists in computing the expectation map 𝔼 

and the alert map 𝔸: 

 

 𝔼 = (𝔻1 ∪ 𝔻2) ∩ (ℚ1 ∩ ℚ2) (6) 

 

 𝔸 = (𝔼\𝔻) ∘ 𝕊𝑑  (7) 

 

In Equation (6), 𝔻1 ∪ 𝔻2 denotes regions where minutiae are 

present at least in one of the fingerprints, and ℚ1 ∩ ℚ2 

represents regions where the quality is good in both 

fingerprints. Hence, we can say that the expectation map 𝔼 

denotes the good quality regions where minutiae are present at 

least in one of the fingerprints, see Figure 12. 

In fingerprint comparisons where 𝐅1 is a bona fide 

fingerprint, it is expected that 𝔼 ≈ 𝔻, since in good quality 

regions any minutia should find a compatible minutia in the 

other template. For this reason, the alert map is based on the set 

difference between 𝔼 and 𝔻 (i.e., 𝔼\𝔻: the relative complement 

of 𝔻 in 𝔼). An opening morphological operation ∘ (with a 

circular structuring element 𝕊𝑑 of diameter 𝑑) is also applied to 

remove small artefacts that may be present due to the variability 

of fingerprint patterns, skin deformation and other alterations. 

The bottom-right image in Figure 12 shows the alert map for 

the two fingerprints in Figure 3. 

Figure 13 shows 𝔼 and 𝔸 superimposed to 𝐅1. As already 

described in Section I, 𝐅1 is a double-identity fingerprint 

created by blending the fingerprints of two different fingers 

(Source 1 and Source 2 in Figure 1). 𝔼 and 𝔸 have been 

obtained by comparing 𝐅1 to 𝐅2, which, in this example, is 

another impression of the finger used to make the top half of 𝐅1 

(Source 2). As a consequence, the alert map has several active 

zones in the bottom part of 𝐅1, whose minutiae are mostly not 

compatible with those of 𝐅2. 

 

 
Fig. 12. From top to bottom, from left to right: the binary 

images corresponding to sets 𝔻1 ∪ 𝔻2, ℚ1 ∩ ℚ2, 𝔼, and 𝔸. 

 

 
Fig. 13. From left to right: the expectation map 𝔼 and the alert 

map 𝔸 superimposed to 𝐅1 and its minutiae. The cutline used to 

create the double-identity fingerprint 𝐅1 is also reported (see 

Figure 1). 

 

Finally, the alert score 𝑠𝑎 ∈ [0,1] is computed as the ratio 

between the cardinalities of 𝔸 and 𝔼: 

 

 𝑠𝑎 =
|𝔸|

|𝔼|
. (8) 

The higher the alert score, the more likely it is that 𝐅1 is a 

double-identity fingerprint.  

The alert score obtained for the example in Figure 13 is 0.50. 

As a reference, Figure 14 shows a bona fide comparison: the 

alert map exhibits much fewer active zones with respect to 

Figure 13, resulting in a significantly lower alert score: 0.09. 

 

𝐃 

𝔻 
𝔼 

𝔻1 ∪ 𝔻2 ℚ1 ∩ ℚ2 
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Fig. 14. An example of the proposed method applied to a bona fide comparison. From top to bottom, from left to right: two 

fingerprints (𝐅1 and 𝐅2) from the same finger, the correspondences between the two minutiae templates between 𝑇1 and 𝑇2, the 

local quality maps 𝐐1 and 𝐐2, the corresponding binary images ℚ1 and ℚ2, the minutiae density maps 𝐃1 and 𝐃2, the 

corresponding binary images 𝔻1 and 𝔻2, the density map of minutiae compatibility 𝐃, its corresponding binary image 𝔻, the 

images corresponding to 𝔻1 ∪ 𝔻2 and ℚ1 ∩ ℚ2, the expectation map 𝔼, the alert map 𝔸, and finally 𝔼 and 𝔸 superimposed to 𝐅1. 

 

𝐅1 𝐅2 𝑇1 𝑇2 

𝐐𝟏 𝐐𝟐 ℚ1 ℚ2 

𝐃1 𝐃2 𝔻1 𝔻2 

𝔼 𝔸 
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III. EXPERIMENTS 

This section describes the experiments designed to assess the 

capability of the proposed approach to deal with double-identity 

fingerprints. 

Databases 

To the best of our knowledge, there are no publicly available 

fingerprint databases for testing double-identity attacks. The 

experiments of this study were carried out on the following 

databases: 

• TestDB1 - the double-identity fingerprint database 

generated in [5]. This database was created starting 

from the FVC2002 DB1 set A [15], containing 800 

fingerprints from 100 fingers (8 impressions per 

finger), captured at 500dpi using the optical scanner 

“TouchView II” by Identix. Besides the real 

fingerprints, it contains two sets of 100 double-identity 

fingerprints, produced using feature- and image-level 

generation approaches, respectively (see [5]). 

• TestDB2 – a double-identity fingerprint database 

created starting from the V300 Fingerpass database 

[16], containing 8640 fingerprints from 720 fingers 

(12 impressions per finger), captured at 500dpi using 

the optical scanner “Verifier 300” by CrossMatch. 

Besides the real fingerprints, it contains two sets of 

720 double-identity fingerprints, produced using 

feature- and image-level generation approaches, 

respectively (see [5]). 

• TrainDB – a double-identity fingerprint dataset 

obtained from FVC2002 DB1 set B [15]. It contains 

80 bona fide fingerprints (from ten different fingers) 

and ten double-identity fingerprints generated using 

the image-level approach described in [5]. Note that 

this database is completely disjoint from TestDB1 

database, since there are no common fingers between 

set A and B of FVC2002 DB1. 

Figure 15 shows an example of bona fide images from 

TestDB1 and TestDB2.  

 

 
Fig. 15. Examples of bona fide images from TestDB1 (a) and 

TestDB2 (b). 

 

Parameters 

Table I reports the parameter values used; all parameters 

were calibrated on TrainDB. The calibration procedure 

consisted in an exhaustive search over a reasonable range of 

values. 

TABLE I 

PARAMETER VALUES USED IN THE EXPERIMENTATION 

Parameter(s) Description Value 

𝜏𝑄 Quality map binarization threshold 15 

𝜇𝐷 , 𝛽𝐷 Sigmoid parameters in (1) and (3) 
1

5
, 4 

𝜎𝐵 Standard deviation in (2) 8 

𝜏𝐷 Density map binarization threshold 
1

2
 

𝜇C, 𝛽C Sigmoid parameters in (5) 
1

4
, 15 

𝜎𝐸 
Standard deviation of the position 

difference in (5) 
8 

𝜎𝜃 
Standard deviation of the angle 

difference in (5) 
15° 

𝑑 
Diameter of the structuring element 

used in (7). 
11 

 

Evaluation of the Attack Potential 

This section describes the experiments carried out to evaluate 

the attack potential of the double-identity fingerprints contained 

in the two test databases. The recently-introduced Morphing 

Attack Potential (MAP) metric [17]  was applied to analyze the 

impact of multiple samples and different fingerprint recognition 

systems (FRSs). MAP is defined as a matrix whose generic 

element MAP[𝑟, 𝑐] is the proportion of double-identity 

fingerprints that can successfully reach a match decision with 

both source fingers in at least 𝑟 verification attempts by at least 

𝑐 FRSs [17]. Two state-of-the-art FRSs were use: the Minutia 

Cylinder-Code SDK v2.0 (MCC) [18] [19] and the VeriFinger 

SDK v12.1 (VF) [20]. In order to simulate a realistic attack to 

an ABC gate, the operational thresholds of both FRSs were set, 

according to the FRONTEX guidelines [8], to ensure a False 

Acceptance Rate (FAR) equal to 0.1%. 

Tables II and III report MAP results on TestDB1 and 

TestDB2, respectively. It is well evident that the attack potential 

of double-identity fingerprints is very high: if just a single 

successful match decision is required (as it often happens in 

ABC), on both databases the attack is effective in almost all the 

cases with the image-level generation approach and in more 

than 85% of the cases with the feature-level one. Even with a 

stricter requirement of three successful match decisions, the 

attack is quite dangerous both on TestDB1 (93% and 59% on 

image- and feature-level sets, respectively), and TestDB2 (98% 

and 78% on image- and feature-level sets, respectively). In 

general, the attack potential of the image-level approach is 

higher than that of the feature-level one. It is also worth noting 

that the attacks tend to be more successful on TestDB2. This is 

probably due to the different acquisition area of the fingerprint 

sensors (see Figure 15). In particular, the sensor used to acquire 

TestDB2 images has a larger area, hence acquired fingerprint 

patterns tend to be larger and contain more minutiae, thus 

increasing the success changes of the attack. 

(a) (b) 

This article has been accepted for publication in IEEE Transactions on Biometrics, Behavior, and Identity Science. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBIOM.2023.3279859

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



2 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

The results reported in Table II are in line with those reported 

in [5] using a different metric: the Double-identity Acceptance 

Rate (DAR), which is computed analogously to the well-known 

False Acceptance Rate (FAR), see [5] for more details. For 

completeness, tables IV and  V report results using DAR metric, 

for both FRSs, at different values of FAR on TestDB1 and 

TestDB2, respectively. Note that results on Table IV are exactly 

the same reported in [5]. 

TABLE II 

MORPHING ATTACK POTENTIAL (%) ON TESTDB1 

 

Feature-level Image-level 

# FRSs # FRSs 

1 2 1 2 

#
 A

tt
em

p
ts

 

1 99.0 86.0 100.0 100.0 

2 96.0 73.0 100.0 98.0 

3 89.0 59.0 100.0 93.0 

4 84.0 50.0 100.0 88.0 

5 80.0 41.0 96.0 83.0 

6 69.0 27.0 93.0 63.0 

7 26.0 9.0 56.0 23.0 

TABLE III 

MORPHING ATTACK POTENTIAL (%) ON TESTDB2 

 

Feature-level Image-level 

# FRSs # FRSs 

1 2 1 2 

#
 A

tt
em

p
ts

 

1 97.2 89.7 100.0 99.9 

2 95.6 82.4 100.0 99.3 

3 92.9 77.8 100.0 98.2 

4 89.9 72.4 99.9 97.1 

5 86.3 66.3 99.6 95.7 

6 82.6 59.7 99.3 94.2 

7 77.5 53.1 98.5 88.9 

8 70.3 43.6 96.7 81.8 

9 61.8 32.9 93.1 73.6 

10 49.2 23.5 86.0 61.8 

11 30.4 11.1 72.5 39.4 

TABLE IV 

DOUBLE-IDENTITY ACCEPTANCE RATE (%) ON TESTDB1 

Set 
@FAR1% @FAR0.1% @FAR0.01% 

MCC VF MCC VF MCC VF 

Feature-level 80.6 87.2 69.3 79.0 54.5 69.3 

Image-level 92.6 95.4 88.5 93.5 81.1 91.1 

TABLE V 

DOUBLE-IDENTITY ACCEPTANCE RATE (%) ON TESTDB2 

Set 
@FAR1% @FAR0.1% @FAR0.01% 

MCC VF MCC VF MCC VF 

Feature-level 85.4 92.9 73.1 85.6 58.5 74.9 

Image-level 95.6 98.8 91.4 97.4 85.3 95.8 

 

Feature Extraction 

In order to compute the proposed alert score, the fingerprint 

recognition SDK VeriFinger 12.1 [20] was used to extract 

minutiae and to pair them during the alignment step (see 

Section II). The local quality (necessary to create quality maps 

𝐐𝟏 and 𝐐𝟐) was estimated as the local orientation reliability, i.e. 

the coherence of a set of orientation estimations in a given 

neighbourhood [9]. 

Testing Protocol and Performance Indicators 

For each double-identity set of both test databases, bona fide 

and double-identity fingerprints were used to compute the Bona 

fide Presentation Classification Error Rate (BPCER) and the 

Attack Presentation Classification Error Rate (APCER). As 

defined in [21], BPCER is the proportion of bona fide 

presentations falsely classified as presentation attacks, while 

APCER is the proportion of double-identity attack 

presentations falsely classified as bona fide presentations. The 

following performance indicators are reported: 

• EER (detection Equal-Error-Rate): the error rate for 

which BPCER and APCER are identical; 

• BPCER10: the lowest BPCER for APCER≤10%; 

• BPCER20: the lowest BPCER for APCER≤5%; 

• BPCER100: the lowest BPCER for APCER≤1%. 

To calculate the above indicators, alert scores were 

computed, as described in Section II, for the following types of 

comparisons: 

• bona fide – each fingerprint is compared against the 

remaining ones of the same finger. If fingerprint 𝐹𝐴 is 

compared against 𝐹𝐵, the symmetric comparison is not 

executed to avoid correlation in the scores. The total 

number of bona fide comparisons is 2800 for TestDB1 

and 47520 for TestDB2. 

• double-identity – each double-identity fingerprint is 

compared against all other impressions of both fingers 

involved in the generation process. The total number 

of double-identity comparisons, for each double-

identity set, is 1400 for TestDB1 and 15840 for 

TestDB2. 

Results 

The proposed approach was compared to a baseline method 

which, after the alignment step, computes the alert score as the 

ratio between the number of non-paired minutiae and the total 

number of minutiae. Tables VI and VII report the performance 

indicators of the proposed approach and the baseline method on 

both double-identity sets of TestDB1 and TestDB2, 

respectively. In general, we observe that the proposed approach 

was quite effective in detecting double-identity attacks and 

outperformed the baseline in all cases. On TestDB1, at the 

highest security level considered (BPCER100), in the worst case 

less than 5% bona fide attempts were erroneously rejected; on 

TestDB2, at the same security level, only about 11% of bona 

fide attempts were erroneously rejected. 

 

TABLE VI 

PERFORMANCE INDICATORS ON TESTDB1 
Double-

identity set 
Method EER BPCER10 BPCER20 BPCER100 

Feature-level 
Baseline 2.18% 1.07% 1.50% 3.29% 

Proposed 0.95% 0.14% 0.39% 0.93% 

Image-level 
Baseline 3.36% 2.61% 3.18% 18.86% 

Proposed 1.95% 0.46% 0.93% 4.64% 
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TABLE VII 

PERFORMANCE INDICATORS ON TESTDB2 
Double-

identity set 
Method EER BPCER10 BPCER20 BPCER100 

Feature-level 
Baseline 9.57% 9.49% 11.36% 14.83% 

Proposed 5.11% 4.00% 5.13% 7.56% 

Image-level 
Baseline 13.53% 14.75% 17.16% 23.24% 

Proposed 6.81% 6.01% 7.48% 11.33% 

 

It is wort noting that double-identity fingerprints generated 

with the feature-level approach were easier to be detected for 

both approaches. This may be due to the presence of spurious 

minutiae which often appear during the generation process (see 

[5] for more details). 

An analysis of the errors of the proposed approach at 

BPCER100 was carried out to understand their main causes. 

• Almost all attack presentation classification errors 

were due to incorrect placement of the finger on the 

acquisition device (see Figure 16). 

• As to bona fide presentation classification errors, most 

of them were due to skin distortion (see Figure 17), a 

few other errors depended on low quality regions not 

correctly detected (see Figure 18) or on a small 

number of paired minutiae. Errors due to skin 

distortion were particularly common on TestDB2, 

resulting in a BPCER higher than TestDB1 at the same 

APCER. This explains the better performance of our 

approach on TestDB1 (see Tables VI and VII). 

Some ideas to further reduce the above errors are discussed 

in the following section. 

 

 
Fig. 16. An example of double-identity attack not detected by 

the proposed approach at BPCER100. The live fingerprint (𝐅2) 

corresponds to the lower part of 𝐅1 but, due to an incorrect 

finger placement, the upper portion of 𝐅2 is not present (see the 

expectation map 𝔼). For this reason, the alert map 𝔸 is almost 

empty and the alert score is very low.   

 

 
Fig. 17. An example of bona fide comparison erroneously 

detected as a double-identity attack at BPCER100. The large 

amount of skin distortion in fingerprint 𝐅2 prevents several 

minutiae from being paired, resulting in a quite high alert score. 

 

 
Fig. 18. An example of bona fide comparison erroneously 

detected as a double-identity attack at BPCER100. In this case, 

the local quality estimator is unable to correctly discard most of 

the low-quality region in 𝐅2. This can be observed in the 

expectation map 𝔼, where only a small part of the low-quality 

region is not present. Therefore, since minutiae cannot be 

reliably extracted from that region, no pairing with minutiae in 

𝐅1 can be found, resulting in many active zones in the alert map 

𝔸. 

 

  

𝐅1 𝐅2 

𝔸 𝔼 

𝐅1 𝐅2 

𝔸 𝔼 

𝐅1 𝐅2 

𝔸 𝔼 
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IV. CONCLUSION 

In this paper we proposed the first differential approach to 

detect double-identity fingerprint attacks. This approach was 

specifically designed to counteract double-identity generation 

methods based on the combination of two fingerprint portions 

(as the two techniques introduced in [5]). The idea of looking 

at non-matching minutiae in the aligned intersection of the two 

fingerprints proved to be very effective: in the worst case 

considered, the proposed method is able to detect 99% of the 

attacks with a BPCER less than 12%. On the other hand, the 

proposed method may not behave as well with double-identity 

fingerprints generated by attack techniques not based on 

contiguous minutiae regions; investigating this issue is beyond 

the aims of this work. 

From the in-depth error analysis carried out, most of the 

undetected attacks were due to large displacement of some 

samples in the datasets, leading to small area overlapping. In a 

practical deployment, this problem could be addressed by 

enforcing a correct placement of the live finger over the 

acquisition device. Most of the bona fide presentation 

classification errors were due to skin distortion: this problem 

may be addressed by adopting a distortion-tolerant minutia 

matching algorithm in the alignment step. 

Our future research in this field will be focused on improving 

the proposed method with respect to the weaknesses 

highlighted in the experimental section and to design a new 

single image detector checking for anomalies in fingerprint 

texture and features.   
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