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Abstract: An application of Generative Diffusion Techniques for the reification of human portraits in
artistic paintings is presented. By reification we intend the transformation of the painter’s figurative
abstraction into a real human face. The application exploits a recent embedding technique for
Denoising Diffusion Implicit Models (DDIM), inverting the generative process and mapping the
visible image into its latent representation. In this way, we can first embed the portrait into the latent
space, and then use the reverse diffusion model, trained to generate real human faces, to produce the
most likely real approximation of the portrait. The actual deployment of the application involves
several additional techniques, mostly aimed to automatically identify, align, and crop the relevant
portion of the face, and to postprocess the generated reification in order to enhance its quality and to
allow a smooth reinsertion in the original painting.

Keywords: diffusion models; image generation; embedding; reification; denoising

1. Introduction

Have you ever wondered what could have been the actual appearance of some famous
historical figure, according to the portraits we have of her/him? Are you curious to see
how Vermer’s famous girl with a pearl earring may have actually looked? With the help of
diffusion generative models and the reification application described in this article, this is
now possible.

The key ingredient of the reification process is the embedding procedure recently
explored in [1], permitting the computation of the latent representation of an image by
means of a suitably trained neural network. This embedding network provides, in the
case of diffusion models, a functionality essentially equivalent to re-coders for Generative
Adversarial Networks (GANs) [2,3] or to encoders in the case of Variational Autoencoders
(VAEs) [4,5].

Figure 1. Reification of the portrait of Marie Antoinette by Martin van Meytens (1767) [6].

If the generator has been trained to sample real human faces, starting from the em-
bedding of the portrait, we shall be able to reconstruct the most likely real approximation
of the original subject. This is particularly effective for reverse diffusion techniques, since
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they have a larger sample diversity and introduce much less artifacts in the generative
process than different generative techniques [7]. GANs suffer from the well-known mode
collapse phenomenon [8], privileging realism over diversity, and essentially preventing the
encoding of arbitrary samples from the true distribution [9]. VAEs offer a more adequate
coverage of the data distribution but, in comparison with alternative generative techniques,
they usually produce images with a characteristic and annoying blurriness very hard to
correct [10,11].

(a) Vermeer (b) Renoir

Figure 2. (a) Reification of the portrait of the girl with a pearl earring by Johannes Vermeer (1665);
(b) reification of the “bohémienne” En été by Auguste Renoir (1868) [6].

(a) Colombus (b) Goethe

Figure 3. (a) Reification of the portrait of Cristoforo Colombo attributed to Ghirlandaio (c. 1520);
(b) Reification of the portrait of Johann Wolfgang Von Goethe by Karl Joseph von Stieler (1828) [6].

The possibility to apply the embedding network for diffusion models to the reification
of artistic portraits was already outlined in [1], where a few examples were given, starting
from manual face crops. The precise spatial location of the crop is crucial, since extracted
faces must conform to images in the training set of the generative model. In our case,
models have been trained on CelebA [12], a popular dataset in the field of facial processing
and analysis. It contains 202,599 celebrity images covering various poses and backgrounds
as well as people of different ages, ethnicities, and professions. In the aligned version, faces
are centered around the position of the eyes; the input crop of the embedding network
must conform to this alignement and respect the size of training faces.

In this article, we

1. automatize the face extraction process;
2. improve the embedding network;
3. enhance generation via super-resolution techniques;
4. reinsert the reificated image in the original portrait.

The result, as shown in figures [1, 2, 3], is a state-of-the-art, self-contained application
that can be used by any user just inputting her/his favorite painting.

The application is mostly intended to have a ludic nature. From the scientific point of
view, it allows us to make interesting explorations and discoveries on the latent space of
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diffusion models that, due to their large dimensionality (equal to the dimensionality of real
data), is particularly hard to tame for editing purposes.

The overall pipeline of the application is quite complex, comprising several nontrivial
operations both in the pre-processing and post-processing phases. A synthetic description
of the main steps is given in figure 4.

Figure 4. Reification pipeline over the portrait of Mary Shelley by Richard Rothwell, c. 1831–1840.
From the input image on the left we automatically identify the face and extract a crop aligned
accordingly to the training data of the diffusion model. The crop is embedded in the latent space
using our embedding network, and the latent encoding is passed as input to the reverse diffusion
process. The generated image is further processed by a super-resolution network. Before reinserting
it into the original portrait, the crop is color-adjusted and alpha-smoothed around the borders.

Pre-processing operations comprise automatic face identification, head pose estima-
tion [13], possible rotation along the roll axis, and cropping. To ensure the effectiveness of
the diffusion network, it is essential to maintain consistency with the cropping technique
used to create training data. In order to achieve this, it is necessary to detect the relevant
facial keypoints that define the boundaries of the face, which will enable accurate and
consistent cropping.

During post-processing, we apply a hyper resolution algorithm to obtain a high quality
output, recalibrate the colors of the resulting image to better match those of the original
portrait, compute and use a background mask together with a progressive alpha-smoothing
around the borders to facilitate the re-insertion in the original painting.

The implementation of the pipeline briefly described above requires the deployment
of many different technologies discussed in this work. Moreover, the networks for reverse
diffusion and embedding have been re-trained and fine-tuned. Additional networks for
background segmentation and image super-resolution have been created and trained to
further increase the quality of the resulting images.

The article is structured in the following way. In Section 2, we give a pragmatic
introduction to denoising models, discussing in particular the pseudocode for training
and sampling. A formal introduction to the theory behind denoising diffusion models is
outside the scope of this article, and we refer the reader to the extensive literature on the
probabilistic foundation of this technique [14–16]. In Section 3, we discuss the embedding
problem, that is, the computation of a latent encoding zx for a given input image x; when
zx is passed as input to the reverse diffusion process, this should return the original
image x. Preprocessing operations are addressed in Section 4, comprising Face Detection
(Section 4.1), Head Pose Estimation (Section 4.2), and cropping (Section 4.3). Postprocessing
operations are dealt with in Section 5, covering in particular super resolution (Section 5.1),
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Face Segmentation (Section 5.2), and Color Correction (Section 5.3). Concluding remarks
and ideas for future developments are given in Section 6.

2. Denoising Diffusion Models

Denoising Diffusion Models (DDM) [14] are the new state-of-the-art technology in
the field of deep generative modeling, challenging the role previously held by Generative
Adversarial Networks [7]. The distinctive properties of this generative technique, shared by
many recent applications like [17–19], comprise excellent generation quality, high sensibility
and responsiveness to conditioning, good sampling diversity, stability of training, and
satisfactory scalability.

Roughly, a diffusion model trains a single network to denoise images with a parametric
amount of noise; this network is then used to generate new samples by iteratively denoising
a given “noisy” image, starting from pure random noise and progressively removing a
decreasing amount of noise. figure [5] provides a straightforward graphical representation.

This process is traditionally called reverse diffusion since it is meant to “invert” the direct
diffusion process consisting in iteratively adding noise. In the case of Implicit Diffusion
models [15] that we used for our application, reverse diffusion is deterministic.

Direct Diffusion process−−−−−−−−−−−−−→

DATA NOISE

Generative Reverse Denoising process←−−−−−−−−−−−−−−−−−−−−−
Figure 5. Direct and reverse diffusion.

The only trainable component of the reverse diffusion process is a denoising network
εθ(xt, αt), which takes as input a noisy image xt and a noise variance αt, and tries to guess
the noise present in the image. This model is trained as a traditional denoising network,
taking a sample x0 from the dataset, corrupting it with a given amount of random noise,
and trying to identify the noise in the noisy image.

The pseudocode for training is given in Algorithm 1. We recall that the meaning of the
tilde operation x ∼ P is to sample x according to the probability distribution P. PDATA is the
distribution of data points.

Algorithm 1 Training

1: Fix a noise scheduling (αT , . . . , α1)
2: repeat
3: x0 ∼ PDATA . take a sample
4: t ∼Uniform(1,..,T) . choose a timestep
5: ε ∼ N (0; I) . create random gaussian noise
6: xt =

√
αtx0 +

√
1−αtε . corrupt the sample with noise rate αt

7: Take gradient descent step on ||ε− εθ(xt, αt)||2 . backpropagate the loss
8: until converged

Generative sampling is an iterative process. Starting from a purely noisy image xT ,
we progressively remove noise by calling the denoising network. The denoised version of
the image at timestep t is obtained by inverting step 6 of the training pseudocode, where
xt−1 plays the role of x0. The pseudocode for sampling is given in Algorithm 2.
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Algorithm 2 Sampling

1: xT ∼ N (0, I)
2: for t = T, ..., 1 do
3: ε = εθ(xt, αt) . predict noise
4: x̃0 = 1√

αt
(xt − 1−αt√

1−αt
ε) . compute denoised result

5: xt−1 =
√

αt−1 x̃0 +
√

1− αt−1ε . re-inject noise at rate αt−1
6: end for

The usual architecture for the denoising network is that of a U-Net [20], structured
with a downsample sequence of layers followed by an upsample sequence, with skip
connections added between the layers of the same size.

The noise variance αt is taken as an additional input, vectorized and stacked along
the channel axis. To improve the sensibility of the network to this value, αt is frequently
embedded using an ad hoc sinusoidal transformation, splitting it into a set of frequencies,
in a way similar to positional encodings in transformers [21].

An important aspect in implementing diffusion models is the scheduling of the diffusion
noise {αt}T

t=1 during reverse diffusion. In [14], the authors proposed to use linear or quadratic
schedules, but this choice exhibits too steep a decrease during the first time steps, causing
problems during generation. Alternative scheduling functions with a gentler decrease have
been proposed in the literature, such as the cosine or continuous cosine schedule [22,23].
The choice of a gentler scheduler also allows the model to reduce the number of iterations
during generation, which is particularly important for training the embedding network. For our
purposes, we used a network with 10 diffusion steps, which is a standard number for DDIM
[15]. Augmenting the number of steps only produces minor improvements in the quality of
images, largely encompassed by super-resolution post-processing.

3. Embedding

The key contribution of [1] was to show that a neural network could be trained to
compute the latent representation zx of some data sample x. The loss function used to
train the model is simply the distance between the original image x and the result x̂
of the denoising process originated from zx. Somewhat surprisingly, the machinery of
modern environments for neural computation (we used tensorflow) is enough to smoothly
backpropagate gradients through the iterative loop of the reverse diffusion process.

It is worth stressing that embedding is not an iterative process; a single forward pass
through the embedding network is enough to compute the latent representation.

Several different architectures were tested, and a simple U-Net proved to be the best
solution. For this article, we trained a new and slightly larger network, marginally improv-
ing the already excellent results in [1]. Some examples of embedding and reconstructions
are shown in figure 6; the reconstruction quality is pretty good, with an MSE of around
0.0012 in the case of CelebA [12], with just a slight blurriness. The quality of the embedding
can be further increased by a few optional steps of gradient ascent, following the approach
described in [1].

We recall that, in the case of diffusion models, the latent space has the same dimen-
sionality of the visible space, so latent encodings can be visually inspected and compared
with real images.

Instead of improving the quality of the resulting images by pushing training, which
could eventually result in overfitting, we preferred to address the blurriness problem by
applying a final super-resolution network, similar to what is done in stable diffusion [24].
The super-resolution network is discussed in Section 5.1.
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Figure 6. Examples of embedding over CelebA. In the first row, we have the original, in the sec-
ond row the latent representation computed by the embedding network, and in the third row the
reconstructions obtained through the reverse diffusion process. No cherry-picking. Eyes have been
covered due to privacy concerns.

4. Pre-Processing

The purpose of the pre-processing phase is to automatically extract from the input
image the crops of individual faces and to pass them to the embedding generation network.
The delicate point is that the crops must respect the size and the alignment of the faces
over which the diffusion model has been trained. Since Celeba crops are centered with
respect to the position of the eyes, cropping requires the identification of facial landmarks.
Below we further describe these operations, along with the software that has been used to
address them.

4.1. Face Detection and Landmark Extraction

The first step in the face recognition pipeline is to locate the faces in the input image.
To accomplish this, we used the Face Recognition [25] library, a powerful Python library
built on top of dlib and deep learning models.

The face detection algorithm used in the Face Recognition library, as stated in the
previously cited article, is based on the Histogram of Oriented Gradients (HOG) method.
This method involves computing the gradient orientation and magnitude at every pixel in
an image, and then grouping these values into cells and blocks. The resulting histogram of
these values is then used to identify regions of the image that may contain a face. Once
faces have been detected, the Face Recognition library uses a deep learning model to
extract facial landmarks. These are key points on the face, such as the corners of the
eyes, nose, and mouth, that are important for subsequent analysis. The algorithm uses a
convolutional neural network (CNN) trained on a large dataset of faces to accurately locate
these landmarks.

As stated by the authors, the model has an accuracy of 99.38% on the Labeled Faces in
the Wild benchmark [26].

With its simple APIs for face detection, recognition, and manipulation, the Face
Recognition library provides an efficient and accurate way to extract faces from images.

4.2. Head Pose Estimation

Head pose estimation is a computer vision task that focuses on determining a person’s
head orientation in three-dimensional space. This involves calculating three rotation angles,
namely yaw, pitch, and roll, which together provide a comprehensive representation of the
head’s orientation.

Specifically, yaw refers to the rotation around the vertical axis, pitch corresponds to
the rotation around the horizontal axis, and roll represents the rotation around an axis
perpendicular to the other two. To compute these angles, we first define a region of interest
(ROI) around the face in the input image using the coordinates obtained from the face
detection step. Next, we project a selected set of facial landmarks, such as the nose tip, chin,
eye corners, and mouth corners, onto the ROI. By combining these projected points with a
generic 3D face model, we can estimate the face’s rotation and translation vectors.
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To achieve this, we utilize the cv2.solvePnP() function from the OpenCV library [27],
which addresses the Perspective-n-Point (PnP) problem. In particular, we employ the
iterative method (cv2.SOLVEPNP_ITERATIVE) to refine the estimates. If the estimation is
successful, we compute the Euler angles (yaw, pitch, and roll) from the decomposed
projection matrix using the cv2.decomposeProjectionMatrix() function, which is based
on the following equations:

pitch = atan2
(
−R2,0,

√
R2

2,1 + R2
2,2

)
yaw = atan2(R1,0, R0,0)

roll = atan2(R2,1, R2,2)

(1)

Here, Ri,j denotes the entries of the rotation matrix obtained through the cv2.solvePnP()
function.

Subsequently, we convert the pitch, yaw, and roll angles from radians to degrees and
apply corrections to ensure that these angles lie within the appropriate range, using the
following formulas:

pitch = arcsin (sin(pitch))

roll = − arcsin (sin(roll))

yaw = arcsin (sin(yaw))

(2)

For optimal performance of the diffusion model, we discard faces with yaw angles
greater than 50 degrees and faces with pitch and roll angles exceeding 45 degrees. This
is because the training was conducted on the CelebA Aligned dataset, which primarily
consists of frontal faces. Additionally, we perform a rotation step for faces with roll angles
between 15 and 45 degrees to correct their orientation and align them better with the
training data. Once the diffusion process is completed, we rotate the faces back to their
original orientation, allowing them to be accurately integrated into the original image.

4.3. Cropping

Images used to train the diffusion model are based on a central crop of dimension
128× 128 of the CelebA-aligned dataset, frequently used in the literature [28,29]. The size
of the crop is meant to facilitate down-sizing to dimension 64× 64 that is the actual input–
output dimension of the reverse diffusion process. The only minor drawback of this crop is
that it typically cuts a small portion of the chin (see figure 6).

In order to optimize the reification process, we need to crop new faces according to a
similar method.

The center of the crop box is computed as an average of the landmarks corresponding
to the inner corners of the eyes and the eyebrows. The size of the crop box is double the
distance of the center from the average point between the outermost landmarks of the chin.
The points used in this process are shown in the first two images of figure 7.

Crop-Box computation Yaw, Pitch, and Roll computations

Figure 7. Examples of automatically computed bounding box and head orientation using facial
landmark detection on portraits. The bounding boxes and orientation angles are overlaid on Richard
Rothwell’s portrait of Mary Shelley and Willem Key’s portrait of Queen Elizabeth I.
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Once all the crop boxes have been calculated, faces are extracted from the input image
and fed into the diffusion model.

4.4. Effect of the Crop on the Face Expression

Most of the images in the CelebA dataset are smiling. This typically results in a bias
towards smiling faces during the generative process, which can be annoying. Somewhat
surprisingly, the expression can be changed by merely acting on the dimension of the
crop. Reducing by a small factor (say, 0.98) the size of the crop, we accentuate the cheerful
appearance, while increasing the size of the box (say, by a factor 1.05), we may induce a
more stern, almost frowning expression (see figure [8]).

(a) (b) (c) (d)

Figure 8. Reifications on the portrait of a young girl by Petrus Chistus (c. 1470): effect of the
dimension of the crop box on the expression of the reificated image. The smiling face (c) was obtained
by reducing the crop size of a factor 0.98, while the frown in (d) was caused by increasing the crop
size by a factor 1.05. The neutral expression (b), similar to the original, required a slight enlargement
(1.02) to compensate for the smiling bias of the generator.

We do not have a clear explanation for this phenomenon, which was discovered by
chance during fine-tuning of the algorithm. We mention it to highlight the sensibility
of the generation process to small perturbations of the latent encoding, and to stress the
complexity of discovering interesting semantic trajectories in the huge latent space of
diffusion models. Similarly, it clarifies the difficulty of fully automatizing the cropping
phase, which could require some supervised fine-tuning to obtain really satisfactory results.

5. Post-Processing

To enhance the integration of the diffusion model’s results with the original image,
a post-processing pipeline that employs various techniques is employed.

Our post-processing pipeline includes a super-resolution model and a segmentation
model, both of which are essential for enhancing the quality of the reconstructed images.
Instead of using existing pre-trained models in the literature, such as ESRGAN for super-
resolution [30], we decided to implement and train these models from scratch.

By developing our models from scratch, we were able to create models that are
specifically tailored to the task of processing faces, resulting in lighter and faster models
that are optimized for our specific needs.

Furthermore, by not using a model trained with adversarial training, such as a GAN
model, we can be certain that the output does not contain artifacts not present in the
original image.

In this section, a detailed description of the above-mentioned techniques is provided.

5.1. Super-Resolution

In the initial stage, a super-resolution model is employed to enhance the resolution
of the diffusion model’s output images. The images generated by the diffusion model
have a size of 64 × 64 pixels, and to improve their visual quality, a specially trained face
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super-resolution model is utilized. The purpose of this model is to increase the size of the
images by a factor of four, resulting in an output image size of 256× 256 pixels. This process
is essential to enhance the image resolution and produce high-quality output images.

Our proposed super-resolution architecture is inspired by the generator architecture
proposed in [31], which has been widely used in the field of image processing. We extended
this architecture by incorporating the Self-Attention Mechanism, as suggested in [32].

The overall architecture is described in figure [9].

Figure 9. Architecture of the deep convolutional neural network utilizing residual blocks and self-
attention mechanisms for super-resolution facial image enhancement.

It exploits self-attention layers and residual blocks. The self-attention mechanism
is meant to capture long-range dependencies in the image, and the residual blocks help
to avoid the vanishing gradient problem and accelerate the training process. In detail, it
consists of a skip connection followed by 16 residual blocks, each of which is followed by a
self-attention module. The output of the residual blocks is then concatenated with the skip
connection, and the resulting tensor is upsampled using two upsampling blocks.

To ensure consistency with the training dataset of the diffusion model, the super-
resolution model was trained on a cropped version of CelebAMask-HQ [33]. CelebAMask-
HQ is composed of 30,000 images of the primary CelebA dataset, but at higher resolution.
Furthermore, these images come with segmentation masks of facial features and accessories,
including skin, eyes, nose, ears, hair, neck, mouth, lips, hats, eyeglasses, jewelry, and clothes,
which have not been used for the super-resolution task.

To train the super-resolution network, we used a custom loss combining mean squared
error (MSE) and perceptual loss, with equal weights assigned to each component. The per-
ceptual loss is computed based on the VGG-19 [34] neural network. By using this custom
loss function, the model is able to optimize both the quantitative metrics captured by MSE,
as well as the perceptual quality of the output images.

5.2. Faces Segmentation

A potential issue hindering the quality of reconstructed images is related to back-
ground elements, traditionally difficult to render for generative techniques, due to their
large variability. To address this problem, we introduced a segmentation phase to effectively
identify and remove the background.

We performed the segmentation on a region of interest (ROI) that contains the face
in the original image. The resulting mask is then cropped to match the Diffusion Model-
generated face and used to remove the background from the reconstructed image. To im-
plement the segmentation process, we trained a U-Net model [20] on the CelebaMask-HQ
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dataset, which includes high-quality face masks manually annotated. This allowed us to
precisely segment the face region with an accuracy of 96.78% and a recall of 97.60%.

To further enhance the appearance of the reconstructed image, we employ a fading
technique to gradually blend the border of the generated face with the original image. This
technique helps to avoid sharp edges or visible borders that could negatively impact the
final result, ensuring a more natural and seamless appearance (see figure [10]).

(a) No Post-Processing (b) Post-Processed

Figure 10. Example of final output without (a) and with (b) post-processing. The implementation
of a segmentation net in the post-processing step helps to eliminate blurry background elements
generated by the diffusion model.

An example of segmentation masks can be found in figure [11]. Overall, the segmen-
tation process and the fading technique have significantly improved the quality of our
reconstructed images, allowing us to produce more accurate and visually appealing results.

(a) Antonello da Messina (b) Jacques-Louis David

Figure 11. Example of segmentation masks produced by the Unet model on Antonello da Messina’s
Portrait of Man (a) and on Jacques-Louis David’s The Emperor Napoleon in His Study at the Tui-
leries (b).

5.3. Color Correction

As a final step, we applied a color correction technique to mitigate color discrepan-
cies between generated faces and their respective sources, improving the overall visual
coherence and realism of the results.

The color correction operation aligns the color statistics of two images using the Lab
color space. It involves several steps, including converting the images to Lab color space,
normalizing the Lab channels of the target image using the mean and standard deviation
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of the source image, and converting the target image back to RGB color space. All the steps
are explained in algorithm 3.

Algorithm 3 Color correction

1: lab_target = convert_color_space(target_image, "RGB", "LAB")
2: lab_source = convert_color_space(source_image, "RGB", "LAB")

3: mean_target = compute_mean(lab_target)
4: mean_source = compute_mean(lab_source)
5: std_target = compute_standard_deviation(lab_target)
6: std_source = compute_standard_deviation(lab_source)

7: lab_target = (
(lab_target−mean_target)

std_target )× std_source + mean_source

8: target_image = convert_color_space(lab_target, "LAB", "RGB")

The LAB color space is often used in color correction algorithms because it separates
the luminance (brightness) component from the chrominance (color) information. This
makes it easier to manipulate the color information separately from the brightness in-
formation, making the color correction more reliable. In figure [12] we give an example
demonstrating the effect of the entire post-processing phase.

Figure 12. Example of a full post-processing pipeline on Leonardo da Vinci’s Mona Lisa. The first
image shows the original input, followed by the output of the Diffusion Model in the second
image. The final image shows the resulting output after color correction and super-resolution have
been applied.

6. Conclusions

In this article we presented a complete application for the transformation of a painter’s
portrait into a real human face; we call this process portrait reification. The heart of the
application is the embedding procedure for generative diffusion models recently introduced
in [1]. Since the diffusion model was trained to generate human faces, it will revert the
embedding of the portrait into the most likely real approximation of the original subject.

In order to turn this simple idea into a stand-alone and fully functional application,
several steps have been required, both during pre-processing and post-processing.

Pre-processing operations comprise automatic face identification, head pose estima-
tion, possible rotation along the roll axis, and cropping. Cropping is particularly delicate,
since it must be coherent with the face crops used to train the generative model; a correct
computation of the crop eventually requires the identification of the main facial keypoints.
In addition, we also discovered that small modifications of the crop dimension may sensibly
change the expression of the generated face.

In the postprocessing phase, we apply a hyper resolution algorithm to obtain a high-
quality output, recalibrate the colors of the resulting image to better match those of the
original portrait, compute a background mask to preserve the original background, and
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finally use progressive alpha-smoothing around the borders to facilitate merging into the
original painting.

The application works well for most naturalistic styles, but it could be in trouble
on some modern styles such as Cubism, Surrealism, Pointillism, and Expressionism, not
always presenting clear and recognizable facial features. In case the face is correctly
identified, some manual editing of the latent encoding and fine-tuning of the different
phases could be required.

Beyond the amusing functionality provided by the application, the interest of the work
consists in attesting the complexity of interacting with the latent representation of diffusion
models, mostly due to their high dimensionality, equal to the dimension of the real space.
Tiny modifications of the latent encoding easily result in sensible modifications of the
generated image, comprising expression, gender, and even orientation. The impact of the
face crop on the expression of the face seems to suggest that, in the case of diffusion models,
vector adjustments along suitable trajectories might not be enough to obtain interesting
editing effects, but more complex topological operations, e.g., dilation or contraction, could
be required.
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