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1  Introduction

Fruit cracking is a physiological disorder that can dra-
matically depreciate cherry fruits, causing heavy economic 
losses starting from the fruit’s onset of color (Sekse 1995; 
Sekse et al. 2005; Simon 2006; Knoche and Winkler 2017; 
Correia et al. 2018). Recently, climate change has intensi-
fied the occurrence and damages caused by rain-induced 
cracking in sweet cherry and other important horticultural 
crops. Fruits are particularly vulnerable to cracking from 
onset of color to maturity, mostly in conjunction with high 
atmospheric humidity or rainfall events (Christensen 1996).

The harvest value is extremely compromised when the 
incidence of cracking is higher than 20–30% (Hansen and 
Proebsting 1996). This is recurrent for susceptible geno-
types, such as cv. Van, where cracking can reach almost 
100% of the marketable fruits. Moreover, lesions local-
ized on the drupe represent a preferential access route to 
the spread of pathogens such as Monilinia laxa and Botrytis 
cinerea (Børve et al. 2000), causing additional losses.

Many hypotheses have been proposed to explain the 
phenomenon of fruit cracking, even though the responsible 
mechanisms are not completely elucidated (Correia et al. 
2018).
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Abstract
Fruit cracking caused by rainfall prior to harvest, a major problem in sweet cherry production, is being exacerbated by 
climate change. Currently, pre-harvest spraying with calcium salt solutions is the prevalent technique to reduce fruit crack-
ing in cherry orchards not covered by plastic roofs. This study evaluated the effectiveness of canopy-applied silicon in 
the reduction of sweet cherry cracking under different field conditions. Four field trials were conducted on mature trees 
of the cultivars Van, New Star, and Emperor Francis. Treatments included water (control), calcium chloride, and sodium 
silicate. Multiple sprays (three) were applied weekly from fruit onset of color to approximately 1 week before harvest. The 
results showed that under conditions conducive to cracking, sodium silicate reduced the percentage of cracked fruits to a 
similar or larger extent than calcium chloride. This study highlights how canopy-applied silicon sources may effectively 
contribute to reducing cherry cracking, acting as an alternative technique to other preventive methods.
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The incidence and severity of cherry cracking are influ-
enced by genotypic, environmental, and agronomic factors 
(Correia et al. 2018). The susceptibility to cracking differs 
largely among cherry cultivars (Sekse 1995; Christensen 
1996; Demirsoy and Demirsoy 2004; Measham et al. 2009; 
Correia et al. 2018) and can be modulated by the rootstock 
(Cline et al. 1995; Sekse 1995; Simon et al. 2004). In addi-
tion, the fruit cuticle plays a crucial role in cracking suscep-
tibility (Martin and Rose 2014; Tafolla-Arellano et al. 2018; 
Wang et al. 2021).

The reduction of cherry cracking often involves the use 
of physical-mechanical systems (plastic roofs, helicopters, 
or air blast blowers), chemicals (calcium-based compounds, 
mineral sprays, antitranspirants, and growth regulators), or 
biostimulants (e.g., seaweed extracts) (Sekse 1995; Sekse et 
al. 2005; Simon 2006; Knoche and Winkler 2017; Correia 
et al. 2018). Plastic roofs reduce cracking damage but are 
costly (Simon 2006; Correia et al. 2018).

Pre-harvest calcium sprays generally reduce sweet cherry 
cracking (Demirsoy and Bilgener 1998; Sekse 1998), as cal-
cium plays a critical role in maintaining the structural integ-
rity and firmness of the cell wall of the fruits (Christensen 
1972; Sekse 1995). However, calcium sprays can reduce 
fruit size (Looney 1986; Facteau et al. 1987).

The techniques used to reduce fruit cracking are hardly 
effective when its incidence is high (e.g. from frequent rain-
fall) and present some drawbacks. Consequently, it is neces-
sary to develop agronomic strategies that prevent the final 
appearance of macrocracks, without generating adverse 
impacts on the fruits and the tree. Modifications of cell wall 
properties (extensibility and stability) of the epidermis and 
the preservation of fruit cuticles by agronomic means are 
likely to contribute to reduced cracking.

Silicon (Si) is a beneficial element whose positive effects 
are mainly associated with its high deposition in plant tis-
sues, enhancing their strength and rigidity (Ma and Taka-
hashi 2002; Ma and Yamaji 2006). Si is capable of increasing 
cell wall extensibility and thereby the elongation process 
in the meristematic zone (Hossain et al. 2002; Hattori et 

al. 2003; Bat-Erdene et al. 2021). In addition, Si forms a 
protective layer that prevents the penetration of water and 
fungal pathogens and stimulates defense reactions against 
pathogens (Ma and Takahashi 2002; Ma and Yamaji 2006; 
Bat-Erdene et al. 2021).

The objective of this study is to evaluate the effective-
ness of canopy-applied Si sources in the reduction of sweet 
cherry cracking through a range of field experiments under 
different environmental conditions.

2  Materials and methods

2.1  Plant material and growing conditions

Sweet cherry (Prunus avium) mature trees of cultivars Van, 
Emperor Francis, and New Star were subjected to canopy-
applied treatment in four experimental sites, of which three 
were located in Northern Italy and one in Upper Mid-
western, United States. Meteorological data for the period 
between onset of color and harvest are presented in Table 1.

Experiment 1 was conducted in 2002 in a mature cherry 
orchard located in Savignano sul Panaro (Modena, Italy) 
(44°29’N 11°02’E; 217  m a.s.l.) on plants of the cv. Van 
grafted on Colt.

Experiment 2 was conducted in 2003 in a mature cherry 
orchard located at the Clarksville Research Center, Michi-
gan State University (Clarksville, Michigan, USA) (42°52’N 
85°15’W; 251 m a.s.l.) on plants of the cv. Emperor Francis 
grafted on a cherry seedling.

Experiment 3 was carried out in 2005 in Vignola (Modena, 
Italy), (44°28’N 11°00’E; 125 m a.s.l.), in a mature orchard, 
on plants of cv. Van grafted on a cherry seedlings.

Experiment 4 was carried out in 2007 in Castelfranco 
Emilia (Modena, Italy), (44°34’N 11°05’E; 35 m a.s.l.) in 
a mature orchard, on plants of cv. New Star grafted on a 
cherry seedling.

2.2  Canopy-applied calcium and silicon treatments

Field experiments were conducted, during one growing sea-
son, in a completely randomized block design with three 
replicates. The following treatments were compared: (1) 
control (distilled water), (2) calcium chloride (CaCl2) (5 g 
L−1), and (3) sodium silicate (Na2OSiO2)3 (36–40°Bé) (2.3 g 
L−1). Each treatment was applied to a single branch within a 
tree. The pH of all solutions was adjusted to 5.5 using HCl. 
Solutions were applied in the late afternoon to the canopy 
through pressurized nebulizers, until the complete dripping 
of fruits and leaves.

Three (Experiments 1–3) and four (Experiment 4) ran-
domly selected trees were sprayed for each treatment and 

Table 1  Atmospheric average temperature (°C), relative humidity (%), 
and accumulated precipitation in the period between onset of color and 
harvest for each experiment

Start date 
of onset 
of color

Harvest 
date

Average 
tempera-
ture
(°C)

Average 
relative 
humidity
(%)

Accumu-
lated pre-
cipitation
(mm)

Experi-
ment 1

May 17, 
2002

June 13, 
2002

19.6 71 9

Experi-
ment 2

June 27, 
2003

July 14, 
2003

21.2 72 42

Experi-
ment 3

May 18, 
2005

June 20, 
2005

19.8 57 6

Experi-
ment 4

May 7, 
2007

June 04, 
2007

20.7 58 37
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separated by at least two untreated trees along consecu-
tive plots. Treatments were performed weekly from the 
onset of color until commercial harvest, for a total of three 
applications.

2.3  Sampling and measurement methods

The effects of treatments were evaluated at harvest. The per-
centage of cracked fruits was calculated based on the total 
number of treated fruits. In Experiments 1 and 2, the types 
of cracks (peduncular, dorsal, and apical end) were also 
assessed.

2.4  Fruit quality parameters

Fruit quality was evaluated, for all experiments, by fruit 
weight and soluble solids content (TSS) (Atago Digital 
Refractometer, Optolab, Modena, Italy). Fruit firmness 
(Effegi FT 011, tip ø 5 mm, Ravenna, Italy) (Experiments 1 
and 4), pH, and juice titratable acidity (Experiment 4) (Cri-
son Titromatic 1 S, Barcelona, Spain) were also determined.

Cherry skin color parameters were determined (Experi-
ment 1) via a chromameter (CR-200 Chromameter, Minolta 
Co. Ltd., Osaka, Japan) using the digital representation 
model HLS (hue, lightness, and saturation). The hue axis 
(H) includes red at 0° and 360°. The brightness axis (L) 
ranges from 0 (black) to 100 (white). The saturation axis 
(S) ranges from 0 (darker color) to 100 (more intense color).

2.5  Silicon localization by cryo-scanning 
electron microscopy and energy-dispersive X-ray 
microanalysis

Analysis of the deposition of Si on the surface of the fruits 
and its possible penetration into the internal tissues was per-
formed on the frozen-hydrated, whole, and freeze-fractured 
samples of cvs. Van (Experiment 3) and New Star (Experi-
ment 4) by cryo-scanning electron microscopy (Cryo-SEM) 
and energy-dispersive X-ray microanalysis (McCully et al. 
2009, 2010; Minnocci et al. 2018). At harvest, a portion of the 
surface and a parallelepiped of the regular Sect. (5 × 5 mm) 
from the epidermis until the seed of unwashed fruits (with-
out stalk) were sampled. The fruit portions were immedi-
ately cryo-fixed by immersion in liquid nitrogen (−196 °C) 
and stored until Cryo-SEM analysis. For the internal tis-
sue analysis, the frozen-hydrated (FH) samples were first 
mounted under liquid nitrogen gas in an aluminum stub with 
Tissue-Tek, freeze-fractured inside the liquid nitrogen to 
expose the internal texture, transferred to a dedicated cryo-
preparation chamber (SEM Cryo Unit, SCU 020, Bal-Tech, 
Balzers, Liechtenstein), surface etched for 3 min at −80 °C 
under high vacuum (P < 2 × 10− 4 Pa), and sputter-coated with 

8-nm gold in an argon atmosphere (P < 2.2 × 10− 2 Pa) to pro-
duce an electrically conductive surface. FH specimens were 
finally transferred to the cryo-stage (−180 °C) inside a scan-
ning electron microscope (Philips SEM 515, Eindhoven, the 
Netherlands). Energy-dispersive X-ray microanalysis of FH 
specimens was performed with SEM using an acceleration 
voltage of 17 kV, a take-off angle of 16.5°, and a working 
distance (sample to the final lens of the SEM instrument) of 
12.0 mm. Spectra from 0 to 20 keV were acquired for 120 s 
(live time) with a dead time of less than 20%, and collected 
at increments of 10 eV per channel with the electron beam 
focused on a spot area (diameter 40 nm) in the center of the 
selected cells (Fig. 1D). The background and element-spe-
cific peak spectra were analyzed using the program EDAX 
DX-4 2.0 (EDAX, San Francisco, CA), which fully decon-
volutes the spectra and allows corrections for interference 
between elements (Servili et al. 2008).

2.6  Statistical analysis

Data were subjected to analysis of variance, and the com-
parison between treatments was performed by the Student 
Newman Keuls (SNK) test (P ≤ 0.05).

3  Results

3.1  Effects of canopy-applied sodium silicate and 
calcium chloride on sweet cherry cracking

3.1.1  Experiment 1

The application of Si and CaCl2 reduced to a similar extent 
the incidence of cracked fruits compared to water-sprayed 
fruits (Table 2). Most fruits showed cracks in the apical por-
tion, and the type of cracking was not affected by treatments 
(Table 2). The application of sodium silicate to the canopy 
decreased the average weight of the fruit at harvest in 
comparison to control plants (Table 3), whereas fruit firm-
ness was not affected by treatments (Table 3). Si treatment 
reduced hue, brightness, and saturation (Table 4).

3.1.2  Experiment 2

The highest percentage of cracked fruits was recorded 
in control plants. This value was reduced, with similar 
effectiveness, in the branches treated with sodium silicate 
and calcium salt (Table  2). In addition, differences were 
observed also in the type of cracking (Table 2). The sup-
ply of calcium chloride to the canopy reduced the average 
weight of the fruit and the soluble solids, while the sodium 
silicate increased the latter parameter (Table 3).

1 3
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treatments did not affect fruit weight at harvest (Table 3). 
Nevertheless, total soluble solids were enhanced by canopy-
applied sodium silicate (Table 3).

3.1.3  Experiment 3

The low rainfall that occurred during the experiment 
(Table 1) prevented the occurrence of cracking. Negligible 
cracking incidence was observed (less than 0.5%; data not 
shown), and it was not influenced by treatment. Similarly, 

Fig. 1  (A): cv. Van, sodium sili-
cate residue on the outer surface 
of the treated fruit; (B): cv. New 
Star, transverse freeze-fracture of 
exocarp in correspondence of a 
residual drop of sodium silicate; 
(C) the same plane of fracture of 
(B) at a lower magnification to 
display the different cell types 
examined with X-ray microanaly-
sis; and (D) an X-ray spectrum 
representative of those detected 
both in cells of the epidermis 
and in the mesocarp, with the 
silicon content (SiK) highlighted 
in green
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3.1.4  Experiment 4

Cracked fruits were higher than 50%, except in plants 
treated with the Si source (Table 2). Only the latter treat-
ment reduced the percentage of damaged fruit compared to 
the control, whereas calcium chloride was not effective. On 
cracked fruits, most of the fractures were localized in the 
peduncular position, with no differences induced by treat-
ments (Table 2). The analysis of the main quality parameters 
did not show differences due to treatments (Table 3).

3.2  Cryo-SEM and energy-dispersive X-ray 
microanalysis of fruits subjected to sodium silicate 
treatments

The analysis of frozen-hydrated samples of cherry fruits 
subjected to sodium silicate treatments by Cryo-SEM and 
energy-dispersive X-ray microanalysis demonstrated the 
presence of Si deposits on the surface of the fruits (Fig. 1A). 
The assay determined that even with the presence of sodium 
silicate on the outer surface of the fruit in the form of drop-
lets remained following treatment (Fig. 1A and B), the cells 

Table 2  Effects of treatments on the incidence and type of fruit cracking (data expressed as a percentage)
Fruit Cracking (%)

Treatments Total Apical Peduncular Dorsal Multiple
Experiment 1 Control 27.9 a1 58 36 6 -

Calcium chloride 13.4 b 74 26 0 -
Sodium silicate 13.3 b 58 42 0 -
Significance *2 n.s. n.s. n.s.

Experiment 2 Control 27.5 a 13.3 b 72.5 1.8 12.4 a
Calcium chloride 12.8 b 14.2 b 84.8 0 1 b
Sodium silicate 15.7 b 30.0 a 67.2 0.9 1.9 b
Significance * ** n.s. n.s. *

Experiment 4 Control 58.2 a 0.9 91.1 3.6 4.4
Calcium chloride 63.8 a 0.7 98.5 0.1 0.7
Sodium silicate 41.3 b 0.6 98.7 0.1 0.6
Significance **2 n.s. n.s. n.s. n.s.

1Different letters represent significant differences by the ANOVA test. 2Significant at *P < 0.05, **P < 0.01); n.s.: not significant

Table 3  Effects of treatments on fruit weight, firmness, and soluble 
solids concentration

Treatment
Control Calcium 

chloride
Sodium 
silicate

Significance

Experi-
ment 1

Fruit 
weight (g 
fruit−1)

10.2 a1 9.3 ab 9.0 b *2

Fruit 
Firm-
ness² (kg 
cm−2)

0.8 0.9 0.9 n.s.

Experi-
ment 2

Fruit 
weight (g 
fruit−1)

8.8 a 7.5 b 8.6 a *

Soluble 
Solids 
(°Brix)

13.2 b 11.7 c 14.3 a ***

Experi-
ment 3

Fruit 
weight (g 
fruit−1)

8.9 8.7 9.0 n.s.

Soluble 
Solids 
(°Brix)

19.0 b 18.6 b 22.3 a *

Experi-
ment 4

Fruit 
weight (g 
fruit−1)

6.7 6.9 6.5 n.s.

Fruit 
Firmness 
(kg cm−2)

0.5 0.57 0.6 n.s.

Soluble 
Solids 
(°Brix)

16.1 15.4 16.3 n.s

1Different letters represent significant differences by the ANOVA 
test. 2Significant at *P < 0.05, ***P < 0.001); n.s.: not significant
2Determined on the whole fruit using the penetrometer Effegi, FT 
011, tip ø 5 mm

Table 4  Effects of treatments on the cherry skin color parameters mea-
sured on fruits of Experiment 1
Treatment Color 

components
L1 S H

Control 30.2 
a2

19.6 6.3 
a

Calcium chloride 30.2 
a

20.9 6.6 
a

Sodium silicate 29.4 
b

15.7 4.0 
b

Significance **3 n.s. *
1Lightness (L), saturation (S), and hue (H)
2Different letters represent significant differences by the ANOVA 
test. 3Significant at *P < 0.05, **P < 0.01); n.s.: not significant
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cell elongation of the epidermal cells in the young shoot 
tissues and increased cell wall extensibility (Hossain et al. 
2002).

When treated with Si, cell walls of sorghum roots were 
strengthened in the mature basal region, and cell walls in 
the apical and subapical zones showed an increase in exten-
sibility, which resulted in a promotion of root elongation 
(Hattori et al. 2003). Si has also been reported to improve 
tissue extensibility and enhance cell enlargement in cucum-
ber plants under salt and drought stress (Ouzounidou et al. 
2016).

Si can modify the mechanical properties of tissues, con-
tributing to cell wall rigidity and reinforcement, as it inter-
acts with primary cell wall constituents (Currie and Perry 
2007); at the same time, it increases the elasticity of the cell 
wall during distension and extension growth (Pilon-Smits 
et al. 2009).

Our data (Table 3; Fig. 1) indicate that canopy-applied 
Si did not build up a protective film covering the whole 
fruit surface, which would have prevented water exchanges 
between the fruit and the outside slowing down phloem 
translocation and consequent accumulation of sugars in the 
fruit. Such effects were not recorded in any of the experi-
ments (Table 3).

The reduction of cracks also plays a role in the reduc-
tion of pathogen incidence (Børve et al. 2000). Therefore, 
Si applied to the canopy could also reduce the incidence 
of monilia (Monilinia spp.) and Botrytis cinerea on fruits. 
Si forms a physical barrier and stimulates defense reactions 
against pathogens (Ma and Takahashi 2002; Ma and Yamaji 
2006; Wang et al. 2017; Bat-Erdene et al. 2021).

Additionally, Si treatment influenced color (Experiment 
1; Table 4), reducing hue and brightness. Chromatic func-
tions of chroma and hue are negatively correlated with 
anthocyanin levels in the fruit skin (Gonçalves et al. 2007), 
indicating higher concentrations of anthocyanins in the 
berry skin. In apples, canopy-applied Si has been shown to 
stimulate anthocyanin accumulation and induce skin color 
traits (Karagiannis et al. 2021).

Canopy-applied Si resulted in a significant increase in 
total soluble solids of cherry fruits (Experiments 2 and 3; 
Table 3), an effect attributable to the stimulating action of Si 
on the leaf photosynthetic activity (Ma and Takahashi 2002; 
Ma and Yamaji 2006; Bat-Erdene et al. 2021).

Research outcomes on fruit cracking highlight the rel-
evance of mechanical properties of fruit epidermal cell 
wall strength, overall extensibility, elasticity, and cuticular 
membrane composition (Alkio et al. 2012; Balbontín et al. 
2014; Quero-García et al. 2021). An elastic epidermis will 
increase the tolerance to cracking since it is more capable 
of accommodating the increase in flesh volume during fruit 
growth and reducing the formation of cuticular fractures. 

below the cuticle do not show a detectable amount of Si 
(Fig. 1C), whose silicon X-ray signal is always maintained 
below the level of the background (Fig. 1D, SiK, in green). 
This was observed by analyzing the cells of the mesocarp 
(Fig. 1C) and those of the epidermis, even at a distance of 
50–60 μm from the drops of sodium silicate remaining on 
the surface (Fig. 1B). The same results were obtained from 
the analysis of frozen-hydrated samples of cherry fruits sub-
jected to calcium chloride treatments (data not shown).

4  Discussion

Our results, obtained in different experimental conditions 
conducive to cracking, showed that canopy-applied sodium 
silicate during fruit ripening was effective in reducing sweet 
cherry cracking at harvest (Table  2). The effectiveness of 
sodium silicate was similar or higher than calcium chlo-
ride (Table  2), the most adopted technique for mitigating 
cracking.

In sweet cherry, three types of cracking have been 
described (Christensen 1996): in the cheek, in the apical 
end, and in the stem cavity region of the fruit. Multiple 
cracking, resulting from the combination of these three 
types, often occurs. Our data suggest that meteorological 
conditions influenced the incidence and type of cracking 
(Tables 1 and 2). Data indicate that high rainfall (Table 1) 
increased the occurrence of cracking in the stem cavity 
(Table  2). When low rainfall and low humidity occurred, 
no fruit cracking was observed. However, when rainfall was 
low but high humidity was recorded (Table 1), cracking was 
observed with the dominant type of cracking in the apical 
region (Table 2).

The results obtained via cryo-SEM and energy-dispersive 
X-ray microanalysis indicate that Si was localized only on 
the surface of the fruit, without any significant detection of 
its penetration into internal tissues (Fig. 1). However, some 
Si in traces, at concentrations below the resolution capa-
bility of the instrument, could be present in the observed 
tissues.

Although Si is not considered an essential element for 
plant nutrition and its questionable role in plant biology 
have been reported (Coskun et al. 2019), many authors 
have shown its beneficial effects in a variety of species and 
environmental conditions (Ma and Yamaji 2006; Coskun et 
al. 2019). The favorable effects of Si on the crop are often 
associated with the reinforcement of the cell walls due to the 
deposition of Si in the form of amorphous silica and opal 
phytoliths (Epstein 1999). Si displays a notable ability to 
increase the extensibility of the cell wall, a prerequisite for 
growth (Ma and Takahashi 1993). The application of Si to 
rice seedlings promoted plant growth mainly by enhancing 
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Si appears to be a good candidate to achieve both of these 
conditions in the fruit. Therefore, these parameters should 
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