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We study two-dimensional incompressible inertial flows through porous media. At core (small) scale, we
prove that the constitutive, nonlinear model can be re-written into a linear one by means of a new parameter K*
which encompasses all the inertial effects. In natural (large scale) formations, K* is erratically changing, and
we compute analytically its counterpart, which is coined generalized effective conductivity (GEC), by the self-
consistent approach (SCA). In spite of its approximate nature, the SCA leads to simple results that are in good

agreement with Monte Carlo simulations (MCs).

INTRODUCTION

High velocity flows through porous formations are encoun-
tered in several industrial and environmental applications,
such as flow in chemical reactors, extraction of oil and gas
from reservoirs, flow through rock-fill dams or in the zones
surrounding pumping/injecting wells.

The adopted (constitutive) model is usually the Darcy’s
law, i.e. KJ = v, relating the velocity field v to the gradi-
ent J = —Vh of the head A via the conductivity K [1]. How-
ever, when the magnitude J = |.J| increases, so does the ve-
locity, and concurrently the Darcy’s model is not adequate,
anymore. In this case, the pertinent flow regime is the Forch-
heimer’s one, which accounts also for the impact of the in-
ertial terms, besides the viscous ones [2]. Within the con-
stitutive model, these effects are modelled by an extra term
proportional to the magnitude |v| = /v - v of the velocity, i.e.

KJ = (1+13¢I?|v|)v, 1)

where 3 > 0 quantifies the impact of the inertial terms [e.g.
3]. In particular, for B — 0 eq. (1) reduces to the Darcy’s
law. Alternative formulations, based on the concept of energy-
dissipation, have been also proposed [see 4, and references
therein].

The Forchheimer’s model (1) applies only to homogeneous
media, and concurrently it is not suitable for natural geologic
formations, where both K and 3 vary in the space over several
orders of magnitude [5, 6]. These erratic fluctuations have
a decisive impact upon flow evolving in geological forma-
tions [see, e.g. 7]. Generally, such variations are modelled
within a stochastic framework that regards K and f as ran-
dom fields [a comprehensive exposition can be found in 8].
As a matter of fact, the flow variables become stochastic.

One of the aim in the theory of flows through heteroge-
neous media pertains to the derivation of a constitutive model
satisfied by the average variables. The coefficient that relates
the mean velocity (v) to the mean gradient (J) is termed "ef-

fective conductivity". Computing this latter has a long tradi-
tion traced back to [9], and subsequently forwarded to numer-
ous branches of Physics such as electricity, wave scattering
and the theory of elasticity [for a wide review, see 10, 11,
and references therein]. In porous media fluid mechanics, the
same problem has been pioneered by [8] in the case of mean
uniform Darcy-type flows. More recently, such an approach
has been extended to non uniform mean (such as source-
type) flows by [12]. Likewise, the natural question is whether
one can derive an effective conductivity also for flows in the
Forchheimer’s regime. This problem has received a scarse at-
tention [with the exceptions of the studies of 7, 13, 14], its
importance notwithstanding.

In the present study we investigate how the spatial variabil-
ity of the B-coefficient and the conductivity K affects the GEC.
The latter is computed by means of the SCA, which regards
the formation as a bundle of inclusions set at random in the
space. Then, the GEC is derived by requiring that it is equal
to the conductivity of the medium as a whole [15].

The paper is organized as follows. We first cast the Forch-
heimer’s model in a form which enables one to treat it like
the Darcy’s law. Subsequently, we derive the expression of
the GEC, and discuss its general properties. Then, we move
to the discussion of results after adopting a (fairly general)
model for the bivariate distribution of the random pair (K, f3).
We end up with concluding remarks, with a few highlights on
potential applicability of our results.

GENERAL RESULTS

We consider steady flow driven by a gradient J = (Jy,Jy)
in a two-dimensional, unbounded domain. The flow obeys the
Forchheimer’s law (1). In order to cast the latter in the form
of a Darcy-type model, we rewrite eq. (1) in terms of its scalar



components:

Kz(vuﬂﬂ¢? y=xy, @

Yy
Jy’
with [J| =J = (J2+J7) /2 Hence, solving eq. (2) with re-
spect to the unknown vy /Jy, and back substitution into eq. (1),

leads to a Darcy’s type constitutive model, i.e. K*J = v,
where now the conductivity K* is given by:

Yy
Jy

K*=K*(K.p) =

2K ' 3)
1+ /11 4pK"
It is important to underline that such a procedure does not
destroy the non-linearity (i.e. inertial effects) of the flow
problem, being the original non-linearity now encapsulated
into the new conductivity (3). The importance of casting the
Forchheimer’s law (1) within a model resembling de facto the
Darcy’s one, is that, in accordance with the continum mechan-
ics approach [1], one can use the former for all applications
relying upon the Darcy’s model, by replacing K — K*, solely.
A similar result, which can be achieved also by dealing with
the Forchheimer model (1) written in norm, has been obtained
by [13]. In particular, for f — 0 one recovers the classical
Darcy’s law. On the other hand, a very large value of B is at-
tached to a flow dominated by inertia, and concurrently the ve-
locity drastically decreases (ultimately vanishing for § — oo).
To quantify the importance of the Forchheimer’s conduc-
tivity (3) relative to the Darcy’s one, FIGURE 1 depicts the
ratio K* /K as function of JBK 3/2, The latter parameter quan-
tifies the importance of the inertial terms relative to the vis-
cous ones, and therefore can be considered akin to a Reynolds
number [see, e.g. 16]. It is seen that the occurrence of one of
the two (i.e. Forchheimer vs Darcy) regimes depends upon a
dimensionless combination of: i) the inertial coefficient 3, ii)
the power K3/2, and iii) the magnitude of the gradient J. As a
consequence, even for highly inertial flows (large ) one can
still deal with a Darcy (purely viscous) flow, provided that
a very poorly conducting medium, with a small gradient, is
considered. In particular, inspection from FIGURE 1 suggests
that the Darcy’s regime applies whenever JﬁK3/ 2 <107
Conversely, the Forchheimer’s regime becomes predominant
for JBK?/? > 10%. The range 10~! < JBK?/? < 10% covers
the transition from one regime to the other. The occurrence of
three different flow regimes, in dependence of the Reynolds
number JﬁK3/2, was also pointed out by [17] and [18]. With
these prerequisites, we are now in position to compute the
generalized effective conductivity K*f by means of the SCA.

Generalized effective conductivity (GEC)

Due to the natural heterogeneity of porous formations, re-
garding the pair (K, ) as constant is too simplistic. In fact,
they usually, with K in particular, vary in the space in a
manner which does not allow modelling them by a deter-
ministic approach. For this reason, it is customary to re-
gard the pair (K,[8) as Gaussian, bivariate, stationary, ran-
dom field [19]. As a consequence, the flow variables become
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FIG. 1. Dependence of the ratio between the Forchheimer conduc-
tivity K* relative to the Darcy’s one K versus the non dimensional
group J| BK3/ 2 of the flow’s parameters.

stochastic, and we are interested here into quantifying their
mean values. In particular, we aim at computing the coeffi-
cient KT (known as effective conductivity) relating the mean
velocity (v) to the mean gradient (J), i.e. K°T(J) = (v).
This effective constitutive model, together with the mass con-
servation V - (v) = 0, can be used to solve various problems
of practical interest. In other words, inertial flows through
heterogeneous porous media are tackled by considering a
homogeneous (fictitious) medium of effective conductivity.
While this topic is well established for flows in the Darcyan
regime [see, e.g. 20], to our knowledge, there are a very few
studies [13, 14] dealing with the analogous problem in the
Forchheimer’s regime.

Here, the effective conductivity is computed by means of
the SCA [21]. Thus, the formation is regarded as a bundle
of many, randomly arranged, non overlapping, circular inclu-
sions embedded into a matrix (background) of constant con-
ductivity K. (FIGURE 2-a)). Each inclusion has a K*-value
which is now random in the space. Then, by invoking ergod-
icity, the above single realization is replaced by the ensem-
ble average, and concurrently interaction among inclusions
becomes that of a single inclusion implanted into a medium
which is homogenized by means of the effective conductiv-
ity K (FIGURE 2-b)). It is therefore clear that the core
of the SCA is how a uniform flow field is "deformed" by a
circular inclusion Q* of conductivity K* different from the
conductivity K. of the background Q.. This approach has
been implemented in numerous branches of Physics, such as
Electromagnetism, Heat Transfer and Diffusion [see, e.g. 15],
and therefore, although results in the present study pertain to
random porous media, they nevertheless find application in a
much wider spectrum, where nonlinear constitutive laws are
concerned.

In order to grasp the effect of the inertia for the problem
at stake, it suffices dealing with the flow-net as distorted by a
single inclusion (of radius R), being the effective conductivity
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FIG. 2. a) Sketch of the heterogeneous (circular with a large radius)
medium made up of many circular inclusions of randomly distributed
conductivities, and b) its transition to an effective medium by means
of the SCA.

computed as ensemble average over many of such single real-
izations. For this reason, in FIGURE 3 we depict the contour
levels of the scaled head (red dashed lines):

(1—x)/(14+x)

X,y) € Qo
v | amrrome Y
> =K'= )
R R 5
Tr e (x,y) € Q%
and the stream function (blue continuous lines):
1—x%)/(1+K*
1—( Kz)/( +K2) (x,y) € Qoo
v v WRTEO/R) 5
RK. R -
e (x,y) € Q%,

pertaining to a Forchheimer-type flow (uniform at infinity),
and disturbed by an inclusion, being

K* K -
Y= =2 [ 1+/1+4JBK32 )
=K KOO( Ty ap > ©

The contrast ratio k* quantifies the impact of K* relative
to that of the background K.. For illustration purposes,

FIG. 3. Contour-plot of the scaled head eq. (4) and stream function
eq. (5) for given ratio K /K. = 10/1 and two, widely different, values
of b= J[31(3/2 referring: 1) to the Darcy’s, i.e. b < 1, and ii) to the
Forchheimer’s regime, i.e. b >> 1, respectively. Lengths are scaled
by the radius R of the circular inclusion (whose center is set at the
origin of the framework).

in FIGURE 3 the ratio K /K. is taken equal to 10/1. Hence,
for b = JBK?/? < 1 the flow lies within the Darcy’s regime
(see FIGURE 1), and the inclusion Q* acts like an attractor
for the stream lines (upper picture in FIGURE 3), since in this
case one has k* ~ K/K., = 10 [see, e.g. 22]. Conversely,
when b = JBK?/? >> 1 (a circumstance calling for the Forch-
heimer’s regime) K* becomes so small that Q* now behaves
like a flow barrier (lower picture in FIGURE 3).

To compute the GEC by means of the SCA, one has first to
derive the ensemble averages of: i) the velocity (v), and ii)



the head-gradient E = —V (). Subsequently, the GEC is ob-
tained by requiring that it fits the equation (v) — K®TE = 0.
It is therefore clear that the crux of the matter consists into
calculating the expression of the local velocity v as well as
of the gradient .J, as function of K* = K*(¥,{) and of the
given (i.e. constant) head-gradient (.J) applied at the bound-
ary of the flow domain. These two quantities were computed
by [23], and we quote here only the final result, i.e.

J:—(l—i—H) (J), v=-—

Ko +K*
with the conductivity K* given by (3). Thus, by taking the
ensemble averages of (7), it yields:

2K K*

e ™

E— {1+/deﬁfKﬁ)§ +ﬂ )
(v) = —2K.. UdeﬁM] J, o

being f = f(K, ) the bivariate probability density function.
The difference with previous results [see, e.g. 22] stems from
the dependence of the conductivity also upon the inertial pa-
rameter 3. Then, application of the above stated definition of
effective conductivity (with K., =K°) leads to:

Keff K*

f(K B) K*
Keff 1+ =0

1+/d1<dﬁf(1<,/s) Keff

-2 / dK dB
(10)
This equation can be rearranged, after some algebraic manip-

ulations relaying upon the property [dKdBf(K,B) =1, as:

Keff

/deBf (K ﬁ) e =0 (11)

The equation (11) generalizes eq. (3.4.45) in [8]; in fact,
for B — 0 it yields K* — K, and one recovers the governing
equation for the effective conductivity in the Darcy’s regime.
Like the effective Darcy’s law [see, e.g. 24], even the GEC re-
sults a local medium’s property (locality), whose scalar nature
is due to the isotropic heterogeneity’s structure of K and 3 [see
the exhaustive review on the matter in 6, 14].

We wish to establish upper/lower bounds for the GEC. To-
ward this aim, we note that the continuous function:

/deBf K.py =t K*+t (12)
is monotonously decreasing with .% (0) = 1, and . (o) = —1,
and therefore K°f is determined uniquely (black line in FIG-
URE 4) by computing (numerically) the root of (12). More-
over, since .% = % (t) is a convex function, one can get a
lower bound K" for the GEC by dealing with the zero, i.e.
KT = —1/.%7(0), of the tangent (red line in the insert of FIG-
URE 4) to the function % () at r = 0. Hence, upon evaluation
of the derivative #’ (t) |s—o, it yields:

CUNSTEN

1t
k=3 |

FIG. 4. Sketch illustrating the method to get a lower bound K‘3<ff of
the GEC, by dealing with the root of the tangent (red line) to the
function .Z# (1) att = 0.

Thus, one can claim that the half of the harmonic mean K%
represents a lower bound for the GEC. The upper bound K¢
is obtained by applying the same reasoning as before w1th t
in (12) replaced by 1/z. The final result is:

K‘;ffzzdedﬁf(K,ﬁ)K*zzK;, (14)
being K the arithmetic mean. To summarize, the GEC lies
within the interval [K7;/2,2K}], which is slightly larger than
that, i.e. [Kp,Ka], pertaining to a purely Darcy’s flow. This
is due to the fact that, unlike the Darcy’s regime (where the
effective conductivity is affected by the uncertainty of a sin-
gle quantity), here the extra stochastic nature of the parame-
ter B de facto enlarges the range of variability of K*T. A simi-
lar conclusion, although by a different approach, was achieved
by [14]. Other bounds can be obtained by employing the vari-
ational approach, in close analogy to [25], or by means of the
energy-dissipation concept [8].

The above general results provide direct means to grasp
the main features of the mean velocity field, when a small
amount of information about the statistics of the pair (K, )
is available. Noteworthy, they are also useful for codes pro-
viding the numerical solution of eq. (11). In what follows,
we discuss the structure and the properties of the GEC for
a fairly general model of bivariate joint probability density

function f = f (K, ).

DISCUSSION

The non linear equation (11) allows computing the GEC,
once the model for the bivariate probability distribution func-
tion f = f(K,B) is selected. While there is a large body of
field data suggesting that both In K [see the comprehensive re-
view in 6] and In 3 [an updated review can be found in 14, and



references therein] can be modelled as Gaussian, the cross-
correlation In K—In 3 deserves a further discussion. The most
exhaustive reviews on this topic are from [26] and [27], who
showed that the inertial coefficient is significantly affected by
the conductivity’s heterogeneity, displaying, in particular, an
overall negative correlation (i.e. p < 0) with the conductiv-
ity K [in line with 19]. For these reasons, in what follows we
shall regard K = KgexpY and 8 = Bgexp { as anormally dis-
tributed, negatively correlated random variables, being Ko—f¢
and Y- the geometric means and the fluctuations, respec-
tively.

FIGURE 5 shows the scaled K*/K; versus the dimen-
sionless parameter bg = J ﬁgK3/ 2 [10’4; 104] [for a wide
overview of the values taken by ,BG and Kg, see 6, 28, re-
spectively], for several values of the variances 67 and 0'2, that

are taken equal for simplicity (similar conclusions are drawn
for O'}% % Gg). In particular, we have considered two cases: 1)

uncorrelated, and ii) negatively correlated Y-{, which cover
the majority of the practical situations. The behavior at small
bg—values (Darcyan regime) can be elucidated after expand-
ing the term (K* — K°) /(K* 4+ K°) appearing into eq. (11)
in MacLaurin-series of bg. Omitting the algebraic details, the
governing equation for k = K° /K; writes has:

expY —k
dy —bgY~0 15
/ exp( 26Y> expY +k O KT T 15

being Y, = Y (p,Gy,GC) a non negative function (whose
cumbersome expression is not relevant for the discussion at
stake). As such, in the Darcyan regime the GEC results
smaller than the first term on the left hand side in eq. (15),
which coincides with the expression obtained by [8]. The
reduction of the GEC with increasing variances is explained
by noting that, in these cases, in most of the points of the
flow domain the (K, )—values differ significantly from their
means, and concurrently the GEC lies still within the transi-
tional regime (see FIGURE 1), the small b; notwithstanding.

The most evident feature is that the GEC turns out to be a
monotonously decreasing function of bg. To provide a phys-
ical explanation, we may focus on the flow’s pattern deter-
mined by a single inclusion (see FIGURE 3 with b replaced
by bg), since the GEC is computed as ensemble average over
many of these realizations. Thus, as discussed above, stream-
lines circumvent the inclusion Q* for bg > 1. As a conse-
quence, streamlines (and concurrently the mean flux) entering
the inclusion reduce. Since the mean gradient (J) is con-
stant, the GEC reduces. A similar argument is the key to
explain the increase of K°' with negatively increasing cor-
relation between Y and {. Toward this aim, it is conve-
nient dealing with (6) that, upon substitutions K = KgexpY
and B = Bgexp§, reads as:

1+ \/1 +4bgexp <C+ 2Y> ] . (16)

Thus, an increase of { implies a (linear) reduction of Y. Since
the quantity in the square brackets into (16) does not change

K¢
K =2-—+- Y
KDO exp

Koff '

0.001  0.01 0.1 1 10 100 1000 10000 b¢
1.0
Keft o,
Ko '
i
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12/ = gg =0 Y,
..... %, = O'g =0.1
) s 0% = O'g =05
iy = 03 =1.0
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FIG. 5. Normalized GEC as function of bg = J B6K3/ 2, and given
values of the variances 62 = Gé for: i) uncorrelated, and ii) nega-

tively correlated Y—¢. The inserts show a comparison between MCs
(symbols) and the analytical model (lines).

significantly for any given bg, one can claim that stream-
lines entering the inclusion thin out (due to the reduction
of Kg/Kw). Hence, the gradient reduces (see the lower pic-
ture in FIGURE 3), and concurrently the GEC increases in or-
der to adjust the flux passing through the boundary dQ* of
the inclusion, as demanded by the mass conservation prin-
ciple. Finally, to corroborate our analytical results, Monte
Carlo simulations have been carried out, as well. For the sake
of completeness, we describe herein the procedure leading to
the MCs. Thus, any realization of the Gaussian, stationary,
correlated, random fields Y and ( is generated (by means of
Cholesky decomposition), and subsequently mapped upon a
numerical (50 x 50 nodes) mesh (step-i). Then, the system of
flow equations

dyvy =
—Koyh= (1+BVK|v|)v



is converted into a set of algebraic equations (finite difference
method) which are solved (iteratively) for the nodal-values of
the head and concurrently of the velocity (step-ii), to provide
results for a single realization. The domain Q is a square,
whose center coincides with the origin (0,0), where on two
apart (vertical) sides the boundary condition is that of "given"
head drop up/downstream, whereas along the remaining paral-
lel (horizontal) sides a zero (vertical) velocity boundary con-
dition is imposed. These boundary conditions are determin-
istic, and therefore they are the same in all the realizations.
Finally, steps i)-ii) are iterated to obtain at each node results
for multiple (i.e. .#; = 5000) realizations. Hence, the GEC is
evaluated at the center of Q (since this point is sufficiently far
away from the boundaries, whose impact is not accounted for
in the analytical model) as follows:

A A
Keff ~ — [Z Vi (0,0)] / [Z oh' (0,0)] . (17)
i=1 i=1

The numerical simulations (symbols in the inserts of FIG-
URE 5) are in good agreement with their analytical counter-
parts (continuous lines).

To conclude, we wish to emphasize that the analytical ex-
pression of the GEC relies on a quite robust, seldom encoun-
tered [see e.g. 14] assumption about the shape of the bivariate
probability density function f. In addition, it is not limited to
small variances of Y and .

CONCLUSIONS

We have studied a two-dimensional, high velocity, steady
flow through a porous medium. The constitutive (Forch-
heimer) model is cast in a Darcy-type equation, where the
coefficient K* is shown to coincide with the Darcy’s conduc-
tivity, i.e. K, when the inertial parameter 8 vanishes. This
enables one to treat flow in the Forchheimer regime like that
occurring in the Darcy’s one, simply by replacing K — K*.
Three different flow regimes are identified, and they span from
a purely viscous one, till to that dominated by inertial effects.
In the intermediate regime, both viscous and inertial forces in-
fluence the flow.

Besides the theoretical interest, our study provides a way of

modelling the stochastic heterogeneity of porous media. Thus,
we have focused on the computation of the generalized effec-
tive conductivity (GEC) by means of the SCA. The GEC is de-
rived by assuming that: (i) the background surrounding each
inclusion is homogeneous; this approximation is reasonable
when interactions between blocks can be neglected. (ii) In-
clusions are circular, that is an accurate approximation for
isotropic formations. (iii) The domain is large enough to al-
low adoption of the ergodicity assumption. Although assump-
tions (i)—(iii) are clearly approximations, they nevertheless do
not limit the accuracy of results, as demonstrated by means of
Monte Carlo simulations.

General (i.e. valid for any bivariate probability density
function f) bounds for the GEC are derived. They result
slightly larger than those known for the effective Darcy’s con-
ductivity, as consequence of the larger uncertainty attached to
the stochastic nature of the f—parameter. The structure and
the properties of the GEC are discussed for a fairly general
shape of f. In particular, the GEC is found to increase for
reduced values of the coefficient of correlation between the
log-transforms of the conductivity and the inertial parameter,
as well as of the variances of the former parameters and of
the Reynolds number. This is explained straightforwardly as
a consequence of the mass conservation.

Our results find application in the study of flow and trans-
port through strongly heterogeneous (with large variances)
porous formations. Noteworthy, they can also be used as
benchmark to validate complex numerical codes. Finally, the
present study may serve as starting point to come up with an
effective Forchheimer’s law, in close analogy to the approach
developed for stratified formations [14, 29, 30].

ACKNOWLEDGMENTS

The present study was developed within the GNCS (Gruppo
Nazionale Calcolo Scientifico - INAAM) framework. The first
author acknowledges the financial support from the project
#3778/2022 (Departmental fund).

REFERENCES

[1] J. Bear, Dynamics of fluids in porous media (Courier Corpora-
tion, 2013).

[2] H. Ma and D. Ruth, Transport in Porous Media 13, 139 (1993).

[3] M. Agnaou, D. Lasseux, and A. Ahmadi, Physical Review E
96, 043105 (2017).

[4] F. Russo Spena and A. Vacca, Transport in Porous Media 45,
405 (2001).

[5] U. Costa, J. Andrade Jr, H. Makse, and H. Stanley, Physica A:
Statistical Mechanics and its Applications 266, 420 (1999).

[6] Y. Rubin, Applied Stochastic Hydrogeology (Oxford University
Press, 2003).

[7]1 S. Rojas and J. Koplik, Physical Review E 58, 4776 (1998).

[8] G. Dagan, Flow and transport in porous formations (Springer-
Verlag GmbH & Co. KG., 1989).
[9] J. M. Beran, Statistical Continuum Theories (Interscience, New
York, 1968).
[10] G. W. Milton, The theory of composites (Cambridge University
Press, 2002).
[11] S. Torquato, Random heterogeneous materials: microstructure
and macroscopic properties (Springer Science & Business Me-
dia, 2013).
[12] G. Severino, F. De Paola, and G. Toraldo, Phys. Rev. Fluids 7,
064101 (2022).



[13] J.-L. Auriault, C. Geindreau,
Porous Media 70, 213 (2007).

[14] A.Lenci, F. Zeighami, and V. Di Federico, Transport in Porous
Media 144, 459 (2022).

[15] M. Sahimi, Heterogeneous Materials I: Linear transport and
optical properties (Springer Science & Business Media, 2003).

[16] M. Fourar, R. Lenormand, M. Karimi-Fard, and R. Horne,
Transport in Porous Media 60, 353 (2005).

[17] C. Mei and J.-L. Auriault, Journal of Fluid Mechanics 222, 647
(1991).

[18] M. Firdaouss, J.-L.. Guermond, and P. Le Quéré, Journal of
Fluid Mechanics 343, 331 (1997).

[19] X. Wang, F. Thauvin, and K. Mohanty, Chemical Engineering
Science 54, 1859 (1999).

[20] G. Firmani, A. Fiori, I. Jankovic, and G. Dagan, Multiscale
Modeling & Simulation 7, 1979 (2009).

[21] S. Kanaun and V. Levin, Self-Consistent Methods for Com-
posites: Static Problems (Springer Science & Business Media,
2007).

and L. Orgéas, Transport in

[22] A. Fiori, I. Jankovi¢, and G. Dagan, Physical Review Letters
94, 224502 (2005).

[23] G. Dagan, Water Resources Research 15, 47 (1979).

[24] B. Abramovich and P. Indelman, Journal of Physics A: Mathe-
matical and General 28, 693 (1995).

[25] Z. Hashin and S. Shtrikman, Journal of Applied Physics 33,
3125 (1962).

[26] S. Jones, in SPE Annual Technical Conference and Exhibition
(OnePetro, 1987).

[27] D. Li and T. W. Engler, in SPE permian basin oil and gas re-
covery conference (OnePetro, 2001).

[28] M. G. Sidiropoulou, K. N. Moutsopoulos, and V. A. Tsihrintzis,
Hydrological Processes 21, 534 (2007).

[29] V. Di Federico, M. Pinelli, and R. Ugarelli, Stochastic Envi-
ronmental Research and Risk Assessment 24, 1067 (2010).

[30] G. Severino and A. Coppola, Transport in Porous Media 91, 733
(2012).



