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Abstract 
Recently, several metropolitan cities introduced Zero-Emissions 
Zones where the use of the Internal Combustion Engine is forbidden 
to reduce localized pollutants emissions. This is particularly 
problematic for Plug-in Hybrid Electric Vehicles, which usually 
work in depleting mode. So, the risk of not having enough energy 
stored to carry out the driving mission and then paying a fee is 
substantial. This work presents a viable solution by exploiting 
vehicular connectivity to retrieve navigation data of the urban event 
along a selected route. The battery energy needed, in the form of a 
minimum State of Charge (SoC), is calculated by a Speed Profile 
Prediction algorithm and a Backward Vehicle Model. That value is 
then fed to both a Rule-Based Strategy, developed specifically for 
this application, and an Adaptive Equivalent Consumption 
Minimization Strategy (A-ECMS). The effectiveness of this 
approach has been tested with a Connected Hardware-in-the-Loop 
(C-HiL) on a driving cycle measured on-road, stimulating the 
predictions with multiple re-routings. The tests have been conducted 
with different initial SoC values for each strategy, showing a 
maximum error in the SoC prediction of 2.4% and up to 26.1% of 
CO2 saving with the A-ECMS.  

1. Introduction 
The urbanization trend is continuously increasing during the last 
decades, leading to congestions and localized high concentrations of 
emissions pollutants [1]. On one hand, governments are forced to 
introduce more stringent regulations [2]. On the other hand, local 
administrations start to manage urban mobility to optimize traffic 
flows to decrease congestion. The most frequently applied measure 
is the introduction of urban areas with increasing traffic limitations, 
regarding both the conventional vehicles (Low-Emission Zone – 
LEZ) and the non-conventional vehicles (Zero-Emission Zone – 
ZEZ) [3]. Conventional vehicles and mild-hybrid electric vehicles 
are excluded from this analysis since they can do nothing but pay 
fees to access the restricted areas. Battery Electric Vehicles (BEV) 
are also excluded since electric driving is the only possible driving 
mode. Differently, Plug-in Hybrid Electric Vehicles (PHEV), 
having two different sources of propulsion (Internal Combustion 
Engine (ICE) and High Voltage (HV) battery), offer the additional 
degree of freedom of the power division, in case of a parallel 
powertrain topology. While the possibility to split the torque 
demanded by the driver avoids the less efficient operating points of 
the ICE, it multiplies the possible splitting solutions, increasing the 
controller complexity. 

In the last years, different solutions have been proposed in literature 
on the topic of energy management for hybrid electric vehicles. The 
most widespread solution for on-board implementation is 
represented by heuristic controllers that use fixed rules to manage 
the energy flows in the powertrain. Thus, they are referred to as 

Rule-Based Strategies (RBS). This approach is considered simple 
and robust, but far from the optimal solution [4,5]. Other supervisory 
controllers perform a local or global minimization of equivalent fuel 
consumption that considers both the real fuel consumption and the 
electrical power requested by the battery. Such controllers are 
usually considered sub-optimal [6] or optimal [7] respectively and 
several of them have been already deployed on the vehicles. An 
example is the ECMS, which was originally introduced in [8] and 
applied as a practical solution in [9]. Then, in [10] and more recently 
in [6] remarkable improvements have been obtained to make the 
ECMS a real-time control strategy. In particular, in the latter work, 
an adaption of the equivalence factor based on feedback from SoC 
has been proposed. 

In parallel, innovative technologies are being broadly implemented 
both on the vehicle and the infrastructure, such as wireless 
communication, and cloud computing. These technologies are 
divided into vehicle-to-vehicle (V2V), vehicle-to-infrastructure 
(V2I), and vehicle-to-network (V2N) communication. Together 
with the latest Advanced Driver-Assistance Systems (ADAS), these 
technologies allow calculating an electronic horizon (shortly known 
as eHorizon) which represents a virtual reconstruction of the trip 
ahead for a planned route and can provide it to the control strategies, 
resulting in more efficient energy management. Several studies 
highlighted the benefits of future driving information for Energy 
Management Strategies (EMS). An improved A-ECMS based on 
long-term target driving cycle recognition and short-term vehicle 
speed prediction is presented in [11]. It can optimize the equivalence 
factor based on mileage, SoC, long-term driving cycle, and real-time 
vehicle speed, resulting in a reduction of fuel consumption of 8,7%. 
Similarly, algorithms can determine the optimal SoC trajectory 
according to the traffic information, while the equivalence factor is 
tuned dynamically, thus enabling effective tracking of the reference 
SoC trajectory, as done in [12]. A different approach is presented in 
[13] where the A-ECMS uses a historical driving profile for 
equivalence factor estimation, thus the proposed strategy is able to 
foresee the change of the driving behaviors and adjust the 
equivalence factor more reasonably. Another methodology to 
determine the future operating conditions of the vehicle is analyzed 
in [14] using different driving pattern recognition and prediction 
algorithms based on type-approval cycles. With this information, a 
potential improvement of up to 4% in fuel economy was achieved 
with a 0-dimensional model on an RDE driving cycle with respect 
to the baseline ECMS. Furthermore, a neural network algorithm can 
also be used to recognize and group the speed patterns, and 
consequently applied to a dynamic ECMS by adjusting the 
equivalence factor, leading to a potential improvement of 7,8% in 
fuel economy [15].  

Regarding control strategies related to the presence of restrained 
area, in [16] a LEZ-anticipating control strategy for a PHEV bus 
with a P2-type parallel powertrain configuration is presented. The 
control strategy is based on a combined RB/ECMS, and it is 
superimposed by generating an optimal reference SoC trajectory 
aimed at enabling pure electric driving through forthcoming LEZs 
and minimizing the overall fuel consumption. Following this trend, 
the strategy used in this work is an A-ECMS fed with a minimum 
target SoC needed to perform a ZEZ event in pure electric mode, 
whose development and testing have been presented in [17]. In this 
case, the target SoC is calculated starting from the navigation data 
provided by the connectivity and the use of an analytical model of 
the vehicle. 

Clearly, the more the control strategies grow in complexity, the more 
their testing and validation become demanding both in terms of costs 
and time. In fact, they must be tested in a huge number of scenarios, 
regarding dangerous and highly unpredictable situations to be 



declared reliable. The challenge is therefore to develop a validation 
and testing framework that can replicate the complexity and 
unpredictability of road conditions and traffic scenarios. In other 
words, the aim is to move the tests from the road to the virtual 
simulation, saving both money and time. In [18], the authors 
improve the commercial simulation software with optimal energy 
management, which is tested using the short horizon information 
coming from the leading vehicle in the collaborative environment. 
In [19] an advanced simulation framework is presented, with several 
On-Board Unit (OBU) / Road-Side Unit (RSU) hardware connected 
to a microscopic traffic simulator (Simulator of Urban Mobility - 
SUMO) to integrate real vehicular communication devices. A step 
further was made in [20] which developed an Engine-in-the-Loop 
system integrated with a real-time traffic simulator (named VISSIM) 
to evaluate the performance of emerging connected vehicle 
applications. Then, a real vehicle equipped with an OBU is driving 
along with other connected vehicles while the data is transmitted to 
the HiL, which reacts consequently. Finally, [21] focused on the 
development of a sustainable framework for testing control 
strategies for connected automated vehicles. They presented an HiL 
where vehicle dynamics are up to ETAS DESK-LabCar, controlled 
by onboard control unit i.e., MicroAutoBox and Matrix embedded 
PC-Adlink. The latter oversees the communication with the OBU 
and the cloud, respectively through Ethernet and LTE. Such an 
advanced simulation framework is very interesting, but it has been 
presented with a short driving routine. In conclusion, the paper 
presents improvements to the simulation environment presented in 
[22], which represents a state-of-the-art for development and testing 
of energy management control strategies based on vehicular 
connectivity. 

1.1. Novel contribution 
This paper aims at proving that the predictive functions and the 
energy management strategy presented in [17] are suitable for real-
time applications, which means implementation in a control unit and 
under real driving conditions (i.e. driving cycles not known a priori). 
Moreover, this work also demonstrates that the presented EMS leads 
to a remarkable reduction in fuel consumption when approaching a 
ZEZ even if it is fed with real-time navigation data. To properly test 
the proposed approach, the simulation environment presented in [22] 
has been improved to replicate situations as realistic as possible, 
such as when the traffic changes during time and/or the driver 
decides to change direction, leading to several re-routings. 

In this regard, the evaluation of an energetically equivalent velocity 
trace derived from the navigation data is required by the predictive 
strategy. To do so, a Speed Profile Prediction (SPP) algorithm 
represented by a space-based driver model derived from literature, 
firstly developed at Model-in-the-Loop (MiL) level in [23], has been 
implemented in the simulation environment. 

 The speed profile is then forwarded to the Backward Vehicle Model 
(BVM) described in [17], which predicts the necessary amount of 
electrical energy to perform the ZEZ in full electric mode. This 
value, expressed in terms of a target SoC, is used as input for the 
strategies under test. Regarding the latter, since the RBS introduced 
in [17] is not designed to work differently from the conventional 
Charge-Depleting / Charge-Sustaining (CD/CS) mode, in this work 
an Adaptive-RBS (A-RBS) has been defined. In particular, it uses 
the same reference SoC used by the A-ECMS to dynamically adapt 
the electric drive thresholds depending on the remaining distance 
from the ZEZ, thus working in a Charge Blended (CB) mode. To 
verify the improvements with respect to the RBS in terms of CO2 

reduction, the two strategies are compared on two different RDE 
cycles at the Software-in-the-Loop (SiL). The results show that the 
A-RBS outperforms the RBS only when the initial SoC is lower than 
the target SoC and so the HV battery must be charged. Conversely, 
the RBS is still more efficient when the initial SoC is higher than the 
target SoC and the CD/CS mode is required. Consequently, since the 
aim is to design a strategy that reduces the energy consumption in 
all the possible scenarios, a Combined-RBS (C-RBS) is finally 
defined to perform CB mode or in CD/CS depending on the initial 
value of the SoC. The C-RBS defined in this way may then be used 
as the reference to be compared with energy-based approaches such 
as A-ECMS, since it represents the best performance that can be 
reached with heuristic approaches. 

Finally, the A-ECMS and the C-RBS have been tested at the C-HiL 
on a driving profile measured on the road during a specific time slot 
of the day. Differently from the one presented in [22], this simulation 
environment presents a layout reduced in complexity as the sole 
Telecommunication Control Unit (TeCU) is in charge of querying 
the Map Service Provider (MSP) and gatewaying the data. 
Moreover, in this work, a Human Machine Interface (HMI) has been 
introduced to be as close to the prototype vehicle as possible. More 
in detail, the vehicle HMI is replicated by a tablet running an 
Android-based Navigator App, that allows the driver to set the 
desired destination and to see the suggested route based on actual 
traffic conditions. Meanwhile, the related navigation data are 
collected from the MSP and sent to the TeCU. Moreover, if the 
actual position of the vehicle deviates from the route proposed by 
the app or if the actual level of traffic changes, the app can trigger 
the request for a re-routing. In these cases, the navigation data are 
refreshed, and the prediction is performed again, evaluating the 
updated target SoC. Besides, the tests have been conducted starting 
from different initial SoC values, during the same time slot of the 
recorded driving profile to reduce the natural randomness of the 
traffic conditions as much as possible. In conclusion, the simulations 
highlight both the goodness of the predictions even under varying 
traffic conditions, and the improvements brought by the A-ECMS in 
terms of CO2 reduction. 

2. Simulation Environment 
In this section, the simulation environment is described in detail. 
Firstly, the C-HiL adopted for the test is analyzed in each of its 
components, with a focus on the vehicular connectivity and the 
control units. Then, the vehicle layout and simulation model are 
presented alongside its specifications. Finally, the developed SPP 
algorithm and the BVM, responsible for the target SoC evaluation, 
are introduced. 

2.1. Connected Hardware-in-the-Loop 
In this work, the focus is put on the long-range connectivity provided 
by the layout presented in [22]. With respect to the latter, the C-HiL 
has been improved and its complexity reduced. In particular, as 
shown by the blue boxes in Fig. 1, the TeCU is now in charge of 
both the internet service manager and the data processing, while an 
Android-based tablet is connected via Wi-Fi to the TeCU itself to 
replicate the vehicle’s HMI. Furthermore, the data exchange handled 
by the TeCU is divided into a direct flow (“NAV Data” label in Fig. 
1), for the transmission of the navigation data (listed in Table 1) from 
the MSP to the HCU, and a backflow (“HMI Data” label in Fig. 1), 
for querying and transmitting the actual GPS position from the Real-
Time PC to the MSP and the HMI. 



 
Fig. 1 Connected HiL layout for testing predictive functions exploiting long-range connectivity 

 

 
Fig. 2 Photo of the C-HiL during a simulation 

To give a proper outlook of the simulation environment, in Fig. 2 a 
photo taken during a simulation is reported. Hence, the components 
of the C-HiL are described in detail in the next paragraphs, following 
the workflow of the simulations. Firstly, the driver selects the 
desired destination directly on the HMI Navigator App whose 
screenshot is represented in Fig. 3. The latter, integrating HERE 
SDK [24], includes the start and destination coordinates boxes, the 
actual vehicle’s position (blue dot), and data (coordinates, altitude, 
speed, and SoC), and the ZEZ plotted as a green area. The latter has 
been designed by increasing the limits of the legal Limited Traffic 
Zone of Bologna to also include the residential areas nearby. In this 
way, the average urban trip to reach the city center is between 2-4 
kilometers and so the maneuver in pure electric is more demanding. 

 
Fig. 3 Screenshot of the Navigator App: suggested route from point A to 
point B 

Then, the MSP evaluates the fastest route according to actual traffic 
conditions and sends the navigation data via LTE Uu Interface to the 
tablet (yellow line in Fig. 1), which forwards them to the TeCU via 
IEEE 802.11n LAN (blue line). The latter performs the necessary 
data processing to make the navigation data compliant with the HCU 
computational power capability and sends them via CAN bus (red 
line in Fig. 1) to the HCU itself.  

Table 1 Navigation data sent by the MSP  

Navigation Data Dimensions Format 

Legal speed limits [1x1500] uint8 
Road segments [1x1500] uint16 
Slope [1x1500] uint8 
Stop events typologies [1x200] uint8 
Stop events positions [1x200] uint16 
Traffic codes [1x100] uint8 
Traffic codes segments [1x100] uint16 
ZEZ entrance and exit [1x10] uint16 

In particular, the data processing includes the removal of redundant 
data such as segments where both the speed limit and the slope do 
not change, to respect the dimensions limits listed in Table 1. 

Consequently, the HCU performs the eHorizon reconstruction 
picking up all the CAN messages and concatenating the values in 
dedicated vectors. The number of CAN messages needed for a 
particular route depends on the number of data and the format 
chosen for them.  After that, the SPP algorithm (described in detail 
in sec. 2.3 and in [23]) calculates a space-based velocity profile that 
proved to be energetically equivalent to the one effectively driven. 
This is motivated by the fact that the aim is to evaluate the electrical 
energy usage of the HV battery and not to predict the exact 
maneuvers of the driver. Therefore, the speed profile is converted 
into time-domain and used by the BVM, which is described in detail 
in sec. 2.4 and in [17], to predict the amount of energy to perform 
the ZEZ in pure electric mode, thus respecting the local legislation. 
Finally, the value of the State of Charge (SoC) target becomes the 
input of the Energy Management Strategies. Concurrently, the Real-
Time PC sends back information about actual GPS position, altitude, 
vehicle speed, and SoC via CAN bus, through the TeCU, to be 
plotted into the HMI, as shown in the bottom left corner of Fig. 3. 
Moreover, the Navigator App can also detect if the actual position 
of the vehicle is moving away from the proposed route and trigger 
another request to the MSP to retrieve the updated navigation data. 
These data are then forwarded again to the TeCU as described above. 
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In case of missing navigation data, due for example to connectivity 
loss, the conventional A-ECMS would perform its optimization with 
a target SoC typical of CD/CS mode. 

2.2. Vehicle model 
The 0-D model of the prototype vehicle, developed in the Simulink® 
environment, runs in the Real-Time PC. It represents a high-
performance gasoline PHEV with a P1-P4 configuration, so with an 
Electric Motor (EM) directly mounted on the crankshaft (P1) which 
acts as an integrated started and generator (ISG), and two EMs 
coupled to the front wheels (P4) through a fixed gear ratio. All three 
EMs are identical, thus having the same performance.  

Since the model has been already discussed in [17,22] and its 
description is out of the scope of this paper, only a schematic 
representation of the powertrain layout is reported in Fig. 4, while 
the specifications of the ICE, the gearbox, the HV battery, and the 
EMs are summarized in Table 2. 

 
Fig. 4 Prototype vehicle layout [22] 

Table 2 Vehicle powertrain specifications 

Vehicle parameter Specification 

Battery nominal capacity (1C @ 25°C) 19.4 Ah 
Battery nominal / max. voltage 384 / 391 V 
Motor torque (continuous / peak) 145 / 350 Nm 
Motor power (continuous / peak) 64 / 140 kW 
Engine max. torque 533 Nm 
Engine max. power 449 kW 
Overall max. power (continuous / peak) 577 / 729 kW 
Transmission 6 gears 

3. Control functions 
In the following chapters, the control functions and the algorithm 
developed and implemented into the HCU are presented. First, the 
navigation data received by the map service provider are processed 
by the predictive functions, which have to evaluate the amount of 
energy required in the form of a target SoC to perform the ZEZ in 
pure electric mode. Consequently, the energy management strategies 
implemented to handle that information are described with a focus 
on the necessary adaptations done on the conventional RBS to have 
a fair comparison.  

3.1. Predictive functions 
Looking at the red block in Fig. 1, the predictive functions start with 
the eHorizon reconstruction, which processes the CAN messages 
received from the TeCU converting them into arrays. Then, the 
processed navigation data are used by the Speed Profile Prediction 
algorithm to evaluate the energetically equivalent velocity trace 
related to them. Finally, the Backward Vehicle Model predicts the 
amount of energy required to be stored in the HV battery, expressed 
as a target SoC. 

3.1.1. Speed Profile Prediction algorithm 

The application of predictive functions upon the control unit is still 
challenging since they are inherently dependent on future 

trajectories of velocity, road slope, and external disturbances, which 
are generally unknown for real-world drive cycles. However, with 
the help of the navigation data provided by the MSP, an estimation 
of the trajectories can be made and then used by the energy 
management strategy. 

To do so, different approaches can be identified, which are divided 
into parametric and non-parametric [25]. In the first category, the 
driving task is modeled as a stimulus-response system, so, as a 
control problem where the driver’s goal is to keep a safe distance 
from the vehicle in front or to pursue a target speed according to 
some imposed constraints. The second one includes algorithms 
based on probabilistic and artificial intelligence theories such as 
Artificial Neural Networks, Markov chains, or Monte Carlo 
methods. As reported in [25], advanced parametric models are 
commonly used for long-range energy management prediction, 
representing a valuable trade-off between reliability and ease of 
implementation. A remarkable algorithm for Speed Profile 
Prediction has been proposed by [26], which for this reason has been 
assumed as the reference for the one developed and tested at the MiL 
level in [23].  

The algorithm is implemented in the simulation environment as 
follows: 

 Algorithm 1 - SPP algorithm 
1: begin 
2:     nodes vector creation from navigation data 
3:     for 𝑗𝑗 =  1:𝑁𝑁𝑠𝑠 
4:          legal speed limit and traffic code assignment 
5:     end for 
6:     𝑑𝑑 =  𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑛𝑛𝑣𝑣 ∙ 𝑐𝑐𝑠𝑠)⁄ → discretization step 
7:     for 𝑗𝑗 =  1:𝑁𝑁𝑠𝑠 
8:          𝑁𝑁 = (𝑠𝑠𝑗𝑗 − 𝑠𝑠𝑗𝑗−1) 𝑑𝑑⁄ → sub-segmentation 
9:         for 𝑖𝑖 =  1:𝑁𝑁 

10:             next point 𝑖𝑖 MAS evaluation 
11:             next point 𝑖𝑖 speed evaluation 
12:         end for 
13:         speed and space values vector assignment 
14:     end for 
15:     space-to-time conversion 
16: end 

The output of the algorithm are the vectors of the speed and slope 
trajectories, whose size is limited by the computational power of the 
HCU as well as the navigation data. As a consequence, their 
accuracy is dependent on trip segmentation, which is the result of:  

1. a first segmentation that depends on the road characteristics 
(slope, stop events, legal speed limits) and on the traffic, so on 
the navigation data. This kind of segmentation is represented by 
𝑁𝑁𝑆𝑆 “nodes” in Algorithm 1. The nodes have been defined as the 
coordinates along the trip that correspond to the presence of a 
stop event or a variation in the speed limit, slope, or traffic code. 

2. a second segmentation that is then applied by the algorithm to 
actually generate the speed trace, as shown in Fig. 8 (vertical 
black lines). In particular, a discretization step, 𝑑𝑑, is evaluated 
as the ratio between the total length of the trip, 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, and the size 
of the output vector, 𝑛𝑛𝑣𝑣. Then, each segment defined by the first 
segmentation, with a length of 𝑠𝑠𝑗𝑗 − 𝑠𝑠𝑗𝑗−1, is subdivided again into 
𝑁𝑁 sub-segments having a length equal to 𝑑𝑑 (Algorithm 1, line 
8). In this way, the density of the sub-segmentation is kept 
constant, since the longer is the 𝑗𝑗-th segment, the higher is the 
number of required sub-segments. When: 

(𝑠𝑠𝑗𝑗 − 𝑠𝑠𝑗𝑗−1) < 𝑘𝑘𝑑𝑑 ∙ 𝑑𝑑 (1) 

i.e., the two adjacent nodes are too close to each other, a smaller 
discretization step is applied to have sufficient values to create 
the speed trace within the 𝑗𝑗-th segment. The coefficient 𝑘𝑘𝑑𝑑 = 4 
represents the minimum number of points required to create an 
acceleration-deceleration maneuver following Eq. (5) and (6). 
Moreover, a corrective factor 𝑐𝑐𝑠𝑠 is applied in line 6 to take into 
account the additional elements required by the condition 



expressed by Eq. (1) and avoid the complete saturation of the 
memory. The latter is evaluated as 𝑐𝑐𝑠𝑠 = 1 − 𝑘𝑘𝑑𝑑 ∙ 𝑛𝑛𝑐𝑐 𝑛𝑛𝑣𝑣⁄ , where 
𝑛𝑛𝑐𝑐 is the number of segments that verify the condition expressed 
by Eq. (1). 

As a final remark on the second segmentation, it must be said 
that the discretization is dependent on the overall length of the 
route, so the accuracy of the speed profile could be affected for 
longer trips. However, this algorithm is applied only to the ZEZ, 
which is usually a limited event for the test cases under 
evaluation, and the overall accuracy is more than satisfying as 
proved by the results of the calibration and of the tests at the C-
HiL. Moreover, the problems related to the computational power 
will be overcome by moving the predictive functions from the 
HCU to the cloud, as it will be proposed in future work. 

After that, the starting values of the speed limit and traffic code are 
assigned to every sub-segment 𝑖𝑖 = 1, … ,𝑁𝑁 of each segment 𝑗𝑗 =
1, … ,𝑁𝑁𝑆𝑆 (line 4 of Algorithm 1). Consequently, for each sub-
segment, the Maximum Allowed Speed (MAS) is calculated (line 8 
of Algorithm 1). If a node coincides with a stop event position, then 
the MAS is imposed by the kind of the stop event itself. In particular, 
a stop event is commonly referred to as an event whose presence 
implies that the speed of the vehicle in that position must be partially 
or totally decreased. They are divided into static, if the breaking or 
stop is mandatory (e.g., bumps, stop signal), and dynamic, if they 
may not affect the current speed even if their position is known (e.g., 
green lights and right of ways). For the latter, a stop-over probability 
is introduced, as in [26], depending on traffic codes modeled by 
means of binomial probability and summarized in Table 3.  

Table 3 Stop-over probability with respect to the traffic codes 

Traffic 
code, 
𝑐𝑐 

Traffic 
color Congestion 

Stop-over 
probability 

[%] 

Code weight1 
𝐶𝐶𝐶𝐶 

1  absent 15 0.85 
2  light 40 0.60 
3  medium 60 0.40 
4  heavy 70 0.30 
1 the code weight and its value will be discussed in the next paragraphs. 

For the other nodes, the MAS value is affected by the traffic density, 
which influences the maximum speed due to the presence of the 
other cars and induces oscillations around that limit due to the 
variation of traffic flow. Thus, the MAS can be expressed as: 

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 (2) 

where: 

- 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡 considers the effect related to the traffic condition, 
expressed in terms of colors (blue, orange, red, and dark red) 
and can be expressed as:  

𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡 = 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙 · 𝐶𝐶𝐶𝐶 (3) 

where 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙 is the legal speed limit, and 𝐶𝐶𝐶𝐶 is the code weight 
that depends on the traffic code 𝑐𝑐. 

- 𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 replicates the effect of the driver's behavior that 
depends on the traffic condition. In fact, the velocity often 
exhibits oscillations around the speed limit due to inharmonic 
traffic flow. As proposed by [26], to account for these 
oscillations, the 𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 can be expressed as a sum of 𝑅𝑅-cosines: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 = �𝐴𝐴𝑟𝑟 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑓𝑓𝑟𝑟𝑥𝑥)
𝑅𝑅

𝑟𝑟=1

 (4) 

where 𝐴𝐴𝑟𝑟 and 𝑓𝑓𝑟𝑟 are the amplitudes and frequencies of the 
oscillation respectively, and 𝑅𝑅 is the number of the considered 
cosine terms (in this case 𝑅𝑅 = 3). 

After the evaluation of MAS for each 𝑖𝑖-th point, the vehicle speed 
can be calculated (line 11 of Algorithm 1). Since the objective of the 

algorithm is to generate a speed vector, with the assumption of 
traveling time minimization, the driver will always try to reach the 
MAS, if possible. Therefore, the driver decides whether to 
accelerate, decelerate or keep the velocity constant depending on the 
actual value of the speed and on the boundary conditions of the 𝑖𝑖 +
1-th point. Thus, if the MAS has been already reached, the driver 
can maintain the speed or start braking. Otherwise, it starts to 
accelerate. For this reason, an exponential acceleration and a linear 
deceleration law are adopted: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎(1 − 𝑒𝑒−𝜏𝜏𝜏𝜏) (5) 

𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) = −𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑,𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑 ∙ 𝑥𝑥 (6) 

where 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑,𝑚𝑚𝑚𝑚𝑚𝑚 are the maximum acceleration and 
deceleration that depend on vehicle performance, 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎  and 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑  are 
the reductive factors that consider the different driver behaviors, and 
𝜏𝜏 is the time constant defining the acceleration transient.  
Finally, the speed profile is converted from space to time domain by 
following a linear interpolation of the values to feed the backward 
vehicle model with proper input signals (line 13 of Algorithm 1). 
Moreover, a stop time is assigned to each stop event depending on 
the traffic code and the typology of the stop event itself. 

After the analysis of the algorithm, its calibration has been 
performed, focusing on: 

- driver-related parameters, so 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑 , and 𝜏𝜏, regarding the 
acceleration and deceleration maneuvers described by Eq. (5) 
and (6), respectively. Thus, the conceived scenario is 
represented by a ramp-up ramp-down cycle with a nominal 
speed of 50 km/h (i.e., a typical urban speed limit) and 
performed on a straight road; 

- traffic-related parameters, that are 𝐶𝐶𝐶𝐶, 𝐴𝐴𝑟𝑟, and 𝑓𝑓𝑟𝑟, the 
algorithm has been calibrated over three urban driving scenarios 
within the city of Bologna, the more representative of which is 
shown in Fig. 5.  

 
Fig. 5 Driving scenario with different traffic codes and speed limits, 
within a ZEZ 

Furthermore, as suggested by [26], the measurements have been 
performed to include all the possible common situations. In 
particular, they have been performed at different times of day to 
assess the influence of various traffic conditions (from the less 
congested road of the night to the rush hour) and on different 
types of urban roads, to consider as many driving conditions as 
possible (from the urban roads to the high-velocity ones). Since 
the purpose of the algorithm is to predict the amount of energy 
related to an urban event, the calibration and validation 
campaign are focused only on scenarios inside a ZEZ. 

The weight of the traffic codes, the amplitudes, and the frequency of 
Eq. (4) have been determined by dividing the measured space-based 
velocity traces into segments and clustering them with respect to the 
traffic code. Then, a Fast Fourier Transform (FFT) is applied in the 
space domain for each traffic code cluster, as suggested in [26], 
obtaining a magnitude-frequency diagram. In fact, the influence of 
traffic congestion leads to different oscillations for each traffic code. 
The oscillations are intended as the variation of the vehicle speed 
with respect to the average value every certain number of meters, 

Measured route



whose inverse can be seen as the space-domain frequency [m-1]. By 
filtering the measurements, it is possible to isolate the first four 
space-domain frequencies and amplitudes. The first one represents 
the average values that are used to calculate the code weight (Eq. 8) 
determining the corrected MAS value. Finally, the oscillations due 
to the frequencies and amplitudes going from 𝑟𝑟 = 1, . . . ,3 are added 
to the average value. For a matter of brevity, only the one related to 
the orange traffic color (code 𝑐𝑐 = 2) is reported in Fig. 6.  

 
Fig. 6 Frequency analysis with FFT for the traffic code 𝑐𝑐 = 2 

In this case, 𝐽𝐽 = 3 measured speed signals have been investigated, 
being each of them related to a certain space segmentation of length 
𝑙𝑙𝑗𝑗. Then, the three ranges (𝑟𝑟 = 1, . . . ,3) of frequencies have been 
identified to describe the oscillatory phenomenon with acceptable 
accuracy (red boxes in Fig. 6, where 𝑁𝑁𝑟𝑟 is the number of points 
within each range). At this point, focusing on Eq. (4), both the 
frequencies and the amplitudes of each range can be expressed as 
arithmetic means of the relative measured values: 

𝐴𝐴𝑐𝑐,𝑟𝑟 =
∑ �1/𝑁𝑁𝑟𝑟 ∙ ∑ 𝐴𝐴𝑛𝑛,𝑟𝑟,𝑗𝑗

𝑁𝑁𝑟𝑟
𝑛𝑛=1 �𝐽𝐽

𝑗𝑗=1 ⋅ 𝑙𝑙𝑗𝑗
∑ 𝑙𝑙𝑗𝑗
𝐽𝐽
𝑗𝑗=1

 (7) 

𝑓𝑓𝑐𝑐,𝑟𝑟 =
∑ �1/𝑁𝑁𝑟𝑟 ∙ ∑ 𝑓𝑓𝑛𝑛,𝑟𝑟,𝑗𝑗

𝑁𝑁𝑟𝑟
𝑛𝑛=1 �𝐽𝐽

𝑗𝑗=1 ⋅ 𝑙𝑙𝑗𝑗
∑ 𝑙𝑙𝑗𝑗
𝐽𝐽
𝑗𝑗=1

 (8) 

where 𝑁𝑁𝑟𝑟 is the number of pairs of magnitudes 𝐴𝐴𝑛𝑛,𝑟𝑟,𝑗𝑗 and the 
frequencies 𝑓𝑓𝑛𝑛,𝑟𝑟,𝑗𝑗 corresponding to the 𝑟𝑟-th range of the 𝑗𝑗-th signal. 
Moreover, since the amplitude 𝐴𝐴0 of the oscillation at 𝑓𝑓 = 0 m-1 
(blue box in Fig. 6) represents the average speed on the given 
segments, it can be used to determine the parameter 𝐶𝐶𝐶𝐶 for each 
traffic code as follows:  

𝐶𝐶𝐶𝐶𝑐𝑐 =
∑

𝐴𝐴0,𝑗𝑗
𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗

⋅ 𝑙𝑙𝑗𝑗
𝐽𝐽
𝑗𝑗=1

∑ 𝑙𝑙𝑗𝑗
𝐽𝐽
𝑗𝑗=1

 (9) 

being 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗 the legal speed limit for the 𝑗𝑗-th segment. In this way, 
according to Eq. (3), the static contribution to the MAS can be 
determined. 

Afterward, two different kinds of Key Performance Indicators (KPI) 
have been identified to evaluate the goodness of the prediction: 
speed-based and energy-based KPIs. Regarding the first ones, 
reliable parameters for speed traces comparison are provided by 
[25,27] and they can be represented by the mean absolute error 
(MAE) and the BIAS, both expressed in [km/h] and defined as:  

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛� |𝑣𝑣𝑝𝑝,𝑖𝑖 − 𝑣𝑣𝑟𝑟,𝑖𝑖|

𝑛𝑛

𝑖𝑖=1
 (10) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
1
𝑛𝑛� 𝑣𝑣𝑝𝑝,𝑖𝑖 − 𝑣𝑣𝑟𝑟,𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (11) 

where 𝑣𝑣𝑝𝑝,𝑖𝑖 and 𝑣𝑣𝑟𝑟,𝑖𝑖  are respectively the predicted and the measured 
speed at point 𝑖𝑖, and 𝑛𝑛 is the total amount of points where the 
differences are calculated. Moreover, since the MAE does not 
consider the algebraic signs of the errors, it is used to express the 
mean distance between the prediction and real data. Differently, the 
BIAS represents a good instrument to identify eventual issues 
related to a systematic under/overestimation of the speed.  

On the other hand, energy-based KPIs suggested by SAE [28] have 
been assumed as references. At first, three energy components are 
calculated for both the predicted and the measured cycle, and they 
are the road load, the positive and the negative inertia, expressed as 
follows: 

𝐸𝐸𝑅𝑅𝑅𝑅 = � 𝐹𝐹𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑
𝐿𝐿

0
= � (𝐹𝐹0 + 𝑣𝑣 · 𝐹𝐹1 + 𝑣𝑣2 · 𝐹𝐹2)𝑑𝑑𝑑𝑑

𝐿𝐿

0
 (12) 

𝐸𝐸𝐼𝐼+ = � 𝐹𝐹𝐼𝐼+𝑑𝑑𝑑𝑑
𝐿𝐿

0
= � (𝑚𝑚 ∙ 𝑎𝑎+)𝑑𝑑𝑑𝑑

𝐿𝐿

0
 (13) 

𝐸𝐸𝐼𝐼− = � 𝐹𝐹𝐼𝐼−𝑑𝑑𝑑𝑑
𝐿𝐿

0
= � (𝑚𝑚 ∙ 𝑎𝑎−)𝑑𝑑𝑑𝑑

𝐿𝐿

0
 (14) 

where 𝐿𝐿 is the total length of the route, 𝐸𝐸𝑅𝑅𝑅𝑅 represents the energy 
required to win rolling resistance and drag force, 𝐸𝐸𝐼𝐼+ represents the 
energy required by the vehicle mass 𝑚𝑚 to be accelerated, and 𝐸𝐸𝐼𝐼− 
represents the energy required by the vehicle mass to be decelerated. 
Now, three energy KPIs can be introduced in form of energy rate, 
where subscripts 𝑝𝑝 and 𝑟𝑟 are respectively referred to as the predicted 
and real (measured) speed profile: 

∆𝐸𝐸𝑅𝑅𝑅𝑅 = �𝐸𝐸𝑅𝑅𝑅𝑅𝑝𝑝 − 𝐸𝐸𝑅𝑅𝑅𝑅𝑟𝑟� 𝐸𝐸𝑅𝑅𝑅𝑅𝑟𝑟 ∙ 100�  (15) 

∆𝐸𝐸𝐼𝐼+ = �𝐸𝐸𝐼𝐼𝑝𝑝+ − 𝐸𝐸𝐼𝐼𝑟𝑟+� 𝐸𝐸𝐼𝐼𝑟𝑟+ ∙ 100�  (16) 

∆𝐸𝐸𝐼𝐼− = �𝐸𝐸𝐼𝐼𝑝𝑝− − 𝐸𝐸𝐼𝐼𝑟𝑟−� 𝐸𝐸𝐼𝐼𝑟𝑟− ∙ 100�  (17) 

The results of the calibration and validation campaign are described 
in detail in [23]. For the sake of brevity, in this work, only a 
representative test case’s validation is reported in Fig. 7. In this case, 
the scenario under test includes different traffic codes, stop events, 
and speed limits to consider as many conditions as possible. The 
numeric results of that validation are summarized in Table 4. 

 
Fig. 7 Top plot: speed profile predicted from the navigation data (black) 
and the measured speed on the road (red). Three bottom plots: comparison 
between the three energy components related to the prediction (black) and 
the measurements (red) 

Table 4 Speed and energy KPI for the presented use case  

MAE 
[km/h] 

BIAS 
[km/h] 

|𝑬𝑬𝑹𝑹𝑹𝑹| 
[Wh] 

∆𝑬𝑬𝑹𝑹𝑹𝑹 
[%] 

|𝑬𝑬𝑰𝑰+| 
[Wh] 

∆𝑬𝑬𝑰𝑰+ 
[%] 

|𝑬𝑬𝑰𝑰−| 
[Wh] 

∆𝑬𝑬𝑰𝑰− 
[%] 

12.4 -0.1 5 -0.4 32 -2 32 -2 

In conclusion, Fig. 8a shows the calibrated predicted speed profile 
with respect to the test case presented in Fig. 5, alongside the legal 
speed limits on that route (magenta line) and the related traffic colors 
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(filled area below the speed profile) listed in Table 3. As shown, the 
velocity trace is always below the limits because the 𝐶𝐶𝐶𝐶, as 
expressed by Eq. (9), affects the 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡, the static component of 
MAS, lowering the 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙, while the oscillations described by Eq. (4) 
simulate the natural speed deviation from that value.  

 
 

 
a) 

 
b) c) 

Fig. 8 a) Speed profile predicted by the algorithm after calibration b) 
detail of MAS limited by the orange traffic code c) detail of MAS limited by 
the red traffic code 

Moreover, as shown in Fig. 8b and Fig. 8c, the speed is also reduced 
in correspondence to the orange and dark-red traffic codes 
respectively by the values reported in Table 3, showing the impact 
that each traffic code has on the predicted profile. Furthermore, on 
the 𝑥𝑥-axis, the stop events positions are plotted with the red triangles. 
As it can be noticed, since the stop-over probability is applied, the 
vehicle’s speed is not always zero. 

3.1.2. Backward Vehicle Model 

The quasi-static analytical model of the vehicle used for the 
prediction has been developed through a backward-facing approach 
based on the inverted path of the energy flow inside the vehicle. 
Thus, the source is represented by the wheels and the sinks are the 
energy storage devices. Here, the traction force, and consequently 
torque and power, are evaluated on the base of the vehicle speed and 
road slope, which can be considered as external disturbances acting 
on the dynamic system represented by the vehicle [29–31]. Thus, 
there is no closed-loop control on the speed, i.e., a driver model is 
not needed. Moreover, dynamic effects such as torque control are 
not inherently included. Therefore, this results in a less complex 
model with benefits regarding computational load [32], which is a 
relevant aspect to be considered for algorithm implementation inside 
the hardware.  

The main equations of the backward vehicle model, presented in 
[17], are briefly reported in the following paragraphs. Firstly, since 
the vehicle dynamics analytical model only considers the 
longitudinal forces acting on the car, the fundamental equation is: 

𝑚𝑚
𝑑𝑑
𝑑𝑑𝑑𝑑 𝑣𝑣

(𝑡𝑡) = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) − 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) (18) 

where 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 is the propulsion force, while 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟 is the resistance force 
acting on the vehicle. The latter can be expressed as follows: 

𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) = 𝐹𝐹𝑎𝑎(𝑡𝑡) + 𝐹𝐹𝑟𝑟(𝑡𝑡) + 𝐹𝐹𝑔𝑔(𝑡𝑡) (19) 

that are, respectively, aerodynamic resistance, rolling resistance, and 
slope-related resistance, whose equations are not reported here for 
the sake of brevity. Then, as already discussed in literature [26,33], 
and reported in [17], the global electrical power request can be 
evaluated from Eq. (18) and expressed as follows: 

𝑃𝑃𝑏𝑏(𝑡𝑡) = 𝑃𝑃𝐸𝐸𝐸𝐸(𝑡𝑡) + 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 𝜂𝜂𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷⁄  (20) 

in which 𝑃𝑃𝐸𝐸𝐸𝐸(𝑡𝑡) is the power requested from the electrical motors 
on the front axle either for traction or regenerative braking, 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 is 
the constant power to be supplied to the low-voltage battery and the 
other auxiliaries, and 𝜂𝜂𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is the efficiency of the DCDC converter. 
At this point, the battery power request is modified according to 
power limitation maps related to charge-discharge and peak-nominal 
working conditions of the HV battery. These parameters are 
calculated by the battery electrical and thermal models, respectively, 
which are the same used in the vehicle’s model. Thus, the electrical 
behavior of the cell has been represented by a single-polarization 
equivalent circuit model, also known as the first-order RC equivalent 
circuit model. Battery voltage 𝑉𝑉𝑏𝑏 and current 𝐼𝐼𝑏𝑏 can be calculated 
from the following equations system: 

�   
𝑉𝑉𝑏𝑏(𝑡𝑡) = �𝑉𝑉𝑂𝑂𝑂𝑂 − 𝑅𝑅0 ⋅ 𝐼𝐼𝑏𝑏(𝑡𝑡) 𝑛𝑛𝑝𝑝⁄ − 𝑉𝑉1� ⋅ 𝑛𝑛𝑠𝑠
𝑃𝑃𝑏𝑏(𝑡𝑡) = 𝑉𝑉𝑏𝑏(𝑡𝑡) ⋅ 𝐼𝐼𝑏𝑏(𝑡𝑡)

 (21) 

where 𝑉𝑉1 is the voltage drop related to the RC circuit, 𝑛𝑛𝑝𝑝, 𝑛𝑛𝑠𝑠 are the 
number of cells in parallel and in series, respectively, and 𝑃𝑃𝑏𝑏(𝑡𝑡) is 
the battery power request coming from Eq. (20). Finally, the battery 
state of charge is estimated with an Ampere-hour (Ah) integral 
method (also known as Coulomb counting) [34]. In formula: 

𝜉𝜉(𝑡𝑡) = 𝜉𝜉𝑖𝑖 − �
𝜂𝜂𝑐𝑐  𝐼𝐼𝑏𝑏(𝑡𝑡) 
𝐶𝐶𝑛𝑛

𝑑𝑑𝑑𝑑
∆𝑡𝑡

0

 (22) 

being 𝐶𝐶𝑛𝑛 the nominal battery capacity, 𝜉𝜉𝑖𝑖 the initial value of the state 
of charge, and 𝜂𝜂𝑐𝑐  the coulombic efficiency. From Eq. (22), the net 
amount of SoC needed to drive the ZEZ in pure electric drive can be 
calculated as the difference between the maximum and minimum 
value of the predicted SoC profile 𝜉𝜉: 

∆𝜉𝜉𝑍𝑍 = max (𝜉𝜉) − min (𝜉𝜉) (23) 

Then, the target SoC value is calculated as follows: 

𝜉𝜉𝑡𝑡 = 𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏 + Δ𝜉𝜉𝑍𝑍 + 𝜉𝜉𝑠𝑠 (24) 

where 𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏 is the minimum SoC to drive the vehicle in pure 
electric mode (in this application, it is set to 20%), 𝜉𝜉𝑠𝑠 is a positive 
offset value that has been set to 5% to compensate for the 
physiological inaccuracies of the navigation data, as proved in [35].  

Finally, 𝜉𝜉𝑡𝑡 is the output of the model representing the minimum 
value of SoC to be stored in the HV battery to perform the ZEZ in 
pure electric, which is then forwarded to the control strategy. 

3.2. Energy Management Strategies 
The presence of a ZEZ along the route adds a boundary condition 
for the EMS. Without the connectivity and the information from the 
server, the conventional strategy works blindly, thus the driver could 
run into fees or traffic limitations imposed by the local 
municipalities. Conversely, the control strategy has to fulfill an 
additional objective besides the fuel consumption, which is granting 
the energy to drive the ZEZ in full electric drive. Then, when the 
ZEZ is reached by the vehicle, the strategies are bypassed, and the 
electric drive is forcedly switched on.  

In this chapter, the RBS presented in [17] is modified into an 
Adaptive-RBS to increase its efficiency and then compared with the 
A-ECMS at the SiL on two complete Real-Driving Emissions (RDE) 
cycles. Consequently, analyzing the results, a Combined-RBS is 
finally defined to test the predictive functions at the C-HiL.  

3.2.1.  Adaptive ECMS 

According to the works presented in literature and summarized in 
the sec. 1, an attempt to apply the adaptive formulation of the ECMS 
to PHEVs is proposed in [36,37]. It can be noticed that there are two 
main contributions to the adaptive formulation of the equivalence 
factor: the penalty function and the adaptive function. The first one 
aims at maintaining the state of charge of the battery within the range 
[𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏 , 𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏] that are the battery limits. The second one is the 
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adaptive function and since the paper focuses on it, only the latter is 
reported:  

𝑓𝑓𝑎𝑎(𝜉𝜉(𝑡𝑡), 𝑡𝑡) = 𝑘𝑘𝑎𝑎�𝜉𝜉𝑟𝑟(𝑡𝑡) − 𝜉𝜉(𝑡𝑡)� + (𝑠𝑠𝑘𝑘−1 + 𝑠𝑠𝑘𝑘−2) 2⁄  (25) 

The adaptive function represents a proportional correction of the 
equivalence factor 𝑠𝑠 by considering an adaptive factor, 𝑘𝑘𝑎𝑎, and the 
difference between the reference value of the SoC, 𝜉𝜉𝑟𝑟, and the actual 
one. Since the adaption is performed periodically, the terms 𝑠𝑠𝑘𝑘−1 and 
𝑠𝑠𝑘𝑘−2 are the values of the equivalence factor used in two previous 
time intervals, namely adaptation steps, working as an integral 
correction.  

To handle the ZEZ, in [17] the 𝑘𝑘𝑎𝑎 has been calibrated as a 2-D map 
depending on the remaining distance to the ZEZ (∆𝑑𝑑𝑍𝑍(𝑡𝑡) = 𝑑𝑑𝑖𝑖,𝑍𝑍 −
𝑑𝑑(𝑡𝑡)) and the difference between the reference SoC and actual SoC 
∆𝜉𝜉𝑟𝑟,𝑓𝑓(𝑡𝑡) = �𝜉𝜉(𝑡𝑡) − 𝜉𝜉𝑟𝑟,𝑓𝑓�.  

Moreover, for a PHEV the reference SoC to be followed by the 
control policy can be expressed as a linear function of the total 
distance of the trip to gradually discharge the battery during the 
driving mission. Thus, neither a battery discharging nor sustaining 
behavior is favored, and then the resulting working mode could be 
referred to as charge blended. So, the general formulation for a 
generic drive cycle has been modified as:  

𝜉𝜉𝑟𝑟�𝑑𝑑(𝑡𝑡)� = 𝜉𝜉𝑖𝑖 +
𝜉𝜉𝑓𝑓 − 𝜉𝜉𝑖𝑖
𝑑𝑑𝑓𝑓 − 𝑑𝑑𝑖𝑖

(𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝑖𝑖) (26) 

with the following assumptions related to the ZEZ: 

𝑡𝑡𝑓𝑓 = 𝑡𝑡𝑖𝑖,𝑍𝑍 

𝑑𝑑�𝑡𝑡𝑓𝑓� = 𝑑𝑑𝑓𝑓 = 𝑑𝑑𝑖𝑖,𝑍𝑍 

𝜉𝜉�𝑡𝑡𝑓𝑓� = 𝜉𝜉𝑓𝑓 = 𝜉𝜉𝑖𝑖,𝑍𝑍 
(27) 

Where 𝑡𝑡𝑖𝑖,𝑍𝑍 is the instant of time when the vehicle reaches the ZEZ, 
𝑑𝑑𝑖𝑖,𝑍𝑍 is the distance of the ZEZ from the actual position, and 𝜉𝜉𝑖𝑖,𝑍𝑍 is 
the value of the SoC at the beginning of the ZEZ. 

a) 

 
b) 

Fig. 9 Charge Blended (CB) A-ECMS handling the ZEZ: a) actual and 
reference SoC trends, b) particular of the beginning of the ZEZ. [17] 

A qualitative use case is shown in Fig. 9a, where a generic prediction 
happens in between the driving cycle (point 𝑑𝑑𝑖𝑖 ∈ [𝑑𝑑0,𝑑𝑑𝑓𝑓,𝑍𝑍]). In 
general, the first prediction occurs when the driver selects the 
destination on the navigator, and it is performed again every time a 
re-routing or changes in traffic condition occurs. Here, the CB mode 
is applied by the A-ECMS following the reference SoC expressed 
by Eq. (26) until the urban area is accessed at 𝑑𝑑𝑓𝑓 = 𝑑𝑑𝑖𝑖,𝑍𝑍 (received 
from the MSP via LTE, as shown in Table 1) reached at the instant 
𝑡𝑡 = 𝑡𝑡𝑓𝑓.  

Moreover, it is important to mention that in contrast to other 
formulations of the reference SoC, the global constraint 𝜉𝜉𝑟𝑟(𝑡𝑡𝑓𝑓) =
𝜉𝜉𝑟𝑟,𝑓𝑓 = 𝜉𝜉𝑡𝑡 has been softened, as shown in Fig. 9b. The unused 
electrical energy associated with the SoC difference 𝜉𝜉𝑖𝑖,𝑍𝑍 − 𝜉𝜉𝑡𝑡 is 
justified by the more important aim of pursuing a reliable and robust 
energy management control strategy for handling all the ZEZ in 
pure-electric driving mode. Therefore, the final reference SoC value 
becomes the reference SoC range [𝜉𝜉𝑡𝑡, 𝜉𝜉𝑡𝑡 + ∆𝜉𝜉𝑡𝑡], centered in 𝜉𝜉𝑟𝑟,𝑓𝑓, 
with 𝜉𝜉𝑟𝑟,𝑓𝑓 > 𝜉𝜉𝑡𝑡 and ∆𝜉𝜉𝑡𝑡 = 5%. 

3.2.2.  Adaptive RBS 

The conventional RBS originally implemented in the HCU [17,22] 
of the prototype vehicle controls the electric drive, the front axle 
torque vectoring, the 4WD control, the torque filling, and the 
boosting. Focusing on the electric drive, the RBS works in a CD/CS 
mode through fixed hysteresis concerning the SoC 𝜉𝜉, the torque at 
the wheels 𝑇𝑇𝑤𝑤, and the actual vehicle speed 𝑣𝑣𝑣𝑣𝑣𝑣ℎ. Formally, the 
switch from electric to hybrid mode, and vice versa, is controlled by 
Eq. (28) and Eq. (29) respectively: 

�   

𝜉𝜉 <  𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑤𝑤 > 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚(𝑛𝑛)

𝑣𝑣𝑣𝑣𝑣𝑣ℎ > 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

 (28) �   

𝜉𝜉 >  𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑤𝑤 < 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚(𝑛𝑛)

𝑣𝑣𝑣𝑣𝑣𝑣ℎ < 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

 (29) 

Following the trend in literature, a blended mode leads to increased 
efficiency for the PHEV [38], especially if road and traffic data are 
accessible [39]. In fact, if the information about the ZEZ is available, 
thus the target SoC 𝜉𝜉𝑡𝑡 can be higher than the initial SoC of the 
battery. In [17], the RBS has been modified to receive the navigation 
data as input, but it can only recharge the HV battery and then 
performs a conventional CS around the target, as follows: 

�   
𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚 =  𝜉𝜉𝑡𝑡
𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚 =  𝜉𝜉𝑡𝑡 + 5%

 (30) 

This could lead to an imbalanced comparison since the RBS has not 
been conceived to work in this operating condition. Thus, the control 
policy has been adapted to take as input the same SoC reference, 𝜉𝜉𝑟𝑟, 
defined by Eq. (26), and use it to define the new values of 𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚, 𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚 
instant by instant: 

�   
𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚�𝑑𝑑(𝑡𝑡)� =  𝜉𝜉𝑟𝑟(𝑑𝑑(𝑡𝑡))

𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚�𝑑𝑑(𝑡𝑡)� =  𝜉𝜉𝑟𝑟(𝑑𝑑(𝑡𝑡)) + 5%
 (31) 

3.2.3.  CO2 Correction 

The CO2 production has been chosen as the assessment parameter 
for comparing the energy consumption related to the strategies under 
test with respect to the reference one (namely the RBS). To make a 
proper comparison, a correction of the CO2 production has been 
proposed. In particular, the electrical energy additionally used or 
saved, Δ𝐸𝐸 = 𝐸𝐸𝐴𝐴𝐴𝐴 − 𝐸𝐸𝐴𝐴𝐴𝐴 (𝐴𝐴𝐴𝐴: A-RBS, 𝐴𝐴𝐴𝐴: A-ECMS), at the end of 
the driving mission should be converted into an equivalent amount 
of fuel as already described in [17]. Hence, the energy correction can 
be: 

- negative, meaning that more electrical energy was used by the 
strategy under test than the reference strategy. In this case, the 
assumption is that the Δ𝐸𝐸 is provided by the ICE and the P1 is 
working as a generator. Thus, considering the energy balance, 
the mass fuel correction is expressed by:  

∆𝑚𝑚𝑓𝑓 =
Δ𝐸𝐸
𝑄𝑄𝑙𝑙ℎ𝑣𝑣

∙
1

𝜂̅𝜂𝐼𝐼𝐼𝐼𝐼𝐼  𝜂̅𝜂𝐼𝐼𝐼𝐼𝐼𝐼  (32) 

where 𝑄𝑄𝑙𝑙ℎ𝑣𝑣 is the lower heating value of gasoline, 𝜂̅𝜂𝐼𝐼𝐼𝐼𝐼𝐼 and 𝜂̅𝜂𝐼𝐼𝐼𝐼𝐼𝐼 
are the average efficiencies of the ICE and the ISG respectively. 
The instantaneous efficiency of the ICE is calculated as the ratio 
between the mechanical power provided by the engine and the 
chemical power related to the injected fuel. 

- positive, on the contrary, if less electrical energy was used by the 
strategy under test. Here, the Δ𝐸𝐸 is assumed to be provided by 
the EMs, as the vehicle is driving in electric mode. Thus, the 
energy balance can be expressed as: 

𝜉𝜉

𝜉𝜉𝑖𝑖

𝜉𝜉0

𝑑𝑑(𝑑𝑑)

ZEZ

CB CD (eDrive)

𝑑𝑑𝑖𝑖 𝑑𝑑𝑓𝑓 = 𝑑𝑑𝑖𝑖,𝑍 𝑑𝑑𝑓𝑓,𝑍

𝜉𝜉𝑖𝑖,𝑍
𝜉𝜉𝑑𝑑

actual SoC reference SoC

𝜉𝜉𝑟𝑟(𝑑𝑑)

𝜉𝜉𝑖𝑖,𝑍

𝜉𝜉𝑟𝑟 ,𝑓𝑓

𝜉𝜉𝑑𝑑

𝜉𝜉𝑑𝑑 + ∆𝜉𝜉𝑑𝑑

𝜉𝜉𝑟𝑟(𝑑𝑑)

𝜉𝜉(𝑑𝑑)

𝑑𝑑𝑓𝑓 = 𝑑𝑑𝑖𝑖,𝑍



∆𝑚𝑚𝑓𝑓 =
Δ𝐸𝐸
𝑄𝑄𝑙𝑙ℎ𝑣𝑣

∙
𝜂̅𝜂𝐸𝐸𝐸𝐸
𝜂̅𝜂𝐼𝐼𝐼𝐼𝐼𝐼

 (33) 

where 𝜂̅𝜂𝐸𝐸𝐸𝐸 is the average efficiency of the EMs, calculated as 
the ratio between the input and output power. 

Finally, to evaluate the CO2 production, the corrected fuel 
consumption 𝑚𝑚𝑓𝑓,𝑐𝑐 = 𝑚𝑚𝑓𝑓 + Δ𝑚𝑚𝑓𝑓 is multiplied by a conversion factor 
whose value is 𝑘𝑘𝐶𝐶𝐶𝐶2 = 2370 gCO2/lfuel. The latter can be calculated 
as suggested by [40] from the following equation: 

𝐹𝐹𝐹𝐹 = �
0.1206
𝜌𝜌𝑓𝑓

� (0.829 ∙ 𝐻𝐻𝐻𝐻 + 0.429 ∙ 𝐶𝐶𝐶𝐶 + 0.273 ∙ 𝐶𝐶𝐶𝐶2) (34) 

where 𝜌𝜌𝑓𝑓 = 0.75 kg/l is the fuel density, and 𝐻𝐻𝐻𝐻, 𝐶𝐶𝐶𝐶 and 𝐶𝐶𝐶𝐶2 are 
the production of the relative chemical agents [g/km]. For the 
conversion factor evaluation, the conservative assumption 𝐻𝐻𝐻𝐻 =
𝐶𝐶𝐶𝐶 = 0 g/km has been made.  

3.2.4.  Strategies comparison 

The simulations of two RDE cycles have been performed at the SiL 
to compare the strategies in terms of CO2 production, and in 
particular to understand if the A-RBS outperforms the conventional 
RBS and can be used as the new reference. Differently from the 
conventional RDE cycle, the two used here have been driven in the 
opposite direction, thus the urban event (and so the ZEZ) is located 
at the end of the trip. This allows the energy management strategies 
to prepare the battery with the proper amount of energy for the urban 
area. The driving cycles are represented in Fig. 10 along with the 
altitude profile (the 0 value is the initial vehicle position) and the 
ZEZ (green area) while the length in km of the cycles and of the 
urban event are listed in Table 5: 

a) 

b) 

Fig. 10 a) RDE 1 driving cycle (black) and altitude (magenta); b) RDE 2 
driving cycle and altitude  

Table 5 Length of the route and the ZEZ for each RDE 

Cycle 𝜉𝜉𝑡𝑡 
[%] 

𝑑𝑑𝑍𝑍 
[km] 

𝑑𝑑𝑖𝑖,𝑍𝑍 
[km] 

𝑑𝑑𝑓𝑓,𝑍𝑍 
[km] 

RDE 1 80 15.0 75.1 90.1 
RDE 2 80 11.8 80.9 92.7 

where 𝜉𝜉𝑡𝑡 is the target SoC calculated by the BVM, 𝑑𝑑𝑍𝑍 is the duration 
of the ZEZ in km, while 𝑑𝑑𝑖𝑖,𝑍𝑍 is 𝑑𝑑𝑓𝑓,𝑍𝑍 identify the start and the end of 
the ZEZ.  

The comparisons of the different Test Cases (TC) have been made 
starting from different values of the initial SoC 𝜉𝜉𝑖𝑖 (30%, 50%, and 
90%), whereas the ZEZ event remains the same and consequently 
the target SoC. The initial values have been chosen to cover different 
operation modes of the strategies due to the difference between the 
initial SoC and the target SoC (in both test cases 80%): 

- 𝜉𝜉𝑖𝑖 = 30% : implies a significant negative difference and so a 
demanding recharging phase; 

- 𝜉𝜉𝑖𝑖 = 50% : in this case, the difference is less pronounced and 
so the recharging phase; 

- 𝜉𝜉𝑖𝑖 = 90% : here the difference is positive, as commonly 
happens with PHEV. This is necessary to understand if the A-
RBS proposed is suitable even for a conventional CD/CS 
mode. 

The Fig. 11 a), b), and c) show the simulation results for the RDE 1 
at 30%, 50%, and 90% respectively, and likewise the Fig. 11 d), e), 
and f) for the RDE 2. In particular, the SoC trends for each strategy 
have been plotted, along with the reference SoC 𝜉𝜉𝑟𝑟(𝑑𝑑(𝑡𝑡)), used by 
both the A-RBS and the A-ECMS, expressed by Eq. (26). The 
simulation results for all the test cases are reported in Table 6 in 
terms of a relative percentage difference of corrected CO2. The A-
RBS and the A-ECMS are compared to the RBS by means of the 
parameters ∆𝐶𝐶𝐶𝐶2,%

𝐴𝐴𝐴𝐴 and ∆𝐶𝐶𝐶𝐶2,%
𝐴𝐴𝐴𝐴. 

∆𝐶𝐶𝐶𝐶2,𝑐𝑐,%
𝐴𝐴𝐴𝐴 = �𝐶𝐶𝐶𝐶2𝐴𝐴𝐴𝐴 − 𝐶𝐶𝐶𝐶2𝑅𝑅� 𝐶𝐶𝐶𝐶2𝑅𝑅⁄ ∙ 100 (35) 

∆𝐶𝐶𝐶𝐶2,𝑐𝑐,%
𝐴𝐴𝐴𝐴 = �𝐶𝐶𝐶𝐶2𝐴𝐴𝐴𝐴 − 𝐶𝐶𝐶𝐶2𝑅𝑅� 𝐶𝐶𝐶𝐶2𝑅𝑅⁄ ∙ 100 (36) 

where the superscript 𝑅𝑅 stands for RBS, 𝐴𝐴𝐴𝐴 for A-RBS, and 𝐴𝐴𝐴𝐴 for 
A-ECMS. Analyzing the results listed in Table 6, for the test cases 
with 𝜉𝜉𝑖𝑖 = 30%  and 𝜉𝜉𝑖𝑖 = 50%, where the strategies must work in 
CI mode (negative values of ∆𝜉𝜉 = 𝜉𝜉𝑖𝑖 − 𝜉𝜉𝑡𝑡 ), the A-RBS performs 
better than the RBS, as shown by the negative values of ∆𝐶𝐶𝐶𝐶2,𝑐𝑐,%

𝐴𝐴𝐴𝐴. 
On the other hand, if the strategies must work in the conventional 
CD/CS mode (positive values of ∆𝜉𝜉), the RBS still represents the 
most efficient solution. Differently, the values of ∆𝐶𝐶𝐶𝐶2,𝑐𝑐,%

𝐴𝐴𝐴𝐴 for the 
A-ECMS highlight the considerable improvements in all the test 
cases, confirming the results previously obtained in [17]. 

a) TC 1: 𝜉𝜉𝑖𝑖 = 30% d) TC 2: 𝜉𝜉𝑖𝑖 = 30% 
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b) TC 3: 𝜉𝜉𝑖𝑖 = 50% e) TC 4: 𝜉𝜉𝑖𝑖 = 50% 

c) TC 5: 𝜉𝜉𝑖𝑖 = 90% f) TC 6: 𝜉𝜉𝑖𝑖 = 90% 

Fig. 11 a, b, c) RDE 1: SoC trends for each strategy approaching the ZEZ (green area) with initial SoC of 30%, 50%, and 90% respectively; d, e, f) RDE 2: SoC 
trends for each strategy approaching the ZEZ (green area) with initial SoC of 30%, 50%, and 90% respectively 

Table 6 Results of the simulations in terms of CO2 production and relative errors for each test case 

TC RDE 𝜉𝜉𝑖𝑖  
[%] 

𝜉𝜉𝑡𝑡  
[%] 

∆𝜉𝜉  
[%] 

𝐶𝐶𝐶𝐶2,𝑐𝑐
𝑅𝑅 

[g/km] 
𝐶𝐶𝐶𝐶2,𝑐𝑐

𝐴𝐴𝐴𝐴 
[g/km] 

𝐶𝐶𝐶𝐶2,𝑐𝑐
𝐴𝐴𝐴𝐴 

[g/km] 
∆𝐶𝐶𝐶𝐶2,𝑐𝑐,%

𝐴𝐴𝐴𝐴 
[%] 

∆𝐶𝐶𝐶𝐶2,𝑐𝑐,%
𝐴𝐴𝐴𝐴 

[%] 
1 1 30 80 -50 319 305 268 -4.3 -16.1 
2 2 30 80 -50 360 352 296 -2.2 -17.6 
3 1 50 80 -30 307 295 240 -3.7 -21.7 
4 2 50 80 -30 344 334 272 -3.1 -21.1 
5 1 90 80 10 280 288 208 3.0 -25.4 
6 2 90 80 10 312 321 230 2.8 -26.3 
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3.2.5.  Combined RBS 

In conclusion, the tests highlight that for this specific powertrain the 
A-RBS is more efficient only in CI, while the RBS is still better 
otherwise. Hence, a Combined-RBS has been identified merging the 
limits expressed by Eq. (30) and by Eq. (31) in Table 7. 

Table 7  C-RBS: state of charge limits for the electric drive 

 𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚 𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚  

𝜉𝜉𝑖𝑖 > 𝜉𝜉𝑡𝑡 𝜉𝜉𝑟𝑟 𝜉𝜉𝑟𝑟 + 5% (37) 
𝜉𝜉𝑖𝑖 < 𝜉𝜉𝑡𝑡 𝜉𝜉𝑟𝑟(𝑑𝑑(𝑡𝑡)) 𝜉𝜉𝑟𝑟(𝑑𝑑(𝑡𝑡)) + 5% (38) 

This new strategy, defined as a combination of the RBS and the A-
RBS to be the most efficient in terms of CO2 reduction, is adopted 
from now on as the reference strategy and it will be tested at the C-
HiL and compared to the A-ECMS to confirm the results obtained 
at SiL level. In Table 8 all the EMS describe so far, and the relative 
working modes are summarized with respect to the SoC difference 
∆𝜉𝜉 = 𝜉𝜉𝑡𝑡 − 𝜉𝜉𝑖𝑖. 

Table 8  EMS working mode summary  

 ∆𝜉𝜉 > 0 ∆𝜉𝜉 < 0 

RBS [17] CD/CS CI/CS 
A-RBS CB CB 
C-RBS CD/CS CB 
A-ECMS [17] CB CB 

It is worth mentioning that the selection of such strategy as the 
reference one is purely based on nominal efficiency optimization, 
without taking into consideration effects due to battery C-rating 
characteristics, aging, or overheating. 

4. C-HiL testing 
In this chapter, the C-RBS and the A-ECMS are tested at the C-HiL 
on a driving profile measured on-road (blue line in Fig. 12). To do 
so, six different test cases have been defined. More in detail, each 
test starts querying the MSP to retrieve the online navigation data in 
real-time for the same destination as the measured trace (namely 
point B in Fig. 12). Consequently, the HCU calculates the target 
SoC, as described in sec. 2.4. Since the navigation data depends on 
the actual traffic conditions, they could differ from the measured 
data both for the proposed route and the traffic data. When the 
Navigator App detects that the distance between the GPS position of 
the vehicle and the planned route is higher than a certain threshold, 
it triggers a re-routing. Hence, it queries the MSP again for updated 
navigation data and the HCU calculates a new target SoC. In this 
way, the tests force the control strategies to work in conditions as 
near as possible to reality, validating both the predictions of the 
target SoC and the effectiveness of A-ECMS with respect to the C-
RBS in terms of CO2 production. 

4.1. Test cases 
The tests have been performed on a driving profile measured on-
board using MATLAB® Online, installed on a smartphone, to 
retrieve the actual vehicle speed, and GPS position (latitude, 
longitude, and altitude). To replicate a plausible and realistic 
scenario, the starting point has been set in the rural area near the city 
of Bologna, point A in Fig. 12, while the destination has been set on 
a parking lot in the middle of the ZEZ, point B.  

a) 

 b) 

Fig. 12 Representation of the measured route (blue line) from point A to 
point B and the proposed routes at each query: the first one at the beginning 
of the test (purple line) and the second related to re-routing 1 (cyan line) 

The measurement has been done in the afternoon of a working day 
to consider medium traffic congestion, while maintaining a driving 
behavior neither aggressive nor cautious. Then, the same measured 
data have been set as the reference speed profile to be followed by 
the vehicle model and then deployed in the Real-Time PC. Finally, 
the tests have been conducted starting from different values of initial 
SoC, as for the comparison described in sec. 3.4, at comparable 
hours of the day, to reduce the physiological variability of the traffic 
as much as possible. The measured driving cycle is reported in Fig. 
13, as well as the altitude and the ZEZ.  

 
Fig. 13 Real driving profile under test (black), altitude profile (magenta), 
and the ZEZ area (green) 

Table 9 Length of the driving profile and ZEZ for the measured test case 

Cycle 𝑑𝑑𝑍𝑍 
[km] 

𝑑𝑑𝑖𝑖,𝑍𝑍 
[km] 

𝑑𝑑𝑓𝑓,𝑍𝑍 
[km] 

Measured route 3.0 27.5 30.5 

In Table 9, the data regarding the length of the route df,Z, the 
remaining distance to the ZEZ 𝑑𝑑𝑖𝑖,𝑍𝑍, and the urban event are reported. 
Furthermore, in Table 10 all the test cases are summarized, along 
with the initial value of SoC 𝜉𝜉𝑖𝑖, and the number of re-routing 𝑛𝑛𝑟𝑟 
(excluding the first prediction that is mandatory), which occurred 
during the simulations.  
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Table 10 List of all the test cases with the respective boundary conditions  

TC EMS  𝜉𝜉𝑖𝑖  
[%] 

𝑛𝑛𝑟𝑟  
[-] 

1 C-RBS 30 0 
2 A-ECMS 30 1 
3 C-RBS 50 1 
4 A-ECMS 50 1 
5 C-RBS 90 1 
6 A-ECMS 90 0 

4.2. Results 
In Fig. 14 the results of the testing at the C-HiL have been reported. 
The subfigures a), b) and c) are referred to the simulations performed 
with the C-RBS, while d), e) and f) to the ones performed with the 
A-ECMS at the initial SoC value of 30%, 50%, and 90% 
respectively. In particular, each subfigure is composed as follows:  

- top plot: showing the actual HV battery SoC (black line), the 
reference SoC (dotted line) calculated with Eq. (26), and the 
target SoC (petrol line) calculated by the BVM with the Eq. (24). 
The latter is related to the real-time navigation data received 
during the simulation, so it changes when a re-routing occurs; 

- central plot: it represents the comparison of the energy 
associated with each predicted speed profile with respect to the 
driven one (grey). The comparison is referred to the energies 
defined by Eq. (12), (13), and (14), namely the positive inertia 
energy (cyan), the negative inertia energy (green), and the road 
load (yellow). In addition, the battery consumption predicted by 
the BVM is also compared (orange) to the actual one. Moreover, 

for a matter of graphical representation, the predictions are 
distributed on the 𝑥𝑥-axis, whereas during the simulations they 
are performed at the same time once all the navigation data are 
received. The predictions are highlighted in each plot by means 
of grey boxes, but since the central plot is an enlargement of the 
predictions themselves the grey boxes are wider; 

- bottom plot: the turnaround time (TAT) of the HCU, expressed 
in milliseconds, is reported to prove the real-time capability of 
these strategies. It can be noticed that the TAT is well below the 
maximum allowable time-step of 10ms of the HCU software for 
the entire duration of the test. However, the TAT presents a peak 
every time a prediction occurs, reaching higher values closer to 
the limit. This can be accepted since it occurs very few times 
during the cycle, and the dimensions of the vector listed in Table 
1 have been chosen to avoid software overruns.  

 

 

 

 

 

 

 

 

 

 

 

a) TC1: 𝜉𝜉𝑖𝑖 = 30% d) TC2: 𝜉𝜉𝑖𝑖 = 30% 

b) TC3: 𝜉𝜉𝑖𝑖 = 50% e) TC4: 𝜉𝜉𝑖𝑖 = 50% 
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c) TC5: 𝜉𝜉𝑖𝑖 = 90% f) TC6: 𝜉𝜉𝑖𝑖 = 90% 

Fig. 14 Results of the tests at the C-HiL: a) b) c) simulations performed with C-RBS at 𝜉𝜉𝑖𝑖 = 30%, 50%, 90% respectively; d) e) f) simulations performed with A-
ECMS at 𝜉𝜉𝑖𝑖 = 30%, 50%, 90% respectively 

Table 11 Results of the tests at the C-HiL: comparison of predictions depending on the initial SoC and the meters remaining to the ZEZ event 

 C-RBS (TC1) A-ECMS (TC2) 
 1st prediction 

(𝑑𝑑𝑖𝑖,𝑍𝑍 = 27516 m) 
2nd prediction 1st prediction 2nd prediction 

 - (𝑑𝑑𝑖𝑖,𝑍𝑍 = 30538 m) (𝑑𝑑𝑖𝑖,𝑍𝑍 = 3307 m) 

 Meas. 
[Wh] 

Pred. 
[Wh] 

Δ%  
[%] 

Meas. 
[Wh] 

Pred. 
[Wh] 

Δ%  
[%] 

Meas. 
[Wh] 

Pred. 
[Wh] 

Δ%  
[%] 

Meas. 
[Wh] 

Pred. 
[Wh] 

Δ%  
[%] 

𝑬𝑬𝑰𝑰+ 463 449 -3.1 - - - 463 543 17.2 463 469 1.2 
𝑬𝑬𝑰𝑰− -456 -395 -13.2 - - - -456 -474 4.0 -456 -482 5.7 
𝑬𝑬𝑹𝑹𝑹𝑹 257 266 3.2 - - - 257 351 36.3 257 270 5.1 
𝑬𝑬𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 855 808 5.4 - - - 836 958 14.6 836 782 6.9 

 [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] 
SoC 12.9 12.4 -0.6 - - - 12.9 14.7 1.9 12.9 12.0 -0.8 

 
 C-RBS (TC3) A-ECMS (TC4) 
 1st prediction 2nd prediction 1st prediction 2nd prediction 
 (𝑑𝑑𝑖𝑖,𝑍𝑍 = 26984 m) (𝑑𝑑𝑖𝑖,𝑍𝑍 = 5910 m) (𝑑𝑑𝑖𝑖,𝑍𝑍 = 26984 m) (𝑑𝑑𝑖𝑖,𝑍𝑍 = 5917 m) 

 Meas. 
[Wh] 

Pred. 
[Wh] 

Δ%  
[%] 

Meas. 
[Wh] 

Pred. 
[Wh] 

Δ%  
[%] 

Meas. 
[Wh] 

Pred. 
[Wh] 

Δ%  
[%] 

Meas. 
[Wh] 

Pred. 
[Wh] 

Δ%  
[%] 

𝑬𝑬𝑰𝑰+ 463 426 -7.9 463 406 -12.3 463 355 -23.4 463.1 439.9 -8.3 
𝑬𝑬𝑰𝑰− -456 -342 -24.9 -456 -409 -10.2 -456 -302 -33.7 -455.5 -417.6 -5.0 
𝑬𝑬𝑹𝑹𝑹𝑹 257 264 2.6 257 265 2.9 257 274 6.4 257.4 264.9 2.9 
𝑬𝑬𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 841 780 7.2 841 682 -18.8 839 690 17.8 839.4 746.5 -11.1 

 [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] 
SoC 12.9 12.0 -0.9 12.9 10.5 -2.4 12.9 10.6 -2.3 12.9 11.5 -1.4 

 
 C-RBS (TC5) A-ECMS (TC6) 
 1st prediction 2nd prediction 1st prediction 2nd prediction 
 𝑑𝑑𝑖𝑖,𝑍𝑍 = 26984 m 𝑑𝑑𝑖𝑖,𝑍𝑍 = 5913 m 𝑑𝑑𝑖𝑖,𝑍𝑍 = 27539 m - 

 Meas. 
[Wh] 

Pred. 
[Wh] 

Δ%  
[%] 

Meas. 
[Wh] 

Pred. 
[Wh] 

Δ%  
[%] 

Meas. 
[Wh] 

Pred. 
[Wh] 

Δ%  
[%] 

Meas. 
[Wh] 

Pred. 
[Wh] 

Δ%  
[%] 

𝑬𝑬𝑰𝑰+ 463 387 -16.5 463.05 529.75 14.4 463 431 -6.9 - - - 
𝑬𝑬𝑰𝑰− -456 -312 -31.4 -455.53 -505.37 10.9 -456 -380 -16.5 - - - 
𝑬𝑬𝑹𝑹𝑹𝑹 257 273 6.1 257.44 259.20 0.7 257 261 1.4 - - - 
𝑬𝑬𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 837 802 4.2 837.12 834.15 -0.4 834 844 1.2 - - - 

 [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] 
SoC 12.9 12.3 -0.5 12.9 12.8 -0.1 12.8 13.0 0.2 - - - 
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Table 12  Results of the tests at the C-HiL: comparison between the two strategies in terms of raw and corrected CO2 

TC EMS 
𝜂̅𝜂𝐼𝐼𝐼𝐼𝐼𝐼 
[%] 

𝜂̅𝜂𝐸𝐸𝐸𝐸 
[%] 

𝜂̅𝜂𝐼𝐼𝐼𝐼𝐼𝐼 
[%] 

𝜉𝜉𝑖𝑖 
[%] 

𝜉𝜉𝑓𝑓 

[%] 
𝐹𝐹𝐹𝐹 

[l/100km] 
𝐸𝐸 

[Wh] 
𝐶𝐶𝐶𝐶2 

[g/km] 
∆𝐶𝐶𝐶𝐶2,% 

[%] 
Δ𝐸𝐸 

[Wh] 
𝐶𝐶𝐶𝐶2,𝑐𝑐 

[g/km] 
∆𝐶𝐶𝐶𝐶2,𝑐𝑐,% 

[%] 

1 C-RBS 16.0 80.3 75.0 30 27.2 13.3 -139 315     

2 A-ECMS 24.3 80.9 75.6 30 29.7 10.6 -196 250 -20.4 57 250 -20.4 
3 C-RBS 14.8 80.0 73.7 50 26.4 10.8 1444 256     

4 A-ECMS 23.6 80.9 75.6 50 28.3 8.4 1184 198 -22.5 260 189 -26.1 
5 C-RBS 15.3 81.5 74.4 90 29.1 4.8 3902 113     

6 A-ECMS 21.4 81.2 76.1 90 31.8 4.2 3684 99 -12.5 218 90 -20.1 
 

In Table 11, the predicted energies 𝐸𝐸𝐼𝐼+, 𝐸𝐸𝐼𝐼−, 𝐸𝐸RL, and 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 are 
reported and compared to the ones related to the driven route in 
terms of percentage difference Δ%, as in Eq. (15), (16), and (17). 
Analogously, the predicted battery energy consumption and SoC are 
also analyzed.  

Since the TC2 is the most representative test case, the related 
scenario is reported on the map in Fig. 12 and it is analyzed in detail 
in the following paragraph.  In fact, it simulates the realistic scenario 
of a driver that does not follow exactly the suggestion of the 
navigator, independently if on purpose or not, inducing several re-
routing. 

Focusing on it, the MSP suggests the fastest route related to the 
actual real-time traffic data, the purple line in Fig. 12, and the HCU 
makes the prediction referring to that route. This leads to the first 
target SoC represented in Fig. 14d and as long as the driver follows 
the proposed route, the target SoC remains constant. Then, when the 
driver takes a different road, a re-routing occurs leading to a new 
query to the MSP, so updated navigation data, cyan line in Fig. 12b, 
and thus a recalculation of the target SoC, second grey box in Fig. 
14b. Looking at the results in terms of energy in Table 11, the first 
prediction presents relevant errors for most of the KPIs due to the 
differences of the routes, and consequently a not precise target SoC 
calculation. After the re-routing, the driver follows the suggested 
route, so in this case, the energy KPIs present significantly lower 
errors leading to an accurate prediction. Even if there is such a 
considerable initial error, and the re-routing occurs close to the ZEZ 
(𝑑𝑑𝑖𝑖,𝑍𝑍 =  3307 m), the initial target SoC does not change 
significantly after re-routing, and the EMS can grant the ZEZ in full 
electric. In Fig. 12b, another re-routing occurs but this time within 
the ZEZ, identified also by the spike within the green area in the 
TAT bottom plot. Thus, the TeCU queries the MSP and retrieves the 
navigation data, but no prediction will be performed. In fact, at this 
point, the vehicle can only go in electric drive and no 
countermeasures can be taken by the EMS if the SoC is not enough. 

In general, it can be noticed that if the driver follows the proposed 
route (and so no re-routings occur), the energy predictions well-
represent the energy necessary to perform the ZEZ in full electric 
drive. That is the case of TC1 and TC6, where the SoC errors are -
0.6% and 0.2% respectively. For TC2, TC4, and TC5, the driver 
does not follow the suggested route, inducing re-routings. Even in 
these cases, the SoC prediction error is below 2.3%, which is 
covered by the offset 𝜉𝜉𝑠𝑠 expressed in Eq. (24), and then improved 
after the rerouting, as well as the KPIs and the predicted battery’s 
energy consumption. Differently, for what concerns the TC3, the 
relative errors increase after the re-routing, worsening the energy 
prediction. This was due to inaccurate values of the real-time traffic 
data provided by the MSP, which underestimates the congestion 
along the route. Even if this represents a common situation that can 
happen when the vehicle is driving on the road, however, the error 
produced is still compensated by the offset 𝜉𝜉𝑠𝑠. 

Then, focusing on Table 12, the C-RBS and the A-ECMS are 
compared in terms of corrected CO2 production, calculated with Eq. 
(32), (33), and (34). In particular, the Table 12 reports the ICE’s and 
electric machines’ average efficiency, the fuel consumption 𝐹𝐹𝐹𝐹, the 
energy consumption 𝐸𝐸, the raw CO2, and the corrected CO2. Similar 
to the comparison made in sec. 3.4, the relative percentage 
difference has been chosen as the assessment parameter, both for the 

raw ∆𝐶𝐶𝐶𝐶2,% and corrected value ∆𝐶𝐶𝐶𝐶2,𝑐𝑐,%. This comparison can be 
considered representative since the driven profile is always the same, 
while the only variable parameter is the target SoC. Although, the 
latter varies in a limited range of a few percentage points, so it does 
not significantly affect the EMS. Hence, it can be noticed that for the 
A-ECMS the average efficiencies of the ICE and the ISG are higher, 
leading to lower fuel consumption and, apart from the case 𝜉𝜉𝑖𝑖 =
30%, a lower energy consumption. This means a reduction of raw 
and corrected CO2 production, in a range of 12.5% - 22.5% and 
20.1% - 26.1%, respectively. Moreover, the final values of SoC are 
well above the minimum SoC, 𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏, proving that the ZEZ has been 
performed in full electric drive even if the navigation data present 
some normal inaccuracies, due to different proposed routes and 
traffic data that do not reflect exactly the current situation.  

5. Conclusions and future works 
In this paper, a supervisory controller architecture for PHEVs based 
on predicted functions and an Adaptive-ECMS has been proposed to 
handle a Zero-Emission Zone using navigation data retrieved in real-
time from the map service provider. With this information, the Speed 
Profile Prediction is performed to evaluate an energetically 
equivalent driving profile that is then fed to the BVM. The latter 
calculates the amount of energy necessary to drive the ZEZ in pure 
electric mode and forward that target SoC to the control policy. For 
a proper comparison, also the conventional RBS has to be modified 
into an A-RBS to handle the ZEZ even in situations where a Charge 
Increasing mode is required. Thus, the latter has been tested on two 
inverted RDE cycles while facing a ZEZ event. As a consequence, 
the test results helped to define a more efficient Combined-RBS that 
is finally tested on a real driving scenario measured on the road and 
compared to the A-ECMS at the C-HiL. The latter exploits the real 
vehicular connectivity, the TeCU, and the HMI to manage the 
communication with the MSP itself, as it would be in the real 
vehicle. Since the navigation data from the MSP are real and referred 
to the current traffic situation, the proposed route can differ from the 
driven one, leading to re-routing and consequent adaptation of the 
target SoC. 

The results show that: 

- The SPP evaluates an energetically equivalent profile with a 
relative error of the required battery’s energy between 0.4% and 
11%, which results in a variation of the target SoC between 0.1% 
to 2.4%. These values are compensated by the SoC offset used 
to calculate the target SoC, so the ZEZ in pure electric is always 
granted. However, the SPP prediction is strongly dependent on 
the accuracy of the navigation and traffic data as shown in TC3, 
and on the driver behavior; 

- The A-ECMS outperforms the C-RBS in all the test cases in 
terms of fuel consumption and so corrected CO2 production, 
with a reduction between 20.1% and 26.1%. Thus, the proposed 
predictive strategy not only grants the fully electric drive in an 
urban event, preventing the payment of fees, but also optimizes 
the fuel consumption while driving outside the ZEZ; 

- Both strategies have been deployed into the real HCU and tested 
with real vehicular connectivity, proving the real-time capability 
and robustness of the predictive functions under different and 
unpredictable conditions. This has accelerated the function 
development laying the ground for future on-road tests. 



Even if the C-HiL tests already provide positive results under 
challenging scenarios, further tests are required. Firstly, a scenario 
simulator and an improved driver model must be implemented at the 
C-HiL to create multiple test cases without measuring them on the 
road. Then, additional tests on the vehicle have to be fulfilled to 
definitely prove the effectiveness of the control policy. In addition 
to that, the influence of different charging and discharging strategies 
on battery health needs to be analyzed to consider the effects due to 
battery C-rating characteristics, aging, or overheating. Moreover, the 
testing with real connectivity underlined how the SPP still presents 

room for improvement. On one hand, despite the good results 
presented in the paper, the validation of the SPP is limited to the 
scenarios under test, thus a wider and more generic campaign is 
needed. On the other hand, it should be enhanced with the addition 
of Machine Learning algorithms to adapt itself with respect to the 
driver's behavior and so preventing physiological variability. 
Finally, the TAT measurements show how the predictions affect the 
HCU, thus the next step is to transfer all the computational burden 
firstly to the TeCU and then to a cloud server, since the information 
exchange does not need very low latencies. 

Nomenclature
Abbreviations  

A-ECMS Adaptive ECMS 
A-RBS Adaptive RBS 
BVM Backward Vehicle Model 
CB Charge Blended 
CD Charge-Depleting  
C-HiL Connected Hardware-in-the-Loop 
CI Charge-Increasing 
C-RBS Combined RBS 
CS Charge-Sustaining 
ECMS Equivalent Consumption Minimization Strategy 
EM Electric Machine 
EMS Energy Management Strategy 
FC Fuel Consumption 
HCU Hybrid Control Unit 
HMI Human Machine Interface 
ICE Internal Combustion Engine 
MAS Max Allowed Speed 
MSP Map Service Provider 
PHEV Plug-in Hybrid Electric Vehicle 
RBS Rule-Based Strategy 
RDE Real Driving Emissions 
SoC State of Charge 
SPP Speed Profile Prediction 
TAT Turnaround Time 
TC Test Case 
TeCU Telecommunication Control Unit 
V2N Vehicle-to-Network 
ZEZ Zero-Emission Zone 

Roman Symbols  
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑 Vehicle acceleration and deceleration  
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚𝑚𝑚, 𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑,𝑚𝑚𝑚𝑚𝑚𝑚 Maximum vehicle acceleration / deceleration 
𝐴𝐴𝑟𝑟, 𝑓𝑓𝑟𝑟 Amplitude and frequency of the 𝑟𝑟-th range 
𝑐𝑐 Traffic code 

𝑐𝑐𝑠𝑠 Corrective factor for close segments 
∆𝐶𝐶𝐶𝐶2,% Relative percentage difference of raw CO2 
∆𝐶𝐶𝐶𝐶2,𝑐𝑐,% Relative percentage difference of corrected CO2  
𝐶𝐶𝐶𝐶 Code weight 
𝑑𝑑 Predicted speed profile discretization step 
𝑑𝑑𝑖𝑖,𝑍𝑍, 𝑑𝑑𝑓𝑓,𝑍𝑍 Initial/final distance delimiting the ZEZ 
𝑑𝑑𝑍𝑍 ZEZ length 
𝐸𝐸𝐼𝐼+, 𝐸𝐸𝐼𝐼− Positive / negative inertia energy  
𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 Battery energy  
𝐸𝐸𝑅𝑅𝑅𝑅 Road load  
∆𝐸𝐸% Relative percentage difference of energy  
𝑓𝑓𝑎𝑎 Adaptive function 
𝑘𝑘𝑎𝑎 ECMS adaptive factor 
𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎, 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑 Acceleration / deceleration reductive factors  

𝑘𝑘𝑑𝑑 Minimum number of sub-segments to create an 
acceleration-deceleration maneuver 

𝑛𝑛𝑐𝑐 Number of close segments 
𝑛𝑛𝑟𝑟 Number of re-routings  
𝑛𝑛𝑣𝑣 Maximum number of elements of output vector 
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 Auxiliary components power 
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 Battery power 
𝑃𝑃𝐸𝐸𝐸𝐸 Electric motor power 
𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙 Road segment’s legal speed limit 

Greek symbols  
𝜂̅𝜂𝐼𝐼𝐼𝐼𝐼𝐼, 𝜂̅𝜂𝐸𝐸𝐸𝐸, 𝜂̅𝜂𝐼𝐼𝐼𝐼𝐼𝐼 Engine, EM, and ISG average efficiencies 
𝜉𝜉𝑍𝑍,𝑖𝑖, 𝜉𝜉𝑍𝑍,𝑓𝑓  SoC at ZEZ entrance / exit 
𝜉𝜉𝑖𝑖, 𝜉𝜉𝑓𝑓 Initial / final value of SoC 
𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏 , 𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏 Minimum / maximum allowed HV battery SoC 
𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚 , 𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚 Minimum / maximum SoC thresholds for RBS 
𝜉𝜉𝑟𝑟 Reference SoC 
𝜉𝜉𝑠𝑠 SoC offset 
𝜉𝜉𝑡𝑡 Target SoC 
∆𝜉𝜉𝑍𝑍 Net amount of SoC for ZEZ in full electric drive 
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