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Abstract

In integer programming and combinatorial optimisation, people use the term matheuristics to refer to meth-
ods that are heuristic in nature but draw on concepts from the literature on exact methods. We survey the
literature on this topic, with a particular emphasis on matheuristics that yield both primal and dual bounds
(i.e., upper and lower bounds in the case of a minimisation problem). We also make some comments about
possible future developments.
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1. Introduction

Ever since the 1960s, integer programming and combinatorial optimisation problems have received
much attention from mathematicians, computer scientists and operational researchers, due to the
huge range of important practical applications (see, e.g., Wolsey, 1998; Conforti et al., 2014; Korte
and Vygen, 2018). Unfortunately, many problems of interest are NP-hard (see Ausiello et al., 1999),
which means that large-scale instances can be very challenging to solve.

In this context, a key distinction is between exact and heuristic methods. Exact methods are
guaranteed to solve instances to proven optimality, given enough computing resources (i.e., time
and memory). Heuristics are not guaranteed to find optimal solutions, but they tend to be faster,
and they often yield solutions which are of ‘acceptable’ quality. Although significant progress has
been made in exact methods (e.g., Wolsey, 1998; Conforti et al., 2014), heuristics remain extremely
useful in many cases (e.g., Marti et al., 2018; Potvin and Gendreau, 2019).
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Many authors use the term metaheuristics to refer to general-purpose heuristic frameworks, such
as simulated annealing and tabu search (see the textbooks: Marti et al., 2018; Potvin and Gendreau,
2019). More recently, researchers started using the term matheuristics to refer to (meta-)heuristics
that draw on concepts from the traditional mathematical programming literature (see Maniezzo
et al., 2010; Stiitzle and Maniezzo, 2020). Such heuristics may have subroutines that involve, for
example, linear programming, integer programming, dynamic programming (DP), Lagrangian re-
laxation (LR) or Benders decomposition (BD).

The first international matheuristics conference took place in Bertinoro, Italy in 2006 (see
Boschetti and Maniezzo, 2022). Ever since then, the field of matheuristics has been in rapid expan-
sion. For details, we refer the reader to the surveys (Raidl and Puchinger, 2008; Ball, 2011; Raidl,
2015; Fischetti and Fischetti, 2016; Boschetti and Maniezzo, 2022) and the books (Maniezzo et al.,
2010, 2021).

In this new survey, we approach the topic from a different viewpoint, placing a particular em-
phasis on matheuristics that yield both primal and dual bounds. For a minimisation problem, such
matheuristics yield not only a feasible integer solution (with an associated upper bound) but also
the solution to some kind of relaxed problem or dual problem (with an associated lower bound). In
our view, matheuristics of this kind are highly desirable, since the bounds help one to evaluate the
performance of the method with higher precision, at any given instance.

The paper has the following structure. Section 2 covers matheuristics that are based on linear
programming (LP) relaxation and/or duality. Section 3 deals with ones based on LR, surrogate
relaxation (SR) or closely related methods. Section 4 concerns heuristics based on decomposi-
tion techniques, such as Dantzig-Wolfe or BD. Then, in Section 5, we mention a few popular
matheuristics that do not necessarily yield dual bounds. Finally, in Section 6, we make some re-
marks about the strengths and weaknesses of each approach and suggest some topics for future
research.

Throughout, we write ‘ILP’ for an integer linear program and ‘COP’ for a combinatorial op-
timisation problem. We assume that the reader is familiar with the idea of formulating COPs
as ILPs, along with the basics of integer programming (see, e.g., Wolsey, 1998; Conforti et al.,
2014). For ease of notation, we assume that an ILP with » variables and m constraints takes the
form

min{¢"x: Ax > b, x € Z}, (1)

where ¢ € Q", 4 € Q™ and b € Q. We use the convention that all vectors are column vectors.
We sometimes also speak of mixed-integer programs (MIPs), by which we mean problems that are
similar to ILPs, except that not all variables are required to take integer values.

2. Methods based on LP relaxation and duality

In this section, we survey matheuristics that are based on LP relaxation and/or duality. Subsec-
tion 2.1 recalls the key concepts needed, such as relaxation, primal and dual pairs, and reduced
costs. Subsections 2.2 and 2.3 concern matheuristics that use only primal or reduced-cost informa-
tion, respectively. Subsection 2.4 covers matheuristics that explicitly use dual information.
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2.1. Recap on LP relaxation and duality
If we relax the integrality constraint in the ILP (1), we obtain the following problem:
min {c"x: Ax>b, x e R}, (2)

This is an LP, which is typically much easier to solve. Trivially, the solution to the LP gives a lower
bound for the original COP.

The following facts can be found in any textbook on LP (e.g., Vanderbei, 2020). The dual of the
above LP is

max {b"y: A"y < ¢, y e R7}. (3)

The original LP is called the primal. The strong duality theorem states that if x* and y* are optimal
primal and dual solutions, respectively, then ¢’ x* = b7 y*. Moreover, the components of y* are the
dual prices for the primal constraints. The vectors s* = Ax* — b € R7 and p* = ¢ — AT y* € R" are
called the surplus vector and the reduced cost vector, respectively. The conditions (p*)” x* = 0 and
(s*)Ty* = 0, called complementary slackness, always hold when x* and y* are optimal.

2.2. Heuristics that use primal information only

Among the many LP-based matheuristics, the easiest ones to understand are those that use primal
information only. The intuition behind these methods is that an optimal (or near-optimal) LP solu-
tion x* is likely to contain some information that could be exploited by a heuristic. For example, if
all variables in the ILP are binary, one might hope that variables with x*-value close to 1 will have
a high probability of taking the value 1 in optimal (or near-optimal) solutions to the ILP.

One strand of the literature is concerned with the use of LP-based heuristics for specific COPs.
Two good early examples are the ‘LP-rounding’ heuristic for the set covering problem, due to
Hochbaum (1982), and the ‘randomised rounding’ heuristic for network design problems, due to
Raghavan and Thompson (1987). These two heuristics are also interesting because they are approx-
imation algorithms, which means that they are guaranteed to produce solutions whose cost is within
a known factor of the optimum. Other notable examples include an ‘iterative rounding’ heuristic
for shift scheduling, given in Thompson (1990), and a similar heuristic for lot-sizing with setups, in
Maes et al. (1991). More recently, LP solutions have been used as seeds for standard metaheuristic
search (Cacchiani et al., 2023).

A parallel strand of the literature is concerned with LP-based matheuristics for ILPs in general.
A good early example, from 1969, is the ‘interior-path’ method of Hillier (1969). It starts at the LP
optimum x*, and then follows a path from x* to the interior of the feasible region. As it goes along,
an attempt is made to find ‘nearby’ integer solutions. For extensions to this method, see Faaland
and Hillier (1979).

In 1980, Balas and Martin (1980) devised an LP-based heuristic for 0-1 LPs, that they called
‘pivot-and-complement’. The method starts at x* and then performs a sequence of primal simplex
pivots that attempt to ‘push’ fractional variables out of the basis. Later on, several researchers
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suggested improving pivot-and-complement by adding a tabu search phase at the end (e.g., Aboudi
and Jornsten, 1994; Lekketangen and Glover, 1998).

In the coming paragraphs, we mention some of the matheuristics based on primal LP solutions
that came out more recently.

OCTANE. ‘OCTANE’ is a matheuristic for pure 0-1 LPs, developed in 2001 by Balas et al.
(2001). The basic idea is as follows. First, we define a polyhedron, called the n-dimensional octa-
hedron, that circumscribes the unit hypercube and has one facet for every vertex of the hypercube.
We start at a basic optimal LP solution x*, and then move from it in some chosen direction. Even-
tually, we ‘hit’ a facet of the n-dimensional octahedron. We then check the corresponding vertex of
the hypercube. If it is feasible for the original 0-1 LP, we have our desired heuristic solution. This
procedure is repeated for several ‘promising’ directions.

Although OCTANE performed reasonably well, it does not seem to have received much further
attention. This may be because some of the alternative matheuristics mentioned below have tended
to perform even better.

Relax-and-fix. ‘Relax-and-fix’ is a primal heuristic for general MIPs that works by solving a
sequence of simpler MIPs. To our knowledge, it was first defined explicitly in 1998 by Wolsey (1998).
In its original format (Wolsey, 1998; Belvaux and Wolsey, 2000), it worked as follows. First, the set
of integer variables is partitioned into subsets, say Si, ..., Si. A simpler MIP is then solved, in
which only the variables in S| are the declared integer. The variables in S; are then permanently
fixed at the values that they take in the solution to the simpler MIP. The variables in S are then the
declared integer, and the resulting MIP is solved, and so on.

This approach, while at times effective, limits the search to one pass through the list of prede-
fined subsets. A simple generalization is to make the subset choice dynamically adaptive, but other
extensions are possible.

Diving heuristics. Diving heuristics (Bixby et al., 2000) are a family of MIP heuristics that itera-
tively fix variables to integer values until a feasible MIP solution is obtained. They can be thought of
as a heuristic for rapidly moving from a given node of a branch-and-bound tree to a ‘leaf” node. The
name comes from the fact that they ‘dive’ to a leaf node without any possibility of backtracking.

A well-known and highly effective diving heuristic is relaxation-induced neighbourhood search
(RINS) (Danna et al., 2005). When applied at a given branch-and-bound node, RINS compares
the fractional LP solution at the node with the incumbent MIP solution. Typically, the two solu-
tions will differ in the values of some variables. RINS tries to force the two solutions to agree on
all variables, by fixing all variables that have the same values and letting the solver try to solve op-
timally the residual MIP problem, called the sub-MIP. The sub-MIP can in fact be quite large if
too few variables were fixed, so its solution could potentially take a time comparable to that of the
original problem. To remedy this, a limit on the computational resources available for optimization
is usually imposed.

Diving heuristics are also often used within branch-and-price algorithms (Sadykov et al., 2019).
For more on branch-and-price, see Section 4.
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Fig. 1. Feasibility pump: delta evolution.

The feasibility pump. The feasibility pump (Fischetti et al., 2005) was initially conceived as a
tool for finding initial feasible solutions to very challenging MIPs, and in this capacity it is often
included in general-purpose MIP solvers. In the context of matheuristics, however, the feasibility
pump can also be used to bring to integer feasibility a fractional and/or LP-infeasible solution.
Such solutions arise not only in branch-and-bound but also in some other approaches, such as
Lagrangian heuristics or destroy-and-fix approaches.

The feasibility pump builds on the observation that an integer feasible solution is coincident
with its rounding. Formally, if P is the LP polytope of the problem under study, an integer fea-
sible solution x* corresponds to a point in P such that x* = X, where X denotes the rounding of
x*, 1.e., the possibly infeasible solution where each variable that must be integer is brought to the
corresponding nearest integer.

The search for feasibility is based on the minimisation of a function measuring the distance
between the two solutions, A(x*, X). The search starts from a point x* € P and its rounding X. If ¥
is feasible, we have found a feasible integer solution and we stop the search, Otherwise, we start a
pumping cycle. This means that we solve the linear problem min{A(x, X) : x € P}. This yields a new
point x*, which we round to obtain a new point X. If X is feasible, we stop. Otherwise, we perform
another pumping cycle, and so on.

Figure 1 shows the evolution of A in the case of a simple ILP, which started from an optimal LP
value of 231.45 to eventually converge to a final feasible solution of cost 333.

2.3. Heuristics that use reduced-cost information only

Now, recall from Subsection 2.1 the definition of the reduced-cost vector p*. There are also
matheuristics that rely only on p*. The idea is that, if p} is very large, the variable x; is unlikely
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to appear in an optimal solution to the ILP. Conversely, if p7 is zero or near-zero, there is a good
chance that there is a (near-)optimal solution such that x; takes a positive integer value.

The first paper we found which mentions this idea explicitly is Mansini and Speranza (1999),
which is concerned with a portfolio selection problem. The problem is formulated as a Mixed Inte-
ger Linear Programming (MILP), and the LP relaxation is solved. In an attempt to obtain a good
integer solution, a smaller MILP is solved, which contains all variables that have a positive value
in the LP solution, plus the variables whose reduced cost is below some threshold. If time permits,
a series of modified MILPs is solved, in which variables are added and dropped according to a
heuristic rule.

The above heuristic inspired a general-purpose matheuristic for 0—1 LPs, called kernel search
(Angelelli et al., 2010, 2012). Here is a brief overview of the approach. In the first phase, called
the initialisation phase, the LP relaxation is solved, and a decision variable is called ‘promising’ if
it has a zero (or near-zero) reduced cost. The set of all promising variables forms the kernel. The
remaining variables are partitioned into sets, called buckets, according to the value of their reduced
cost. One then solves a simplified version of the 0—1 LP, in which only the variables in the kernel are
present. In most cases, this yields a good feasible solution, with an accompanying upper bound.

If the gap between the lower and upper bounds is acceptable, the process terminates. Otherwise,
the variables in the first bucket are added to the 0—1 LP, along with a constraint stating that at least
one of the variables in the bucket must take the value 1. The simplified ILP is then re-solved. If the
resulting solution is better than the previous one, the variables that are in the bucket and take the
value of 1 in the solution are added to the kernel. If the gap between the lower and upper bounds
is now acceptable, the process terminates. Otherwise, the variables in the second bucket are added
to the 0-1 LP, and so on.

Kernel search has been applied with great success to the multi-dimensional knapsack problem
(Angelelli et al., 2010), a portfolio selection problem (Angelelli et al., 2012), the capacitated facility
location problem (Guastaroba and Speranza, 2012) and an inventory routing problem (Archetti
et al., 2021). It has also been extended to general MILPs (Guastaroba et al., 2017).

A variant of Kernel Search is the incremental core approach proposed in Boschetti et al. (2004,
2008). The idea is to select a parameter p™** and include in the 0-1 LP only the variables with
p; < pmEIf ph is equal to the gap between the upper and lower bounds, the 0-1 LP solution is
optimal. Otherwise, it is a heuristic solution. In the latter case, one can increase p™** in the hope of
obtaining an improved heuristic solution (or even an optimal one).

Figure 2 shows a trace of an incremental core search on a resource-constrained project scheduling
problem (from Mingozzi et al., 1998) based on an ‘additive’ lower bound (see Subsection 3.4).
In this case, the problem could be solved to proven optimality. The plot shows the incremental
contributions of the four successively computed bounds, together with the contribution of each
new bound to the computation of improved feasible solutions.

2.4. Dual-based heuristics

When dealing with large-scale COP instances, even solving the initial LP relaxation (2) can be time
consuming. Fortunately, with the help of LP duality, one can compute valid lower bounds without
explicitly solving the initial LP. Indeed, if 7 is any feasible solution to the dual LP (3), then b7 is
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Fig. 2. Incremental core, upper and lower bound evolution.

a lower bound for the original LP, and therefore for the original COP. Thus, if we wish to obtain a
lower bound quickly, we can solve the dual approximately using some kind of heuristic. Moreover,
as we will see, the dual solution can then be used to drive a matheuristic.

This idea first appeared in Bilde and Krarup (1977) and Erlenkotter (1978), in the context of the
uncapacitated facility location problem or UFLP. The authors of those papers proposed to start with
all dual variables equal to zero and then iteratively increase individual dual values until no further
increases are possible. Perhaps surprisingly, this approach gives quite good lower bounds for many
UFLP instances.

Erlenkotter (1978) called this procedure dual ascent. He also proposed a simple local search
procedure, called dual adjustment, which attempts to modify the current dual solution y in order to
improve the lower bound.

Now, for a given primal variable x; and a given dual solution j, consider the following quantity:

&) = ¢;— > Jidij.
i=1

If y is an optimal dual solution, then ¢;(y) is the standard reduced cost, denoted by p} above. Even
if y is not an optimal dual solution, however, it might still contain some useful information. In
particular, one might expect variables with a small ¢ value to have a high probability of belonging
to an optimal solution of the original ILP. Thus, the ¢ values can be used within a heuristic.

The above observations led Erlenkotter to propose a primal heuristic for the UFLP, in which one
iteratively opens facilities with zero ¢ values until certain ‘complementary slackness’ conditions are
met. The results were very encouraging, and the method was subsequently improved in Korkel
(1989), Janacek and Buzna (2008), and Letchford and Miller (2012).

Later on, dual ascent and dual adjustment were successfully applied to many other COPs, in-
cluding (in roughly chronological order) the Steiner tree problem (Wong, 1984; Polzin and Danesh-
mand, 2001), the multi-dimensional knapsack problem (Magazine and Oguz, 1984; Angelelli et al.,
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2010), the set covering problem (Balas and Ho, 1980; Beasley, 1987; Balas and Carrera, 1996), the
uncapacitated network design problem (Balakrishnan et al., 1989), the set partitioning problem
(Boschetti et al., 2008; Fisher and Kedia, 1990), the p-median problem (Captivo, 1991), the design
of railway networks (Keaton, 1992), the multi-period assignment problem (Murthy, 1993), the ca-
pacitated multi-commodity flow problem (Barnhart, 1993), the hub location problem (Klincewicz,
1996), the quadratic assignment problem (Hahn and Grant, 1998) and the fixed-charge transporta-
tion problem (Buson et al., 2014).

Some authors have considered more sophisticated matheuristics, which attempt to exploit primal
and dual information in a more intelligent way. For brevity, we mention just a few examples. Fisher
and Kedia (1990) improved the approach to the set covering problem by using a local search phase
to improve the dual solution, along with an improved primal heuristic. Wedelin (1995) presented
a primal-dual heuristic for a certain generalisation of the set partitioning problem arising in crew
scheduling. The dual is solved heuristically via coordinate ascent. Later on, Hansen et al. (2007) and
Posta et al. (2014) improved the dual ascent approach to the UFLP by incorporating sophisticated
local search procedures for improving both primal and dual solutions.

To close this section, we mention that there is significant literature on primal-dual approxima-
tion algorithms for NP-hard COPs. These algorithms iteratively build heuristic solutions to the
primal and dual in parallel, in such a way that the gap between the corresponding upper and lower
bounds is bounded in a specified way. For details, see the textbooks (Vazirani, 2001; Williamson
and Shmoys, 2011).

3. Lagrangian and surrogate relaxation

In this section, we consider matheuristics that are based on LR, SR or closely related methods.
Subsection 3.1 recalls the basics of LR and SR. Subsections 3.2 and 3.3 review some LR-based and
SR-based matheuristics. Subsection 3.4 mentions some related methods, such as Lagrangian dual
ascent, semi-LR and additive bounding.

3.1. Recap on Lagrangian and surrogate relaxation

Some COPs of interest can be formulated as ILPs of the form
min{ch: Ax > b, Cx>d, er’i}, 4

where the constraints Ax > b are ‘easy’ and the constraints Cx > d are ‘hard’. By this, we mean
that, if the ‘hard’ constraints are dropped, the problem becomes significantly easier to solve.

Let us suppose that the number of ‘hard’ constraints is 7. In LR, we pick a vector A € R/, of
Lagrangian multipliers and then solve the following simpler ILP:

min{c"x+2"(d - Cx): Ax>b, xeZ"}. Q)

Geoffrion (1974) showed that, for any choice of A, LR yields a lower bound for the original ILP.
We will call this bound L(A).
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The problem of finding the vector A which maximises L(A) is called the Lagrangian dual (LD).
The LD is a piecewise-linear concave maximisation problem, and there exist several algorithms for
solving it either exactly or approximately (see, e.g., Lemaréchal, 2001; Guignard, 2003).

Surrogate relaxation, proposed in Glover (1975) and Greenberg and Pierskalla (1970), is similar
to LR. The difference is that, instead of modifying the objective function in the ILP (4), we replace
the complicating constraints Cx > d with a single linear constraint. More precisely, for a given
multiplier vector A, we solve the following ILP:

min {c¢"x: Ax > b, (A C)x>=21"d, xe Z}. (6)

In most applications of SR, the system Ax > b takes a very simple form. As a result, the ILP (6) is
usually some kind of knapsack problem and solved in pseudo-polynomial time by DP.

Let us denote by S(A) the lower bound obtained with SR. It is proved in Greenberg and Pierskalla
(1970) that S(A) > L(}) for any given A. The problem of finding the vector A which maximises S())
is called the surrogate dual (SD). The SD is a quasi-concave maximisation problem and is typically
somewhat harder to solve than the LD (see, e.g., Karwan and Rardin, 1984; Kim and Kim, 1998;
Dokka et al., 2021).

3.2. Lagrangian heuristics

For a given multiplier vector A, let X(1) be the solution to the relaxed problem (5). By definition,
X()\) is an integer and satisfies the constraints Ax > b, but it might fail to satisfy the constraints
Cx > d. For some specific families of ILPs, it is possible to ‘repair’ X(A), with not much effort, in
order to obtain a heuristic solution for the original ILP. (For instance, in the generalised assignment
problem, each job must be assigned to exactly one machine. If X(1) does not satisfy this condition,
one can attempt to convert it into a feasible solution by eliminating multiple assignments and then
trying to assign any unassigned jobs to machines having enough free capacity (Jornsten and Nas-
berg, 1986).) This can be repeated at each iteration with the corresponding multiplier vector, and
one can select the best heuristic solution found.

Fisher (1985) called heuristics of this kind ‘Lagrangian heuristics’, but one can view them as
a particular kind of matheuristic. They have been applied with great success to several classical
combinatorial optimisation problems, such as single machine scheduling (Fisher, 1976), the set
covering problem (Balas and Ho, 1980; Beasley, 1990), the capacitated vehicle routing problem
(Fisher et al., 1982), the generalised assignment problem (GAP) (Jornsten and Nasberg, 1986), the
many-to-many assignment problem (Litvinchev et al., 2010), and various facility location problems
(Barcelo and Casanovas, 1984; Pirkul, 1987; Galvao and Raggi, 1989; Beasley, 1993).

Lagrangian matheuristics have also been developed for a huge array of more realistic practical
problems, such as manpower planning (Glover et al., 1979), scheduling of energy generators (Lauer
etal., 1982; Bard, 1988), product distribution (Van Roy and Gelders, 1981; Bell et al., 1983), lot siz-
ing (Billington et al., 1986; Trigeiro, 1987), school timetabling (Carter, 1989), aircraft assignment
(Daskin and Panayotopoulos, 1989), railway network design (Keaton, 1989), fixed-charge problems
(Wright and von Lanzenauer, 1989), hybrid flowshop scheduling (Mao et al., 2014), capacitated
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network design (Holmberg and Yuan, 2000) and the closest string problem in computational biol-
ogy (Tanaka, 2012).
We remark that, for a given primal variable x; and a given multiplier vector A, the quantity

!
Cj — Z)L,C,j
i=1

can be viewed as a ‘Lagrangian reduced cost’. These values can be used to guide heuristics, just as
we saw for the LP-reduced costs in Subsection 2.3 and the ‘approximate’-reduced costs in Subsec-
tion 2.4. This idea has been used to particularly good effect in Lagrangian matheuristics for the
set covering problem (Balas and Ho, 1980; Beasley, 1990; Balas and Carrera, 1996; Caprara et al.,
1999; Ceria et al., 1998) and the capacitated facility location problem (Avella et al., 2009).

3.3. Heuristics based on surrogate relaxation

As far back as 1977, Glover (1977) suggested using SR to drive heuristics. As in the case of LR, the
idea is to take the solution to the relaxed problem and ‘repair’ it, to make it feasible for the original
problem. Although this idea has received less attention than the Lagrangian approach, it has been
applied to several problems, such as loading problems (Fisk and Hung, 1979), manpower planning
(Glover et al., 1979), single-machine scheduling (Fisher et al., 1983), the multi-dimensional knap-
sack problem (Fréville and Plateau, 1986; Pirkul, 1987; Dokka et al., 2022), resource-constrained
scheduling (Dobson and Khosla, 1995) and a variant of the quadratic knapsack problem (Létocart
et al., 2014).

More recently, Dokka et al. (2021) proposed a general framework for designing matheuristics
based on SR. The idea is to exploit the fact that the relaxed problem (6) is usually solved via DP.
The nature of DP is that it constructs and stores a large number of ‘intermediate’ x vectors as it
goes along. These x vectors are integral but unlikely to be feasible for the original ILP. Accordingly,
Dokka et al. propose to take some or all of the x vectors and ‘repair’ them in the usual way.

Some authors have also experimented with ‘hybrids’ of Lagrangian and surrogate relaxation. See
Lorena and Lopes (1994), Lorena and Narciso (1996) and Galvao et al. (2000) for applications to
the set covering problem, the GAP and the maximal covering location problem, respectively.

3.4. Variants

‘We now mention some variations of LR that have also been used to drive heuristics. These varia-
tions are presented in more-or-less chronological order.

Lagrangian dual ascent. Lagrangian dual ascent (also known as multiplier adjustment) is a hy-
brid of LR and dual ascent (Fisher, 1981; Guignard and Rosenwein, 1989). It is basically a greedy
constructive heuristic for the Lagrangian dual, just as the dual ascent is a greedy constructive
heuristic for the LP dual. The idea is to set the Lagrangian multipliers to some simple initial
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values (e.g., zero) and then increase them one at a time, in such a way that the lower bound L(})
is guaranteed to increase monotonically. This approach to solving the Lagrangian dual tends to be
much faster than the subgradient method, though it may come at the expense of a weaker lower
bound. The method has been used to derive matheuristics for the capacitated vehicle routing prob-
lem (Fisher and Jaikumar, 1981), the GAP (Fisher et al., 1986; Guignard and Rosenwein, 1989), the
uncapacitated facility location problem (Guignard, 1998), the segregated storage problem (Neebe,
1987), capacity planning in manufacturing (Lim and Kim, 1998), the management of cross-docking
terminals (Monaco and Sammarra, 2022) and various problems in telecommunications (Lin and
Yee, 1992; Chang and Gavish, 1995).

The restricted Lagrangian approach. The restricted Lagrangian approach was introduced by
Balas and Christofides (1981), in the context of the asymmetric travelling salesman problem
(ATSP). Suppose once more that we have an ILP in the form (9), where the problem becomes
much easier to solve when the constraints Cx > d are dropped. The first step in the approach is to
solve the relaxed problem, obtaining a primal vector x* € Z and a lower bound. After that, we
apply a ‘restricted’ form of LR, in an attempt to increase the lower bound. We are permitted to
assign positive Lagrangian multipliers to one or more of the constraints in the system Cx > d, but
only under the condition that x* remains optimal for the relaxed problem (or, equivalently, that the
Lagrangian reduced cost remains at zero for any variable x; taking a positive value at x*). Balas
and Christofides provide two fast procedures for determining the multipliers.

An interesting feature of the restricted Lagrangian approach is that the set of x variables having
zero Lagrangian reduced cost grows during the course of the algorithm. At the end of the proce-
dure, Balas and Christofides use an enumerative procedure to search for an ATSP solution that
uses only arcs of zero-reduced cost. This last step can be viewed as yet another early example of
a matheuristic.

Additive bounding. A generalisation of the restricted Lagrangian approach, called additive
bounding, was proposed by Fischetti and Toth (1989). Let us assume for simplicity that our COP has
been formulated as an ILP of the form (1). We suppose that there are several fast lower-bounding
procedures for our COP, each of which exploits a different substructure of the problem. We also
assume that each such procedure returns a dual vector. The procedures are then applied in some
chosen sequence. Suppose the first procedure terminates with dual vector y'. We store the corre-
sponding lower bound 5”y' and replace the original cost vector ¢ with the reduced cost vector
¢! = ¢ — ATy'. We then feed the reduced cost vector into the second procedure, yielding a new dual
vector »°. We then increase our lower bound by 47 y? and replace the vector ¢! with the new vector
¢> = ¢! — ATy?. This process is repeated until all procedures have been terminated.

The additive bounding procedure has been mainly used to fathom nodes within branch-and-
bound algorithms. It has however also been used to develop matheuristics. Fischetti and Toth
(1992) proposed an additive bounding procedure for the ATSP that generates heuristic solutions
using an approach similar to the one proposed by Balas and Christofides (1981). Later on, Vigo
(1996) proposed a heuristic for the asymmetric capacitated vehicle routing problem that makes use
of an additive bounding procedure for generating an initial solution. Later still, Caprara (2002)
used additive bounding to devise an approximation algorithm for the breakpoint median problem, a
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well-known problem in computational biology. We remark that additive bounding was also been
used for generating good dual solutions within the incremental core approach described at the end
of Subsection 2.3.

Relaxation adaptive memory programming. Relaxation adaptive memory programming
(RAMP) was proposed by Rego (2005). It is similar to the hybrid Lagrangian/surrogate approaches
mentioned above, but one is permitted to improve both primal and dual solutions along the way,
using previously existing metaheuristics (such as scatter search and path relinking (Glover et al.,
2000)). The method has been applied to the capacitated minimum spanning tree problem (Rego
et al., 2010), resource constrained project scheduling (Riley and Rego, 2019) and capacitated facil-
ity location problems (Oliveira et al., 2021).

Semi-Lagrangian relaxation. Semi-Lagrangian relaxation (Beltran-Royo et al., 2006) is de-
signed for COPs that have a natural ILP formulation of the form

min{ch: Ax=b, xe X},

where A4, b and ¢ are non-negative and X is a ‘reasonably simple’ subset of Z} . The idea is that we
split the equation system Ax = b into two inequality systems, Ax < b and 4Ax > b. We then relax
the latter in Lagrangian fashion. The relaxed problem takes the form:

min {¢"x+17(b— Ax): Ax <b, x € X} (7)

For some COPs, the relaxed ILP can be solved much more easily than the original. In particular,
this happens if variables with a positive objective coefficient in (7) must take the value zero in an
optimal solution to (7). In this case, it often happens that a large proportion of the variables can
be eliminated.

As usual, one can often repair the solution of the relaxed problem to obtain heuristic solutions
for the original COP. Matheuristics of this kind have been developed for the p-median problem
(Beltran-Royo et al., 2006), facility location problems (Beltran-Royo et al., 2012; Monabbati, 2014;
Jornsten and Klose, 2016; Cabezas and Garcia, 2022), the quadratic assignment problem (Zhang
et al., 2016), and the design of multi-commodity distribution centres (Zhang et al., 2019).

4. Methods based on decomposition

Another important family of matheuristics is composed of those that are based on Dantzig—Wolfe
decomposition (Dantzig and Wolfe, 1960) or BD (Benders, 1962). We recall the basic ideas of these
decomposition schemes in Subsections 4.1 and 4.2. Matheuristics based on the schemes are re-
viewed in Subsections 4.3 and 4.4. The reader interested in more details is referred to Boschetti
et al. (2010), Maniezzo et al. (2021) and Raidl and Puchinger (2008).
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4.1. Recap on Dantzig—Wolfe decomposition

Consider a MIP of the form

min  ¢’x
st. Ax>b
xXeX' (s=1,...,1) (8)
x e R,
where the vector x has been partitioned into sub-vectors x', ..., x°.
Dantzig-Wolfe decomposition works as follows. For s = 1, ..., ¢, let P° be the convex hull of X*
and let p*(1), ..., p’(n;) denote the extreme points of P°. We add a new continuous variable, say

A fors=1,...,tandk =1, ..., n,. We then reformulate the MIP by replacing the constraints (8)
with

F =Y p0A (s=1,....1)

k=1

ng

> a=1 (s=1,...,1)
k=1

A e RY (s=1,...,1).

The x variables can then be eliminated if desired.

It can be shown (using a similar argument to the one that Geoffrion (1974) used for LR) that the
LP relaxation of the new MIP gives a lower bound that is at least as strong as the one from the LP
relaxation of the original MIP. Moreover, the LP relaxation of the new MIP can be solved by an
iterative procedure that starts with a subset of the A variables and uses dual prices to generate other
A variables as needed. This procedure is called column generation.

If desired, the whole procedure can be embedded within a branch-and-bound framework. This
overall approach is called branch-and-price (Barnhart et al., 1998).

4.2. Recap on Benders decomposition
Now consider a MIP of the form
min{c{x+cly: Ax+By>b xe X, y=>0}. )

We assume for simplicity that this MIP is feasible and bounded.
Benders (1962) noted that one can write the MIP as

min {c{ x + f(x): x € X},
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where f(x) is the optimal solution to the following subproblem:

min{czTy: By >b—Ax, y>0}.
By LP duality, we have

f(x)=max{(b—Ax)"w: B"w < 2, w>0}. (10)
Now, let p!, ..., p' be the extreme points of the feasible region of (10). By definition, we have

f(x) = max {(b—4x)"p'}.

1<s

Thus, the original MIP can be reformulated as

min clTx—i-Z, (11)
st.z>bTp—BTp)'x (s=1,...,1), (12)
x e X, (13)

where (11)—(13) is the master problem and constraints (12) are the so-called Benders’ cuts. Since ¢ is
usually huge, the master problem is initially solved with only a small number of Benders’ cuts, and
the others are generated as needed with an iterative procedure.

4.3. Dantzig—Wolfe decomposition heuristics

There are several ways in which one can use Dantzig—Wolfe decomposition within a matheuristic
scheme. One way is to use diving heuristics instead of branch-and-price, as we mentioned in Sub-
section 2.2. Another way is to stop when a desired number of columns has been generated and then
feed the current master MIP into a branch-and-bound solver. An early example of this approach is
Agarwal et al. (1989), who applied it to the capacitated vehicle routing problem.

A third option is to use a fast heuristic for the pricing subproblem, instead of an exact method.
One of the first proposals along these lines is presented in Caserta and VoB3 (2012), where the au-
thors deal with a lot of sizing problem with setup times and costs and where columns correspond
to suboptimal production plans. It turns out that even the pricing subproblem is N P-hard for this
problem. Given that optimal solutions to the subproblem are not necessarily needed to produce
negative-cost columns, a corridor method (see Section 5.5) is used to generate them. The overall
method is heuristic in nature, given the fact that the pricing subproblem is solved heuristically.

Another work (Cunha et al., 2019), related to lot sizing, proposes to include in the heuristic
column generation scheme outlined above a ‘fix-and-optimize’ procedure (related to relax-and-fix,
Section 2.2), which fixes the non-integer variables produced by the column generation component.

Several other works apply column generation for heuristic search without explicitly mentioning
Dantzig—Wolfe (DW) decomposition. The addressed range of problems is wide, including techni-
cian routing (Dupin et al., 2021), train timetabling (Martin-Iradi and Ropke, 2022), electric vehicle

© 2023 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies

95U9D|7 SUOWILIOD dA a1 3|oealjdde ay) Aq peusenob afe sopie O ‘esn Jo s 1o Afeiqiauluo 3|1 UO (SUONIPUOD-PpUe-SWLBIALI0D A8 1M Akelq 1 puluo//sdny) SUOIPUOD pue swi 1 8y 8es *[£202/70/9T ] o Ariqiauliuo A8 elfeleuelyoo) Ag TOEET 1o/ TTTT OT/I0p/Wod Ao 1M Aleld1jpul|uoy//sdiy Wolj pepeojumod ‘0 ‘S66ES.1T



M. A. Boschetti et al. / Intl. Trans. in Op. Res. 0 (2023) 1-27 15

routing (Echeverri et al., 2019), city logistics (Boschetti and Maniezzo, 2015) and planning in bulk
ports (de Andrade and Menezes, 2023) among others.

4.4. Benders decomposition heuristics

Recently, there has been a surge of interest in heuristics based on BD, which is well suited to mod-
elling problems that can be decomposed into two interacting subproblems. Until recently, the possi-
bility of using BD to design efficient heuristics was limited by the need to solve the master problem
to optimality in order to obtain at least a valid bound, a task that becomes increasingly complex
as newly generated Benders’ cuts are added. The increased efficiency of MIP solvers now allows
BD to be used as a valuable technique for exploiting problem separability in the design of primal
heuristics.

Several real-world applications based on Benders’ matheuristics have been described. A first ap-
proach attempts to address the inability to produce a feasible solution before the end of cut genera-
tion. For example, Kergosien et al. (2017) describe an application to chemotherapy production and
delivery, a problem that can be decomposed into two stages, a parallel machine scheduling problem
combined with a multi-trip travelling salesman problem. The master problem consists in finding
the sequence of trips, and the slave problem is a parallel machine scheduling problem. A solution
of the master problem is given to a tabu search heuristic, which derives a heuristic solution.

Another example deals with the identification of the economic operating point of power systems
(Saberi et al., 2020). Here, BD verifies a security criterion through an LP-based master problem,
and the subproblem involves the solution of a non-linear program to compute the system energy
for transient stability evaluation.

Taking a less problem-dependent approach, Maher (2021) describes how the general BD frame-
work of the MIP solver SCIP was extended with two heuristics, a trust region-based heuristic and
a large neighbourhood search, to improve the BD algorithm and the ability to find primal feasi-
ble solutions.

Another notable contribution related to BD was the introduction of the so-called combinatorial
Benders’ cuts (Codato and Fischetti, 2006). These follow the same structure as classical BD, but the
subproblem is an ILP rather than an LP. In case of an infeasible master solution, the subproblem
returns combinatorial inequalities to be added as cuts to the master. The method was originally
intended for exact MIP solutions, but it has been adapted, possibly more easily than classical BD,
to design matheuristics. For example, Bai and Rubin (2009) describe a combinatorial Benders’ cut
approach to minimising the number of required toll facilities in a transportation network, and Coté
et al. (2014) deal with the strip packing problem, where the master problem cuts items into unit-
width slices and packs them into the strip, while the subproblem tries to reconstruct the rectangular
items by fixing the vertical positions of their unit-width slices.

5. Some other matheuristics

In this section, we consider some matheuristics that do not necessarily yield dual bounds, yet have
proven to be very successful in some applications.
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5.1. Local branching

Local branching (Fischetti and Lodi, 2003) is a method that solves MIPs to perform a local
search. For brevity, we explain how it works only for pure 0—1 LPs. Let x" € {0, 1} be the cur-
rent incumbent heuristic solution, and let £ be a given positive integer parameter. We wish to
explore the k-opt neighbourhood of x", by which we mean the set of all feasible solutions that
can be obtained by changing the value of no more than k variables. To do this, we define the set
S={jef{l,...,n}: xé? = 1} and add the following constraint to the 0—1 LP:

doxi+ ) (1—x)) <k

J&s Jjes

Provided k is small enough, it is likely that the modified 0—1 LP can be solved much more quickly
than the original. For this purpose, one can use any decent ILP solver. If the solution to the modi-
fied 0—1 LP is cheaper than x”, it takes the place of x”, and the process is repeated.

5.2. Very large-scale neighbourhood search

Local branching can be viewed as a special case of the very large-scale neighbourhood (VLSN)
search, which means local search based on neighbourhoods whose cardinality is permitted to be
huge and possibly even exponentially large in the number of variables (Ahuja et al., 2000, 2002).

Broadly speaking, VLSN heuristics can be put into three categories: (i) those that use a heuristic
to perform a partial search of the neighbourhood; (ii) those that solve a classic COP (such as a
matching problem or network flow problem) to explore the neighbourhood fully in polynomial
time; and (iii) those that explore the neighbourhood by solving an auxiliary MIP, as we saw above
in the case of local branching.

A good example of the first type is the approach in Thompson and Psaraftis (1993), which is
based on a one-to-one correspondence between ‘improving cyclic exchanges’ and negative-cost cy-
cles in a certain auxiliary graph. This idea has been applied to vehicle routing problems (Thompson
and Psaraftis, 1993), parallel machine scheduling (Frangioni et al., 2004), the graph colouring prob-
lem (Chiarandini et al., 2008) and timetabling problems (Meyers and Orlin, 2007), among others.
Other influential approaches of the first type are ‘large neighbourhood search’ (Shaw, 1998) and
‘adaptive large neighbourhood search’ (Ropke and Pisinger, 2006).

A good example of the second type of VLSN approach is the ‘matching’ neighbourhood for the
TSP (Sarvanov and Doroshko, 1981), which was later adapted to several other problems, such as
scheduling problems (Brueggemann and Hurink, 2007, 2011) and the GAP (Mitrovi¢c-Mini¢ and
Punnen, 2008, 2009).

As for the third type, we already mentioned local branching above. Another excellent example
of the third type is the heuristic for the capacitated vehicle routing problem in De Franceschi et al.
(20006). Tt iteratively removes edges (and short paths) from the incumbent solution and then solves
a small ILP to find the cheapest way to add edges and restore feasibility.

We remark that MIP solvers have become increasingly efficient over the past couple of decades
and now incorporate a variety of advanced techniques to tackle hard problems. Thus, using a MIP
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Fig. 3. Benders’ heuristic, upper and lower bound per iteration.

solver to explore a neighbourhood is now a perfectly reasonable approach. Using complete MIP
models for solving subproblems has been called ‘MIPping’ (Fischetti et al., 2009). The current
literature contains several other examples of this. For instance, one can use a MIP solver to solve
to optimality a Benders’ master problem, in order to obtain a valid lower bound. Figure 3 shows
some results that we obtained with such an approach.

To close this subsection, we remark that the ‘ejection chain’, a well-known meta-heuristic pro-
posed by Glover (1992) sharing similarities with relax-and-fix (Section 2.2), with ‘construct, merge,
solve and adapt’ (CMSA; Blum et al., 2016) and with ‘adaptive large neighbourhood search’
(ALNS; Ropke and Pisinger, 2006), has also been extended with MP modules (Burke and Curtois,
2014; Adamo et al., 2020), making it convergent with VLSN and with other similar approaches
based on decomposition into subproblems (Chirayil Chandrasekharan et al., 2021).

5.3. Dynamic programming heuristics

DP , created by Bellman (1957), is a classical technique for solving optimisation problems that have
a certain ‘sequential’ structure. Although DP was originally intended to be an exact method, it has
been used to devise heuristics for a range of COPs, including machine grouping in cellular manufac-
turing (Steudel and Ballakur, 1987), the capacitated minimum spanning tree problem (Gouveia and
Paixao, 1991), the TSP with precedence constraints (Bianco et al., 1994), the time-dependent TSP
(Malandraki and Dial, 1996), the p-median problem (Hribar and Daskin, 1997), the pallet loading
problem (Scheithauer and Terno, 1996), the multi-dimensional knapsack problem (Bertsimas and
Demir, 2002; Masmoudi et al., 2023), assembly line balancing (Bautista and Pereira, 2009) and the
quadratic knapsack problem (Djeumou Fomeni and Letchford, 2014). Moreover, as already men-
tioned in Subsection 3.3, matheuristics have been devised by exploiting the fact that DP is often
used when applying surrogate relaxation.
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5.4. Fore-and-back

Fore-and-Back (F B) was devised by Bartolini et al. (2008). It is suitable for NP-hard problems that
have a ‘natural’ DP formulation. (For instance, we can formulate the GAP as a DP, by ordering
the jobs and then having one stage for each job, in which we allocate the given job to one of the
machines (Maniezzo et al., 2021).) If FB is given enough computational resources (memory and
time), FB is actually an exact method. It was however intended to be a matheuristic, having been
designed for quickly finding high-quality integer solutions.

FB is an iterated primal-only constructive method, but it computes bounds on the cost of com-
pleting partial solutions. This permits it to discard partial solutions from consideration, and some-
times even to compute lower bounds for the entire problem. The basic idea is to perform a series
of DP computations while imposing a restriction on the amount of memory used. The first DP is
performed in a ‘forward’ direction, whereas the second is in the ‘reverse’ direction. (In the GAP
example, this could correspond to considering jobs in the order 1, 2, ..., n in the forward phase,
but in the order n,n — 1, ..., 1 in the backward phase.)

Following this, a third DP is performed in the forward direction again, and so on until some
termination condition is met. Along the way, ‘promising’ partial solutions are stored in memory. In
either direction, partial solutions can be tentatively extended to feasible ones using the information
stored in the previous DP computation.

FB has been successfully applied to network design problems (Bartolini and Mingozzi, 2009) and
GAPs (Maniezzo et al., 2021). Figure 4 shows a trace of an FB run, where at each DP expansion
stage we plot the upper and lower bounds computed with the data available at that stage (green and
orange dots, respectively). The figure also shows the evolution of the overall best upper and lower
bounds as solid lines (red and blue lines, respectively). Note how the lower bounds computed during
the forward and backward passes are clearly distinguishable, forming a sort of vertical stripes in the
plot. For this particular instance, the first feasible solution is obtained during the first backward
pass, and most of the improving feasible solutions are obtained during subsequent backward passes.
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5.5. The corridor method

The corridor method (CM) (Sniedovich and VoB3, 2006) is a well-established matheuristic paradigm
that originated as a DP adaptation, though it was later extended to other exact approaches such
as branch-and-bound. The name comes from the idea of directing the dynamics of expansions in
DP, channelising them as in a corridor, where the walls are represented by additional constraints
imposed on the instance. CM can thus be used to solve problems for which we know an exact
method (DP, also branch-and-bound, branch-and-cut, etc.) that can solve them effectively, but only
on smaller instances than the one we are interested in. CM then applies the exact method over
successive restricted parts of the solution space, enforcing bounds on the possible expansions of
the current state or partial solution, i.e., defining reduced neighbourhoods of the current partial
solution. Extensions of other search techniques, such as branch-and-bound, may involve searching
in the space of feasible solutions, where a first solution is somehow generated and then constraints
on its possible adaptations are added. These constraints can be diving like on the absolute number
of variables that can be changed, or they can be more problem related, such as the number of
facilities that can be opened/closed in facility location problems, or the number of jobs that can
be rescheduled in a scheduling problem. In this case, the corridor constraints define local search
neighbourhoods. A procedure such as that proposed by relax-and-fix (see Section 2.2) can be seen
as working on the linear relaxation of the problem, with the integrality requirements acting as
corridor constraints.

Search often results in having to deal with neighbourhoods that are exponentially large, but that
correspond to instances that can be efficiently solved by the core exact method. The execution is
heavily influenced by a control parameter, §,,,, Which specifies the maximum ‘width of the cor-
ridor’, which is a measure somehow quantifying the maximum size of the subproblems passed
to the exact method. It is commonly implemented as a simple extension that supports dynamic
corridor widths, adjusting the width of the corridor depending on whether or not improving so-
lutions have been found in the current neighbourhood. If an improving solution is found in a
small neighbourhood, the incumbent solution is updated and a new corridor is defined around
this new solution. Otherwise, the width of the corridor is increased in the hope of helping to
find feasible solutions. Figure 5 shows a trace of a run, showing the iteration upper and lower
bounds.

6. Discussion

The field of matheuristics has only recently emerged as an independent area of research, but it draws
on a rich and extensive body of contributions. In this survey, we have argued that matheuristics
offer a key advantage over other meta-heuristics; namely, the use of dual bounds to enable one
to terminate early and/or to evaluate the quality of the best-found primal solution. Another nice
feature of matheuristics is that they enable one to exploit the relevant progress that has been made
in theory, algorithms and software for integer programming.

Generally speaking, we believe that there is no dominance relation between matheuristics and
the more widely used, ‘mathematics-free’ meta-heuristics. Nevertheless, relative superiorities can be
found on a per-problem basis. In particular, greater effectiveness of matheuristics has been reported
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for highly constrained problems, where the feasible solutions are very sparse and thus simple local
search becomes expensive and ineffective (Maniezzo et al., 2021).

We remark that many of the approaches mentioned, such as LR, dual ascent and additive bound-
ing, do not rely on the solution of large-scale integer programs at all. For this reason, they are
particularly attractive when one is dealing with large-scale problem instances. Moreover, methods
such as LR and Dantzig-Wolfe decomposition often involve the solution of several independent
subproblems, which means that they can exploit parallel processors, and possibly even lead to fully
distributed algorithms. Finally, heuristics based on surrogate and semi-LR have received relatively
little attention so far, and we believe that they merit further study.
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