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Analysis, quantification, and discussion of the

approximations introduced by pulsed 3D-LiDARs
Stefano Cattini, Member, IEEE, Davide Cassanelli, Giorgio Di Loro, Luca Di Cecilia, Luca Ferrari and Luigi

Rovati, Member, IEEE,

Abstract—LiDARs are considered essential for the environ-
mental sensing required by most ADAS, including autonomous
driving. Such has led to significant investments resulted in the
availability of countless measuring systems that are increasingly
performing and less expensive. Nevertheless, the extremely high
speed of light still leads to a non-negligible quantization error
in the direct time-of-flight (ToF) measure at the base of pulsed
LiDARs — the leading technology for automotive applications.
Hence, pulsed 3D-LiDARs analyze the surrounding by approxi-
mating and deforming it on concentric spheres whose radii are
quantized with a quantization step that, for most commercial
systems, is on the order of some centimeters. The deformation
and error introduced by such quantization can thus be significant.
In this study, we point out the approximations and assumptions
intrinsic to 3D-LiDARs and propose a measurement procedure
that, through the analysis of the fine variations of the target
position, allows an accurate investigation of the axial resolution
and error — probably among the few limitations still affecting
this technology. To the best of our knowledge, this is the first
study focused on the detailed analysis of the quantization error
in 3D-LiDARs. The proposed method has been tested on one of
the most popular 3D-LiDARs — namely the MRS 6000 by Sick.
The obtained results revealed for the MRS 6000 a quantization
step of about 6 cm (ToF quantization of about 0.4 ns) and an axial
error normally distributed with experimental standard deviation
of about 30 mm.

Index Terms—LiDAR, LADAR, ToF, Terrestrial laser scanner,
Measurement, Autonomous driving, ADAS.

I. INTRODUCTION

Promoted by the strong demand for high-performing ADAS

(Advanced Driver Assistance System) and the goal of au-

tonomous driving, 3D-LiDARs have seen considerable invest-

ments that have increased their performance and, in general,

significantly reduced their costs. The availability of high-

performance and lower-cost LiDARs had also promoted the

spread of such measuring systems to many other applications.

Thus, 3D-LiDARs are nowadays finding more and more appli-

cations in fields such as industrial automation and agriculture.

The high interest in LiDARs has also resulted in a considerable

number of studies that have been recently published both on
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the design [1]–[9] and characterization [10]–[18] of LiDAR

systems and subsystems.

LiDARs are generally recognized to provide better accuracy

in estimating distances than other measuring systems such as

radars, ultrasonic sensors and, stereo-cameras, becoming one

of the pillars for autonomous vehicles [19], [20]. The increase

in performance of both the LiDARs and the rendering software

tends to make us forget the approximations and assumptions

incorporated in the measurement principle at the basis of

3D-LiDARs and, therefore, the limits of such technology.

Nonetheless, as described in more detail in section II, pulsed

3D-LiDARs — the leading technology in automotive [20]

— analyze the surrounding by “sampling” it on concentric

spheres whose rays differ of δd — the axial-distance quantum.

LiDARs thus analyze the surrounding by approximating and

deforming it on a fixed set of spheres. Flat surfaces are hence

bent on spherical caps whose radii differ by δd. Given that,

in the vast majority of the current commercial systems, δd

is on the order of some centimeters, and that, due to the

measurement error, points may differ by some quanta to the

real positions, the deformation introduced by such quantization

can be significant.

This article is hence aimed at pointing out the approximations

and assumptions incorporated in the measurement principle

at the basis of 3D-LiDARs, with particular focus on pulsed

3D-LiDARs, thus warning the user about its intrinsic limits.

As described in more detail in section II, one of the main

aspects is related to the axial-distance measure. Therefore,

the main sources of uncertainty in the axial-distance measure

obtained through the direct ToF (time-of-flight) measure are

described and a measurement procedure for their quantification

is proposed. Indeed, although manufacturers often report some

information about the axial error, such information is usually

generic and, to the best of our knowledge, no information

is normally provided regarding aspects such as, for example,

standard uncertainty or coverage probability. To quantify all

such aspects, this study proposes a careful analysis of the

axial measure in pulsed 3D-LiDARs. Other studies have been

proposed on the analysis of the axial error of 3D-LiDARs

e.g. [14], [16], [17], [21]. Nonetheless, to the best of our

knowledge, this is the first study that proposes an accurate

analysis of such an error by analyzing the effects of the

quantization of the axial measure. Such has been obtained

through the analysis of the variation of the distribution of

point-cloud (PC) points produced by fine variations of the

target position.

To provide examples of the effects of the approximations



intrinsic in 3D-LiDARs and of the information that can be

obtained through the proposed measurement method, some

example results obtained from the analysis of the MRS 6000

by Sick — one of the most popular 3D-LiDARs on the market

— are reported.

In the following, section II briefly introduces the approxi-

mations and assumptions intrinsic to 3D-LiDARs, section III

describes the developed measurement procedure and data

analysis. Examples of the results obtained exploiting the

proposed measurement procedure are reported in section IV

and discussion and conclusions are reported in sections V

and VI, respectively.

II. APPROXIMATIONS AND ASSUMPTIONS INTRINSIC TO

3D-LIDARS

In its simplest configuration, the LiDAR system provides

only the estimate of the axial distance d — the range —

between the measuring system and the target. Nonetheless,

from such simple axial information, it is possible to obtain a

3D mapping of the surrounding environment. In fact, probably

most LiDAR systems currently on the market are 3D-LiDARs.

To obtain such a 3D-mapping, substantially two different tech-

niques are employed: scanning and flash. Scanning LiDARs

steer one or more collimated laser beams simultaneously

emitted. The mapping of the environment thus takes place

sequentially by knowing the current steering direction and

measuring the relative axial distance d. On the contrary,

flash LiDARs scan the surrounding theoretically in a single

acquisition by measuring the axial distances produced by

the reflections of a single diverging beam detected by an

array of detectors which “observe” different regions of the

surrounding. Hence, 3D-LiDARs only measure the range, and

the position of each point of the PC is estimated knowing,

or supposing, the direction — elevation and azimuth angles

— from which the reflection comes. Therefore, as shown

in Fig. 1, as long as the receiving optics can be reasonably

approximated as point-like, both scanning and flash LiDARs

analyze the surrounding space by “sampling” it on concentric

spheres. Such concentric spheres sampling is thus not limited

to a specific 3D-LiDARs technology, but all 3D-LiDARs in

general. Hence, all 3D-LiDARs analyze the surrounding by

approximating and deforming it on concentric spheres whose

radii differ by a distance determined by the resolution in

the axial measurement. Note that the analysis of the external

environment in polar coordinates is typical of many imaging

systems. Indeed, rays passing through the center of a lens

does not change direction. Hence, for example, each pixel of

the 2D-matrix image obtained from a fixed focal length non-

telecentric camera is associated with a specific pair (ϕi, θi) of

elevation and azimuth angles in the object space.

To estimate the range, d, several technologies are available.

ToF (time-of-flight) telemeters are generally classified in pulse

telemeters — direct ToF measure — and, sine-wave teleme-

ters — indirect ToF measure. Sine-wave telemeters generally

exploit Amplitude Modulated Continuous Wave (AMCW)

or Frequency Modulated Continuous Wave (FMCW) [22].

Most LiDARs currently used for automotive applications are

pulsed [20].
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Fig. 1. Schematic representation of how 3D-LiDARs analyze the surrounding
space. The radial distance, r, of every single point P composing the point-
cloud is determined by the measurement of its range. The angular coordinates,
(θ,ϕ), are determined on the basis of knowledge of the direction from
which the revealed echo comes. In “scanning” LiDARs, the echo direction
is supposed to coincide with the direction in which the collimated beam is
currently steered. In flash-type systems, the direction is determined by the
optics of the specific detector. Thus, as long as the receiving optics can be
reasonably approximated as point-like, both scanning and flash technologies
analyze the environment by sampling it on concentric spheres. Hence, the
measure is obtained in spherical coordinates (radius r, elevation ϕ and azimuth
θ) and usually converted to Cartesian, (x, y, z), for the creation of the point-
cloud.

As the name suggests and shown in Fig. 2, pulse telemeters

periodically emit pulses thus directly measuring the ToF as the

time, t, the emitted pulse takes to propagate back and forth

from the target. Hence, the quantization in the time measure

reflects in the quantization in the distance measure:

δd =
c

n
⋅

δt

2
, (1)

where δt and δd are the time and distance quanta, c/n is the

speed of light in the medium being c the speed of light in

vacuum and n the refractive index of the propagation medium.

The 1/2 in (1) takes into account the round trip propagation.

The quantization of pulsed LiDAR systems along the beam

direction, sometimes referred to as the “axial-resolution”, is

thus primarily determined by the least significant bit of the

used time-to-digital converter (TDC) [22]–[24].
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Fig. 2. Schematic representation of the direct ToF measure performed by pulse
telemeters. The ToF is estimated as the time, t, the pulse takes to propagate
back and forth from the measuring system to the target.

As previously introduced, regardless of the technology —

scanning or flash —, as long as the receiving optics can be



reasonably approximated as point-like, each point of the point-

cloud is acquired in polar coordinates:

P = (r, θ,ϕ) , (2)

where, as shown in Fig. 1, r is the radius and ϕ and, θ

are the elevation and azimuth angles. Furthermore, both for

scanning and flash, the analysis of the surrounding always

takes place sampling on a finite and generally fixed set of

directions and, therefore, on a finite and generally fixed set of

elevation and azimuth angles. Since, as introduced previously,

the range measure is also quantized, the values of r, θ, and ϕ

are thus quantized. The domain (set) of allowed values can be

easily determined by analyzing the PC in polar coordinates.

The difference in elevation angle between adjacent points of

the PC, the δϕ quantum, is often referred to as the “vertical

angular resolution”. Similarly, the difference in azimuth angle

between adjacent points of the PC, the δθ quantum, is often

referred to as the “horizontal angular resolution”. Note that,

while the quantization in the angles is clear and generally

explicitly declared by the manufacturer, that relating to the

axial measurement is normally not.

However, due to the finite resolution, also the axial distance,

r, is constrained to a discrete set of values. In pulsed LiDARs,

such a set has fixed values determined by the quantization step

δd. In pulsed LiDARs the bins can therefore be considered as

concentric spheres whose radii differ by δd along the direction

of propagation of the impulse. Within a single channel — fixed

elevation angle ϕi, — the points are δθ spaced with respect

to the θ coordinate. In pulsed LiDARs the coordinates of each

point of the PC are thus quantized to a fixed set and, as shown

in Fig. 3, simplifying the analysis to a single channel — fixed

elevation angle ϕi — the points are spaced by δθ along θ and

lie on concentric circles whose radii differ from each other by

δd — the bins.

In the flash technology — solid-state LiDARs, — the

observed (ϕi, θi) pairs are determined by the optics and the

pixels of the detector. In the scanning technology, they are

determined by the system’s ability to steer the beam. At

present, most automotive LiDARs are scanning LiDARs and,

in particular, spinning LiDARs [20] (also known as rotor-based

mechanical LiDARs). The other main scanning technologies

are [17], [20]: the MEMS (micro electro mechanical systems)

— quasi-solid-state LiDARs — and the OPA (optical phase

arrays) — solid-state LiDARs.

As the name suggests, spinning LiDARs rotate while periodi-

cally firing a laser. Therefore, the azimuth angle θ is generally

estimated exploiting an encoder in closed-loop feedback con-

trol. In the past, the vertical steering of the beam was generally

obtained using a moving-mirror, thus estimated exploiting a

second encoder. To reduce the number of moving parts, most

spinning LiDARs currently use an array of differently tilted

laser diodes. The elevation angle, ϕ, is therefore generally

determined by the inclination of the laser that generated

the pulse. The number, nϕ, of ϕ angles is determined by

the number of LiDAR channels, and each channel, CH, is

therefore characterized by a specific elevation angle ϕi. On the

contrary, the δθ is determined by the pulse emission frequency

and the LiDAR angular velocity.
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Fig. 3. Schematic representation of how a single channel — fixed elevation
angle ϕ — of a pulsed LiDAR scans its surroundings. The “almost vertical”
dashed lines (⋯) represent the beams of the pulses sequentially emitted by
the LiDAR (scanning mode) or the lines of sight of the receivers composing a
single channel (flash mode). The “horizontal” sections of circumferences (⌢)
represent the quantization in the distance estimate. Each of such semicircles
constitutes a bin, e.g. Bn, and its radius differs δd from the adjacent
semicircles. The circles (◯) represent the result of the sampling of the target
by the LiDAR channel. Due to quantization and measurement errors, the
samples (◯) are distributed over several bins. (To simplify the representation
the origin of the LiDAR axes has been translated to the lower-left corner of
the figure).

Since the PC is acquired by the LiDAR in spherical coor-

dinates, but transmitted by ROS (Robot Operating System)

in Cartesian coordinates, in the following, both reference

systems will be used, based on what will provide the simplest

representation.

Note that the beams used by scanning LiDARs to sample

the surrounding have a not-null cross-section [15]. Hence, if

the beam spot does not hit a single flat surface but, due to its

non-zero cross-section, falls on more than one object, a single

pulse can give rise to multiple echoes. The same applies to the

detection optics of flash LiDARs. For this reason, most LiDAR

manufacturers analyze more than one echo per single emitted

pulse and allow the user to choose which echo to consider

for the measurement. In particular, basically all manufacturers

allow the user to set the “first echo” and “last echo” modes.

As the name suggests, in the “first echo” mode the distance

is estimated based on the ToF of the first echo pulse received;

the “last echo” mode uses the last ToF among those acquired.

III. MATERIALS AND METHODS

A. Experimental set-up and measurement procedure

To investigate the axial error, we propose exploiting a setup

composed of a rail and a sliding carriage as the custom one

previously described [25] and shown in Fig. 4. In such a setup,

the IUT (instrument under test) was fixed on a multi-axis stage

(pitch and yaw platform model PY004/M by Thorlabs and XY

and rotation stage model OCT-XYR1/M by Thorlabs), thus

aligned to the rail exploiting the procedure described in [25].

As shown in Fig. 4, the proposed measurement setup included

a planar reflective target (24” by 24” hardboard model TB4,

by Thorlabs) which was fixed on the sliding carriage and

thus could be translated along the rail to modify its distance,

d, from the IUT. Such a distance was verified using the

interferometer INT (single-axis linear interferometer model

HP5527A, by HP). As shown in Fig. 4, the IUT measures

the distance to the target while the INT measures the distance



to the corner cube. Furthermore, the positions of the origins

of the axes of both the IUT and the INT are unknown and

cannot be easily accurately determined. Hence, there is a fixed

and potentially partially unknown offset between the distances

estimated by the two systems even when they are correctly

aligned. The method used for estimating the offset between

the target distance, d, and the measure, dINT , provided by

the INT,

doffset = d − dINT , (3)

will be described in subsection III-B.

Corner cube

IUT

Target

Rail-system

Sliding
carriage

y

x

INT

dINT

z

d

Fig. 4. Schematic representation of the measurement setup. The IUT
(instrument under test) is fixed on a multi-axis stage that allows to align
it to the rail-system. The dashed lines (⋯) represent the IUT channels (CHs).
The planar reflective target is fixed on a sliding carriage that allows translating
it along the rail to modify its distance, d, from the IUT. The interferometer,
INT, allows to finely measure the magnitude of target translation. The system
is aligned so that the target and the measurement beam of the interferometer
are respectively orthogonal and parallel to the LiDAR z-axis. d is thus the
distance along the z-axis between the origin of the coordinates system of
the IUT and the target and, dINT is the distance (along the z-axis) between
the origin of the interferometer and the corner-cube (model M-BBR 1-1I by
Newport).

To investigate the axial error, we thus propose to analyze

the point-clouds (PCs) obtained by varying the target distance

d. Such distance must be varied both in “fine” steps — steps

shorter than the axial quantum δd — and in “large” steps

able to highlight the various contributions of uncertainty (this

aspect will be discussed in section V). The proposed method

thus involves acquiring and analyzing multiple PCs for each

target position. Then, to perform a statistical analysis of how

the points distributed among the various bins. In the following,

the proposed procedure is described in detail, also reporting

the specific settings used to obtain the example results that

will be shown in section IV.

After aligning IUT, INT, and target and waiting for the warm-

up, the target has to be positioned at a first distance (significant

for applications of interest). The results in section IV were

obtained by setting d ≈ 1.4 m.

Then, for each target position, nPC PCs have to be acquired

under the repeatability condition of measurement. The results

in section IV were obtained setting nPC = 25 and acquiring,

for each target position, nPC = 25 PCs both by setting the

“first echo” mode and the “last echo” mode. After that, the

target must be translated by a “fine” step. The length of the

“fine” step determines the spatial sampling period. Since the

investigated LiDAR has δd = 6.25 cm, the results in section IV

were obtained using “fine” steps of 10 mm. Such a procedure

has to be repeated for nd times. nd must be large enough

to allow analyzing more bins — the fine step multiplied by

nd must be at least of the order of some δd. The results in

section IV have been obtained setting nd = 50 “fine” steps,

thus investigating 50 cm.

As discussed in section V, by repeating the analysis also

performing “large” displacements, it is possible to extract

more information. As an example, the results in section IV

have been obtained starting a second sampling at a distance

d ≈ 6.8 m. The average distances of approximately 1.6 m and

7 m were chosen as, on the one hand, arbitrarily considered

significant for many practical applications and, on the other

hand, the characteristics of the setup would have made it

difficult to analyze shorter distances. Consider that the greater

the target distance, the smaller the deformation of flat surfaces

introduced by the sampling on the spherical surfaces and

the relative error introduced by the quantization in the axial

measure. Also consider that, as discussed in section V, the

optical power of the pulse received when the target is at 7 m

is about 1/20 compared to the optical power received when

it is at 1.6 m. Therefore, such ranges also allow obtaining

an estimate, albeit rough, of the effect due to a variation of

the power of the received pulse (e.g. due to a different target

reflectance). Obviously, the method can also be applied for the

analysis of other distances of interest.

B. Axial-error analysis

The single-point axial-error was investigated by analyzing

a single point P for each of the acquired PCs thus, analyzing

both how such P point distributed among the various bins

within the nPC measures acquired under the repeatability

condition of measurement and how such distribution varied

as the position d of the target varied. The results in section IV

were obtained analyzing the point P defined by ϕ = ϕCH and

θ = 0○. Hence, defining Ψ(n, d), n ∈ [1, nPC], as the the set

of all points composing the nth PC acquired at distance d, the

analyzed point was:

P (n, d) = ΨPC(n, d)∣(ϕ = ϕCH , θ = 0○) , (4)

where ϕCH is the elevation angle of the analyzed CH. Each

point, P , was therefore defined by the value of its radius and

such a value, rP , is a discrete random variable that can only

assume the values corresponding to the radii of the IUT bins

— pulsed LiDAR.

The statistical analysis was performed analyzing the empirical

probability density function Γ, thus analyzing the number of

times that the P point fell into each bin. Defining Λ(d) as

the set of P points obtained from the nPC measures acquired

at the distance d, for each target distance, d, the empirical

probability density function (probability mass function) was

calculated as:

Γ(d, rbin) =
card[Λ(d)∣rP = rbin]

card[Λ(d)] , (5)

where card[. . . ] is the cardinality, rbin is the value of the

radius of the considered bin and, card[Λ(d)] = nPC .



For each position d, the mean distance estimated by the IUT,

dIUT , was calculated as

dIUT (d) = 1

nPC

⋅

nPC

∑
n=1

rP (n, d)

s
dIUT
(d) =

¿ÁÁÁÀ∑
nPC

n=1 [rP (n, d) − dIUT (d)]2
nPC ⋅ (nPC − 1) .

(6)

where s
dIUT
(d) is the respective experimental standard devi-

ation of the mean.

The offset, doffset, between the target distance, d, and the

measure, dINT , provided by the INT was estimated as the

intercept of the linear interpolation of the sets of dIUT (d)
and dINT (d) values obtained translating the target along the

rail [17]. In the interpolation, the angular coefficient was set

equal to 1. The resulting doffset was compatible with the

rough estimate obtained using a tape measure. Note that the

estimate of doffset as the intercept of the linear interpolation

compensates for any possible offset error of the IUT, thus

preventing the possibility of detecting such error unless large

enough to be evidenced by the tape measure verification.

For each target position, both the error ǫ(n, d), relative to each

single PC, and the average error, ǭ(d), relative to the nPC PCs

acquired under the repeatability condition of measurement,

were calculated as:

ǫ(n, d) =dINT (d) + doffset − rP (n, d)
ǭ(d) =dINT (d) + doffset − dIUT (d) ,

(7)

where, according to (3), dINT (d)+ doffset is the estimate of

the target distance, d.

Note that, although the LiDAR acquires in spherical co-

ordinates, communication with it occurs through ROS that

transforms the PC into Cartesian coordinates. Based on the

previous equations, it is convenient to carry out the data

processing in spherical coordinates, thus transforming the ROS

data back into spherical coordinates before proceeding with

the analysis. Such a double transformation from spherical to

Cartesian to spherical again can introduce truncation errors.

Hence, points that fall within the same bin in spherical coor-

dinates and should, therefore, have exactly the same value of

r, may result, once reported back from Cartesian to spherical,

to r values slightly different from each other. Thus, before

analyzing the data, it is convenient to round the r values to

reduce the number of significant digits. The same holds for

the azimuth, θ, and elevation, ϕ, angles. The results reported

in section IV were obtained by rounding the values to the

fourth decimal place — round-off errors below to 10
−4 m and

10
−4 rad, respectively.

C. Warm-up and Stability

To proceed with the characterization of an instrument, it is

necessary to know its warm-up time. Moreover, the acquisition

of all the measures described in subsection III-A requires a

non-negligible amount of time. Hence, before performing the

measurements described in subsection III-B, it is important to

investigate the warm-up and stability.

Such analysis was performed according to the procedure

previously described [17]. The IUT was thus set to log a

PC every minute, was turned off for at least 12 h, and then

turned on starting the acquisition of the PCs for 15 h. Since

the procedure described in subsection III-A analyzes only

one point of the PC, also the warm-up and stability analysis

analyzes only one point of the PC, that is, P (t). In particular,

according to subsection III-B, supposing Ψ(t) to be the set of

point composing the PC acquired at time t, we analyzed:

P (t) = ΨPC(t)∣(ϕ = ϕCH , θ = 0○) . (8)

As described above, P can only take a finite number of values.

Therefore, the warm-up and stability analysis examined how

P distributed in the various bins as time t changed and,

in particular, analyzed it with movable windows having a

width equal to nPC . Defining Ω(n) as the set of all the P

points acquired up to the nth sampling instant tn, if P (t) is

stationary, the expected value of the ratio

Ξ(n + nPC/2, rbin) =
card[Ω(n + nPC − 1)∣rP = rbin] − card[Ω(n)∣rP = rbin]

nPC

,

(9)

calculated at the distance d coincides with the expected

value of Γ(d, rbin). That is, for each value of n — tn —

E[Ξ(n, rbin)] calculated at d equals E[Γ(d, rbin)] — E[. . .]
is the expected value. The warm-up and stability were thus

investigated by analyzing Ξ(n, rbin).

IV. RESULTS

As previously introduced, to provide examples of the effects

of the approximations intrinsic in pulsed 3D-LiDARs and of

the information that can be obtained through the proposed

measurement procedure, in this section some results obtained

from the analysis of the pulsed (spinning) LiDAR model

MRS 6000 by Sick — one of the most popular 3D-LiDARs

— are reported. The settings of the IUT — the MRS 6000 —

during the test are resumed in Table I. Tests were performed in

a controlled environment where both temperature and lighting

were monitored.

Fig. 5 shows two examples of PCs acquired by the IUT once

the target was at d ≈ 1.43 m and d ≈ 7.27 m, respectively.

TABLE I
SETTINGS OF THE IUT (MRS 6000 BY SICK).

Quantity Value

Scanning frequency fscan 10 Hz
Echo analysis “first echo” and “last echo”
Warm-up 150 min

Fig. 5(a) clearly shows how the sampling on concentric

spheres performed by 3D-LiDARs to analyze the environment

deforms the flat target, bending it on spherical caps. From

the PCs analysis it was also possible to determine the axial

quantization δd = 6.25 cm.

As previously introduced, the warm-up and stability were

analyzed by analyzing how the P point distributed among the

various bins as a function of time. Fig. 6 shows the Ξ(t, rbin)
obtained for d ≈ 1.5 m and d ≈ 7 m. As can be seen, after
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Fig. 5. Examples of point-clouds acquired by the IUT. Figure (a) shows one
of the nPC = 25 PCs acquired by the IUT once the target was at a distance
d ≈ 1.43 m (echo filter: “first”); figure (b) one of the nPC = 25 PCs acquired
at a distance d ≈ 7.27 m (echo filter: “last”). The blue dots (●) represent all
points relative to the target. The orange circles (◯) represent the central points
of the analyzed CH (ϕ = ϕCH ). Depending on the position of the target with
respect to the bins, the points tend to fall only on one bin (a) or to distribute
themselves on adjacent bins (b).

about n = 150 samples (tn = 150 min) the trends relating to

the various bins stabilize. The warm-up time, tw was therefore

set equal to 150 min. As shown in Fig. 6, within the limits

of the resolution of the measurements, the drift of Ξ(t, rbin)
after tw is negligible compared to its fluctuations.

Following the warm-up and stability analysis, the axial-

error was analyzed according to the procedure described in

subsection III-B.

Fig. 7 shows two examples of the distribution of the Λ(d)
points between the various bins when the target was at the

distances d ≈ 1.43 m and d ≈ 7.27 m.

The Fig. 8 shows, for each bin, the trend of Γ(d, rbin) as

the target position, d, changes both for d ∈ (1.3,1.9) m and

d ∈ (6.8,7.4) m.

Fig. 9 shows the trend of the parameters µ and σ of the

Gaussian interpolants shown in Fig. 8. Fig. 10 shows the

distribution of the errors ǫ obtained considering all the ac-

quired measurements, that is, nPC = 25 measures for each

of the nD = 50 distances. Fig. 11 shows the mean errors ǭ

obtained by finely moving the target in d ∈ (1.3,1.9) m and
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Fig. 6. Ξ(t, rbin) for the three bins between which P (t) distributed. The
vertical lines (—) represent the warm-up time tw . The orange, blue and,
purple dashed horizontal lines (−−−) represent the mean values of Ξ(t, rbin)
calculated for t ≥ tw . (sampling period 1 min).

d ∈ (6.8,7.4) m, respectively.

V. DISCUSSION

As introduced in section II, the axial-quantum, δd, for

pulsed LiDARs based on a TDC is determined by the time

quantum, δt, thus by least significant bit (LSB) of the TDC.

TDC techniques and error-budget have been recently reviewed

by Tancock et al. [26] and Rovera et al. [27]. In addition to

the time quantization error, the main sources of the axial-error

in pulsed LiDARs are noise-generated timing jitter, walk error,

nonlinearity, and drift [22]–[24].

The walk error describes the effect that the amplitude and

shape of the received pulse have in defining the trigger instant.

The points composing Λ(d) are relative to pulses emitted

by the same laser source (ϕ = ϕCH ) and reflected by the

same target position (θ = 0○), thus same reflectivity, distance

d and, viewing angle. Hence, it is reasonable to suppose all

the echo pulses relative to Λ(d) to have substantially the same

amplitude and shape. Therefore, regardless of the discriminator

technique exploited by the TDC (e.g. edge timing, constant

fraction timing, zero-crossing timing and, first-moment timing)

it is reasonable to assume that all the Λ(d) points suffer from
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Fig. 7. Distribution of the Λ(d) points between the various bins when
the target was at distances d ≈ 1.43 m (a) and d ≈ 7.27 m (b). The bars
represent the Γ(d, rbin) values obtained from the analysis of the nPC = 25
PCs acquired under repeatability condition of measurement. Figure (a) was
obtained setting echo filter “first”, whereas figure (b) was obtained setting
echo filter “last”.

the same walk error. Moreover, given the target displacement

in steps of about 10 mm at a mean target distance of a few

meters, it is also reasonable to assume the walk error to be

substantially the same even for adjacent target positions, that

is, for adjacent bins. On the contrary, given that the proposed

measurement procedure involves analyzing two ranges having

a significantly different average distance (d ≈ 1.6 m and

d ≈ 7 m), the contribution of the walk error to the error budget

should be made evident by comparing the results obtained at

d ≈ 1.6 m and d ≈ 7 m. Indeed, consider that the power of

the pulse received by the LiDAR after being reflected by the

target generally reduces with the reciprocal of the square of the

distance, d. Therefore, the optical power relative to the pulse

received when the target is at 7 m is about 1/20 compared

to the optical power received when it is at 1.6 m. Hence,

it is reasonable to assume the walk error to be significantly

different in the two ranges [22]–[24]. Conversely, as described

in subsection III-B, since the offset, doffset, between d and

dINT was estimated as the intercept of the linear interpolation

between dIUT (d) and dINT (d), the proposed measurement

method does not allow detecting any offset error affecting the

IUT unless large enough to be evidenced by the tape measure

verification (that is, of the order of at least a few centimeters).

The previous considerations are generally valid as they

are intrinsic to the proposed measurement procedure. More

information on the specific IUT can be obtained by analyzing

the experimental results reported in section IV.

As shown in Fig. 6, within the limits of the resolution of the

measurements, the drift of Ξ(t, rbin) after tw is negligible

compared to its fluctuations. Therefore, at least within the

limits of the resolution obtained, the drift in 750 min is

negligible.

Regarding the walk error, given that the results reported in

section IV show statistically similar behavior in the two ranges

(d ≈ 1.6 m and d ≈ 7 m), it is reasonable to assume that for

the IUT the contribution of the walk error on the error budget

is negligible.

Regarding quantization, according to Rovera et al. [27], it is

expected to behave like a uniform random variable with type

B uncertainty equal to δt/
√
12. Given that the distributions

shown in Figs. 8 and 10 are not uniform, but reasonably nor-

mal, it is reasonable to assume that the effect of quantization

it is not the only one to consider when defining uncertainty

but that noise plays an important role. The main noise sources

in the analog front-end electronic of the LiDAR are the shot

noise, caused by both the detected pulse and the background

radiation, and, the noise generated by the electronics [24].

According to Amann et al. [24], the precision of the distance

d measurement is thus usually mainly determined by the jitter

in timing, thus proportional to root mean square amplitude

of noise and inversely proportional to the slope of the timing

pulse at the moment of timing.

Fig. 10 reveals for the MRS 6000 an almost normal random

variable with σ of about 30 mm. Such a result clarifies

and quantifies the quite generic information provided by the

manufacturer — “Statistical error 30 mm” [28]. Indeed, in

light of the results shown in Fig. 10, the random variable is

reasonably Gaussian and, the coverage probability associated

with the interval ±30 mm is about 68%. Also, note that

the LiDAR performance can be significantly affected by the

target reflectance. However, the results shown in Fig. 10 reveal

substantially the same σ for both ranges. Since the optical

power of the pulse received when the target is at 7 m is about

1/20 compared to the optical power received when it is at

1.6 m, at least within the limits of the analyzed distances, the

IUT appears to be robust against variations in the reflectance

of the target. That is, it is reasonable to assume that two targets

that are at a distance of about 1.6 m give rise to the same σ

even if their reflectances differ by 20 times.

Finally, also note that, within the limits of the precision given

by the standard deviation of the Gaussian functions, the results

shown in Fig. 9 indicates that the IUT is not affected by

appreciable linearity errors. Furthermore, given the compatibil-

ity between the estimate of doffset obtained from the linear

interpolation and the tape measure (subsection III-B), even

the offset error, if present, is expected to be limited — not

exceeding a few centimeters.
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Fig. 8. Distribution of the Γ(d, rbin) as a function of target position d. Each curve (solid line) represents the Gaussian function obtained by fitting the
Γ(d, rbin) values relative to a specific bin; the numbers on the top of the curve represent the rbin values. As an example, as shown in (a), when the target
was at d = 1.502 m, almost all the Λ(d) points fell on bin rbin = 1.5 m (*) and only a few points fell in rbin = 1.5625 m (+) — Γ(d, rbin = 1.5 m) = 0.88
and Γ(d, rbin = 1.5625 m) = 0.12. On the contrary, when the target was at d = 1.5206 m, the Λ(d) points distributed among the bins rbin = 1.5 m (*)
and rbin = 1.5625 m (+) — Γ(d, rbin = 1.5 m) = 0.52 and Γ(d, rbin = 1.5625 m) = 0.48.
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Fig. 9. Trend of the Gaussian interpolants as a function of the nominal value
of the bins. For each bin (rbin), the diamond (◇) represents the mean value
µ of the Gaussian function shown in Fig. 8 obtained by setting “echo first”.
The square (◻) represents the mean value µ of the Gaussian function obtained
by setting “echo last”. The errorbars represent the standard deviations σ of
the Gaussian functions. The dashed lines (−−) represent the bisector of the
first quadrant.

VI. CONCLUSIONS

Although LiDAR technology has benefited from signifi-

cant investments which have resulted in the availability of

countless measuring systems more and more performing, the

quantization error in the direct time-of-flight (ToF) measure

at the base of pulsed LiDARs still gives rise to quantization

in the axial measure that, for most commercial systems, is on

the order of some centimeters. The objective of this study is

thus, on the one hand, to point out the approximations and

assumptions incorporated in the measurement principle at the

basis of pulsed 3D-LiDARs, and, on the other hand, to propose

a measurement procedure for quantifying and analyzing the

uncertainty in axial measurement.

Section II starts describing the approximations and assump-

tions intrinsic to all 3D-LiDARs, thus introducing as each

point of the PC is acquired by the measuring system in polar

coordinates and, as the analysis of the surrounding always

takes place sampling on a finite and generally fixed set of

directions, thus on a finite and generally fixed set of elevation

and azimuth angles. Then, the analysis focus on pulsed 3D-
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Fig. 10. Distribution of the errors ǫ. The height of each bar represents the
number of errors that fell within the range defined by the base of the bar. The
orange curve (—) represents the result of the fitting with a Gaussian function.
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Fig. 11. Mean errors ǭ (⋅) obtained by finely moving the target in d ∈
(1.3,1.9) m and d ∈ (6.8,7.4) m, respectively. The errorbars (I) represent
the experimental standard deviations of the mean s

dIUT
(d).

LiDARs, the leading LiDAR technology in automotive, and

describes as such measuring systems analyze the surrounding

by approximating and deforming it on concentric spheres

whose radii are quantized to a fixed set of values determined

by the ToF measure.

Sections III and V describe the main sources of uncertainty in

the axial-distance measure of pulsed 3D-LiDARs and propose

and discuss a measurement procedure for its quantification and

analysis. As previously introduced, other studies have been

proposed on the analysis of the axial error of 3D-LiDARs.

The novelty of this study lies in the fact that, to the best of

our knowledge, for the first time, it: i) highlights and analyzes

the effects related to the quantization of the axial measurement

in pulsed 3D-LiDARs, ii) describes how such measuring

instruments analyze the surrounding by approximating and

deforming it on concentric spheres whose radii are quantized

and provides a measurement procedure for measure, quantify,

and, iii) analyze the uncertainty in the axial measure.

Being based on the statistical analysis of how the points of

the PC are distributed among the various bins as the target

position varies, the proposed procedure can be applied to any

LiDAR affected by the axial quantization and, therefore, to all

pulsed LiDARs and also to “non-pulsed” LiDARs that exhibit

such a quantization in axial measure.

To provide examples of the effects of the approximations

intrinsic in pulsed 3D-LiDARs and of the information that

can be obtained through the proposed measurement method,

it has been applied on one of the most popular 3D-LiDARs

— namely the MRS 6000 by Sick. The results reported in

section IV revealed a quantization step of about 6 cm (ToF

quantization of about 0.4 ns) and an axial error normally

distributed with an experimental standard deviation of about

30 mm. From the obtained data, it was also possible to

determine that, within the limits of the resolution of the

measurements, the drift after tw = 150 min is negligible.

Furthermore, at least for the analyzed distances, also the

contribution of the walk error, as well as non-linearity are

negligible. Moreover, given the normal distribution, it was also

possible to deduce that for the MRS 6000 the uncertainty in

the axial measure is not dominated by the quantization in the

ToF measure but that noise, reasonably mainly the jitter in

timing, plays an important role.
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