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Smoothing effect and Strichartz estimates for
some time-degenerate Schrödinger equations

Serena Federico

Abstract In this paper we present recent results about the smoothing properties of
some Schrödinger operators with time degeneracies. More specifically, we will show
that time-weighted smoothing and Strichartz estimates hold true for the operators
under consideration. Finally, by means of the aforementioned estimates, we will
derive local well-posedness results for the suitable corresponding nonlinear initial
value problem.

1 Introduction

In this paper we shall investigate the smoothing properties of some time-degenerate
Schrödinger operators of the form

Lα,c := i∂t + tα∆ + c(t, x) · ∇x (1)

and
Lb := i∂t + b′(t)∆, (2)

where α > 0, c(t, x) = (c1(t, x), . . . , cn(t, x)) is such that, for all j = 1, . . . ,n, cj(t, x)
is a complex valued function satisfying suitable dacy assumptions, while b ∈ C1(R)
and satisfies b(0) = b′(0) = 0. We will go through the analysis of two kind of
smoothing properties characterizing the solutions of Schrödinger equations in the
Euclidean setting, that is, those described by smoothing and Strichartz estimates.
More specifically, we will prove that local weighted smoothing estimates are satisfied
by Lα,c , while local weighted Strichartz estimates are satisfied by Lb . Once these
results will be at our disposal, we will consider suitable nonlinear initial value
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2 Serena Federico

problems for Lα,c and Lb , and give the corresponding local well-posedness results
in each case.

Considering what previously mentioned, it should be clear that the estimates
object of this work constitute a crucial tool to attack nonlinear IVPs (initial value
problems) for dispersive equations.

Smoothing estimates are used to show that the solution of a certain equation
gains regularity (in terms of derivatives) with respect to the regularity of the initial
datum (homogeneous smoothing estimate) and/or with respect to the regularity
of the inhomogeneous term of the equation (inhomogeneous smoothing estimate).
Therefore these estimates are the suitable ones to be usedwhen dealingwith nonlinear
problems with derivative nonlinearities.

Strichartz estimates, instead, allow to obtain a gain of integrability of the solution
of a certain equation with respect to the integrability property of the initial datum
(homogeneous Strichartz estimate) and/or with respect to the integrability property
of the inhomogeneous term of the equation (inhomogeneous Strichartz estimate).
These are the estimates to be used to solve semilinear IVPs.

Results concerning smoothing and Strichartz estimates for constant coefficient
Schrödinger equations, but also for general constant coefficient dispersive equations,
are by now classical (see [17, 5, 6, 20, 21, 18, 35, 3, 37, 19]). As for the the variable
coefficients case where the Laplacian is replaced by a variable coefficient (elliptic)
operator (the constant casewith potentials is alsowell understood andwidely studied)
the situation is much different, and the results available are quite limited.

The smoothing effect of Schrödinger equationswith nondegenerate space-variable
coefficients was proved in [22] by Kenig et al., where the authors considered and
solved the ultrahyperbolic case too. Important achievements in the study of smooth-
ing estimates are due to Doi (see [7] and [8]), who considered the problem in the
general manifold setting. As regards Strichartz estimates, Staffilani and Tataru proved
in [34] the validity of such estimates for Schrödinger equations with nonsmooth co-
efficients (with compactly supported perturbations of the Laplacian), while in [30]
Robbiano and Zuily obtained these estimates for Schrödinger equations with small
perturbations of the Laplacian. Let us mention that several results have been proved
for equations with potentials and in the manifold setting, and we refer the interested
reader to [1, 2, 27, 9, 10, 29] and references therein.

Our analysis here, despite the aforementioned results, focuses on time-degenerate
Schrödinger operators of the form (1) and (2). It is worth to mention that the class
of operators (1) was first considered by Cicognani and Reissig in [4], who studied
the linear problem and proved the local well-posedness of the linear IVP both
in Sobolev and Gevrey spaces. The results about the local smoothing effect of
the class (1), proved by the author and Staffilani in [12], will be presented below
in a selfcontained way. Some results about the homogeneous smoothing effect of
nondegenerate operators of the form (2) were proved by Sugimoto and Ruzhansky in
[32]. As for Strichartz estimates and local well-posedness for the classLb on the one
and on the two-dimensional torus, and possibily generalizable to general compact
Riemaniann manifolds, they were proved by the author and Staffilani in [13], where
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some nondegenerate space-variable coefficient Schrödinger operators on the one and
on the two-dimensional torus were also studied.

Concerning the Strichartz estimates for (2) treated in this paper, they were proved
by the author and Ruzhansky in [11], where some homogeneous smoothing results
were also established by means of comparison principles.

Let us now conclude this introduction by giving the plan of the paper. In Section
2 we shall analyze the local smoothing effect of Lα,c in two cases: when c ≡ 0
(in Subsection 2.1) and when c is not necessarily identically 0 (in Subsection 2.2).
In each case we also give the local well-posedness result for the corresponding
nonlinear IVP.

In Section 3 we focus on the class Lb and on the validity of local Strichartz
estimates in this case. A local well-posedness result for a semilinear IVP for Lb will
also be given.

Notations.We use the notation A . B to indicate that there exists an absolute
constant c > 0 such that A ≤ cB. We shall denote byΛs the pseudo-differential
operator of order s whose symbol is given by Λs(ξ) = 〈ξ〉s = (1 + |ξ |2)s/2.

The mixed norm space Lp
x Lq

t (R
n × [0,T]), 1 ≤ p,q ≤ ∞, is the space of

functions f (t, x) that are Lq in time on the interval [0,T] and are Lp in space.
The norm is taken in the right to left order. In a similar manner we define the
spaces Lp([0,T]; Hs(Rn)), 1 ≤ p ≤ ∞, of functions that are Lp in time and in
the Sobolev space Hs(Rn) in space. Finally we shall denote by Sm := Sm

1,0 the
class of classical symbols of order m ∈ R defined by

Sm := {p(x, ξ) ∈ C∞(Rn × Rn); |p|(j)
Sm < ∞},

where
|p|(j)

Sm := sup
|α+β |=j

‖〈ξ〉−m+ |α |∂
α
ξ ∂

β
x p(x,ξ)‖L∞(Rn×Rn).

Finally, by writing g . 0 we will mean that a function g = g(t, x) is not
necessarily identically 0.

2 Smoothing effect and local well-posedness for the class Lα,c

This section is devoted to the study of the class Lα,c as in (1). Below we will discuss
the cases c ≡ 0 and c . 0 separately, in Subsection 2.1 and 2.2 respectively . This
distinction is done in order to show that one can use standard techniques in the first
case c ≡ 0, and that in the more general case c . 0 the usual technique does not
work anymore (the case c ≡ 0 is always contained in the case c . 0 according
to our notation). For the reader convenience we shall state our main results for the
class under consideration at the beginning of each subsection. As explained in the



4 Serena Federico

introduction, these results will be about the local smoothing and about the local
well-posedness of the nonlinear IVP.

2.1 The class Lα

In the sequel we will use the notation Lα := Lα,0 := i∂t + tα∆x . The operator
Wα(t, s) in the statements below is the operator defined as in (9) giving the solution
at time t of the homogeneous IVP for Lα with initial condition u(s, x) = us(x) at
time s. Our main results for Lα are the following.

Theorem 1 Let Wα(t) := Wα(t,0), with α > 0, then

If n = 1 for all f ∈ L2(R),

sup
x
‖tα/2D1/2

x Wα(t) f ‖2L2
t ([0,T ])

. ‖ f ‖2
L2(R)

. (3)

If n ≥ 2, on denoting by {Qβ}β∈Zn the family of non overlapping cubes of unit
size such that Rn =

⋃
β∈Zn Qβ , then for all f ∈ L2

x(R
n),

sup
β∈Zn

(∫
Qβ

∫ T

0
|tα/2D1/2

x Wα(t) f (x)|2dt dx

)1/2

. ‖ f ‖L2(Rn), (4)

where Dγ
x f (x) = (|ξ |γ f̂ (ξ))∨(x).

Theorem 2 Let n = 1 and g ∈ L1
xL2

t (R × [0,T]), then

‖D1/2
x

∫
R+

tα/2Wα(0, t)g(t)dt‖L2
x (R)
. ‖g‖L1

xL
2
t (R×[0,T ])

, (5)

and, for all g ∈ L1
t L2

x([0,T] × R),

‖tα/2D1/2
x

∫ t

0
Wα(t, τ)g(τ)dτ‖L∞x (R)L2

t ([0,T ])
. ‖g‖L1

t L
2
x ([0,T ]×R). (6)

If n ≥ 2, on denoting by {Qβ}β∈Zn a family of non overlapping cubes of unit size
such that Rn =

⋃
β∈Zn Qβ , then, for all g ∈ L1

t L2
x([0,T] × Rn),

sup
β∈Zn

(∫
Qβ





tα/2D1/2
x

∫ t

0
Wα(t, τ)g(τ)dτ





2

L2
t ([0,T ])

dx

)1/2

. ‖g‖L1
t L

2
x ([0,T ]×Rn). (7)

Theorem 3 Let k ≥ 1, then the IVP
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Lαu = ±u|u|2k

u(0, x) = u0(x),
(8)

is locally well-posed in Hs for s > n/2 and its solution satisfies smoothing estimates.

Remark 1 Notice that Theorem 2 amounts to the validity of the homogeneous and
inhomogeneous weighted smoothing estimates with a gain of 1/2 derivative for Lα.

When α = 0 one has actually an inhomogeneous smoothing effect better than the
one described in (7), that is the inhomogeneous part of the solution gains 1 instead
of 1/2 derivative with respect to the inhomogeneious part of the equation (in other
words, when α = 0, one can replace D1/2

x by D1
x in (7), see [20]).

When α , 0 the suitable corresponding weighted estimate still holds. This prop-
erty is described in Theorem 4 part (iii) below for the general case Lα,c , with c
being not necessarily identically 0, directly.

We stress that the proofs of the results of this subsection rely on the explicit
knowledge of the solution of the inhomogeneous IVP for Lα. Indeed, by using
classical Fourier analysis methods and Duhamel’s principle (that still holds in this
case, see [12]), we get that the solution of the IVP{

Lαu = f (t, x)
u(s, x) = us(x),

for s < t, is given by

u(t, x) = Wα(t, s)us(x) +
∫ t

s

Wα(t, t ′) f (t ′, x)dt ′,

where

Wα(t, s)us(x) := ei
tα+1−sα+1

α+1 ∆x us(x) :=
∫
Rn

e−i(
tα+1−sα+1

α+1 |ξ |2−x ·ξ)ûs(ξ)dξ (9)

is the so called solution operator, that is the operator giving the solution of the
homogeneous problem at time t with initial condition at time s. This is a two-
parameter family of unitary operators satisfying:

1. Wα(t, t) = I;
2. Wα(t, s) = Wα(t,r)Wα(r, s) for every s, t,r ∈ [0,T];
3. Wα(t, s)∆xu = ∆xWα(t, s)u;
4. ‖Wα(t, s)us ‖H s

x
= ‖us ‖H s

x
.

Let us remark that in the case α = 0 the operator above coincides with the well
known Schrödinger group.

Now we can finally give the proofs of Theorem 2 and Theorem 3.

Proof (Proof of Theorem 1) First note that (3) and (4) are true when α = 0, that is,
when Wα(t) = W0(t) = eit∆x (see, for instance, [20]). Then it suffices to prove that
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‖tα/2D1/2
x Wα(t) f ‖2L2

t ([0,T ])
= ‖D1/2

x W0(t) f ‖2L2
t ([0,T ′])

.

To prove that the identity above is satisfied, we use the change of variables
tα+1/(α + 1) = s, and get

‖tα/2D1/2
x Wα(t) f ‖2L2

t ([0,T ])
=

∫ T

0

����tα/2 ∫
Rn

e−i(t
α+1 |ξ |2/(α+1)−x ·ξ) |ξ |1/2 f̂ (ξ)dξ

����2 dt

=

∫ Tα+1
α+1

0

����∫
Rn

e−i(s |ξ |
2−x ·ξ) |ξ |1/2 f̂ (ξ)dξ

����2 ds

= ‖D1/2
x W0(t) f ‖2L2

t ([0,Tα+1/(α+1)]).

Finally, by application of the smoothing estimates for W0(t) = eit∆x , we conclude
(3) and (4) (see [20], Theorem 2.1). �

Proof (Proof of Theorem 2) Inequality (5) follows directly from (3) by duality.
As for (6), on denoting by Lp

x := Lp
x (R

n), we have

‖tα/2D1/2
x

∫ t

0
Wα(t, τ)g(τ)τ‖L∞x L2

t ([0,T ])

≤
Minkowski






∫ T

0

(∫ T

0

���tα/2D1/2
x Wα(t, τ)g(τ)

���2 dt
)1/2

dτ







L∞x

≤
by (3)

∫ T

0
‖Wα(0, τ)g(τ)‖L2

x
dτ = ‖g‖L1

t ([0,T ])L2
x

which gives (6).
To prove (7) we first observe that, by Minkowsky inequality,



tα/2D1/2

x

∫ t

0
Wα(t, τ)g(τ)dτ






L2
t ([0,T ])
≤

∫ T

0
‖tα/2D1/2

x Wα(t,0)Wα(0, τ)g(τ)‖L2
t ([0,T ])

dτ,

therefore(∫
Qβ





tα/2D1/2
x

∫ t

0
Wα(t, τ)g(τ)dτ





2

L2
t ([0,T ])

dx

)1/2

≤

[∫
Qβ

(∫ T

0
‖tα/2D1/2

x Wα(t)Wα(0, τ)g(τ)‖L2
t ([0,T ])

dτ
)2

dx

]1/2

≤
Minkowski

∫ T

0

(∫
Qβ

‖tα/2D1/2
x Wα(t,0)Wα(0, τ)g(τ)‖2L2

t ([0,T )]
dx

)1/2

dτ.

Then we apply the supβ∈Zn on both the RHS and the LHS of the previous inequality
and get
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sup
β∈Zn

(∫
Qβ





tα/2D1/2
x

∫ t

0
Wα(t, τ)g(τ)dτ





2

L2
t ([0,T ])

dx

)1/2

≤

∫ T

0
sup
β∈Zn

(∫
Qβ

‖tα/2D1/2
x Wα(t,0)Wα(0, τ)g(τ)‖2L2

t ([0,T ])
dx

)1/2

dτ

≤
by (4)

∫ T

0
‖Wα(0, τ)g(τ)‖L2

x (Rn)
dτ =

∫ T

0
‖g(τ)‖L2

x (Rn)
dτ,

which gives (7) and concludes the proof. �

We are almost ready to prove our well-posedness result, but first let us recall what
we mean by saying that the IVP (8) is locally well-posed.

Definition 1 We say that the IVP (8) is locally well-posed (l.w.p) in Hs(Rn) if for
any ball B in the space Hs(Rn) there exist a time T and a Banach space of functions
X ⊂ L∞([0,T],Hs(Rn)) such that, for each initial datum u0 ∈ B, there exists a unique
solution u ∈ X ⊂ C([0,T],Hs(Rn)) of the integral equation

u(x, t) = Wα(t)u0 +

∫ t

0
Wα(t, τ)|u|2ku(τ)dτ.

Furthermore themapu0 7→ u is continuous as amap fromHs(Rn) intoC([0,T],Hs(Rn)).

Proof (Proof of Theorem 3) The proof is based on the standard contraction argu-
ment. We summarize below the main steps of the proof. For further details we refer
the interested reader to [12].

Let us first assume that n = 1, and let us define the metric space X as

X := {u : [0,T] × R→ C; ‖tα/2D1/2+s
x u‖L∞x L2

t ([0,T ])
< ∞, ‖u‖L∞t ([0,T ])H s

x
< ∞},

which we equip with the distance

d(u, v) = ‖tα/2D1/2+s
x (u − v)‖L∞x L2

t ([0,T ])
+ ‖u − v‖L∞t ([0,T ]) ÛH s

x
+ ‖u − v‖L∞t ([0,T ])L2

x
,

where ÛHs
x stands for the homogeneous Sobolev space. We then consider the map

Φ : X → X, Φ(u) = Wα(t)u0 +

∫ t

0
Wα(t, τ)u|u|2k(τ)dτ,

and prove that it is a contraction on a ball of X , that is on BR := {u ∈ X; ‖u‖X ≤
R} ⊂ X for a suitable R.

By using the estimates in Theorem 2 and in Theorem 3 we get that

‖Φ(u)‖X ≤ 3‖u0‖H s
x
+ C1T ‖u‖2k+1

X ,

which, for R = 6‖u0‖H s
x
and T = 1

C1R2k , gives that Φ sends BR into itself. Now,
fixing R = 6‖u0‖H s

x
, and by using arguments similar to those used above, we can
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conclude that Φ is a contraction. Indeed, for all u, v ∈ BR, we have

‖Φ(u) − Φ(v)‖X ≤ C2T R2k ‖u − v‖X,

therefore, by choosing T such that T = min{ 1
C1R2k ,

1
C2R2k }, we obtain that Φ is a

contraction, and the result follows by the fixed point theorem.
Let us now assume that n > 1. In this case we define X to be the space

X := {u : [0,T] × Rn → C; |||tα/2Ds+1/2
x u|||T < ∞, ‖u‖L∞

[0,T ]H
s
x
< ∞},

where
||| · |||T = sup

β∈Zn
‖ · ‖L2

x (Qβ )L
2
t ([0,T ])

,

and

dX (u, v) = |||tα/2Ds1/2
x (u − v)|||T + ‖u − v‖L∞t ([0,T ]) ÛH s

x
+ ‖u − v‖L∞t ([0,T ])L2

x
.

Then, considering the map Φ as before but now defined on the new space X , we can
exploit the estimates in Theorem 2 and in Theorem 3 holding in the high dimensional
case to get the same estimates and properties as in the case n = 1. The result then
follows again by the fixed point theorem. For more details and explicit computations
see [12]. �

Remark 2 Let us remark that the methods applied above in the case Lα := Lα,0 can
also be applied to the case Lα,c = Lα,tαv , with v being a complex vector v ∈ Cn.

2.2 The class Lα,c

This section focuses on the study of the more general case Lα,c with c being not
necessarily identically zero (c . 0 in our notation). We stress that the results of this
subsection hold true in the case c ≡ 0 as well, and that in the latter case a direct
proof can be performed. However, due to the presence of the variable coefficients
c(t, x), whose properties will be stated soon (see Theorem 4), the strategy to be used
to analyze the problem for Lα,c is different than the one used before for Lα. The
key tools of our analysis will be the use of the pseudodifferential calculus and the
application of a lemma due to Doi in [7], that we shall call Doi’s Lemma, that we
recall in Lemma 2 in the Appendix.

We shall state in Theorem 4 below our result about the smoothing properties of
the solution of the IVP{

∂tu = itα∆xu + ic(t, x) · ∇xu + f (t, x),
u(0, x) = u0(x).

(10)
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Moreover, we will give in Theorem 5 and Theorem 6 local well-posedness results
for the IVP (10) when f = ±|u|2ku, k ≥ 1, and when f = ±tβ

∑n
j=1(∂x j u)u, with

β ≥ α > 0, respectively.

Theorem 4 Let u0 ∈ Hs(Rn), s ∈ R. Assume that, for all j = 1, ...,n, cj is such that
cj ∈ C([0,T],C∞

b
(Rn)) and there exists σ > 1 such that

|Im ∂
γ
x cj(t, x)|, |Re ∂γx cj(t, x)| . tα〈x〉−σ−|γ |, x ∈ Rn. (11)

Then, denoting by λ(|x |) := 〈x〉−σ , we have the following properties:

(i) If f ∈ L1([0,T]; Hs(Rn)) then the IVP (10) has a unique solution u ∈
C([0,T]; Hs(Rn)) and there exist positive constants C1,C2 such that

sup
0≤t≤T

‖u(t)‖s ≤ C1eC2(
Tα+1
α+1 +T )

(
‖u0‖s +

∫ T

0
‖ f (t)‖sdt

)
;

(ii) If f ∈ L2([0,T]; Hs(Rn)) then the IVP (10) has a unique solution u ∈
C([0,T]; Hs(Rn)) and there exist two positive constants C1,C2 such that

sup
0≤t≤T

‖u(t)‖2s +
∫ T

0

∫
Rn

tα
���Λs+1/2u

���2 λ(|x |)dx dt

≤ C1eC2(
Tα+1
α+1 +T )

(
‖u0‖

2
s +

∫ T

0
‖ f (t)‖2s dt

)
;

(iii) If Λs−1/2 f ∈ L2([0,T] ×Rn; t−αλ(|x |)−1dtdx) then the IVP (10) has a unique
solution u ∈ C([0,T]; Hs(Rn)) and there exist positive constants C1,C2 such that

sup
0≤t≤T

‖u(t)‖2s +
∫ T

0

∫
Rn

tα
���Λs+1/2u

���2 λ(|x |)dx dt

≤ C1eC2
Tα+1
α+1

(
‖u0‖

2
s +

∫ T

0

∫
Rn

t−αλ(|x |)−1
���Λs−1/2 f

���2 dx dt
)
.

Above we abbreviated the norm ‖ f ‖H s (Rn) =: ‖ f ‖s .

Theorem 5 Let Lα be such that condition (11) is satisfied. Then the IVP (10) with
f (t, x) = ±|u|2ku is locally well posed in Hs for s > n/2 and the solution satisfies
smoothing estimates.

Theorem 6 Let Lα be such that condition (11) is satisfied with σ = 2N (thus
λ(|x |) = 〈x〉−2N ) for some N ≥ 1, and let s > n+ 4N + 3 be such that s − 1/2 ∈ 2N.
Then, the IVP (10)with f = ±tβ

∑n
j=1(∂x j u)u, where β ≥ α > 0, is locally well posed

in Hs
λ := {u0 ∈ Hs(Rn); λ(|x |)u0 ∈ Hs(Rn)} and the solution satisfies smoothing

estimates.
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Remark 3 Let us stress that it is natural to require the coefficients cj of the first order
term to satisfy some decay conditions, usually called Levi conditions. Indeed such
kind of conditions were proved to be necessary to have the local well-posedness of
the linear IVP in the case α = 0. To be precise, it is enough to impose some decay on
Re ∂γx cj(t, x) only (for all j = 1, . . . ,n,) to conclude the local well-posedness of the
linear IVP. However, the additional condition on Im ∂

γ
x cj(t, x), for all j = 1, . . . ,n,

appears in order to get estimates with ”gain of derivatives”, namely smoothing
estimates, needed to deal with the nonlinear problem with derivative nonlinearities.

Remark 4 Notice that part (ii) and (iii) in Theorem 4 correspond to the weighted
homogeneous and inhomogeneous smoothing estimate for Lα,c with a gain of 1/2
and 1 derivative, respectively. When α = 0, these results coincide with the classical
ones for L0,c (see, for instance, [20] and [22]).

The proof of Theorem 4 is based on the results in Lemma 1 below. The proof of
Lemma 1, instead, relies deeply on the use of Lemma 2, also called Doi’s lemma.
The crucial result due to Doi in [7] is needed to define a new norm N , equivalent to
the Hs-Sobolev norm, which is used to perform the energy estimate from which the
smoothing estimates are derived. We explain below the way we use Doi’s lemma,
that is Lemma 2, to define N .

We apply Lemma 2 on the symbol aw := a = a2 + ia1 + a0 with a2(x, ξ) = |ξ |2

and a1 = a0 = 0. In this case conditions (B1) and (B2) of Lemma 2 are trivially
satisfied, while (A6) holds with q(x, ξ) = x · ξ〈ξ〉−1. Therefore, by Lemma 2 with
λ′(|x |) = C ′〈x〉−σ (see Remark 6), withC ′ to be chosen later, we get that there exists
p ∈ S0 and C > 0 such that (37) holds.

We then consider the pseudo-differential operator K with symbol K(x, ξ) =
ep(x,ξ)Λs , where Λs := 〈ξ〉s and p(x, ξ) is the symbol given by Doi’s lemma,
and define the norm N on Hs(Rn), equivalent to the standard one (see [22] for the
proof of the equivalence), as

N(u)2 = ‖Ku‖20 + ‖u‖
2
s−1, (12)

where ‖ · ‖s stands for the standard norm in the Sobolev space Hs(Rn).

With the norm N(·) in (12) at our disposal we can prove Lemma 1 from which
Therem 4 will follow. To prove Lemma 1 we employ the technique used in [22].

Lemma 1 Let s ∈ R, λ(|x |) := 〈x〉−σ , Pα := ∂t − itα∆x − ic(t, x) · ∇x , and
σ > 1 such that (11) holds. Then there exists C1,C2 > 0 such that, for all
u ∈ C([0,T]; Hs+2(Rn))

⋂
C1([0,T]; Hs(Rn)), we have
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sup
0≤t≤T

‖u(t)‖s ≤ C1eC2(
Tα+1
α+1 +T )

(
‖u0‖s +

∫ T

0
‖Pαu(t, ·)‖sdt

)
; (13)

sup
0≤t≤T

‖u(t)‖s ≤ C1eC2(
Tα+1
α+1 +T )

(
‖u(·,T)‖s +

∫ T

0
‖P∗αu(t, ·)‖sdt

)
; (14)

sup
0≤t≤T

‖u(t)‖2s +
∫ T

0

∫
Rn

tα
���Λs+1/2u

���2 λ(|x |)dx dt

≤ C1eC2(
Tα+1
α+1 +T )

(
‖u0‖

2
s +

∫ T

0
‖Pαu(t, ·)‖2s dt

)
; (15)

sup
0≤t≤T

‖u(t)‖2s +
∫ T

0

∫
Rn

tα
���Λs+1/2u

���2 λ(|x |)dx dt

≤C1eC2
Tα+1
α+1

(
‖u0‖

2
s+

∫ T

0

∫
Rn

t−αλ(|x |)−1
���Λs−1/2Pαu(t, ·)

���2dxdt
)
.(16)
�

Proof The proof is based on an enery estimate in terms of the norm N(·) in (12). We
recall that Pα := ∂t − itα∆x − ic(t, x) · ∇x , Dx = (Dx1, ...,Dxn ) := (−i∂x1, ...,−i∂xn ),
and that 〈·, ·〉 stands for the L2(Rn)-scalar product. We then consider

∂tN(u)2 = ∂t ‖Ku‖20 + ∂t ‖u‖
2
s−1 = I + I I,

and estimate I and I I separately.
We start by estimating term I I, for which we get

I I = ∂t ‖u‖2s−1 = 2Re〈Λs−1∂tu,Λs−1u〉 = 2Re〈Λs−1Pαu,Λs−1u〉

= −2Re〈Λs−1c(t, x) · Dxu,Λs−1u〉 + 2Re〈Λs−1 f ,Λs−1u〉

≤ Ctα‖u‖2s + 2Re〈Λs−1 f ,Λs−1u〉.

Now, since

2Re〈Λs−1 f ,Λs−1u〉 ≤ 2‖ f ‖s−1‖u‖s−1 ≤ CN( f )N(u) (17)

and

2Re〈Λs−1 f ,Λs−1u〉 = 2Re〈t−α/2λ(|x |)−1/2
Λ

s−1/2 f , tα/2λ(|x |)1/2Λs−3/2u〉

≤ ‖t−α/2λ(|x |)−1/2
Λ

s−1/2 f ‖20 + ‖t
α/2λ(|x |)1/2Λs−3/2u‖20

≤ 〈t−αλ(|x |)−1
Λ

s−1/2 f ,Λs−1/2 f 〉 + tαN(u)2, (18)

it follows that

I I ≤ CtαN(u)2 + C ′min{N( f )N(u); 〈t−αλ(|x |)−1
Λ

s−1/2 f ,Λs−1/2 f 〉}, (19)

with C and C ′ new suitable constants.
As for term I we have that
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∂t ‖Ku‖20 = 2Re〈∂tKu,Ku〉 = 2Re〈K∂tu,Ku〉

= 2Re〈KPαu,Ku〉 + 2Re〈K f ,Ku〉

= 2Re〈itα[K,∆x]u,Ku〉 + 2Re〈itα∆xKu,Ku〉︸                  ︷︷                  ︸
=0

− 2Re〈K b(t, x) · Dxu,Ku〉 + 2Re〈K f ,Ku〉

= 2Re〈itα[K,∆x]u,Ku〉 − 2Re〈[K, c(t, x) · Dx]u,Ku〉

− 2Re〈c(t, x) · Dx Ku,Ku〉 + 2Re〈K f ,Ku〉, (20)

therefore, in order to estimate I, it is crucial to prove suitable upper bounds for the
quantities 2Re〈itα[K,∆x]u,Ku〉 and 2Re〈[K, c(t, x) · Dx]u,Ku〉 in the the fifth line
of (20).

By using the pseudodifferential calculus we can compute the symbol of the
commutator [K, c(t, x) · Dx], which is an operator of order s, and get, thanks to the
properties of c (recall that c ∈ C∞

b
and is bounded, together with its derivatives in

space, by tαλ(|x |)), that

−2Re〈[K, b(t, x)Dx]u,Ku〉 ≤ Ctα‖u‖2s .

For more details about how to get to this estimate see Lemma 5.0.1 in [12].
For the term 2Re〈itα[K,∆x]u,Ku〉, once more by using the pseudodifferential

calculus, we have that [K,∆x](x,D) = [p,∆x]K(x,D) + rs(x,D), where rs is an
operator of order s, while p = p(x,D) is the operator of order 0 appearing in the
definition of the norm N(·).

These considerations lead to

(20) ≤ Ctα‖u‖2s+2Re〈(itα[p,∆x](x,D)−c(t, x)·Dx)Ku,Ku〉+|2Re〈itαrs(x,D)u,Ku〉|

≤ Ctα‖u‖2s + 2Re〈(itα[p,∆x](x,D) − c(t, x)Dx)Ku,Ku〉, (21)

where C is a new suitable positive constant.
Now we denote by Q(x,D) := itα[p,∆x](x,D) − b(t, x) · Dx the operator whose

symbol satisfies

Re Q(x, ξ) = Re
(
itα(−i){p,−|ξ |2}(x, ξ) − b(t, x) · ξ

)
+ r0

≤ −tα{p, |ξ |2}(x, ξ) + |Re b(t, x) · ξ | + r0

≤
by (37)

−C ′tαλ(|x |)|ξ | + C2tα + C0tαλ(|x |)|ξ | + C

≤ −Ctαλ(|x |)|ξ | + C2tα + C4

≤ −Ctαλ(|x |)(1 + |ξ |2)1/2 + C3tα + C4

= tα(−Cλ(|x |)(1 + |ξ |2)1/2 + C3) + C4,

where we chose C ′ (which is possible by Doi’s lemma, see Remark 6) in order to
have C0 − C ′ < 0.
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The property of the symbol of Q allow us to apply the sharp Gårding inequality
and to conclude that

2Re〈Q(x,D)Ku,Ku〉 ≤ −Ctα〈λ(|x |)Λ1Ku,Ku〉 + C3tα‖Ku‖20 + C4‖Ku‖20
≤ −Ctα〈λ(|x |)Λ1Ku,Ku〉 + C3tα‖u‖2s + C4‖u‖2s
≤ Ctα‖λ(|x |)1/2Λ1/2Ku‖20 + C3tα‖u‖2s + C4‖u‖2s , (22)

where C > 0 is a new suitable constant.
By plugging (22) in (21) we get

∂t ‖Ku‖0 ≤ CtαN(u)2+C ′N(u)2−C ′′tα‖λ(|x |)1/2Λ1/2Ku‖20 +C ′′′N( f )N(u). (23)

Finally, (19) and the equivalence of the norms ‖ · ‖s and N(·) (see [22] pag.390)
yield

∂tN(u)2 = ∂t ‖Ku‖2 + ∂t ‖u‖2s−1

≤ CtαN(u)2 + C ′N(u)2 − C ′′tα‖λ(|x |)1/2Λ1/2Ku‖20 + C ′′′N( f )N(u)

+ C3 min{N( f )N(u); 〈t−αλ(|x |)−1
Λ

s−1/2 f ,Λs−1/2 f 〉}, (24)
�

where the constants are (eventually) new suitable constants.
Estimate (24) is now the starting point to get (13), (14) and (15).

Proof of (13). From (24) we have

∂tN(u)2 ≤ C1(tα + 1)N(u)2 + C2N(u)N( f )

(again with C1 and C2 new constants), which gives

2∂tN(u) ≤ C1(tα + 1)N(u) + C2N( f )

and
∂t

(
2e−

1
2C1(t

α+1/(α+1)+t)N(u)
)
≤ C2e−

1
2C1(t

α+1/(α+1)+t)N( f ).

Hence, by integrating in time from 0 to t and using the equivalence of the norms
N(·) an ‖ · ‖s , (13) follows.

Proof of (14).The proof of (14) follows from (13) applied to the adjoint operator and
with u(t, ·) replaced by u(T − t, ·).

Proof of (15). Here we use the fact that there exists a pseudodifferential operator K̃
such that

I = K̃K + Ψr−1,

where Ψr−1 is a pseudodifferential operator with symbol r−1 of order −1 (see [22]
pag.390 for the proof of). This gives that
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‖λ(|x |)1/2Λs+1/2u‖0 ≤ ‖(λ(|x |)1/2Λ1/2)(ΛsK̃)Ku‖0 +O(N(u))

≤ ‖(ΛsK̃)(λ(|x |)1/2Λ1/2)Ku‖0 + cN(u) ≤ c
(
‖(λ(|x |)1/2Λ1/2)Ku‖0 + N(u)

)
, (25)

since [ΛsK̃, λ(|x |)1/2Λ1/2]KΛ1/2 is a pseudo-differential operator of order s. There-
fore, (24) and (25) yield

∂tN(u)2+C2〈tα/2λ(|x |)1/2Λs+1/2u, tα/2λ(|x |)1/2Λs+1/2u〉 ≤ C1(tα+1)N(u)2+C4N( f )2.

Now, integrating in time from 0 to t the previous inequality, using (13) and the
estimate

e
1
2C1(t

α+1/(α+1)+t)
∫ t

0
e−

1
2C1(s

α+1/(α+1)+s)〈sα/2λ(|x |)1/2Λs+1/2u, sα/2λ(|x |)1/2Λs+1/2u〉ds

≥

∫ t

0
〈sα/2λ(|x |)1/2Λs+1/2u, sα/2λ(|x |)1/2Λs+1/2u〉ds,

(15) follows (for further details see [12]).

Proof of (16). To prove (16) we exploit the following estimate

2Re〈K f ,Ku〉 = 2Re〈tα/2λ1/2
Λ

1/2K f , t−α/2λ−1/2
Λ
−1/2Ku〉 (26)

≤ c1ε‖tα/2λ1/2
Λ

s+1/2u‖20 + c2
1
ε
‖t−α/2λ−1/2

Λ
s−1/2 f ‖20 + c3tα‖u‖2s .

By using (25) and (26) in (24) and the equivalence of N(·) and ‖ · ‖s , we obtain

∂tN(u)2 + (c0 − c1ε)‖tα/2λ1/2
Λ

s+1/2u‖20 ≤ c3tαN(u)2 + c2
1
ε
‖t−α/2λ−1/2

Λ
s−1/2 f ‖20,

where cj , j = 0,1,2,3, are new suitable constants, and where ε > 0 can be chosen
in such a way that c0 − c1ε ≥ c > 0. Finally, integrating in time from 0 to t, and
arguing as in the proof of (15), the result follows. This concludes the proof. �

Proof of Theorem 4 Estimate (13) of Lemma 1 gives readly the uniqueness of the
solution. In fact, let u be a solution of the homogeneous IVP for Lα,c with initial
datum u0 = 0. Then, by (13) of Lemma 1, u = 0, which proves the uniqueness (even
in the general inhomogeneous IVP where f , 0 and u0 , 0).

As for the existence, it will follow by using density arguments.

Case 1: f ∈ S(Rn+1) and u0 ∈ S(R
n).

We consider the subspace E ⊂ L1([0,T]; H−s(Rn)

E = {P∗ϕ; ϕ ∈ C∞0 (R
n × [0,T))} = (∂t − itα∆x + b(t, x) · Dx)

∗(C∞0 (R
n+1))

and the linear functional
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`∗ : E → C, `∗(P∗ϕ) =
∫ T

0
〈 f , ϕ〉L2×L2 dt + 〈u0, ϕ(·,0)〉L2×L2 .

Now inequality (14) of Lemma 1 (applied to ϕ) with s replaced by −s gives, for
η = P∗ϕ and ϕ ∈ C∞0 (R

n × [0,T)),

|`∗(η)| ≤ ‖ f ‖(L1[0,T ];H s
x )

sup
t∈[0,T ]

‖ϕ‖H−sx
+ ‖u0‖H s

x
‖ϕ(0)‖H−sx

≤ eC(T
α+1/(α+1)+T )

(
‖ f ‖L1

t ([0,T ];H s
x )
+ ‖u0‖H s

x

)
‖η‖L1

t ([0,T ];H−sx )
,

which implies the continuity of `∗ on E . Then, by the Hahn-Banach theo-
rem we can extend `∗ on L1([0,T] : H−s(Rn)) and finally get the existence of
u ∈ L1([0,T]; H−s(Rn))∗ = L∞([0,T]; Hs(Rn)) such that

`∗(P∗ϕ) = 〈u,P∗ϕ〉L2×L2 =

∫ T

0
〈 f , ϕ〉L2×L2 dt + 〈u0, ϕ(·,0)〉L2×L2,

and thus Pu = f in the sense of distributions for 0 < t < T .
Notice that Pu D′

= f means that (∂t − itα∆x + b(t, x) · Dx)u
D′

= f (as dis-
tributions on C∞0 ([0,T) × R

n)). Therefore, since f ∈ S(Rn+1), we have that
∂tu ∈ (L∞[0,T) : Hs−2(Rn)), which gives u ∈ (C([0,T) : Hs−2(Rn)). We then
use the equation once more, that is ∂tu = itα∆x + b(t, x) · Dxu + f , and get, by
the same consideration, that u ∈ (C1[0,T) : Hs−4(Rn)) and u(x,0) = u0(x). Finally,
since u0 ∈ Hs(Rn), repeating the previous argument with s + 4 in place of s we
conclude that there exists a solution u of the IVP associated to (10) to which parts
(i)-(iv) of Lemma 1 apply.

Case 2: f ∈ L1([0,T]; Hs(Rn)) and u0 ∈ Hs(Rn).
In this case we take two sequences fj ∈ S(Rn+1), vj ∈ S(Rn) such that fj → f in
(L1([0,T]) : Hs(Rn) and vj → u0 in Hs(Rn).

By the arguments of case 1 we find a solution u j of (10) with fj and vj in place of
f and u0 respectively. Since u j satisfies (13) of Lemma 1, we have that u j is a Cauchy
sequence, therefore, passing to the limit, we get that u = limj→ u j is a solution of the
IVP with inhomogeneous term f and with initial datum u0 satisfying (14) of Lemma
1, which proves part (ii) of the theorem.

Case 3: f ∈ L2([0,T]; Hs(Rn)) and u0 ∈ Hs(Rn).
Here we proceed as in case 2 but with fj ∈ S(Rn+1) being such that fj → f in
(L2([0,T]); Hs(Rn). Under this hypothesis we obtain point (ii) of the theorem, that
is, it exists a solution u ∈ (C[0,T) : Hs(Rn)) satisfying (15) of Lemma 1.

Case 4: Λs−1/2 f ∈ (L2(Rn × [0,T]) : t−αλ(|x |)−1dxdt) and u0 ∈ Hs(Rn).
In this case it is possible to prove that there exists gj ∈ S(Rn+1) such that gj →
Λs−1/2 f in (L2(Rn) × [0,T] : t−αλ(|x |)−1dxdt). Applying once again the strategy
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used in case 1 with fj replaced by Λ−s+1/2gj in (16) of Lemma 1, and passing to the
limit, we finally obtain point (iii) of Theorem 4. �

As a consequence of Theorem 4 one gets the local well-posedness results stated
in Theorem 5 and in Theorem 6. We will not give a complete proof of these results
here, and we refer the interested reader to [12] for detailed proofs. However, we give
below a scketch of the proof listing the main ingredients of the argument.

Sketch of the proof of Theorem 5 As in the case c ≡ 0, the proof is based on the
standard contraction argument.

According to Theorem 4 we have the local well-posedness in Hs , s > n/2, for the
linear IVP (10) for a general function f satisfying the assumptions. We now write
the solution of (10) as

u(t, x) = Wα(t)u0 +

∫ t

0
Wα(t, τ) f (τ, x)dτ, (27)

where Wα(t, τ) is a new suitable two-parameter family of unitary operators repre-
senting the solution operator.

Because of the previous assumption, solving the IVP (10) with f = u|u|2k is
equivalent to find the solution of the integral equation

u(t, x) = Wα(t)u0(x) +
∫ t

0
Wα(t, τ)u|u|2k(τ, x)dτ.

Hence, as in the proof of Theorem 4, we look for the solution given by the fixed
point of the map

Φu0 (u) := Wα(t)u0 +

∫ t

0
Wα(t, τ)u|u|2kdτ,

defined on

Xs
T := {u : [0,T]×Rn → C; ‖u‖L∞t H s

x
< ∞,

(∫ T

0

∫
Rn

tαλ(|x |)|Λs+1/2u|2dx dt
)1/2

< ∞},

where, recall, λ(|x |) := 〈x〉σ , with σ > 1 being such that (11) holds. Notice that the
choice of the space Xs

T is dictated by the smoothing estimates we proved in Theorem
4. To conclude that Φu0 is a contraction on the space Xs

T , we apply the estimates
in Theorem 4 together with Sobolev embeddings and a few tecnical lemmas taken
from [22]. Finally, the application of the fixed point theorem then gives the result.
Notice that the solution will belong to the space Xs

T , and, consequently, will satisfy
smoothing estimates. �

Sketch of the proof of Theorem 6 Ther proof of this result follows by using the
same arguments as before. Here the contraction argument is performed on a different
space, that is, specifically, on the space
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Xs
T := {u : [0,T]×Rn → C; ‖u‖L∞t H s

x
<∞,

(∫ T

0

∫
Rn

tαλ(|x |)|Λs+1/2u|2dx dt
)1/2

< ∞,

‖λ(|x |)−1u‖
L∞t H

s−2N−3/2
x

< ∞},

where

‖u‖2Xs
T
= ‖u‖2L∞t H s

x
+

∫ T

0

∫
Rn

tαλ(|x |)|Λs+1/2u|2dx dt + ‖λ(|x |)−1u‖2
L∞t H

s−2N−3/2
x

.

We repeat the assumption that the solution of (10) is given in terms of a solution
operator Wα(t, s), so we look for the solution of the nonlinear problem as the fixed
point of a map Φu0 as before, but now with f = tβ

∑n
j=1 ∂ξj u|u|

2, with β ≥ α. We
then use the smoothing estimates in Lemma 1, more precisely (16), togheter with
Lemma 6.0.1 in [12] and some technical lemmas taken form [22], and conclude
the result via the standard contraction argument. Once again the solution satisfies
smoothing estimates. For the complete proof see [12]. �

Let us remark once again that the previous results still hold true in the case c ≡ 0.
Moreover, more general nonlinearities can be considered in the IVP for Lα,c , that is,
for instance, nonlinearities containing polynomials in u, in the derivatives of order
one of u, and in their complex conjugates. The specific choices we made for the
nonlinear terms were to keep the exposition simpler and shorter.

We finally conclude by saying that the smoothing and well-posedness results
presented here are very likely still true for some generalizations of Lα,c , that is for
equations containing first order terms in ū and with time degeneracies different than
tα (for more details about these generalizations see Section 7 in [12]).

3 Strichartz estimates and local well-posedness for Lb

This section is devoted to the study of the class Lb as in (2), for which, as we
shall show below, local weighted Strichartz estimates hold true. Additionally, we
will employ such estimates to prove the local well-posedness of a semilinear IVP
associated with Lb , where the form of the nonlinear term is dictated by the inho-
mogenous Strichartz estimate at our disposal. The results of this section were proved
in [11] where results other than local weighted Strichartz estimates are proved. In
particular, in [11] also global weighted Strichartz estimates are derived, as well as
homogeneous smoothing estimates for time-degenerate operators of any order by
means of comparison principles. Our choice to treat the local estimates only is due
to the fact that these inequalities, because of their different form with respect to the
global counterpart, are the ones to be used to get the well-posedness of the semilinear
IVP. For more deatails and results about the class Lb we refer the interted reader to
[11].

The semilinear IVP we will study in this section is



18 Serena Federico{
∂tu + ib′(t)∆u = µ|b′(t)| |u|p−1u,
u(0, x) = u0(x),

(28)

with p > 1 suitable, µ ∈ R, and b satisfying the following condition (H):

(H) b ∈ C1(R), b(0) = b′(0) = 0, and, for any T̃ < ∞, ]{t ∈ [0, T̃], b′(t) = 0} =
k < ∞.

Since we are interested in the time-degenerate case, we assume k ≥ 1 in condition
(H), that is, b(0) = b′(0) = 0. However, our results are applicable in the nondegen-
erate case b′(t) , 0, t ∈ [0,T], as well.

Notice that, as for Lα, the solution operator for Lb (giving the solution of the
homogeneous IVP at time t starting at time s) can be computed explicitely, and is
given, for s < t, by

ei(b(t)−b(s))∆us(x) := W(t, s)us(x) :=
∫ t

s

eix ·ξ−i(b(t)−b(s)) |ξ |
2
ûs(ξ)dξ,

which coincides with the Schrödinger group ei(t−s)∆ when b(t) = t. Moreover,
Duhamel’s principle still holds true in this case.

As we will make use of the so called admissible pairs, we recall this notion here
for completeness.

Given n ≥ 1 we shall call a pair of exponents (q, p) admissible if 2 ≤ q, p ≤ ∞,
and

2
q
+

n
p
=

n
2
, with (q, p,n) , (2,∞,2).

With this definition in mind we can now state the main results of this section.

Theorem 7 (Local weighted Strichartz estimates)
Let b ∈ C1([0,T]) be such that it satisfies condition (H). Then, on denoting

by Lq
t Lp

x := Lq([0,T]; Lp(Rn)), we have that for any (q, p) admissible pair, with
2 < q, p < ∞, the following estimates hold

‖|b′(t)|1/qeib(t)∆ϕ‖Lq
t L

p
x
≤ C‖ϕ‖L2

x (Rn)
, (29)

‖eib(t)∆ϕ‖L∞t L2
x
≤ ‖ϕ‖L2

x (Rn)
, (30)

‖|b′(t)|1/q
∫ t

0
|b′(s)|ei(b(t)−b(s))∆g(s)ds‖Lq

t L
p
x
≤ C‖|b′ |1/q

′

g‖
L
q′

t L
p′

x
, (31)

and
‖

∫ t

0
|b′(s)|ei(b(t)−b(s))∆g(s)ds‖L∞t L2

x
≤ C‖|b′ |1/q

′

g‖
L
q′

t L
p′

x
, (32)
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with C = C(k,n,q, p).

Remark 5 Observe that, as opposed to the classical statement of Strichartz estimates,
that is in the case when b(t) = t, we have estimates involving only one admissible
pair (q, p), and not two arbitrary admissible pairs (q, p) and (q̃, p̃). However, this is
enough to derive the following well-posedness result.

Theorem 8 Let 1 < p < 4
n + 1 and b ∈ C1([0,+∞)) satisfying condition (H). Then,

for all u0 ∈ L2(Rn), there exists T = T(‖u0‖2,n, µ, p) > 0 such that there exists a
unique solution u of the IVP (28) in the time interval [0,T] with

u ∈ C([0,T]; L2(Rn))
⋂

Lq
t ([0,T]; Lp+1

x (Rn))

and q = 4(p+1)
n(p−1) . Moreover the map u0 7→ u(·, t), locally defined from L2(Rn) to

C([0,T); L2(Rn)), is continuous.

Proof of Theorem 7 Estimate (30) is immediate and follows by the unitaity of
eib(t)∆. As for (31), we consider 0 = T0 ≤ T1 < T2 < ... < Tk ≤ Tk+1 = T such that
b′(Tj) = 0 for j = 1, ...k, so that b is strictly monotone on [Tj,Tj+1], and we have

‖|b′(t)|1/qeib(t)∆ϕ‖Lq
t L

p
x
=

©­«
k∑
j=0
‖|b′(t)|1/qeib(t)∆ϕ‖q

Lq ([Tj ,Tj+1];L
p
x )

ª®¬
1/q

≤

k∑
j=0
‖|b′(t)|1/qeib(t)∆ϕ‖Lq ([Tj ,Tj+1];L

p
x )

≤
b(t)=t′

k∑
j=0
‖eit∆ϕ‖Lq ([T̃j ,T̃j+1];L

p
x )
≤ (k + 1)C(n,q, p)‖ϕ‖L2

x
,

which proves the estimate.
To prove (29) we split the time interval again, and get

‖|b′(t)|1/q
∫ t

0
|b′(s)|ei(b(t)−b(s))∆g(s)ds‖Lq

t L
p
x

≤

k∑
j=0
‖|b′(t)|1/q

∫ t

0
|b′(s)|ei(b(t)−b(s))∆g(s)ds‖Lq

t ([Tj ,Tj+1];L
p
x )
. (33)

Now, by using the changes of variables t ′ = b(t) and s′ = b(s), each therm in the
sum above satisfies
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‖|b′(t)|1/q
∫ t

0
|b′(s)|ei(b(t)−b(s))∆g(s)ds‖Lq

t ([Tj ,Tj+1];L
p
x )

(34)

≤ ‖

∫ b(t)

0
ei(t

′−s′)∆g̃(s′)ds′‖Lq

t′
([T̃j ,T̃j+1];L

p
x )

= ‖

∫ b(T )

0
ei(t

′−s′)∆ χ(s′)g̃(s′)ds′‖Lq

t′
([T̃j ,T̃j+1];L

p
x )
,

where g̃ = g ◦ b−1, T̃j = b(Tj) and χ = 1[0,b(t)]. We then analyze the last quantity,
and, by using the properties of the Schrödinger group eit∆, we have

‖

∫ b(T )

0
ei(t

′−s′)∆ χ(s′)g̃(s′)ds′‖Lq

t′
([T̃j ,T̃j+1];L

p
x )

≤ ‖

∫ b(T )

0
‖ei(t

′−s′)∆ χ(s)g̃(s′)‖Lp
x

ds′‖Lq

t′
([T̃j ,T̃j+1])

≤ ‖

∫ b(T )

0

1
|t ′ − s′ |n(1/2−1/p) ‖ χ(s

′)g̃(s′)‖
L
p′

x
ds′‖Lq

t′
([T̃j ,T̃j+1])

≤
H-L-S

C(n,q, p)‖g̃‖
L
q′

t′
([T̃j ,T̃j+1];L

p′

x )
≤

t=b−1(t′)
C(n,q, p)‖ |b′ |1/q

′

g‖
L
q′

t ([Tj ,Tj+1];L
p′

x )
,

where H-L-S stands for the application of the Hardy-Littlewood-Sobolev inequality.
Summarizing, we have proved that

‖|b′(t)|1/q
∫ t

0
|b′(s)|ei(b(t)−b(s))∆g(s)ds‖Lq

t ([Tj ,Tj+1];L
p
x )

. ‖|b′ |1/q
′

g‖
L
q′

t ([Tj ,Tj+1];L
p′

x )
. ‖|b′ |1/q

′

g‖
L
q′

t ([0,T ];L
p′

x )
,

which, together with (33), gives

‖|b′(t)|1/qeib(t)∆ϕ‖Lq
t L

p
x
≤ (k + 1)C(n,q, p)‖ |b′ |1/q

′

g‖
L
q′

t L
p′

x
,

and thus (31).
We are now left with the proof of (32). By using the fact that eib(t)∆ is unitary,

we have

‖

∫ t

0
|b′(s)|ei(b(t)−b(s))∆g(s)ds‖2

L2
x
= ‖

∫ t

0
|b′(s)|e−ib(s))∆g(s)ds‖2

L2
x

=

∫
Rn

(∫ t

0
|b′(s)|e−ib(s)∆g(s)ds

) (∫ t

0
|b′(s′)|e−ib(s′)∆g(s′)ds′

)
dx

≤

∫ t

0
‖|b′(s)|1/q

′

g(s)‖
L
p′

x
‖|b′(s)|1/q

∫ t

0
|b′(s′)|ei(b(s)−b(s

′))∆g(s′)ds′‖Lp
x

ds
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≤
by (31)

(k + 1)C(n,q, p)‖ |b′ |1/q
′

g‖2
L
q′

t L
p′

x

,

which, in particular, gives (32). This concludes the proof . �

Proof of Theorem 8 The proof is standard and based on the fixed point argument.
Here the space where the contraction argument is performed is

XT := {u ∈ C([0,T]; L2(Rn)
⋂

Lq
t ([0,T]; Lp+1

x (Rn)); ‖u‖XT < ∞}

where
‖u‖XT := ‖u‖L∞t L2

x
+ ‖|b′(t)|1/qu‖

L
q
t L

p+1
x
,

with Lq
t Lp

x := Lq([0,T]; Lp
x (R

n)), and the map Φu0 is

Φu0 (u) := eib(t)∆u0 + µ

∫ t

0
|b′(s)|ei(b(t)−b(s))∆ |u|p−1u ds.

Then we take q = 4(p+1)
n(p−1) so that (q, p + 1) is an admissible pair, and we prove that

the map above is a contraction on a suitable ball of XT (with sufficiently small radius
depending on ‖u0‖L2

x
) by using the estimates in Theorem 7. Finally, the application

of the fixed point theorem gives the reslt. For a detailed proof see [11]. �

We conclude this section by giving a few examples of operators to which Thoerem
8 for the IVP (28) applies.

Example 1 Lb = L tα+1
α+1
= ∂t + itα∆, α ≥ 0;

Example 2 Lb = Let−t−1 = ∂t + i(et − 1)∆;
Example 3 Lb = Lcos(t) := ∂tu − i sin(t)∆.

Notice that in the first two examples we have only one degenerate point, that is at
time t = 0. Example 3, instead, is more interesting, since we have k ≥ 1 degenerate
points on any finite time interval [0,T]. Since Theorem 8 applies to all the cases
listed above, this gives that, if the time of existence T in Theorem 8 is large enough,
then in Example 3 we will cross more than one degenrate point.
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Appendix

We use this section to give the statement of a key result used in this paper, that is,
specifically, that of the so called Doi’s lemma (Lemma 2.3 in [7]). But first, let us
make clear the conditions needed to apply the aforementioned lemma.
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In the sequel we will use the notations used by Doi in [7], so we shall denote by
(B1), (B2) and (A6) the following conditions:

Let aw(t, x, ξ) be theWeyl symbol of a pseudo-differential operator A = A(t, x,Dx)

(see [16]). We shall say that aw := a satisfies (B1), (B2) and (A6) if

(B1) a(t, x, ξ) = ia2(x, ξ) + a1(t, x, ξ) + a0(t, x, ξ), where a2 ∈ S2
1,0 is real-valued

and aj ∈ S j
1,0, for j = 0,1;

(B2) |a2(x, ξ)| ≥ δ |ξ |2 with x ∈ Rn, |ξ |2 ≥ C, and δ,C > 0;

(A6) There exists a real-valued function q ∈ C∞(Rn × Rn) such that, with
Cαβ,C1,C2 > 0,

|∂αξ ∂
β
x q(x, ξ)| ≤ Cαβ 〈x〉〈ξ〉−|α |, x, ξ ∈ Rn,

Ha2 q(x, ξ) = {a2,q}(x, ξ) ≥ C1 |ξ | − C2, x, ξ ∈ Rn,

where we denoted by S j
1,0 = S j

ρ=1,δ=0 =: S j the standard class of pseudo-differential
symbols of order j, and by {·, ·} the Poisson bracket.

Lemma 2 (Doi [7], Lemma 2.3)
Assume (B1), (B2) and (A6). Let λ(s) be a positive non increasing function in

C([0,∞)). Then

1. If λ ∈ L1([0,∞)) there exists a real-valued symbol p ∈ S0 and C > 0 such that

Ha2 p ≥ λ(|x |)|ξ | − C, x, ξ ∈ Rn; (35)

2. If
∫ t

0 λ(τ)dτ ≤ C log(t + 1)+C ′, t ≥ 0, C,C ′ > 0, then there exists a real-valued
symbol p ∈ S0

1 (log〈ξ〉) such that

Ha2 p ≥ λ(|x |)|ξ | − C1 log〈ξ〉 − C2, x, ξ ∈ Rn. (36)

Remark 6 We remark that, by taking λ′(|x |) = C ′λ(|x |) in Doi’s lemma, where C ′

is any positive constant and λ is as in Lemma 2, then we get that there exists a
real-valued symbol p ∈ S0 and a constant C > 0 such that

Ha2 p ≥ C ′λ(|x |)|ξ | − C, x, ξ ∈ Rn. (37)
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