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Highlights 29 

● Coagulation ability of milk after pasteurization depends on raw milk composition  30 

● More acidic raw milk shows better cheese-making properties after pasteurization 31 

● Raw milk β-lactoglobulin unfavorably affects curd firming time of pasteurized milk 32 

● Rennet coagulation time of pasteurized milk can be predicted from raw milk spectra 33 
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Abstract  34 

Milk coagulation properties (MCP) worsens after heat treatment, however the  specific 35 

mechanisms responsible have been scarcely explored. In this study, 100 milk samples were 36 

available to i) identify the raw milk characteristics responsible for unfavorable changes in MCP 37 

after pasteurization and ii) develop infrared prediction models for pasteurized milk MCP using 38 

spectra of raw samples. The loss in coagulation ability due to pasteurization was lower when raw 39 

milk had optimal MCP, higher acidity, greater protein content and lower β-lactoglobulin content. 40 

For the four MCP, the trait measured before pasteurization (raw milk) was the most important 41 

variable influencing the corresponding trait after heating. For example, rennet coagulation time 42 

(RCT), κ-casein, protein, lactose and pH of raw milk significantly affected pasteurized milk RCT 43 

(P<0.001). For curd firmness, each unit (mm) corresponded to 58.65 g/100 g κ-casein. In general, 44 

raw milk β-lactoglobulin unfavorably affected pasteurized milk MCP (e.g., the estimate of curd 45 

firming time was 81.39 g/100 g). Results suggested that only the prediction model of RCT 46 

(pasteurized milk) achieved an exploitable coefficient of determination in cross-validation (0.66). 47 

Our outcomes are relevant for dairy plants manufacturing cheese from pasteurized standardized 48 

milk and could support producers’ decision-making. 49 

Keywords: rennet coagulation time; casein; whey protein; heat treatment; cheese; dairy industry  50 
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1. Introduction 51 

Pasteurization is a common practice in the dairy industry, and is primarily intended for the 52 

reduction of the milk pathogenic bacteria load, which has to be below the admissible level. Heat 53 

treatment translates into an increased shelf-life of milk and limits proliferation and activity of 54 

microorganisms detrimental for cheese processing. Common milk pasteurization techniques 55 

comprise heating at either 63°C for 30 min (low-temperature long-time, LTLT), 72°C for 15 s 56 

(high-temperature short-time, HTST) or any other equivalent thermal treatment (Stumbo, 1973; Liu 57 

et al., 2020). Such temperatures were selected to achieve a 5-log reduction in the presence of the 58 

heat resistant pathogen Coxiella brunetii detectable in raw milk (Kelly et al., 2005; FIL-IDF, 2019). 59 

Cheeses commercially available can be produced from either unpasteurized or pasteurized milk. 60 

Some of those entitled with the Protected Designation of Origin label, like Grana Padano and 61 

Parmigiano Reggiano (Mammi et al., 2018; Buonaiuto et al., 2021; Cavallini et al., 2021), are 62 

produced from the former, whereas Cheddar, mozzarella pasta filata and American soft artisanal 63 

cheeses are produced from the latter (Knoll, 2005). 64 

Heating, including the pasteurization process, is known to alter milk composition and impair the 65 

technological traits (Anema et al., 2007; Blecker et al., 2012; Britten & Giroux, 2022; Hyslop, 66 

2003; Lucey, 1995), causing a deterioration of the milk coagulation properties (MCP). Various 67 

MCP have been described in the literature, but rennet coagulation time (RCT, min), curd firmness 68 

(a30, mm) and curd firming time (k20, min) are known to be the most important for describing the 69 

milk cheese-ability. The deterioration of MCP observed in heat-treated milk is likely due to the 70 

denaturation of β-lactoglobulin (β-LG) and its subsequent complexation with κ-casein (κ-CN) 71 

through a sulphydril-disulphide interaction (Fox et al., 2017). In this way, rennet enzymes are 72 

sterically prevented from hydrolyzing κ-CN (Dalgleish, 1993; Guinee, 2021). In addition, β-LG 73 

binds to para-κ-CN cysteine residues during hydrolysis, reducing the capability of casein micelles 74 

to aggregate (Creamer et al., 2004). Heat treatments are also responsible for the demineralization of 75 

casein micelles, which furthermore minimizes the aggregation capability (Fox, 1981; Touhami et 76 
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al., 2022). As such, less favorable MCP, e.g. longer RCT and weaker curd, are expected when 77 

dealing with pasteurized rather than raw milk (Yu et al., 2009).  78 

The HTST pasteurization has a greater impact on MCP than LTLT. In fact, the extent of the 79 

detrimental effects on both the enzymatic and non-enzymatic phases of rennet-induced coagulation 80 

is determined by the intensity of heating. For instance, even short (15 s) treatments at a temperature 81 

greater than 75°C s cause notable damages to the cheese-making properties of milk (Fox et al., 82 

2017).  83 

The interest to further improve milk MCP has grown in recent years, both within the scientific 84 

community and among manufacturers. Phenomics can be considered a large scale acquisition of 85 

novel phenotypes to be studied and validated for several purposes, including for the definition of 86 

new breeding programs (Cole et al., 2020). However, the validation path requires collection of 87 

reference data for new phenotypes, which can be extremely expensive and cumbersome. Clotting 88 

parameters like RCT, a30 and k20 need to be determined through the reference analysis, 89 

lactodynamography, ideally using milk samples from both bulk tank and individual cows 90 

(Kübarsepp et al., 2005). Lactodynamography consists in the analysis of milk thromboelastography 91 

and provides various descriptors of coagulation speed and curd syneresis. Mid-infrared 92 

spectroscopy (MIRS) has proven very useful in the collection of data of interest in dairy species, 93 

including cattle. Beyond determining milk-related traits, spectral data can be exploited to assess and 94 

monitor the cows’ health status. Nowadays, MIRS is the routine technology employed in DHI 95 

programs, as it is fast, easy to implement and relatively inexpensive. In addition, spectral data can 96 

be stored for later retrospective analyses (Gengler et al., 2016). Predictive models have been 97 

proposed in the past for a large scale acquisition of MCP data in cattle, sheep, goat and buffalo; in 98 

some countries, like Italy, such models are used to establish detailed milk payment systems or to 99 

estimate animals’ breeding value (Cassandro et al., 2008; De Marchi et al., 2014; El Jabri et al., 100 

2019). All above-mentioned predictive models rely exclusively on raw milk spectra and reference 101 

MCP data. However, a considerable amount of dairy industries manufacture cheeses from 102 
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pasteurized milk and knowing the potential coagulative performance of the pasteurized milk in 103 

advance, i.e., before heating (raw), would thus allow them to optimize milk standardization and 104 

processing. The objective of the present study was to understand which components in raw milk 105 

influence the MCP of the pasteurized milk. Particularly, we aim to i) quantitatively determine 106 

compositional traits of raw milk, including the detailed protein profile, that are reported to be 107 

involved in the MCP loss after pasteurization, ii) identify the main variable responsible for the  108 

deterioration of MCP when milk is subjected to heat treatment, and iii) develop MIRS prediction 109 

equations for pasteurized milk MCP using the spectra collected on the untreated (raw) samples. 110 

 111 

2. Material and methods 112 

2.1. Sampling and milk composition analysis 113 

Milk was collected from 100 cows at different lactation stages, i.e. from 5 to 410 days after 114 

calving, by trained personnel during the morning milking. Cows with lactations from 1 to 8 were 115 

represented. Cows belonged to Simmental (40), Jersey (30), Holstein (20) and Rendena (10) breeds 116 

and were reared in 4 single-breed farms located in Northern Italy under intensive or semi-intensive 117 

farming conditions. Sampling took place between July and December 2021. 118 

The tubes used for milk collection contained 0.05% (w/w) of preservative (Bronopol; 2-bromo-119 

2-nitropropan-1,3-diol; Knoll Pharmaceuticals, Nottingham, UK) to prevent microbial spoilage. 120 

After filling, samples were transported (4°C) to the Department of Agronomy, Food, Natural 121 

resources, Animals and Environment of the University of Padua (Legnaro, Italy) within 2 h. For 122 

each sample, various aliquots were obtained: 50 mL was sent to the milk laboratory of Breeders 123 

Association of Veneto Region (ARAV, Padua, Italy) for MIRS spectra collection and gross 124 

composition determination; 10 mL was used to determine raw milk MCP; 10 mL underwent heat 125 

treatment to subsequently assess MCP in the pasteurized matrix; and 0.5 mL was kept for the 126 

determination of raw milk protein fractions via HPLC. The MIRS device MilkoScan FT7 (FOSS 127 

A/S, Hillerød, Denmark) provided information on content of fat, protein, lactose, and casein and 128 



9 
 

pH. According to the ISO 21543:2020 (ISO, 2020), samples were warmed at 37°C and 129 

homogenized by gentle inversion before analysis. The sample intake was set to 5 mL and the time 130 

required for a single analysis was 6 s. The somatic cell count (SCC) was also determined using a 131 

Fossomatic 7 DC (FOSS A/S, Hillerød, Denmark) following the ISO 13366-2:2006 (ISO, 2006) 132 

and was mathematically converted into somatic cell score (SCS) to normalize the distribution of the 133 

data. 134 

2.2. Milk coagulation properties 135 

Assessment of MCP at 60 min was performed in parallel for the raw and the pasteurized aliquot 136 

of milk through lactodynamographic analysis (MaPe System, Firenze, Italy). The LTLT 137 

pasteurization was carried out based on Fox et al. (2015), i.e. 63°C for 30 min in a water bath under 138 

mild agitation (Yu et al., 2009). The protocol proposed by Vigolo et al. (2022) was followed for the 139 

lactodynamographic analysis; in brief, milk was dispensed in the wells according to the scheme 140 

depicted in Fig. 1 and the whole plate was thereafter heated (35°C). 200 μL of a commercial calf 141 

rennet solution (Naturen Plus 215, Chr Hansen, Hørsholm, Denmark) diluted in distilled water 142 

(1.2:100 v/v) was added to each well to induce the coagulation. Measurements were taken for 60 143 

min after rennet addition and the traits recorded included RCT, a30, k20 and the curd firmness 144 

measured at 2 times the RCT (a2r). By definition, RCT is the time between the addition of rennet 145 

and coagulation initiation, k20 is the time necessary to reach a 20 mm firmness of the curd, and a30 146 

measures the consistency of the curd at 30 min of analysis. 147 

 148 

2.3. Analysis of protein fractions 149 

Quantification of α-CN s2, α-CN s1, β-CN, κ-CN, α-LA and β-LG was performed on a small 150 

representative aliquot of raw milk by using the HPLC station Agilent 1260 Infinity II LC (Agilent 151 

Technologies, Santa Clara, CA) equipped with a quaternary pump (Agilent 1260 Infinity II, 152 

G7111B), a diode array Detector (Agilent 1260 Infinity II, G7115A), a column thermostat (Agilent 153 

1260 Infinity II, G7116A), and an auto-sampler (Agilent 1260 Infinity II, G7129A). A reversed-154 
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phase analytical column C8 (Zorbax 300SB-C8 RP, Agilent Technologies) preceded by a pre-155 

column (300SB-C8 Guard Cartridges 4.6 × 12.5 mm, 4/PK, Agilent Technologies), was used for 156 

separation. Before injection, the samples were prepared as described in Bobe et al. (1998): briefly, 157 

500 μL of milk were added to an aqueous solution of guanidine (Gdn) HCl (6 M GdnHCl, 0.1 m 158 

bisTris buffer, 5.37 mm sodium citrate, and 19.5 mm DTT) in a 1:1 ratio (v/v). Each sample was 159 

shaken for 10 s, incubated at room temperature for 1 h, and thereafter centrifuged at 13,000 g for 10 160 

min at room temperature. The aqueous phase was diluted in the proportion 1:3 (v/v) with a solution 161 

containing 4.5 M GdnHCl in water, acetonitrile and trifluoroacetic acid (100:900:1). The 162 

chromatographic conditions were those described by Bonfatti et al. (2008), i.e. gradient elution was 163 

carried out with a mixture of solvent A (0.1% TFA in water) and solvent B (0.1% TFA in 164 

acetonitrile). Separations were performed with the following gradients: linear gradient from 33 to 165 

35% B in 5 min, from 35 to 37% B in 4 min, from 37 to 40% B in 9 min, from 40 to 41% B in 4 166 

min, isocratic elution at 41% B for 5.5 min, linear gradient from 41 to 43% B in 0.5 min, and from 167 

43 to 45% B in 8 min. Before the injection of the subsequent sample, the column was re-168 

equilibrated at 33% B for 8 min. The flow rate was 0.5 mL/min, the column temperature was kept at 169 

45°C, the detection was made at a wavelength of 214 nm and the injection volume was 5 μL 170 

(Bonfatti et al., 2008). Agilent OpenLab 2 CDS software (Agilent Technologies, Santa Clara, SA) 171 

was used for data acquisition and analysis. The identification of single protein fractions was carried 172 

out using external standards of α-CN, β-CN, κ-CN, α-LA (Merck, Darmstadt, DE) and β-LG (BOC 173 

Sciences, NY, USA), and the quantification of each chromatographic peak was obtained with 5-174 

point calibration curves (coefficient of determination ≥ 0.99). 175 

 176 

2.4 Statistical analysis 177 

Variables determining MCP of pasteurized milk were identified using the GLMSELECT 178 

procedure of SAS software v. 9.4 (SAS Institute Inc., Cary, NC). The explanatory variables imputed 179 

for RCT, a30, k20 and a2r were: the correspondent MCP measured in the raw milk (both the first and 180 
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the second power), gross composition traits and all the protein fractions expressed as g/100 g of 181 

total protein. The stepwise selection algorithm was the chosen selection method, with the Akaike 182 

Information Criterion (AIC) used as selection/exclusion criterion; the selection criterion of the final 183 

model was the adjusted coefficient of determination. Selection algorithm was refitted 1,000 times 184 

on 80% of randomly selected samples and the variables selected in the final model were those 185 

included in at least 10% of refitted models. The final output consisted in: intercept, average and SD 186 

of variables regression estimates, first and third quartile of estimates, and variable inclusion rate, i.e. 187 

rate of variables appearing in refitted models. Finally, for each MCP trait, the selected variables 188 

were refitted to the dependent variable (RCT, a30, k20 or a2r of the pasteurized samples) using a 189 

multiple linear regression through the REG procedure of SAS, in order to assess the significance of 190 

each covariate (selected variable), the estimates, and the standard error of estimates. 191 

 192 

2.5 Spectral collection and chemometric analysis  193 

Although milk spectra were collected in the window between 900 and 5,000 cm
-1

, every 3.858 194 

cm
-1

, prediction models were developed using only part of the whole spectral region. In fact, only 195 

wavelengths belonging to intervals that the manufacturer refers to as “good spectrum” (FOSS A/S, 196 

Hillerød, DK) were kept to exclude regions associated with water-related noise and poor signal-to-197 

noise ratio. 450 spectral variables in the intervals 964.5 to 1,562.5 cm
−1

, 1,720.7 to 2,291.7 cm
−1

 198 

and 2,415.1 to 2,970.7 cm
−1

 were available for each sample. 199 

In order to improve the linear relationship between the spectra and reference values, statistical 200 

procedures and mathematical pretreatments were applied to the milk spectrum. Prediction equations 201 

were built using a modified partial least squares regression analysis (WinISI III v. 1.60; Foss and 202 

Infrasoft International LLC, State College, PA) through a 5-fold cross-validation. Several 203 

combinations in terms of both scattering correction (no correction, None; detrend, Det; standard 204 

normal variate, SNV; SNV + Det; and standard multiplicative scatter correction, MSC) and 205 

mathematical treatment (0,0,1,1; 1,4,4,1; 1,8,8,1; 2,5,5,1; and 2,10,10,1) were tested. The 4 digits 206 
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defining the mathematical treatment indicate: number of the derivative, gap used for derivative 207 

calculation, data points in the first smoothing, and data points in the second smoothing, 208 

respectively. The number of latent variables included in the model were selected according to van 209 

der Voet (1994). 210 

Before each regression, spectral data points were evaluated for global Mahalanobis distance 211 

(GH) and those with GH > 3 were excluded. Hereafter, potential outliers were removed using the T-212 

outlier test (Soyeurt et al., 2012) available in the WinISI software (Foss, Hillerød, Denmark), by 213 

setting the critical value to 3. Both the modified partial least squares regression and the outlier 214 

determination were iterated three times and the best prediction equation was chosen based on the 215 

standard error of cross-validation (SECV). The standard error (SEC) and the coefficient of 216 

determination in calibration (R
2
C) as well as the coefficient of determination (R

2
) in cross-validation 217 

(R
2

CV) were reported to evaluate the model performance. 218 

 219 

3. Results & discussion 220 

3.1. Overview of milk traits  221 

Descriptive statistics of all milk parameters available are summarized in Table 1. Overall, the 222 

average and SD of gross composition traits and pH were in line with multi-breed studies carried out 223 

in Italy (Gottardo et al., 2017; Benedet et al., 2020) and other countries (Visentin et al., 2017; 224 

Frizzarin et al., 2021). The SCS averaged 2.38 and was characterized by a large coefficient of 225 

variation (81.11 %), in accordance with previous studies (Costa et al., 2019; Franzoi et al., 2020). 226 

The minimum, median and maximum SCC were 5 000, 55 500 and 6 077 000 cells/μL, 227 

respectively, suggesting that collected samples were representative of different udder health 228 

conditions (Gill et al., 1990; Franzoi et al., 2020). Casein fractions and concentration of whey 229 

proteins (g/100 g of total protein) revealed that the total protein content was mostly given by two 230 

fractions, the α-CN s1 and the β-CN fractions (Holt et al., 2013). These were also characterized by 231 

the lowest variability compared to the other fractions, with a CV of 6.13 and 10.65%, respectively. 232 
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Such low phenotypic variability is in agreement with Sanchez et al. (2019) who investigated protein 233 

fractions predicted via MIRS. In that study, MIRS models used for protein fractions were 234 

characterized by a moderate to good accuracy, with R
2

V ranging from 0.59 to 0.92. The contribution 235 

of α-CN s1 (33%) and β-CN (31%) to total protein content of Sanchez et al. (2019) is similar to the 236 

contribution seen in the present study: 27% and 30%, respectively. The same can be said for the 237 

contribution (15.5%) of the two whey proteins, which was equal to 16.5% in Sanchez et al. (2019).  238 

Considering protein titers expressed in relation to volume (mg/mL of milk), average values 239 

reported in Table 1 are similar to those of Niero et al. (2016) who investigated casein fractions of 240 

114 cows belonging to Holstein, Brown Swiss and Jersey breed. The amount of whey proteins, 241 

however, was slightly higher compared to previous studies; indeed, β-LG and α-LA averaged 3.71 242 

and 1.30 mg/mL in Simmental cows (De Marchi et al., 2009) and 2.7 and 1.1 mg/mL in Jersey cows 243 

(Eskildsen et al., 2016). Nevertheless, results in Table 1 are similar to those reported by Frizzarin et 244 

al. (2021) for Irish cows: α-CN s2 (3.67 g/L, CV = 26%), α-CN s1 (14.09 g/L, CV = 17%), β-CN 245 

(12.80 g/L, CV = 17%), κ-CN (5.77 g/L, CV = 25%), α-LA (1.12 g/L, CV = 27%) and β-LG variant 246 

A (2.49 g/L, CV = 47%) and variant B (2.45 g/L, CV = 69%). In that study, the authors assessed the 247 

milk protein profile of cows belonging to various breeds via HPLC and determined MCP using the 248 

Formagraph (FOSS A/S, Hillerød, Denmark). As regards the MCP, Frizzarin et al. (2021) obtained 249 

descriptive statistics similar to the current study, with a  mean equal to 20.81 min, 5.82 min and 250 

32.24 mm for RCT, k20 and a30, respectively. Moreover, Costa et al. (2019b) and Niero et al. (2021) 251 

reported similar statistics for MIRS-predicted traits related to coagulation ability. For instance, in 252 

Niero et al. (2021) the RCT averaged 21.64 min using multi-breed data. In the paper of Costa et al. 253 

(2019b), RCT and k20 of Holstein cows averaged 23.25 and 6.07 min, respectively. In that case, CV 254 

of MCP were smaller than those observed in the present study, which may likely be due to the 255 

larger sample size (>120,000 records) and to the presence of just a single breed. On the other hand, 256 

a30 differed from previous results obtained by Costa et al. (2019a), De Marchi et al (2007) and 257 

Niero et al. (2021) using traits predicted via MIRS, but were instead highly similar to results 258 
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reported by Frizzarin et al. (2021) and Zendri et al. (2017) for traits measured with the reference 259 

instrument. Using a database of samples from Holstein, Brown Swiss, Simmental, Rendena and 260 

Alpine Grey breeds reared in 15 farms located in Italian mountain areas, Zendri et al. (2017) 261 

reported an average a30 of 33.6 mm. Overall, slight discrepancies between the present study and 262 

literature are attributable to the limited amount of data (100 samples) and to the relative 263 

contribution of each breed to the database. Milk a2r has often been measured with the Formoptic, a 264 

device that provides the measurement in Firmness Index (FI); El Jabri et al. (2019) found values 265 

ranging from 13.35 to 29.04 FI, with a mean of 22.86 FI (CV = 11.74%). In the paper of Sanchez et 266 

al. (2019), the a2r was predicted through an equation developed using Formoptic measurements as 267 

reference data (R
2

V = 0.69) and obtained an a2r average of18.9 FI with a SD of 1.80.  268 

The MCP of pasteurized milk were less favorable compared to those of raw milk (Table 1; Fig. 269 

2). However, for some samples it was not possible to determine all MCP within the time frame (60 270 

min) of the analysis. The deterioration observed could therefore somehow have been 271 

underestimated. In particular, some samples did not reach a curd firmness of 30 mm within the 60 272 

min resulting in missing data points for the a30. On average, the absolute difference between raw and 273 

pasteurized samples was 7.19 min and 6.54 min for RCT and k20, respectively. Moreover, 274 

pasteurization had an adverse effect on firmness-related traits, with a decrease of 13.02 mm and 275 

10.31 mm for a30 and a2r, respectively. Casiraghi et al. (1989) reported longer RCT and slower 276 

coagulation rate for pasteurized milk and retentates derived from ultrafiltration, compared to their 277 

raw counterpart. Most of the studies that demonstrated a deterioration of MCP after heat treatment 278 

were conducted using higher temperatures and/or longer durations compared to conventional and 279 

commercial pasteurization treatments used in the field. Consequently, their results are not suitable 280 

for a direct comparison with findings reported in the present study (Ustunol & Brown, 1985; 281 

Anema et al., 2007). Blecker et al. (2012) demonstrated that milk heated to 60°C for 20 min had 282 

longer gelation time (0.7 min and 1.6 min at 30 and 40°C gelation temperature, respectively) 283 
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compared to raw milk. Moreover, compared to raw milk, the maximum firming rate of heated milk 284 

was 13 and 47% lower at 30°C and 40°C gelation temperature, respectively (Blecker et al., 2012). 285 

 286 

3.2. Raw milk variables selected 287 

The most informative variables selected by the algorithm to explain the pasteurized milk MCP 288 

are reported in Table 2, Table 3, Table 4 and Table 5. For all the MCP, the specific trait itself 289 

determined in raw milk was selected by the algorithm as being greatly relevant for determining its 290 

corresponding value in the pasteurized samples (Fig. 2).  291 

 292 

3.2.1 RCT 293 

The RCT of pasteurized milk was primarily influenced by the RCT measured in raw milk. The 294 

proposed regression model resulted in a Lin’s concordance correlation coefficient (CCC) of 0.87 295 

(Lin, 1989) with an R
2
 of 0.88. The Lin’s CCC provides information about the concordance 296 

between a predicted and a reference (gold standard) trait. In order of importance, the other 297 

influencing variables were lactose content, protein content, pH and κ-CN, with the latter being 298 

selected in only 17.8% of the resampling iterations (Table 2). In fact, the effect of κ-CN was not 299 

significant in the subsequent fitted regression (P = 0.188). This confirmed findings of previous 300 

publications by Marziali & Ng-Kwai-Hang (1986) and Politis & Ng-Kwai-Hang (1988) who 301 

demonstrated that κ-CN concentration does not have a significant effect on RCT in raw milk. 302 

Nevertheless, literature has shown that that κ-CN and β-LG interact during heating, causing a 303 

reduction in the ability of the milk to coagulate. The presence of κ-CN in just 17.8% of the variable 304 

selection iterations together with the not significant P-value found in regression (P=0.188; Table 2) 305 

may suggest that future studies would benefit from a larger sample size to increase statistical power 306 

of the study. This would allow a better understanding of the behavior of κ-CN in pasteurized milk 307 

and thus disclose the relationship between κ-CN and RCT. 308 
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All the other selected variables showed a significant P-value in the multiple linear regression for 309 

RCT. The desired values are those in the negative direction, thus raw milk with higher protein 310 

content and lower lactose content had shorter/better RCT after pasteurization. This was also 311 

demonstrated in Guinee et al. (1996) and is important for cheese producers who rely on pasteurized 312 

milk. In fact, findings indicate that proper standardization adjustments of protein content at tank 313 

level (raw milk) could compensate the inevitably longer RCT. By studying the effect of processing 314 

procedures like heat treatment and mechanical stress on MCP, Casiraghi et al. (1989) observed that 315 

pasteurization was the main milk treatment responsible for longer RCT. The lactose content shows 316 

low variability in bovine milk, especially in standardized conditions, like bulk tank in industrial 317 

dairy plants. Nevertheless, in this study the raw milk lactose content was one of the main 318 

determinants of the RCT of pasteurized milk, with greater concentrations being related to 319 

longer/worse RCT. In cows, both greater lactose content and better MCP were observed in milk 320 

secreted by healthy mammary glands (Costa et al., 2019a, 2019b) which is in contrast with results 321 

observed in this study. Although the mechanisms that make lactose relevant in RCT after heating 322 

deserve a more thorough investigation, two potential explanations may be considered: i) the 323 

outcome is an artefact due to the small sample size and the low variability of lactose content, ii) 324 

during heat treatment, the isomerization of lactose -coupled with its interaction with certain milk 325 

components- could make the starting raw milk lactose concentration particularly relevant for RCT 326 

of heat-treated milk. The latter seems a reliable hypothesis, as specific lactose-derived compounds 327 

such as lactulose and furosine are detectable exclusively in heat-treated milk. Lactulose is the 328 

product of lactose isomerization, while furosine represents the first stable product of the Maillard 329 

reaction (Mendoza et al., 2005; van den Oever and Mayer, 2021). Lactulose, for example, can be 330 

used as an indicator of the level of heat treatment to which the milk was subjected (Olano et al., 331 

1989). In addition, the concentration of both lactose and minerals in the starting raw milk directly 332 

determines the amount of lactulose produced during the thermal treatment (Olano et al., 1989; van 333 

den Oever and Mayer, 2021). Based on Fox et al. (2015), treatments at temperatures greater than 334 
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100°C result in lactose degradation along with the liberation of its organic compounds, followed by 335 

a decrease in pH. Further investigations may reveal the exact dynamics that link raw milk lactose 336 

and pasteurized milk RCT.  337 

Finally, the pH of the raw milk had an effect on the RCT after pasteurization (Table 2). In 338 

particular, more acidic raw milk samples were those presenting a shorter RCT after heat treatment. 339 

A greater milk acidity is generally in favor of MCP due to the concentration of desirable salts, like 340 

Ca
2+

 (Fox et al., 2015) and the intrinsic ability of low pH to increase the heat stability of milk 341 

(Miller & Sommer, 1940; Rose, 1962). This is in agreement with Ménard et al. (2005) who 342 

demonstrated that raw milk pH is one of the factors responsible for differences in RCT before and 343 

after pasteurization of reconstituted milk. In particular, the difference in RCT between raw and 344 

pasteurized milk was smaller if the starting milk pH was lower, i.e. more acidic. Having a lower pH 345 

at pasteurization stabilizes the κ-CN interaction with casein micelles, reducing migration of κ-CN to 346 

the whey phase (Ménard et al., 2005).  347 

 348 

3.2.2 Other MCP 349 

According to Table 3, the a30 of pasteurized milk can be predicted from various raw milk traits, 350 

namely a30 (squared), κ-CN, α-CN s1, β-CN, whey proteins, lactose, SCS and pH. The model of a30 351 

was characterized by a Lin’s CCC of 0.84 and an R
2 

of 0.72. Although the most important variables 352 

in terms of inclusion rate were a30 (squared) and whey proteins, the multiple linear regression 353 

revealed that only the former was a significant covariate factor for the targeted trait. Similarly, only 354 

a few variables among the total selected showed a significant effect on the k20 in regression (Table 355 

4). In order of inclusion rate, the k20-related variables were protein content, α-CN s2, α-LA and β-356 

LG (Lin’s CCC = 0.73, R
2 

= 0.58). Similarly, raw milk β-LG had a significant and negative effect 357 

also on the a2r (Table 5) and the other significant covariate found for this MCP was the squared raw 358 

milk a2r (Lin’s CCC = 0.83, R
2 

= 0.70). The undesired effect of raw milk β-LG on the coagulation 359 

ability of pasteurized milk has previously been discussed by Kannan & Jennes (1961) and current 360 
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results support the hypothesis that β-LG exerts its detrimental effect by binding to para-κ-CN 361 

cysteine residues, reducing casein micelles aggregation rate (Creamer et al., 2004). Overall, whey 362 

proteins measured in raw milk were important for all the MCP, suggesting that high or low 363 

concentrations determine a difference in the coagulation ability. As an example, elevated 364 

concentrations of α-LA in the raw matrix were associated with a more desirable a30 (Table 3) and 365 

k20 (Table 4) after pasteurization. As regards the β-LG, a lower concentration in the raw sample 366 

resulted in a better a2r (Table 5) with an inclusion rate of 91.4%; concurrently, β-LG was also 367 

selected as an explaining variable for a30 (Table 3) and k20 (Table 4) in the negative direction.  368 

In general, for all MCP, the selected variables highlight the importance of supplying dairy 369 

factories with raw milk of good technological aptitude. 370 

 371 

3.3.MIRS prediction  372 

Table 6 shows the prediction performance of MIRS for MCP using spectra collected on the raw 373 

matrix, and the scatter plots of reference and the predicted values for both raw and pasteurized milk 374 

are reported in Fig. 3. Based on the outcomes, the coagulation ability of pasteurized milk can be 375 

predicted with an accuracy sufficient for screening purposes (Grelet et al., 2020). The only 376 

exception is given by k20, which was not predictable using the raw milk spectral data, having an 377 

R
2

CV of 0.26. In both milks, RCT was the trait with the best R
2
CV, equaling to 0.64 and 0.66 prior 378 

and post pasteurization, respectively. Overall, the MIRS predictive ability for pasteurized milk 379 

MCP mirrors the predictive ability of the raw milk (Table 6). On a routine basis, MCP prediction 380 

equations are used for raw milk in Italy and their accuracy only allows for a rough screening 381 

(Visentin et al., 2016). In Visentin et al. (2016), lower accuracies were achieved: R
2

CV of 0.55, 0.56 382 

and 0.59 for k20, a30 and RCT, respectively. On the other hand, by using lactodynamography as the 383 

gold standard, De Marchi et al. (2013) reported greater R
2

CV compared to the present study: 0.72 384 

(k20), 0.70 (a30) and 0.76 (RCT).  385 
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Given the accuracies
 
presented in Table 6, predicted and reference values were expected to show 386 

a diverging distribution. As reported in previous research (e.g., Costa et al., 2021), an MIRS-387 

predicted trait can be scarcely correlated with its reference at the phenotypic level. This is 388 

particularly true for difficult-to-measure phenotypes like MCP, whose prediction accuracy tends to 389 

be moderate to low.  390 

 391 

4. Conclusion 392 

Regression coupled with prior variable selection allowed for the identification of raw milk traits 393 

responsible for the reduction in pasteurized milk coagulation ability. Findings revealed that raw 394 

milk technological properties, pH, total protein content and detailed protein fractions were 395 

important factors to consider when assessing the detrimental effect of heating on MCP. The raw 396 

milk delivered to the dairy factory by farmers must be of high quality to preserve the technological 397 

ability and maintain favorable MCP after pasteurization. Out of the four MCP traits, only RCT had 398 

reliable prediction accuracy (coefficient of determination in cross-validation = 0.66) and can thus be 399 

predicted in advance using the raw milk spectra. This study provides new insights into the 400 

deterioration of cheese-making properties of milk following heat treatment. Such novel insights are 401 

of great interest for dairy plants manufacturing cheese from pasteurized milk as having knowledge 402 

of the MCP of pasteurized milk in advance is useful for defining proper strategies and to support 403 

decision-making about the incoming raw milk. In perspective, efforts should be made to develop 404 

more robust prediction models using bulk milk data ,considering both HTST and LTLT 405 

pasteurization protocols available.  406 
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Table 1 

Descriptive statistics
a
 of milk composition traits, protein profile, and coagulation properties. 

Trait
b
 N Mean SD CV, % Minimum Maximum 

Raw milk 

Gross composition 

 Fat (%) 100 4.65 1.51 32.52 2.24 11.23 

 Protein (%) 100 3.63 0.44 12.26 2.78 5.08 

 Lactose (%) 100 4.73 0.21 4.45 4.03 5.23 

 SCS 100 2.38 1.93 81.11 -1.32 8.93 

 pH 100 6.57 0.08 1.26 6.24 6.79 

Protein fractions (mg/mL) 

 α-CNs2 100 5.76 1.41 24.48 3.25 11.37 

 α-CNs1 100 11.82 1.98 16.78 8.30 19.04 

 β-CN 100 13.25 2.80 21.10 1.61 23.25 

 κ-CN 100 6.25 1.33 21.24 3.19 10.61 

 α-LA 100 1.71 0.26 15.32 1.23 2.50 

 β-LG 100 5.01 1.09 21.67 2.00 7.62 

Protein fractions (g/100g) 

 α-CNs2 100 13.18 2.72 20.60 7.49 30.31 

 α-CNs1 100 27.00 1.65 6.13 23.67 35.83 

 β-CN 100 30.11 3.21 10.65 4.28 35.03 

 κ-CN 100 14.25 1.85 12.96 7.41 18.29 

 α-LA 100 3.95 0.62 15.76 2.62 5.72 

 β-LG 100 11.55 2.31 19.97 4.47 16.98 

Coagulation properties 

 RCT (min) 94 20.46 8.53 41.68 6.75 50.63 

 k20 (min) 87 6.41 3.88 60.52 1.75 21.50 

 a30 (mm) 83 30.86 13.22 42.83 1.00 51.90 

 a2r (mm) 78 37.65 7.32 19.43 17.64 51.00 

Pasteurized milk 

Coagulation properties 

 RCT (min) 92 27.65 12.38 44.75 8.50 59.00 

 k20 (min) 65 12.95 7.83 60.47 2.13 36.00 

 a30 (mm) 62 17.84 11.31 63.38 1.00 47.00 

 a2r (mm) 61 27.34 8.30 30.37 12.70 43.10 
a 
N: number of samples; SD: standard deviation; CV: coefficient of variation. 

b
SCS: somatic cell 

score, α-CNs1: α-casein s1; α-CNs2: α-casein s2; β-CN: β-casein; κ-CN: κ-casein; α-LA: α-

lactalbumin; β-LG: β-lactoglobulin; RCT: rennet coagulation time; k20: curd-firming rate; a30: curd 

firmness; a2r: curd firmness at two times the rennet coagulation time.
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Table 2  

Variables selected by the stepwise algorithm explaining variability of rennet coagulation time of pasteurized milk and multiple linear regression 

output. 

Trait
a
 

Stepwise variable selection 

r
c
 

 
Multiple linear regression 

Estimate
b
 Effect 

inclusion 

rate (%) 

 
Estimate SE

d
 P-value 

Average SD q1 median q3 
 

Intercept 143.80 21.36 131.89 144.01 156.49 100.0   143.69 39.75 <0.001 

Raw milk             

RCT (min)  1.38 0.04 1.36 1.38 1.41 100.0 0.91*  
 

1.39 0.06 <0.001 

κ-CN (g/100g) -34.18 12.70 -42.28 -33.69 -25.43 17.8 0.02 
 

-34.31 25.86 0.188 

Protein (%) -4.06 0.50 -4.36 -4.06 -3.74 99.9 -0.06 
 

-4.07 1.09 <0.001 

Lactose (%) 10.58 1.64 9.52 10.53 11.68 100.0 -0.03 
 

10.54 2.66 <0.001 

pH -26.58 3.64 -28.95 -26.68 -24.41 99.9 -0.22*   -26.52 6.32 <0.001 
a
 RCT: rennet coagulation time; κ-CN: κ-casein.

b 
SD: standard deviation; q1: first quartile; q3: third quartile. 

c  
r:

 
Pearson correlation (*P<0.05) with 

pasteurized milk RCT. 
d
 SE: standard error of the estimate. 
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Table 3  

Variables selected by stepwise algorithm explaining the variability of curd firmness of pasteurized milk and multiple linear regression output. 

Trait
a
 

Stepwise variable selection 

r
c
 

 
Multiple linear regression 

Estimate
b
 Effect 

inclusion 

rate (%) 

 
Estimate SE

d
 P-value 

Average SD q1 median q3 
 

Intercept -115.72 49.06 -147.43 -115.17 -85.81 100.0   -114.33 89.73 0.208 

Raw milk             

a30* a30 (mm
2
)  0.01 0.00 0.01 0.01 0.01 99.5 0.80* 

 
0.01 0.00 <0.001 

κ-CN (g/100g) 60.21 33.33 39.83 59.98 79.90 25.4 -0.09 
 

58.65 54.94 0.291 

α-CNs1 (g/100g) 44.53 37.81 19.14 42.16 69.05 21.1 0.19 
 

43.89 71.75 0.543 

β-CN (g/100g) -39.43 29.36 -57.73 -38.74 -20.24 12.9 0.09 
 

-38.93 61.09 0.527 

α-LA (g/100g) 282.24 131.36 210.44 284.40 363.79 50.5 -0.02 
 

280.77 181.19 0.127 

β-LG (g/100g) -85.60 36.70 -108.84 -84.16 -62.13 47.8 -0.22 
 

-84.41 58.21 0.153 

Lactose (%) -7.95 3.11 -9.92 -7.79 -5.84 11.4 0.02 
 

-8.01 5.85 0.177 

SCS -0.37 0.29 -0.52 -0.33 -0.17 16.4 -0.09 
 

-0.38 0.47 0.426 

pH 21.58 6.91 16.72 21.66 26.41 30.6 0.08   21.45 14.43 0.143 
a
 a30: curd firmness; α-CNs1: α-casein s1; β-CN: β-casein; α-LA: α-lactalbumin; β-LG: β-lactoglobulin; SCS: somatic cell score.

b 
SD: standard 

deviation; q1: first quartile; q3: third quartile. 
c
 r:

 
Pearson correlation (*P<0.05) with pasteurized milk a30; SE: standard error of the estimate. 
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Table 4 

Variables selected by stepwise algorithm explaining the variability of curd firming time of pasteurized milk and multiple linear regression output. 

Trait
a
 

Stepwise variable selection 

r
c
 

 
Multiple linear regression 

Estimate
b
 Effect 

inclusion 

rate (%) 

 
Estimate SE

d
 P-value 

Average SD q1 median q3 
 

Intercept 13.55 11.16 7.12 14.83 20.66 100.0   14.90 14.25 0.300 

Raw milk             

k20 (min)  2.50 1.06 1.88 2.47 3.14 60.8 0.63* 
 

2.37 1.92 0.221 

k20*k20
 
(min

2
)  -0.03 0.09 -0.07 -0.03 0.03 39.3 0.63* 

 
-0.02 0.17 0.906 

α-CNs2 (g/100g) 101.18 23.33 87.07 101.74 117.06 77.5 0.13 
 

99.20 39.66 0.015 

α-LA (g/100g) -337.48 81.24 -391.87 -341.73 -282.12 73.0 0.05 
 

-341.68 151.27 0.028 

β-LG (g/100g) 80.69 19.63 68.55 80.66 93.25 63.6 0.14 
 

81.39 34.34 0.021 

Fat (%) 0.47 0.40 0.19 0.39 0.74 17.3 0.12 
 

0.42 0.54 0.435 

Protein (%) -6.49 1.49 -7.52 -6.85 -5.78 93.7 -0.54*   -6.60 1.86 <0.001 
a
k20: curd firming rate; α-CNs2: α-casein s2; α-LA: α-lactalbumin; β-LG: β-lactoglobulin.

b 
SD: standard deviation; q1: first quartile; q3: third 

quartile. 
c  

r:
 
Pearson correlation (*P<0.05) with pasteurized milk k20. 

d
 SE: standard error of the estimate. 
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Table 5  

Variables selected by stepwise algorithm explaining the variability of curd firmness at two times the rennet coagulation time of pasteurized milk and 

multiple linear regression output. 

Trait
a
 

Stepwise variable selection 

r
c
 

 
Multiple linear regression 

Estimate
b
 Effect 

inclusion 

rate (%) 

 
Estimate SE

d
 P-value 

Average SD q1 median q3 
 

Intercept 27.76 3.91 25.14 27.31 30.24 100.0  
 

27.45 7.38 <0.001 

Raw milk             

a2r
*
a2r (mm

2
)  0.01 0.00 0.01 0.01 0.01 95.5 0.81* 

 
0.01 <0.01 <0.001 

α-CNs2 (g/100g) -41.27 24.05 -55.56 -40.06 -24.89 14.8 -0.11 
 

-40.39 36.65 0.275 

β-LG (g/100g) -87.48 15.18 -97.07 -87.33 -77.38 91.4 -0.21 
 

-87.37 32.49 0.001 

Fat (%) -0.68 0.27 -0.85 -0.66 -0.50 34.4 -0.20 
 

-0.65 0.47 0.168 
a
 a2r: curd firmness at two times the rennet coagulation time; α-CNs2: α-casein s2; β-LG: β-lactoglobulin.

b 
SD: standard deviation; q1: first quartile; 

q3: third quartile. 
c  

r:
 
Pearson correlation (*P<0.05) with pasteurized milk a2r. 

d
 SE: standard error of the estimate.
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Table 6 1 

Spectral treatments and fitting statistics
a
 of the Fourier-Transformed mid-infrared spectroscopy 2 

calibrations developed for the four coagulation properties. 3 

Trait
b
 Correction Math treatment

c
 N SEC R

2
C SECV R

2
CV 

Raw milk 

 

RCT (min) SNV 2,5,5,1 83 3.43 0.79 4.53 0.64 

 

k20 (min) None 2,5,5,1 69 1.20 0.73 1.55 0.54 

 

a30 (mm) MSC 2,5,5,1 76 6.85 0.74 9.02 0.54 

 

a2r (mm) D 0,0,1,1 66 3.39 0.76 3.74 0.70 

Pasteurized milk 

 

RCT (min) None 2,5,5,1 79 5.41 0.79 6.89 0.66 

 

k20 (min) D 1,8,8,1 52 4.02 0.51 4.89 0.26 

 

a30 (mm) D 1,4,4,1 49 6.09 0.69 8.04 0.45 

  a2r (mm) SNV 1,4,4,1 56 3.64 0.80 4.80 0.65 
a 

SNV: standard normal variate; MSC: multiplicative scatter correction; D: detrending; N: number 4 

of samples; SEC: standard error in calibration; R
2

C: coefficient of determination in calibration; 5 

SECV: standard error in cross-validation; R
2

CV: coefficient of determination in cross-validation. 
b
 6 

RCT: rennet coagulation time, k20: curd firming rate, a30: curd firmness, a2r: curd firmness at two 7 

times the rennet coagulation time. 
c
 Digits indicate number of the derivative, gap used for derivative 8 

calculation, data points in the first smoothing, and data points in the second smoothing, 9 

respectively. 10 

 11 

  12 
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Figures captions 13 

Fig. 1. Representation of the plate used for lactodynamographic analysis of raw (R) and pasteurized 14 

(P) milk samples (n = 5 at each run). 15 

 16 

Fig. 2. Diagrams obtained from the lactodynamographic analysis of three bovine milk samples A) 17 

after and B) before pasteurization. 18 

 19 

Fig. 3. Scatter plot of measured and predicted A) rennet coagulation time (RCT), B) curd firming 20 

time (k20), C) curd firmness (a30), and D) curd firmness at 2 times RCT (a2r) in raw (●) and 21 

pasteurized (■) milk. 22 


