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On some variable coefficient Schrödinger
operators on R×Rn and R× T2
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Abstract. We discuss some time-degenerate Schrödinger equations
on R × Rn and on R × T2. We give weighted Strichartz estimates
and local well-posedness results for the corresponding semilinear IVP
(initial value problem). On R×T2 we also consider some nondegener-
ate space-variable coefficient Schrödinger equations and give a result
about the local well-posedness of the cubic IVP.
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1 Introduction

In the present paper we will give an overview of some recent results con-
cerning variable coefficient Schrödinger operators in two different settings,
namely on Rt × Rnx and on Rt × T2

x, where T2 stands for the two dimen-
sional torus, which can be both rational and irrational. The operators we
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will be considering are of the following type:

Lb := i∂t + b′(t)∆, (t, x) ∈ R× Rn,
Lg := i∂t + g′(t)∆, (t, x) ∈ R× T2,

La1,a2 := i∂t + a1(x1)∂2
x1 + a2(x2)∂2

x2 , (t, x) ∈ R× T2,

where b ∈ C1(R) and has a countable number of critical points, g ∈ C1(R)

and is strictly monotone, while a1, a2 ∈ C∞(T) and are strictly positive.
In addition, the functions b and g, as well as their first order derivatives b′

and g′, will be assumed to vanish at time t = 0. This assumption is made
in order to allow Lb and Lg to have a degeneracy at time t = 0, which is
the case of interest to us. Notice that, due to the properties of b, Lb can
have finitely many degenerate points, while Lg is degenerate at time t = 0

only. For each of these operators we will study the associated semilinear
IVP (initial value problem) by means of the so called Strichartz estimates,
estimates which are fundamental to characterize and prove well-posedness
results for semilinear problems.

To the best of our knowledge the investigation of the class Lb with
b(t) = tα first appeared in [7], where the local well-posedness of the as-
sociated linear IVP was proved in Sobolev and Gevrey spaces. The same
class, that is with b(t) = tα, was studied by the author and G. Staffilani in
[10], where weighted smoothing estimates were proved and used to obtain
local well-posedness results for NLIVPs (nonlinear IVPs) with polynomial
and with derivative nonlinearities. As for the more general class Lb, it
was first treated by the author and M. Ruzhansky in [9], where weighted
homogeneous smoothing estimates have been derived for time-degenerate
Shrödinger operators of any order by means of comparison principles (see
also [22] for comparison principles). In the same work, the authors proved
weighted Strichartz estimates for the class Lb. These fundamental esti-
mates were used to prove a local well-posedness result for a suitable SLIVP
(semilinear IVP).

It is important to mention that in the Euclidean setting operators like
Lb are studied in the context of Bose-Einstein condensations and nonlinear
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optics, and that soliton solutions of different kind have been obtained de-
pending on the time-dependent coefficients appearing in the equation (see
[6, 18, 28, 29]). The classes Lg and La1,a2 , instead, have been considered
by the author and G. Staffilani in [11]. From the analysis of these classes
it came to light that for some variable coefficient Shrödinger operators
on R × T2 sharp local-well-posedness results are still valid. Here sharp
means that the local well-posedness holds true with the minimum regular-
ity requirement on the initial datum, which, in accordance with Bourgain’s
sharp L4-Strichartz estimate on T2 and related results (see [2]), amounts
to ask to the initial datum to lie in the Sobolev space Hε(T2), with ε > 0.
We will give a detailed presentation of these results below in the dedicated
section. There particular attention will be given to the construction of
suitable Bourgain spaces needed to carry out the study of Lg.

As already mentioned above, the key role in the analysis of SLIVPs
for dispersive equations, such as, in this case, the Shrödinger equation, is
played by Strichartz estimates. These estimates were studied by several
authors both in the Euclidean and in the compact manifold setting, and,
more recently, also on stratified Lie groups. Their power lies in the infor-
mation they give about the solution of the LIVP (linear IVP) and in the
fact that they indicate the functional space where a contraction argument
can be performed to prove well-posedness results for SLIVPs. We refer
the interested reader to [12, 14, 15, 16, 17, 25, 27] and references therein
for results in the Euclidean case for general dispersive equations with con-
stant coefficients. In the variable coefficients case, specifically when the
Laplacian is replaced by its compactly supported perturbation, Strichartz
estimates were obtained in [24], while for asymptotically flat perturbations
we refer to [19, 21]. In the general compact Riemannian manifold setting
Strichartz estimates and related well-posedness results for the correspond-
ing SLIVP were first studied in [4] (see also [13]). However, the sharp
result in [2] on T2, that is the sharp L4-Strichartz estimate on T2, is not
covered by the general result in [4], which, instead, was proved to be sharp
on spheres. For other results on manifolds we refer the interested reader
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to [13, 19, 20, 23], while for results on two-step stratified Lie groups see
[1].

In this paper we focus on the classes presented above. We shall show
suitable Strichartz estimates for Lb and Lg in the proper settings. These
inequalities will be employed to get local well-posedness results for some
SLIVPs. For La1,a2 , instead, we apply a strategy allowing to use the re-
sults in [2, 3] to get sharp local well-posedness results for space-variable
coefficient operators. The interest for these classes of operators is moti-
vated by the presence of the time degeneracy in the first two classes Lb
and Lg, and by the nondegenerate space-variable coefficients in the third
class La1,a2 .

We conclude this introduction by giving the plan of the paper.
In Section 2 we discuss the class Lb in the Euclidean setting. We will

state the weighted Strichartz estimates holding in this case and give a local
well-posedness result for a SLIVP.

In Section 3 we change the setting and consider the class Lg on R ×
Td, d ≥ 1. Here we will describe some functional spaces of Bourgain type
on which our analysis is based. Then, we will present weighted Strichartz
estimates on R × Td, multilinear estimates on R × T2, and local well-
posedness results for a cubic SLIVP on R× T2.

In Section 4 we will deal with the class La1,a2 and give a local well-
posedness result for the associated cubic SLIVP.

2 Time-degenerate Schrödinger operators on R×
Rn

This section is devoted to the analysis of the calss of time-degenerate
Schrödinger operators of the form Lb, that is,

Lb := i∂t + b′(t)∆, (t, x) ∈ R× Rn, (2.1)

where b ∈ C1(R), b(0) = b′(0) = 0, and b is such that it can have finitely
many critical points. For this class of operators we are interested in the
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analysis of the local well-posedness of the SLIVP{
∂tu+ ib′(t)∆u = µ|b′(t)||u|p−1u,

u(0, x) = u0(x),
(2.2)

with p > 1 suitable, and 0 6= µ ∈ R. Since we will be working in a finite
time interval, we will simply say that b satisfies the following condition:

(H) b ∈ C1(R), b(0) = b′(0) = 0, and, for any T̃ <∞, ]{t ∈ [0, T̃ ], b′(t) =

0} = k <∞, with k ≥ 1.

Let us remark that our results below are true for nondegenerate time-
variable coefficient operators too, which means that if b(0) = 0 but b has
no critical points, our results can still be applied. This fact is particularly
important, since it allows to recover classical results for constant coefficient
operators as a particular case of those for time dependent nondegenerate
operators.

In order to solve (2.2), it is useful to go back to the LIVP{
∂tu+ ib′(t)∆u = f(t, x),

u(0, x) = u0(x),
(2.3)

and observe that the solution of (2.3) can be computed explicitely. Indeed,
for f = 0, one applies the Fourier transform in space and solves the result-
ing ode in time. Then, by Duhamel’s principle, one gets that the solution
of (2.3) is given by

u(t, x) = eib(t)∆u0(x) +

∫ t

0
ei(b(t)−b(s))∆f(s, x)ds,

where ei(b(t)−b(s))∆ is the solution operator giving the solution at time t
starting at time s of the HIVP (homogeneous IVP), that is

ei(b(t)−b(s))∆v(s, x) :=

∫
Rn
eix·ξ+i(b(t)−b(s))|ξ|

2
v̂(s, ξ)dξ,

where here v(s, x) is the datum at time s. Recall that b(0) = 0, so
ei(b(t)−b(0))∆ = eib(t)∆. Observe also that, when b(t) = t, that is when
b′(t) = 1, we obtain the well known formulas for Lt = ∂t + i∆.
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The explicit knowledge of the solution of the LIVP allowed us to prove
Strichartz estimates suitable to our time-degenerate setting, which, in turn,
correspond to the weighted version of the classical estimates. To state the
result we will make use of the so called admissible pairs.

Let n ≥ 1, then a pair of exponents (q, p) is called n-admissible if
2 ≤ q, p ≤ ∞, and

2

q
+
n

p
=
n

2
, with (q, p, n) 6= (2,∞, 2).

Theorem 2.1 (Local weighted Strichartz estimates). Let b ∈ C1([0, T ])

be such that it satisfies condition (H). Then, on denoting by LqtL
p
x :=

Lq([0, T ];Lp(Rn)), we have that for any (q, p) n-admissible pair, with 2 <

q, p <∞, the following estimates hold

‖|b′(t)|1/qeib(t)∆ϕ‖LqtLpx ≤ C‖ϕ‖L2
x(Rn), (2.4)

‖eib(t)∆ϕ‖L∞t L2
x
≤ ‖ϕ‖L2

x(Rn), (2.5)∥∥∥∥|b′(t)|1/q ∫ t

0
|b′(s)|ei(b(t)−b(s))∆g(s)ds

∥∥∥∥
LqtL

p
x

≤ C‖|b′|1/q′g‖
Lq
′
t L

p′
x
, (2.6)

and ∥∥∥∥∫ t

0
|b′(s)|ei(b(t)−b(s))∆g(s)ds

∥∥∥∥
L∞t L

2
x

≤ C‖|b′|1/q′g‖
Lq
′
t L

p′
x
, (2.7)

with C = C(k, n, q, p).

We will not give the proof of Theorem 2.1 here, which is based on
classical tools, and we refer the interested reader to [9].

Remark 2.2. The estimates above involve only one admissible pair (p, q)

instead of two admissible pairs (p, q), (p̃, q̃) as in the classical case when
b(t) = t. However, when b(t) = t we get back Strichartz estimates for
Lt = ∂t+i∆. Note aslo that the weight appearing in the estimates depends
on the time-dependent coefficient in Lb. This fact dictates which SLIVP
can be solved by using Theorem 2.1, that is the one where b′ appears in
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the nonlinear term. Finally, observe that the previous inequalities describe
some integrability properties of the solution depending on the integrability
properties of the initial datum u0 and of that of the inhomogeneous term
f .

Remark 2.3. In [9] global weighted Strichartz estimates for Lb have been
proved too. The form of the global version does not allow the application
of a contraction argument to solve (2.2), for that we have to use the local
version above.

We now state the local well-posedness result for (2.2).

Theorem 2.4. Let 1 < p < 4
n+1 and b ∈ C1([0,+∞)) satisfying condition

(H). Then, for all u0 ∈ L2(Rn), there exists T = T (‖u0‖2, n, µ, p) > 0 such
that there exists a unique solution u of the IVP (2.2) in the time interval
[0, T ] with

u ∈ C([0, T ];L2(Rn))
⋂
Lqt ([0, T ];Lp+1

x (Rn))

and q = 4(p+1)
n(p−1) . Moreover the map u0 7→ u(·, t), locally defined from

L2(Rn) to C([0, T );L2(Rn)), is continuous.

The proof of this theorem is based on the standard contraction argu-
ment by means of the estimates in Theorem 2.1. For details see [9].

We now conclude this section with some examples of operators of the
form Lb to which Theorem 2.4 applies.

Example 2.5. The first example is the one also treated in [7, 10], that is

Lb = L tα+1

α+1

= ∂t + itα∆, α ≥ 1.

The operator is degenerate only at t = 0, and the local well-posedness of
(2.2) is guaranteed by Theorem 2.4.

Example 2.6. An other example is given by

Lb = Let−t−1 = ∂t + i(et − 1)∆.
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This operator is, once more, degenerate at t = 0, and the associated
cubic IVP is locally well-posed by Theorem 2.4.

Example 2.7. The last example we give is the following

Lb = Lcos(t) := ∂tu− i sin(t)∆,

which represents an operator having more than one degenerate point de-
pending on the time interval of existence of the solution. In this case, if
the time interval is big enough, we cross more than one degenerate point.

3 A class of time-degenerate Schrödinger opera-
tors on R× T2

We now change the setting and consider R×Td as the ambient space.
We shall consider the class of operators Lg of the form

Lg := i∂t + g′(t)∆, (3.1)

where g ∈ C1(R), g(0) = g′(0) = 0, and g is striclty monotone. The
monotonicity of the function g is needed in order to define some functional
spaces that we introduce below.

As in the case of Lb, we can, once more, write explicity the solution of
the LIVP for Lg on R× Td, d ≥ 1, that is,

u(t, x) := ei(g(t)−g(s))∆us(x) +

∫ t

s
ei(g(t)−g(τ))∆f(τ, x)dτ, (3.2)

where us is the initial datum given at time s, f is the inhomogeneous term
of the equation, and ei(g(t)−g(s))∆ is the solution operator now defined as

ei(g(t)−g(s))∆v(x) :=
∑
k∈Zd

eix·k+i(g(t)−g(s))|k|2 v̂(k), (3.3)

where v̂ is the Fourier transform on Td. Note finally that when g(t) = t we
get the formulas corresponding to the case Lt = i∂t + ∆. These formulas
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hold on R×Td, d ≥ 1, but, later on, we shall restrict ourselves to the case
d = 2 for the reasons explained below.

Before going into the details of the results available in this time-degene-
rate case, let us recall the sharp L4-Strichartz estimate for the homoge-
neous solutions of Lt = i∂t + ∆ on R × T2, with T2 being either rational
or irrational:

‖eit∆v0‖L4
t,x(T×T2) . ‖v0‖Hs(T2), s > 0. (3.4)

Such estimate was proved on Td, d ≥ 1, and with Lp, p ≥ 4, in place
of L4, for suitable values of s. However, our interest in the L4-estimate
has two motivations: one is the sharpness in the case d = 2, where here
the sharpness is measured by s which dictates the regularity to assign to
the initial datum; the other one is that the L4-estimate allows to close
the contraction argument to prove the local well-posedness of the SLIVP.
Inequality (3.4) was proved by Bourgain in [2] for the flat torus and by
Bourgain and Demeter in [3] for the irrational one.

We remark, once more, that Strichartz estimates were proved on gen-
eral compact Riemaniann manifolds in [4], and that, however, the sharp
estimate (3.4) is not covered by the result in [4].

So we take (3.4) as our prototype estimate, and we show that a suitable
version of that is true in the time-degenerate setting as well. This allows to
obtain information on the solution of the HIVP and to prove sharp results
(in terms of the regularity of the initial datum) for a SLIVP associated
with Lg.

Bourgain spaces

A key tool to prove local well-posedness results for SLIVPs in the
manifold setting is given by the following spaces, also called Bourgain
spaces.

Definition 3.1. Let X be the space of functions on Rt × Tdx such that

• u : Rt × Tdx → C,
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• t→ u(t, x) is in S(R),∀x ∈ Td;

• x→ u(·, x) is C∞(Td).

Then, for s, b ∈ R, the space Xs,b(R× Td) is defined as the completion of
X with respect to the norm

‖u‖Xs,b :=

∑
k∈Zd

(1 + |k|2)2s

∫
R

(1 + |τ + |k|2|)2b|û(τ, k)|2dτ

1/2

.

Remark 3.2. Definition 3.1 is not the general definition of Bourgain
spaces, but is the one suitable to the study of Lt. In fact the norm ‖ ·‖Xs,b

depends on the symbol of the operator Lt, which is exactly τ + |k|2. For
other dispersive equations, such as, for instance, the KdV equation, one
can define the appropriate Xs,b spaces by using the corresponding pseu-
dodifferential symbol. These spaces are used in the analysis of dispersive
equations since solutions to these equations belong, locally in time, to such
spaces. For more details see [26].

By Remark 3.2 it is obvious that the space in Definition 3.1 is not
suitable to study a general Lg with g(t) 6= t. To define the right space
we need to introduce a Fourier transform in time which depends on the
function g appearing in Lg.

Definition 3.3. Let g ∈ C∞(R) be such that g(0) = 0 and g is strictly
monotone. Then we define the FT (Fourier transform) and the IFT (in-
verse Fourier transform) subordinate to g as

(F̃gu)(τ) :=

∫
R
e−ig(t)τu(t)dt

and
(F̃−1

g v)(t) := g′(t)

∫
R
eig(t)τv(τ)dτ,

where u, v ∈ L1(R)
⋂
L2(R). We shall denote by ũ(τ) := (F̃gu)(τ).

Some properties of F̃g are the following:
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• u(t) = (F̃−1
g ũ)(t);

• F̃g(∂tu)(τ) = (−iτ)F̃g(g′u)(τ);

• ‖ũ‖L2(Rτ ) = ‖ 1√
|g′|
u‖L2(Rt);

• ‖g̃′u‖L2(Rτ ) = ‖
√
|g′|u‖L2(Rt);

• ‖F̃g(
√
|g′|u)‖L2(Rτ ) = ‖u‖L2(Rt);

Below we shall use the notation ũ(τ, k) for the space-time transform

ũ(τ, k) :=

∫
R×Td

e−i(g(t)τ+k·x)u(t, x)dtdx,

being the modified Fourier transform in time and the standard Fourier
transform in space of a function u on R× Td.

We are now ready to introduce the appropriate Bourgain spaces to
study Lg.

Definition 3.4. Given a strictly monotone function g ∈ C∞(Rt), with
g(0) = 0, we define the space Xs,b

g (R×Td) as the completion of the space
X as in Definition 3.1 with respect to the norm

‖u‖
Xs,b
g

:=

∑
k∈Zd

(1 + |k|)2s

∫
R

(1 + |τ + |k|2|)2b|ũ(τ, k)|2dτ

1/2

.

Moreover, we define the spaces X̃s,b
g (R× Td) as

X̃s,b
g := {u ∈ Xs,b

g ; g′u ∈ Xs,b
g },

where

‖u‖
X̃s,b
g

:=

∑
k∈Zd

(1 + |k|)2s

∫
R

(1 + |τ + |k|2|)2b|g̃′u(τ, k)|2dτ

1/2

.
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Remark 3.5. The spaces in Definition 3.4 enjoy the same properties as
the ones in Definition 3.1. In fact, the application of the modified FT
subordinate to g in time and the standard FT in space to the homogeneous
equation gives

Lgu(t, x) = i∂tu+ g′(t)∆u = 0 =⇒
F̃gFx→k

(τ + |k|2)g̃′u(τ, k) = 0,

meaning that if u solves Lgu = 0 then g̃′u is supported in {(τ, k) ∈ R ×
Zd; τ+|k|2 = 0}. Additionally, for u ∈ Hs(Td) and η being a smooth cutoff
function in time, one has that ηeig(t)∆u ∈ X̃s,b

g (R×Td). These are exactly
the same properties holding for Lt, properties that can also be recovered
from those above by taking g(t) = t. This suggests that the spaces X̃s,b

g

are the right ones to carry out the analysis of Lg.

We shall present here some other spaces we will need in the analysis of
Lg and in the next section to study La1,a2 .

Definition 3.6 (Xs,b
Φ , Xs,b

g,Φ, X
s,b
Φ,α̃, X

s,b
g,Φ,α̃ , and X̃s,b

g,Φ,α̃ spaces). Let Φ ∈
C∞(Td) and let g be as in Definition 3.4. Let also α̃ : R × Td → R × Td

be such that α̃(t, x) := (t, α(x)), where α : Td → Td is a diffeomorphism.
Then we define the spaces Xs,b

Φ , Xs,b
g,Φ, X

s,b
Φ,α̃, X

s,b
g,Φ,α̃ , and X̃s,b

g,Φ,α̃ as

Xs,b
Φ (R× Td) := {f : R× Td → C; eΦf ∈ Xs,b(R× Td)},

Xs,b
g,Φ(R× Td) := {f : R× Td → C; eΦf ∈ Xs,b

g (R× Td)},

X̃s,b
g,Φ(R× Td) := {f : R× Td → C; eΦf ∈ X̃s,b

g (R× Td)},

Xs,b
Φ,α̃(R× Td) := {f : R× Td → C; (eΦ f) ◦ α̃ ∈ Xs,b(R× Td)},

Xs,b
g,Φ,α̃(R× Td) := {f : R× Td → C; (eΦ f) ◦ α̃ ∈ Xs,b

g (R× Td)},

X̃s,b
g,Φ,α̃(R× Td) := {f : R× Td → C; (eΦ f) ◦ α̃ ∈ X̃s,b

g (R× Td)}.

Definition 3.7 (Hp,b and Hp,b
g spaces). Let p ∈ [1,∞) and b ∈ R, then

we define the spaces Hp,b(R) and Hp,b
g (R) as

Hp,b(R) := {f ∈ Lp(R); f̂ , D̂bf ∈ Lp(R)}
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equipped with the norm

‖f‖p
Hp,b :=

∫
R
〈τ〉pb|f̂(τ)|pdτ,

with 〈τ〉 := (1 + |τ |2)1/2, and

Hp,b
g (R) := {f ∈ Lp(R); ‖f‖

Hp,b
g
<∞},

where ‖f‖p
Hp,b
g

:=
∫
R〈τ〉

pb|f̃(τ)|pdτ .

Strichartz, multilinear estimates and local well-posedness

We now give the general statement of the Strichartz estimates proved
in [11] on R × Td, with d ≥ 1, but later on we shall restrict ourselves to
the case d = 2.

Below we shall assume, without loss of generality, that g is strictly
increasing, and we shall denote by S(t) := eig(t)∆ the solution operator.

Theorem 3.8 (Weighted Strichartz estimates). Let I be a finite interval
of time and φ a function on Td. Then, for p ≥ 2,

‖g′(t)1/pS(t)φ‖Lp(I×Td) . ‖φ‖L2(T2), p < 2(d+2)
d ;

‖g′(t)1/pS(t)φ‖Lp(I×Td) . ‖φ‖Hs(T2), s > 0, p = 2(d+2)
d ;

‖g′(t)1/pS(t)φ‖Lp(I×Td) . ‖φ‖Hs(T2), s > d
2 −

d+2
p , p > 2(d+2)

d .

(3.5)

Observe that when g(t) = t the estimates in Theorem 3.8 give back
the result for the homogeneous solutions of Lt, and that, for g(t) 6= t,
p = 2, d = 2, we have a weighted version of (3.4).

We now focus on the case p = 4 and d = 2. By using Theorem 3.8 we
can get estimates in Xs,b

g -spaces which are fundamental to prove the local
well-posedness results stated at the end of this section.

Proposition 3.9. Assume that |I ′| := |g(I)| = δ, then

‖χI(t)g′(t)S(t)u0‖Xs,b
g

. δ1/2−b‖u0‖Hs , ∀u0 ∈ Hs(T2), (3.6)
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∥∥∥∥g′(t) ∫ t

0
g′(s)S(t, s)w(s)ds

∥∥∥∥
Xs,b
g

. ‖g′(t)w‖
Xs,b−1
g

, (3.7)

‖χI(t)g′(t)|u|2u‖Xs,b−1
g

. ‖χIg′(t)u‖2
Xs,b′
g
‖χIg′(t)u‖Xs,b

g
,

for b > 1/2, 1/4 < b′ < b, s > 0; (3.8)

‖χIg′(t)u‖Xs,b′
g

. δ
b−b′
8 ‖g′(t)u‖

Xs,b
g
. (3.9)

For our purposes, that is to solve SLIVPs, the following multilinear
estimates proved in [11] are crucial.

Proposition 3.10. Let s > 0, b ∈ (1/2, 1), b′ < b, and Hp,b
g (R) as in

Definition 3.7. Then, for h ∈ H1(T2) and β ∈ Hs+2b(T2), we have

‖g′(t)f(t)u‖
Xs,b
g

. ‖g′f‖
H1,b
g
‖g′u‖

Xs,b
g
, (3.10)

‖g′(t)χIβ‖Xs,b
g

. ‖g′χI‖H2,b
g
‖β‖Hs+2b

x
, (3.11)

‖g′(t)χIu1 χIu2‖Xs,b−1
g

. ‖g′(t)χIu1‖Xs,b
g
‖g′(t)χIu2‖Xs,b′

g
, (3.12)

and, for p1 > 1/2, s1 > 1,

‖g′(t)χIhχIu1 χIu2 χIu3‖Xs,b−1
g

. ‖g′(t)χIh‖H2,p1
g H

s1
x
‖g′(t)χIu1‖Xs,b

g

× ‖g′(t)χIu2‖Xs,b
g
‖g′(t)χIu2‖Xs,b′

g
. (3.13)

Below we state our result concerning the local well-posedness of a cubic
time-degenerate IVP on R× T2. Recall that the function g is assumed to
be as described at the beginning of the section.

Theorem 3.11. Let s > 0 and b ∈ (1/2, 1). Then, for every u0 ∈ Hs(T2),
there exists a unique solution of the IVP{

i∂tu+ g′(t)∆xu = g′(t)|u|2u,
u(0, x) = u0(x),

(3.14)
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in the time interval [−T, T ] for a suitable time T = T (‖u0‖Hs). Moreover
the solution u satisfies

u ∈ C([−T, T ];Hs),

and, for I closed neighborhood of [−T, T ], and χI a smooth cutoff function
such that χI ≡ 1 on [−T, T ], we have that there exists b ∈ (1/2, 1) such
that

χIu ∈ X̃s,b
g (R× T2).

A more general version of Theorem 3.11 is the one that follows, where,
in particular, the nonlinear term depends on a time-dependent function
non necessarily being the time-degenerate coefficient g′.

Theorem 3.12. Let s > 0, b ∈ (1/2, 1), and f ∈ H1,b
g (R). Then, for

every u0 ∈ Hs(T2), there exists a unique solution of the IVP{
i∂tu+ g′(t)∆xu = f(t)|u|2u,
u(0, x) = u0(x),

(3.15)

in the time interval [−T, T ] for a suitable time T = T (‖u0‖Hs). Moreover
the solution u satisfies

u ∈ C([−T, T ];Hs)

and, for a closed neighborhood I of [−T, T ], we have that there exists b ∈
(1/2, 1) such that

χIu ∈ X̃s,b
g (R× T2)

with χI being a smooth cutoff function such that χI ≡ 1 on [−T, T ].

The proof of the previous theorems is based on the standard contraction
argument in the Bourgain spaces X̃s,b

g (R×T2) and on the use of the results
in Proposition 3.9. For the proofs see [11].

Remark 3.13. In [11] the corresponding versions of Theorem 3.11 and
Theorem 3.12 for the quintic NLS (with Lg) on R× T are given. We will
not state such results here, but we refer the interested reader to [11].
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4 A class of nondegenerate space-variable coeffi-
cient Schrödinger operators on R× T2

We now discuss the class of Schrödinger operators

La1,a2 := i∂tu+ a1(x1)∂2
x1u+ a2(x2)∂2

x2 , (4.1)

where a1, a2 ∈ C∞(T) are real valued and strictly positive.
We will give a sharp local well-posedness result for the cubic IPV{

i∂tu+ a1(x1)∂2
x1u+ a2(x2)∂2

x2u = u|u|2,
u(0, x) = u0(x),

(4.2)

where, once again, here sharp means that it suffices to require that the
intial datum belongs to Hε(T2), with ε > 0, to have local well-posedness.

The strategy employed here consists in combinig a change of variables
and a suitable gauge transform. This, in turn, reduces our problem to
a suitable one for the constant coefficient Schrödinger operator L1,1 =

i∂t + ∆.
In what follows we will explain the main steps to reduce problem (4.2)

to a suitable one for L1,1 and give the statement of our local well-posedness
result for (4.2).

The first step is to apply in (4.2) the change of variables

(x1, x2) = (α1(y1), α2(y2)) := α(y),

with α1(y1), α2(y2) such that ∂y1α1(y1) =
√
a1(α1(y1)) and ∂y2α2(y2) =√

a2(α2(y2)). Then, on denoting by v(t, y) := u(t, α(y)) and by v0(y) :=

u0(α(y)), assuming that u solves (4.2), and using that (∂xju)(t, α(y)) =

(∂yjv(t, y))∂yjαj(yj), we get that v solves the IVP

i∂tv(t, y)+∆yv(t, y)−(∂y1v(t, y))
∂2y1α1(y1)

∂y1α1(y1)−(∂y2v(t, y))
∂2y2α2(y2)

∂y2α2(y2) =v|v|2,
v(0, y) = v0(y).

(4.3)
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At this stage we apply a gauge transform on the left and right hand
side of (4.3), that is we apply the transformation

Tf(t, y) :=eΦ(y)f(t, y)=exp
{
− 1

2

∫ y1

0

α′′1(s1)

α′1(s1)
ds1−

1

2

∫ y2

0

α′′2(s2)

α′2(s2)
ds2

}
f(t, y).

Now, defining w as w(t, y) := eΦ(y)v(t, y), we obtain that w solves{
i∂tw + ∆yw = e−2Φw|w|2 − βw,
w(0, y) = w0(y),

(4.4)

with β = β(y) = ∂2
y1Φ+∂2

y2Φ+(∂y1Φ)2+(∂y2Φ)2 and w0(y)=eΦ(y)u0(α(y)).
Summarizing, after the change of variables and the application of the gauge
transform, we have reduced the study of (4.2) to that of (4.4). We will not
state the result for (4.4) here in order to mantain the exposition selfcon-
tained. We refer to [11] for details about the result for (4.4). Therefore,
solving (4.4), applying the inverse gauge transform to the solution of (4.4)
(which will give the solution of (4.3)) and changing variables, we get the
following result for (4.2).

Theorem 4.1. Let s > 0 and b ∈ (1/2, 1). Then, for every u0 ∈ Hs(T2),
there exists a unique solution of the IVP{

i∂tu+ a1(x1)∂2
x1u+ a2(x2)∂2

x2u = u|u|2,
u(0, x) = u0(x),

(4.5)

in the time interval [−T, T ] for a suitable time T = T (‖u0‖Hs). Moreover
the solution u satisfies

u ∈ C([−T, T ];Hs),

and, for a closed neighborhood I of [−T, T ], we have that there exists b ∈
(1/2, 1) such that

χIu ∈ Xs,b
Φ (R× T2),

with χI being a smooth cutoff function such that χI ≡ 1 on [−T, T ], and
where Xs,b

Φ,α̃(R× T2) is the Banach space in Definition 3.6.
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Remark 4.2. In [11], the quintic NLS on R× T for La = i∂tu+ a(x)∂2
x,

and the cubic IVP{
i∂tu+ g′(t)

(
a1(x1)∂2

x1u+ a2(x2)∂2
x2u
)

= f(t)u|u|2,
u(0, x) = u0(x),

(4.6)

for operators with space-time variable coefficients on R × T2, are also
discussed. For the quintic NLIVP for La, a result similar to the one holding
for the cubic NLS for La1,a2 on R×T2 is still valid, so we refer the interested
reader to [11] for more details about this problem. As for (4.6) on R×T2,
it can be solved by combining the strategies used for the operators La1,a2
and Lg (see Remark 4.3 in [11]).
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