Multi-functional groups decorated composite nanofiber separator with excellent chemical stability in ester-based electrolyte for enhancing the lithium-ion transport

Xin Xie^{a,1}, Lei Sheng^{a,b,1}, Catia Arbizzani^b, Bin Gao^a, Xingxu Gao^a, Ling Yang^a, Yaozong Bai^c, Haoyu Dong^c, Gaojun Liu^c, Tao Wang^a, Xianli Huang^a, Jianping He^a*

¹ These authors contributed equally to this work.

^a College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics,

210016, Nanjing, Jiangsu Province, China.

^b Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126, Bologna, Italy

^c Sinoma Lithium Battery Separator Co. Ltd, 277500, ZaoZhuang, Shandong province, China

*Corresponding author: Jianping He

Email address: jianph@nuaa.edu.cn;

Table of Contents

Figure S1 The top-view SEM images and diameter distributions of (a) PAN:CA=1:3, (b) pure CA.

Figure S2The stress-strain curves of PAN/CA nanofiber composite separator (a), PAN nanofiber separator (a) and PE separator (b).

Figure S3 Stability test of CA and alkaline hydrolyzed CA in the liquid electrolyte: (a) pristine; (b) an hour; (c) 12 hours; (d) 24 hours.

Figure S4 Contact angles with distilled water (a-d) and liquid electrolyte (e-h): (a) (e) PE, (b) (f) PAN, (c) (g) PAN/CA before hydrolysis treatment, (d) (h) PAN/CA after hydrolysis treatment.

Figure S5 TGA curves of PE separator, PAN nanofiber separator and PAN/CA composite nanofiber separator.

Figure S6 The voltage profiles of heat treatment test in a LiCoO₂/Li cell with (a) PAN/CA composite nanofiber separator and (b) PE separator.

Figure S7 Nyquist plots of PAN/CA, PAN and PE separators assembled in SS-symmetrical cells.

Figure S8 Steady-state current curves of (a) PE, (b) PAN, and (c) PAN/CA separator, and the Nyquist plots of the cells containing the corresponding separators before and after polarization.

Figure S9 (a) Cycle performance of LiFePO₄/Li cells based on PAN/CA and PE separators at a current density of 1C; (b) FTIR spectra of PAN/CA separators before and after cycle test.

S-2

Figure S10 The top-view SEM images of (a-c) pristine PAN/CA composite nanofiber separators, (g-i) pristine PE separators. And the SEM images of (d-f) PAN/CA composited nanofiber separators and (j-l) PE separators disassembled from Li/Li symmetric cells after long-term cycles of Li plating/stripping process.

Figure S11 The top-view SEM images of fresh Li metal anodes (a-c), and the Li metal anodes obtained in LiFePO₄/Li half cells assembled with PAN/CA nanofiber separators (d-f) and PE separators (g-i) after cycle performance test.

Figure S12 The top-view SEM images of pristine LiFePO₄ electrodes (a-d); and the top-view SEM images of the LiFePO₄ electrodes obtained in LiFePO₄/Li half cells assembled with PAN/CA composite nanofiber separators (e-h) and PE separators (i-l) after cycle performance test.

Figure S13 CV curves of LiCoO₂/Li battery based on (a) PAN/CA composite nanofiber separator, (b) PAN nanofiber separator and (c) PE separator.

Figure S14 Capacity -Voltage curves with different separators under different cycles:
(a) 1_{st} cycle; (b) 50_{th} cycle; (c) 150_{th} cycle.

Figure S15 Discharge capacity-voltage curves of LiCoO₂/Li cells assembled with PAN nanofiber separator.

Figure S16 Rate performance of LiFePO₄/Li cells assembled with PAN/CA composite nanofiber separator, PAN nanofiber separator and PE separator.

Figure S17 Charge-discharge voltage-time profiles of Li-symmetrical cells assembled with PAN/CA nanofiber separator and PE separator at current density of (a) 2 mA cm^{-2} with an areal capacity of 2 mAh cm^{-2} .

Table S1 Performance comparison between the separators in this work and those

reported in the literature.

Table S2 Physical properties of PAN/CA nanofiber separator, PAN nanofiber separatorand PE separator.

Figure S1. The top-view SEM images and diameter distributions of (a) PAN:CA=1:3,

(b) pure CA.

Figure S2. The stress-strain curves of PAN/CA nanofiber composite separator (a), PAN

nanofiber separator (a) and PE separator (b).

Figure S3. Stability test of CA and alkaline hydrolyzed CA in the liquid electrolyte: (a)

pristine; (b) an hour; (c) 12 hours; (d) 24 hours.

Figure S4. Contact angles with distilled water (a-d) and liquid electrolyte (e-h): (a) (e) PE, (b) (f) PAN, (c) (g) PAN/CA before hydrolysis treatment, (d) (h) PAN/CA after hydrolysis treatment.

Figure S5. TGA curves of PE separator, PAN nanofiber separator and PAN/CA composite nanofiber separator.

Figure S6. The voltage profiles of heat treatment test in a LiCoO₂/Li cell with (a) PAN/CA composite nanofiber separator and (b) PE separator. The heat treatment process was that the cells were placed in a preheated 55 °C vacuum drying box for 0.5 h.

Figure S7. Nyquist plots of PAN/CA, PAN and PE separators assembled in SS symmetrical cells.

Figure S8. Steady-state current curves of (a) PE, (b) PAN, and (c) PAN/CA separator, and the Nyquist plots of the cells containing the corresponding separators before and after polarization.

Figure S9. (a) Cycle performance of LiFePO₄/Li cells based on PAN/CA and PE

separators at a current density of 1C; (b) FTIR spectra of PAN/CA separators before

and after cycle test.

Figure S10. The top-view SEM images of pristine LiFePO₄ electrodes (a-d); and the top-view SEM images of the LiFePO₄ electrodes obtained in LiFePO₄/Li half cells assembled with PAN/CA composite nanofiber separators (e-h) and PE separators (i-l) after cycle performance test.

Figure S11. The top-view SEM images of (a-c) pristine PAN/CA composite nanofiber separators, (g-i) pristine PE separators. And the SEM images of (d-f) PAN/CA composited nanofiber separators and (j-l) PE separators disassembled from Li/Li symmetric cells after long-term cycles of Li plating/stripping process.

Figure S12. The top-view SEM images of fresh Li metal anodes (a-c), and the Li metal anodes obtained in LiFePO₄/Li half cells assembled with PAN/CA nanofiber separators (d-f) and PE separators (g-i) after cycle performance test.

Figure S13. CV curves of LiCoO₂/Li battery based on (a) PAN/CA composite nanofiber separator, (b) PAN nanofiber separator and (c) PE separator.

Figure S14. Discharge capacity -Voltage curves with different separators under different cycles: (a) 1_{st} cycle; (b) 50_{th} cycle; (c) 150_{th} cycle.

Figure S15. Discharge capacity-voltage curves of LiCoO₂/Li cells assembled with PAN nanofiber separator.

Figure S16. Rate performance of LiFePO₄/Li cells assembled with PAN/CA composite

nanofiber separator, PAN nanofiber separator and PE separator.

Figure S17. Charge-discharge voltage-time profiles of Li-symmetrical cells assembled with PAN/CA nanofiber separator and PE separator at current density of 2 mA cm⁻² with an areal capacity of 2 mAh cm⁻².

separator	condition	σ (ms cm ⁻¹)	capacity	ref.
PVDF-HFP/LAGP	LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂	from 0.70 to	144.7 mAh g ⁻¹ (84.5%)	1
nanofiber separator	with 6.0 mg cm ⁻²	3.18	after 500 cycles; 0.2C	
CCN separator	LiFePO ₄	from 0.31 to	99.4 mAh g ⁻¹ (64.1%)	2
		0.45	after 300 cycles; 1C	
PI/SiO ₂ nanofiber	LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂	from 0.52 to	149.6 mAh g ⁻¹ (88%)	3
separator		1.55	after 100 cycles; 1C	
PAN nanofiber	LiMn ₂ O ₄ with 16.6	from 0.59 to	89.5 mAh g ⁻¹ (99.4%)	4
separator	mg cm ⁻²	1.06	after 100 cycles; 0.5C	
SiO ₂ /PAN cross-	LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂	from 0.46 to	162.1 mAh g ⁻¹	5
linked separator	with 2.0 mAh cm ⁻²	2.10	(94.0%) after 200	
			cycles; 0.5C	
PI-COOH	LiCoO ₂ with 11.9	from 2.11 to	103.7 mAh g ⁻¹	6
separator	mg cm ⁻²	2.50	(98.8%) after 100	
			cycles; 0.5C	
Co-SIM-1/PAN	LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂	from 0.90 to	135.2 mAh g-1	7
separator		1.62	(81.3%) after 250	
			cycles; 5C	
PAN/CA	LiCoO ₂ with 11.5	from 0.306	131.3 mAh g ⁻¹	This
nanofiber	mg cm ⁻²	to 1.15	(97.5%) after 300 work	
separator		cycles; 1C		

reported in the Literature.

separator and PE separator.					
Separator	PAN/CA	PAN	PE		
Porosity (%)	61.47	82.54	33.51		
Thickness (µm)	24	48	16		
Tensile strength	11.36	3.26	86.35		
(Mpa)					
Electrolyte uptake	604.3	707.7	121.4		
(%)					

Table S2. Physical properties of PAN/CA nanofiber separator, PAN nanofiber

Reference

- T. Liang, W. Liang, J. Cao, D. Wu, Enhanced Performance of High Energy Density Lithium Metal Battery with PVDF-HFP/LAGP Composite Separator, ACS Applied Energy Materials, 2021, 4, 2578-2585.
- 2 T.W. Zhang, J.L. Chen, T. Tian, B. Shen, Y.D. Peng, Y.H. Song, B. Jiang, L.L. Lu,
 H.B. Yao, S.H. Yu, Sustainable Separators for High-Performance Lithium Ion
 Batteries Enabled by Chemical Modifications, *Adv. Funct. Mater*, 2019, 29, 1902023.
- 3 D. Wu, N. Dong, R. Wang, S. Qi, B. Liu, D. Wu, In situ construction of High-safety and Non-flammable polyimide "Ceramic" Lithium-ion battery separator via SiO₂ Nano-Encapsulation, *Chem. Eng. J*, 2021, **420**, 129992.
- 4 X. Ma, P. Kolla, R. Yang, Z. Wang, Y. Zhao, A.L. Smirnova, H. Fong, Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators, *Electrochim. Acta*, 2017, 236, 417-423.
- 5 S. Park, Y. Jung, W. Shin, K.H. Ahn, C.H. Lee, D. Kim, Cross-linked fibrous composite separator for high performance lithium-ion batteries with enhanced safety, *J. Membrane Sci*, 2017, **527**, 129-136.
- 6 C. Lin, H. Zhang, Y. Song, Y. Zhang, J. Yuan, B. Zhu, Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery, *J. Mater Chem A*, 2018, **6**, 991-998.
- 7 L. Yang, J. Cao, B. Cai, T. Liang, D. Wu, Electrospun MOF/PAN composite separator with superior electrochemical performances for high energy density lithium batteries,

Electrochim. Acta, 2021, **382**, 138346.