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Abstract 39 

Cities are considered important areas for biodiversity and host a high plant species richness. However, many factors, such 40 

as urbanisation or changes in land use, can affect the presence of spontaneous flora and, consequently, represent a threat 41 

for biodiversity. How species respond to these factors of change in cities over time is a relevant and current issue and 42 

spatiotemporal analyses represent an essential step forward to better understand these dynamic systems and to fill gaps 43 

of knowledge. 44 

In this paper we present a comparison between a floristic survey carried out in 1995 on a grid-cell for the city of Rome 45 

and a new survey, performed between 2015 and 2018, in order to verify if the species composition significantly changed 46 

over time and to which drivers this change was related to. For 76 grid-cells of the raster, each of which of 1.6 km2, we 47 

recorded all spontaneous vascular species. We analysed the differences between the two surveys by means of statistical 48 

tests on species richness, by species turnover, by generalised linear models (GLMs) and by Ellenberg indicator values. 49 

The patterns of species richness are similar between the two surveys, although an increase in the number of species per 50 

grid-cell, on average, was observed. This increase regarded both native and alien richness, with significant differences 51 

only for aliens. Many species significantly reduced or increased their frequencies, comparing the two surveys. A set of 52 

environmental variables, among which the presence of protected areas, are relevant for explaining the pattern of species’ 53 

frequencies and its change over time. 54 

Our results suggest that the flora of the city, notwithstanding the steady human pressure and the increase in alien species, 55 

maintained a high level of heterogeneity.  56 
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Text 95 

 96 

FLORISTIC CHANGES OF VASCULAR FLORA IN THE CITY OF ROME THROUGH GRID-CELL 97 

CENSUS OVER 23 YEARS  98 

 99 

Abstract 100 

Cities are considered important areas for biodiversity and host a high plant species richness. However, many factors, such 101 

as urbanisation or changes in land use, can affect the presence of spontaneous flora and, consequently, represent a threat 102 

for biodiversity. How species respond to these factors of change in cities over time is a relevant and current issue and 103 

spatiotemporal analyses represent an essential step forward to better understand these dynamic systems and to fill gaps 104 

of knowledge. 105 

In this paper we present a comparison between a floristic survey carried out in 1995 on a grid-cell for the city of Rome 106 

and a new survey, performed between 2015 and 2018, in order to verify if the species composition significantly changed 107 

over time and to which drivers this change was related to. For 76 grid-cells of the raster, each of which of 1.6 km2, we 108 

recorded all spontaneous vascular species. We analysed the differences between the two surveys by means of statistical 109 

tests on species richness, by species turnover, by generalised linear models (GLMs) and by Ellenberg indicator values. 110 

The patterns of species richness are similar between the two surveys, although an increase in the number of species per 111 

grid-cell, on average, was observed. This increase regarded both native and alien richness, with significant differences 112 

only for aliens. Many species significantly reduced or increased their frequencies, comparing the two surveys. A set of 113 

environmental variables, among which the presence of protected areas, are relevant for explaining the pattern of species’ 114 

frequencies and its change over time. 115 

Our results suggest that the flora of the city, notwithstanding the steady human pressure and the increase in alien species, 116 

maintained a high level of heterogeneity. 117 

 118 

 119 

Keywords 120 

Urban flora; Biodiversity; Distribution maps; Time-space series; Species turnover 121 

 122 

Introduction 123 

Urban floras are ecologically rich and diverse (Schwartz et al. 2006): This huge diversity, usually greater than surrounding 124 

rural areas (Sukopp and Werner 1983; Kühn et al. 2004), can be attributed to several factors such as the position of cities 125 

in naturally diverse locations (Kühn et al. 2004) and the decreased competition in urban ecosystems (Kowarik 1995). 126 
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Among the main factors promoting this great diversity, there is also the high heterogeneity of the urban environment, 127 

resulting from a mixture of artificial, semi-natural or natural habitats (Deutschewitz et al. 2003; Kühn et al. 2003). On the 128 

one hand, urban ecosystems, due to the great availability of ecological niches, can host threatened and rare species (Ives 129 

et al. 2016; Planchuelo et al. 2019; Soanes and Lentini 2019). On the other hand, land use changes in urban contexts, by 130 

threating the integrity of semi-natural or natural fragments embedded in the urban fabric, usually favour ruderal and so-131 

called ‘urban specialist’ species  (Hill et al. 2002; Kalusová et al. 2017). Not surprisingly, urban floras are rich in alien 132 

species which, by realising the ‘urban’ niches sometimes better than native species (Kowarik 1995), find in cities their 133 

centres of arrival and expansion (Keller et al. 2011). Moreover, urbanisation and land use change can represent a serious 134 

threat for rare species, considering their adaptation to specialist habitats (van der Veken et al. 2004; Knapp et al. 2008; 135 

Dolan et al. 2011). 136 

Since urbanisation is a rapid process, urban flora is highly dynamic and can quickly evolve (Sukopp 2002). Thus, spatio-137 

temporal approaches are required to analyse such changing patterns. Urban floras have been frequently studied by means 138 

of grid-cells distribution maps (raster), which are specifically suitable for the study of species occurrence patterns and 139 

their relationships with environmental factors (Godefroid 2001; van der Veken et al. 2004). Nevertheless, studies 140 

comparing floristic censuses over time in cities are rare (Godefroid 2001; van der Veken et al. 2004), because of the great 141 

sampling efforts needed and an increasing lack of fundings for field research (Crisci et al. 2020). 142 

For the city of Rome, the most recent flora distribution atlas dates back to the mid-90’s (Celesti-Grapow 1995) and, 143 

although many studies have contributed to the knowledge of floristic and vegetation of the city (Celesti-Grapow et al. 144 

2001, 2013; Fanelli 2002; Ceschin et al. 2006, 2010; Capotorti et al. 2013), no comprehensive re-assessment nor large 145 

scale analysis of changes, following similar protocols, have been carried out since 1995.  146 

Here we present the results of a new floristic census, carried out from 2015 to 2018, on 76 of the original 190 grid-cells 147 

of the atlas in Celesti-Grapow (1995), focusing on the qualitative and quantitative changes occurred over time. We 148 

addressed the following questions: 149 

1) Did the number of species change in the last 23 years?  150 

2) Did the number of alien species increase? 151 

3) Which species changed their frequencies? 152 

4) Did the number and frequency of rare species change? 153 

5) Which environmental variables are related to changes in native and alien richness over time? 154 

 155 

 156 

Materials and Methods 157 

Study Area 158 

Rome covers an area of 1,286 km2 and has 2,856,000 inhabitants (demo.istat.it 2019). The city and surrounding areas 159 

have rainy winters and dry summers, with average annual rainfall of 800 mm/y and average annual temperature of 15 °C. 160 

Whereby its climate is considered transitional between Mediterranean and temperate (Blasi 1994). The geology is various 161 

and mainly referred to Plio-Pleistocene. Many sedimentary rocks are present, such as sandy substrates, especially in the 162 

western sector, as well as clayey and slightly alkaline pyroclastic materials forming plateaus or hills. The heterogeneous 163 

landscape morphology is characterised by mild hills (from 50 to 139 metres a.s.l.), valleys, and two main rivers, Tiber 164 

and Aniene, with many small tributaries. The potential natural vegetation is referred to mixed oak forest dominated by 165 

Quercus cerris and Quercus frainetto, with forests of evergreen oak (Quercus ilex) and cork oak (Quercus suber) limited 166 

to the slopes (Celesti-Grapow and Fanelli 1993). The present vegetation is strongly affected by human impact and mostly 167 
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represented by anthropogenic communities (Fanelli 2002), which are widely related to the most urbanised sectors of the 168 

city. Nevertheless, remnant of wood patches, grasslands, agricultural areas, fallows and riparian vegetation are still present 169 

within the urban matrix (Celesti-Grapow and Fanelli 1993).  170 

Rome has faced different phases of urbanisation over its long history. Starting from the historical urban core, dating back 171 

to more than 2000 years ago, a rapid urban expansion began after the city became the capital of Italy (1870). This 172 

urbanisation process increased after the World War II, transforming the surrounding agricultural landscape in a complex 173 

urban texture (Salvati et al. 2016; Egidi et al. 2020). The resulting urban pattern is strongly irregular (Insolera 1993; 174 

Salvati 2015) and characterised by large open areas and heavy urbanised areas, located in the entire municipality in a 175 

discontinuous way. This development model has continued up to the last decades, so that the current framework of Rome 176 

municipality is still rich of fragments of open areas as well as patches of semi-natural woods. Nowadays, Rome’s 177 

municipality presents a wide system of environmental protection areas, composed of 14 urban parks and semi-natural 178 

areas with over 14.000 hectares (RomaNatura 2021). 179 

 180 

Study design 181 

The starting point of this research was the Atlas of the flora of Rome (Celesti-Grapow 1995), a comprehensive survey of 182 

the flora of the city carried out in the late ‘80s and early ‘90s in the area enclosed within the Grande Raccordo Anulare 183 

ring-road (henceforth: GRA). The area was subdivided into 190 rectangular grid-cells of 1.6 km2 each, amounting to 184 

about 300 km2. In every grid-cell all vascular plant species were recorded. 185 

We carried out a new floristic census in 76 of the original 190 grid-cells, selected according to a checkerboard pattern 186 

(Fig. 1b). In very few cases, we didn't receive the permission by some private estate or deliberately chose to investigate 187 

grid-cells with large urban parks, thus deviating from a perfect checkerboard. In order to minimise possible bias, we were 188 

careful in assuring that sampling method and sampling efforts were the same in both surveys (1995 and 2018) in terms of 189 

number of field excursions and coverage of the area. Every grid-cell has been investigated at least three times, from 190 

autumn 2015 to summer 2018, through investigations in early spring, late spring/early summer and autumn, in order to 191 

cover all blooming seasons. For more heterogenous or species-richer grid-cells, more than three field surveys were 192 

necessary. Field sampling has been carried out by one person, with the support of three researchers. On average, every 193 

field trip lasted half a day (about 4 hours). 194 

All spontaneous vascular species (native and alien species) were recorded for every grid-cell, while cultivated and casual 195 

were not considered. This study is mainly based on field identification but about 500 specimens have been collected and 196 

deposited in Tor Vergata herbarium (RMTV). The determinations were carried out following Flora d’Italia (Pignatti 197 

1982), Flora Europaea (Tutin et al. 1993) and the Portal of the flora of Rome (2015). The nomenclature follows Bartolucci 198 

et al. (2018) for native species and Galasso et al. (2018) for alien species. 199 

In this article we refer to “1995 survey” or “1995” for the 1995 study and dataset and to “2018 survey” or “2018” for the 200 

2018 study and dataset. Moreover, we refer to “total richness” for all species found (1995 or 2018), to “native richness” 201 

for all native species found (1995 or 2018) and to “alien richness” for all alien species found (1995 or 2018).  202 

 203 

Space for FIGURE 1. 204 

Caption figure 1: Study area. a) Study area in Italy. b) Grid-cells investigated in 2018 survey, in turquoise, inside 205 

the Grande Raccordo Anulare (GRA) ring road (white circle). Light blue segments are the main rivers: The 206 

broader is the Tiber river, the narrower is the Aniene river. c) Urbanisation development in last 150 years and 207 

current system of urban parks or protected areas. 208 
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 209 

Data analysis 210 

The 2018 field campaign resulted in a presence/absence database consisting in a species list for all the investigated grid-211 

cells. To compare the species occurrences between the two censuses and to analyse their changes, we created a site x 212 

species matrix of 152 rows (76 grid-cells of the 1995 survey + 76 grid-cells of the 2018 survey) and 1080 columns (species 213 

found during the two surveys in the grid-cells). 214 

 215 

Maps 216 

We produced the distribution maps for the species found in 2018 and compared them to their distribution in 1995 by 217 

means of presence-absence in each grid-cell (Supplementary Materials II). In the 1995 study, the species categorised as 218 

adventive were not reported with the associated distribution map over the city and simply listed in the species list. In 2018 219 

survey, a few of them, which became meanwhile fully naturalised (Table 1 in Supplementary Materials I), are instead 220 

reported with the corresponding distribution map. 221 

Similarly, we visualised the number of species for each grid-cell both in 1995 and 2018. We also produced the maps 222 

displaying the changes in the number of species per grid-cell between the two surveys, as well as their turnover calculated 223 

as the Jaccard distance (Legendre and Legendre 2012). All these maps have been produced using the R software (R 224 

Development Core Team 2020). 225 

 226 

Temporal changes in species richness 227 

We tested for significant differences in native richness between 1995 and 2018 using the Mann-Whitney U test, while 228 

differences in total richness and alien richness were tested using the Student’s t-test. The choice to use two different 229 

univariate tests for the subsets of data was related to data distribution, which were previously checked with normal 230 

probability plots.  231 

We tested for difference between the occurrences of the not common species (not common), comparing 1995 and 2018, 232 

using a Mann-Whitney U test. The not common category (Table 2 in Supplementary Materials I) comprises the 233 

Uncommon (PC), Rare (R), Very Rare (MR) and Less than very Rare (RR) species presented in Anzalone et al. (2010).  234 

These analyses have been carried out using Past software (Ryan et al. 2001). 235 

We tested for differences between current and previous frequencies for each species individually, using the McNemar 236 

non-parametric test (McNemar 1947), with a Benjamini-Hochberg correction (Benjamini and Hochberg 1995). This test 237 

was applied to identify species that significantly changed their frequency. 238 

 239 

Models of floristic changes 240 

We modelled the species richness in natives and alien temporal changes as functions of a set of environmental and land 241 

use covariates (Table 1). In order to detect drivers of the floristic changes, we fitted generalised linear models using 242 

different sets of explanatory variables (Land Use, Urban Structure, Geographical Location) that have been calculated for 243 

every grid-cell with the QGis software (QGis Development Team 2021). All variables have been standardised by 244 

subtracting the mean and dividing by the standard deviation calculated across all grid-cells. All these variables are 245 

reported in Table 1. 246 

All percentage covers have been computed on polygons previously drawn for every grid-cell on several thematic maps: 247 

IGM – Military Geographical Institute maps (Italian National Portal 2021) for historical covers, WMS Orthophoto Service 248 

of Italian National Portal (2021) for the 1995 covers and Google satellite for the 2018 covers. 249 
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As Urban Structure variables, we calculated the cover of green, consolidated urbanisation (urbanisation before 1951) and 250 

recent urbanisation (urbanisation after 1951). In addition, we added a nominal explanatory variable (prevailing category) 251 

by assigning to every grid-cell the category (“green”, “consolidated”, “recent”) that covers more than 45% of its total 252 

surface. These categories are the minimal set of variables that allows to identify the land use of the cells. A few cells with 253 

a mixture of recent and green (40/50% each) have been assigned to the “mix” category. 254 

For Land Use variables, we calculated the change in cover of agricultural areas (change agricultural), wooded areas 255 

(change woods), lawns (change lawns) and urbanisation (change urbanisation) between 1995 and 2018: The changes 256 

over time have been computed as Land Use 2018-Land Use 1995 for every grid-cell. The agricultural areas include arable 257 

lands, pastures and grasslands; Woods include natural woods as well as regrowing thickets; Lawns include meadows, 258 

artificial greening and gardens; Urbanisation includes all the impervious surfaces (buildings, roads, etc.).  259 

In addition, we computed the percentage cover of protected areas (RomaNatura) as a further independent variable. 260 

Regarding the Geographical location, we considered 3 different variables (centreness, southerness and easterness), 261 

similarly to Celesti-Grapow et al. (2006), based on distances between grid-cell centroids and the city centre, identified as 262 

the centroid of the grid-cell H9. Such cell was not investigated in the present survey but belonged to the original grid 263 

(1995 survey). Distances have been approximated in order to obtain only integer values.  264 

Values for centreness range from 1 to 10; the closer the grid-cells are to the city centre, the lower the value and vice versa. 265 

Values for southerness, a north-south gradient, assumed both negative and positive values, ranging from -6 (northern 266 

parts of the grid) to +7 (southern parts of the grid). Grid-cells in the same row of the above-cited H9 grid-cell have zero 267 

values for southerness. Values for easterness, a west-east gradient, assumed both negative and positive values, ranging 268 

from -5 (western parts of the grid) to +8 (eastern parts of the grid). Grid-cells in the same column of the above-cited H9 269 

grid-cell have zero values for easterness. 270 

 271 

The dependent variables of the two models were:  272 

a) The number of native species in 2018 (Natives 2018). 273 

 274 

b) The proportional variation of aliens, calculated with the following formula:  275 

 276 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑎𝑙𝑖𝑒𝑛𝑠 2018 − 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑎𝑙𝑖𝑒𝑛𝑠 1995

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑎𝑙𝑖𝑒𝑛𝑠 1995
 277 

 278 

In the first model, we used the number of native species in 1995 (Natives 1995) as a covariate to control for changes in 279 

the number of species. 280 

A Poisson generalised linear model for count data was used to model the Natives 2018, while a generalised linear model 281 

with Gaussian distribution was adopted to model the proportional variation of aliens. In both regressions, we performed 282 

a stepwise procedure (based on forward and backward approach) to obtain the minimal optimal model. Since spatial 283 

datasets can present spatial dependency, we checked for spatial autocorrelation of model residuals using the lm.morantest 284 

function from spdep R package (Bivand and Wong 2018). 285 

These analyses have been performed using R software (R Development Core Team 2020). 286 

 287 

Sets of explanatory 

variables 
Variables Min value Max value 

Average 

value 

Standard 

deviation 
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Urban structure 

consolidated 0 1.52 0.28 0.43 

recent 0 1.36 0.75 0.42 

green  0 1.52 0.56 0.41 

prevailing category 

“consolidate” 

“recent” 

“greening” 

“mix” 

Land use 

change woods -0.08 0.16 0.01 0.004 

change agricultural -1.44 0 -0.19 0.26 

change lawns  -0.24 0.48 0.01 0.13 

change urbanisation 0 1.04 0.17 0.23 

RomaNatura 0 1.6 0.16 0.42 

Geographical 

variables 

centreness 1 10 6.24 2.18 

southerness -6 7 0.26 3.66 

easterness -5 8 0.80 3.61 

Control variable1 natives 1995 

Table 1 Explanatory variables used for generalised linear models. Minimum, maximum, average and standard deviation values for continuous variables 288 

are given: Values for Urban structure are expressed in km2 and the prevailing category variable refers to the main coverage of the grid-cell between 289 

consolidate urbanisation, recent urbanisation and green areas; Land use are expressed in km2 and represent the changing values comparing 1995 and  290 

2018 values; values for Geographical variables are expressed considering the own range of every variable (1 to 10 for centreness, -6 to +7 for 291 

southerness, -5 to +8 for easterness) compared to the distance from the H9 grid-cell, intended as centroid. 292 

 293 

Ecological evaluation of changes 294 

For the ecological interpretation of the comparison between species frequencies, we also rely on Ellenberg indicator 295 

values adapted for the Italian flora by Pignatti et al. (2005): These indicator values express, synthetically, the existing 296 

relationship between a species and a set of environmental parameters, expressed by values ranging from 1 to 9 for Light 297 

(L), Temperature (T), Continentality (C), Soil moisture (U), Soil reaction (R) and Nutrients (N). In this case, the indicator 298 

values, called by Pignatti et al. (2005) as “Bioindicators”, have been associated to every species found in 1995 and in 299 

2018. Thus, we calculated the average values of every Ellenberg indicator for each grid-cell by taking their average across 300 

species. 301 

We performed Student’s t-tests to evaluate which Ellenberg indicator value was significantly different between the two 302 

surveys, considering for the tests both the entire dataset (total richness in 1995 and total richness in 2018) and the dataset 303 

composed only of species with significant values returned by McNemar test.  304 

 305 

 306 

Results 307 

General results of 2018 survey 308 

Within the 76 grid-cells sampled in the 2018 census, the number of species found was 922. 840 species were natives, 309 

while 82 species were aliens. The average number of species per grid-cell in 2018 was 259, the average number of native 310 

species per grid-cell was 234 and the average number of alien species was 25 (Table 2). On average, alien species 311 

represented about 10% of the total richness for each grid-cell. 312 

                                                           
1 Only for proportional variation of aliens model 
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All the species found in the 2018 survey are reported in the distribution maps in Supplementary Materials II, with the 313 

corresponding distribution in 1995 alongside. 314 

 315 

Temporal changes in species richness  316 

Comparing the data of the two surveys, in 1995, in the same 76 grid-cells, 935 species were found. The average number 317 

of species per grid-cell in 1995 was 241, 223 for natives and 18 for aliens (Table 2). Considering both surveys, a total of 318 

1,080 species were recorded: The species shared by both amounted to 777, 158 taxa have not been found in 2018 and 145 319 

taxa belonged only to the present survey. The patterns of species richness comparing the two surveys are quite similar, 320 

with an east-west and south-north gradient of increasing species richness. Some differences between the two surveys are 321 

mainly detected in semi-central grid-cells and in the southern area of the city where, generally, has been detected an 322 

increase in species number. A moderate decrease in species richness, on average, has been detected for grid-cells 323 

encompassing the main rivers and the outermost belt of the area investigated (Figure 2d). 324 

Total richness, native richness and alien richness showed an increase which was, however, significant only for total 325 

richness and alien richness (Table 2 in the main text and Figure 1 in Supplementary Materials I). 326 

The total turnover was 28%. The turnover values, reported in Figure 2e for every grid-cell and in Figure 2 in 327 

Supplementary Materials I for the whole area investigated, were quite high all over the city, ranging from 0.40 to 0.60. 328 

The areas with lower turnover values (around 0.40), are the grid-cells encompassing parks, large open areas or wooded 329 

areas. On the contrary, areas with a general higher turnover (peaks of over 0.55) were mainly located in the first suburban 330 

belt and in the outskirts. 331 

 Student’s 

Category 
Average 

number 

Standard 

deviation 
t p 

Total richness 1995 241 ± 59 
56.9 0.041 

Total richness 2018 259 ± 48 

 

Mann-Whitney 

U z p 

Native richness 1995 223 ± 58 
2408 1.76 0.07 

Native richness 2018 234 ± 48 

 

Student’s 

t p 

Alien richness 1995 18 ± 3.5 
10.428 < 0.001 

Alien richness 2018 25.5 ± 5.2 

Table 2 Total average richness in 1995 and in 2018, average richness for natives in 2018 and 1995, average richness for aliens in 2018 and 1995. 332 

Student’s t significant tests for total richness and alien richness comparing 1995 and 2018 data. Mann-Whitney U significant test for native richness 333 

comparing 1995 and 2018 data. 1995 data are taken from (Celesti-Grapow 1995). 334 

 335 

The total number of not common species decreased from 116 species in 1995 to 95 species in 2018. Instead, the average 336 

number of not common species per grid-cell increased significantly from 3.22 in 1995 to 3.93 in 2018 (Mann-Whitney 337 

U-test Table 3 in Supplementary Materials I). 338 

The McNemar test identified a number of species with significantly different frequency between 1995 and 2018 surveys 339 

(Table 4 in Supplementary Materials I): 75 species significantly decreased, while 124 species significantly increased. 340 

 341 

Space for FIGURE 2 342 
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Caption figure 2: a) Number of species in every grid-cell comparing 1995 survey (blue lettering) and 2018 survey 343 

(red lettering). b) Species richness for 1995 survey; data are taken from (Celesti-Grapow 1995). c) Species richness 344 

for 2018 survey. d) Changes in species richness in every grid-cell comparing 1995 and 2018 surveys. e) Species 345 

turnover comparing 1995 and 2018 surveys.  346 

 347 

 348 

Models of floristic changes 349 

We didn’t find any evidence of spatial autocorrelation in both models (Natives 2018 model: Moran I = 0.7618, p-value = 350 

0.22; Proportional variation of aliens model: Moran I = -1.1607, p-value = 0.87). 351 

 352 

- Natives 2018 353 

Since not significant changes occurred in the richness of natives over the investigated time frame (Table 2), we modelled 354 

their richness in 2018 (Natives 2018) against the environmental variables related to the current distribution. 355 

The optimal model obtained for Natives 2018 (Table 3) returned a strong correlation between the dependent variable and 356 

natives 1995, which acts as a covariate. change urbanisation, change agricultural and change lawns were negatively 357 

correlated to native richness. Except for the consolidate variable, the other Land use variables were positively correlated 358 

with native richness in 2018; RomaNatura variable had a strong positive relationship with native species richness of 2018; 359 

southerness was negatively related to number of native species (the north area is richer in native species compared to the 360 

south area), although without a significant p-value. The explained deviance is 0.77. 361 

 362 

Coefficients: Estimate Std. Error z value Pr (>|z|) 

(Intercept) 4.8141106 0.0586216 82.122 < 2e-16 *** 

natives 1995 0.0022429 0.0001548 14.49 < 2e-16 *** 

change urbanisation -0.1355713 0.0432062 -3.138 0.001702 ** 

change agricultural -0.1691339 0.0493045 -3.43 0.000603 *** 

change lawns -0.0941338 0.0317895 -2.961 0.003065 ** 

prevailing category “green” 0.1378032 0.0604257 2.281 0.022576 * 

prevailing category “mix” 0.218282 0.0621909 3.51 0.000448 *** 

prevailing category “recent” 0.1276543 0.0556596 2.293 0.021820 * 

prevailing category “consolidated” 0.032217 0.0192115 1.677 0.093550 . 

RomaNatura 0.0229724 0.0104106 2.207 0.027340 * 

southerness -0.0149406 0.0088618 -1.686 0.091806 . 

AIC:  728.45    

Explained deviance: 0.77    

Table 3 Generalised linear model of the Natives 2018. Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 363 

 364 

- Proportional variation of aliens 365 

In the optimal model obtained for proportional variation of alien species (Table 4), the variable change woods was 366 

positively related to a proportional increase of alien species. The centreness (which increases toward suburbs) shows a 367 

negative relationship (in the centre there is a higher proportional increase in alien species), as well as RomaNatura variable 368 

(a lower proportional increase of alien species in those areas with higher covers of RomaNatura). The South variable is 369 

positively related with the proportional variation of aliens (in the south area of the study there is a higher proportional 370 

increase of alien species). The explained deviance is 0.26. 371 

 372 
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Coefficients: Estimate Std. Error t value Pr(>|t|) 

(Intercept) 0.023803 0.001995 11.93 < 2e-16 *** 

change woods 0.004722 0.002216 2.131 0.03653 * 

centreness -0.00525 0.002085 -2.517 0.01409 * 

RomaNatura -0.00678 0.002225 -3.047 0.00325 ** 

southerness 0.005422 0.002034 2.666 0.00949 ** 

AIC: -393.34    

Explained deviance: 0.26    

Table 4 Generalised linear model of the proportional variation of aliens between 1995 and 2018. Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 373 
0.1 ‘ ’ 1.  374 

 375 

Change of Ellenberg indicator values 376 

Taking into account the entire set of data (1995-2018), the Student’s t-tests performed for Ellenberg indicators values 377 

(Table 5 - left side) showed no significant differences for Light, Continentality and Soil Reaction, while significant 378 

differences were detected for Temperature, Humidity and Nutrients with a significant increase for the first two Ellenberg 379 

indicator values and a significant decrease for the other.   380 

The additional Student’s t-tests performed only with McNemar’s significant species test showed significant differences 381 

only for Temperature and Nutrients (Table 5 - right side). Temperature values showed, on average, an increase in 2018, 382 

while Nutrients, on average, a decrease. 383 

 384 

Student’s t-tests for the entire set of data Student’s t-tests for McNemar’s species test 

Ellenberg indicator 

value 

Average values 

in 1995 survey 

Average values 

in 2018 survey 
p Ellenberg indicator value 

Average values 
in 1995 survey 

for McNemar’s 

species test  

Average values in 
2018 survey for 

McNemar’s species 

test 

p 

L Light 7.8 ± 0.21 7.8 ± 0.19 0.960 
T     Temperature 7.37±0.10 7.57±0.09 <0.001 

T Temperature 7.35 ± 0.12 7.46 ± 0.09 <0.001 

C Continentality 4.89 ± 0.05 4.89 ± 0.06 0.735 

N     Nutrients 4.47±0.29 4.32±0.18 <0.001 
U Humidity 3.84 ± 0.31 3.75 ± 0.22 0.036 

R Reaction 5.62 ± 0.15 5.62 ± 0.13 0.964 

N Nutrients 4.62 ± 0.23 4.53 ± 0.24 0.029 

Table 5 Student’s t-test for the entire set of data (left side of the table) and Student’s t-test for significant species returned by McNemar’s test (right side 385 

of the table). For every year of survey, average indicator value and ± SD is given. 386 

 387 

 388 

Discussion 389 

 390 

General results of 2018 survey 391 

Twenty-three years, the time span between the two censuses, is a very long time for a city where human impact leads to 392 

steady changes in plant species and communities (Kowarik 2011). After two decades, the flora of Rome in the area 393 

investigated in this study is still very rich, with 922 taxa in an area of 122 km2 characterised by intensive human pressure 394 

and representing about 12% of the flora of Italy (Pignatti 2017). The 91% of the species found in 2018 survey are natives, 395 

while alien species represents only the 9%. These findings confirm, once again, how Mediterranean cities are mainly 396 

composed of native species (Celesti-Grapow and Blasi 1998), differing from Central European cities where aliens can 397 

represent as far as 50% (Pyšek 1989; Kowarik 1995).  398 
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The species richness patterns in 2018 follow the same patterns of 1995 (Celesti-Grapow 1995; Celesti-Grapow et al. 399 

2013) (Figure 2b and 2c). Floristic richness is higher in the suburban belt and in the north-west sector, where the urban 400 

matrix is interrupted by several parks, fields and open areas. A few central grid-cells, characterised by the presence of 401 

urban parks or villas (e.g., grid-cells M11, L5, G9, F6), show a high richness notwithstanding their location embedded in 402 

the urban matrix. Similar patterns, with a high floristic diversity in the western sectors of the city and in a few central 403 

grid-cells, have also been detected by Ricotta et al. (2001). The greater species richness in highly structured areas, with 404 

the presence of semi-natural patches and high habitats heterogeneity, is well documented at local (Wania et al. 2006; 405 

Godefroid and Koedam 2007; Malkinson et al. 2018) as well as at large scales (Deutschewitz et al. 2003); for instance, 406 

Godefroid and Koedam (2007) found an inversely proportional correlation between built-up areas and species richness in 407 

Brussels. 408 

 409 

Temporal changes in species richness 410 

Urban floras are highly dynamic (Godefroid 2001; Chocholousková and Pyšek 2003; van der Veken et al. 2004; Knapp 411 

et al. 2010; Gregor et al. 2012) and a certain degree of fluctuations in species number is easily detectable (Klotz 1987; 412 

Landolt 2000; Pyšek et al. 2004; Salinitro et al. 2019).  413 

In this study, there was a significant change in the total richness and a significant increase in the number of alien species 414 

(Table 2 in text and Fig. 1 in Supplementary Materials I). The success of aliens could simply depend on different 415 

environmental requirements compared to natives (Ricotta et al. 2010), but this subject deserves deeper investigations, 416 

particularly the study of the population dynamics. Our results are in contrast with observations derived from temporal 417 

analyses carried out in Central European cities (Godefroid 2001; Chocholousková and Pyšek 2003; Pyšek et al. 2004; van 418 

der Veken et al. 2004; Knapp et al. 2010; Gregor et al. 2012). These studies found a decrease in the number of native 419 

species, but similar trends have been detected in other urban studies, such as Knapp et al. (2017) and Wirth et al. (2020), 420 

where the number of species increased. Areas rich in native species can also host many aliens, as in the case of the city 421 

of Pécs, where Wirth et al. (2020) identified the increased numbers of neophytes as the main cause of increase of species 422 

richness.  423 

Despite the increase of aliens, native species remain the dominant component of the flora of Rome. Their average increase 424 

per grid-cell, even if not statistically significant, suggests that also the native species contributes to the floristic change. 425 

Consistently with Thomas and Palmer (2015), who observed no net effect of aliens on native species in Great Britain, the 426 

increment of native species in Rome has been also observed for grid-cells where aliens grew. Stohlgren et al. (2003) and 427 

Wania et al. (2006) already highlighted that naturally rich areas can host many aliens: The reason of this coexistence is 428 

probably due to the great heterogeneity of Rome’s landscape, in terms of geographical features and land use (Blasi et al. 429 

2005).  430 

The increase in species number was not observed for every grid-cell: A decreasing trend was detected along the main 431 

rivers and the outermost belt of the area investigated. The decrease in species number is probably linked to several factors, 432 

such as the steady human pressure in the urban stretch of the rivers, which includes ruderalisation, pollution or 433 

eutrophication (Ceschin et al. 2010; Ceschin and Salerno 2021), the change in agricultural practices (a relevant 434 

interpretation for some grid-cells in north-west sector of the city characterised by agricultural areas), the general change 435 

in land use in many areas of the city, that switched from agricultural to built-up areas or from urban fabric to abandoned 436 

vacant lots (Frondoni et al. 2011; Salvati and Carlucci 2014). 437 

The analysis of species with significant changes in frequencies added further qualitative information: The species 438 

increased in frequency are mainly related to open ruderal habitats and small niches of the urban fabric, like flowerbeds, 439 
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managed parks, or wastelands (e.g. Trifolium nigrescens subsp. nigrescens, Medicago lupulina, Beta vulgaris subsp. 440 

maritima, Allium neapolitanum). Many of these species belong to a characteristic component of the flora of Rome, namely 441 

grasslands dominated by sub-ruderal therophytes, like Dasypyrum villosum or Avena sterilis, a habitat with a high species 442 

richness (Fanelli 1998). The spread of ruderal species within the flora of Rome has been already highlighted on minor 443 

scales (Bianco et al. 2003; Filibeck et al. 2015). At large scale, the increase of generalist species was found also in the 444 

city of Turnhout (van der Veken et al. 2004) as they benefit of urbanisation. 445 

Most of the significantly decreased species are related to xeric, open and grazed areas (e.g., Xanthium italicum, Centaurea 446 

solstitialis subsp. solstitialis, Anthemis arvensis s.l., Rapistrum rugosum), which were rather common in the previous 447 

work. Moreover, also many species with previous low occurrences decreased their distribution or even disappeared. These 448 

species are related to traditional agricultural practises, microthermic woody habitat (Mycelis muralis) or wet areas (Juncus 449 

effusus, Scutellaria galericulata, Persicaria hydropiper, Hydrocharis morsus-ranae). 450 

All these floristic results are consistent with the analyses of Ellenberg indicator values (see below in Par. Ecological 451 

evaluation of changes). Although we did not relate the distribution of single species to land-use, the ecology of the 452 

significantly changed species is an indicator of a qualitative shift, from a landscape characterised by a mix of agricultural 453 

and urban patches to a metropolitan landscape. 454 

Regarding the analyses of not common species, the most important information is the significant average increase 455 

considering every grid-cell. As already highlighted, in urban fabric, rare species can survive in small patches of favourable 456 

habitats and natural areas (Diamond and Heinen 2016), as well as in the hybrid ecosystems emerging in these contexts, 457 

which can act as stepping stones (Planchuelo et al. 2020). 458 

Turnover was generally high, not surprisingly for a highly dynamic habitat as a city (Lososová et al. 2016). The period 459 

from 1990 to 2018 saw the setting of an important system of protected areas in Rome, the network RomaNatura 460 

(RomaNatura 2021). Despite the shift of many of these areas from pasture/agricultural areas to urban parks, the floristic 461 

pool has maintained its high diversity and is stable over time, suggesting that the system of protected areas of the city has 462 

preserved these areas. 463 

 464 

Models of floristic changes 465 

Natives 2018 466 

The distribution of native species in 2018 (Natives 2018) is explained by several environmental variables. The “green”, 467 

“mix” and “recent” prevailing category are positively correlated with the dependent variable. Within the prevailing 468 

category, “mix” category shows the strongest effect (Table 3), meaning that more heterogeneous grid-cells are highly 469 

diverse compared to grid-cells where the urban fabric remained stable over the last 70 years (“consolidated”). The positive 470 

effect of habitat heterogeneity in the city has been already observed by Celesti-Grapow et al. (2006). Also recently 471 

urbanised areas (“recent”), probably due to their high dynamism and the presence of heterogeneous surfaces and green 472 

open sites (“green”) host a high diversity of natives. 473 

Concerning the land use change variables (Land use), the model detected a significant effect of the disappearance of 474 

agricultural patches, which favours the increment of natives. The change of agricultural areas (change agricultural), that 475 

on average diminished per grid-cell (Table 1), is in fact the strongest driver among the other land use change variables. 476 

The correlation between change lawns (increased, on average) and native species diversity is apparently counterintuitive: 477 

Despite lawns naturally host a floristically rich vegetation (Fanelli 2002), their change over time in the city of Rome is 478 

negatively correlated with the current natives’ diversity. However, it seems necessary to highlight that the lawns category 479 

includes several kinds of vegetation, in particular managed lawns, that are floristically poor compared to more natural 480 
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patches. Lawns, on average, increased all over the area (Table 1) but particularly in suburban areas (for instance in grid-481 

cells N12, F15, M15, R10, C11, C13) where, probably due to the recent urbanisation, agricultural land have been replaced 482 

by urban fabric and managed meadows (such as backyards or urban greening). This is the case, for instance, of the grid-483 

cell N12, where a portion of the agrarian landscape became a golf course. The suburban belt of the city (for instance, N16, 484 

P5, D12, C13, E14, G16, S9, Q12 grid-cells) is where most of urbanisation took place in the last two decades. This land 485 

use change (change urbanisation), along with change lawns, is negatively related to the species richness of natives. 486 

Despite urbanisation is an ongoing process in the area investigated (change urbanisation increased, on average, over time; 487 

Table 1), the native species maintain their high species number and, although not significantly, increased over time. Our 488 

results suggest that the native species benefit from the presence of the RomaNatura network. The important positive 489 

correlation with the variable RomaNatura is consistent with other results stressing the primary role of urban parks in 490 

preserving biodiversity and promoting species plant richness (Nielsen et al. 2014). 491 

 492 

Proportional variation of aliens 493 

The model of the proportional variation of aliens suggests that increasing in woods (change woods), closeness to the 494 

centre (centreness), southerness and the absence of protected areas (RomaNatura) are all related to the increase of alien 495 

species. The temporal increment of aliens in areas close to the centre (centreness), where the urban matrix is more 496 

compact, confirmed and added a dynamic dimension to the patterns already detected by Celesti-Grapow et al. (2006), 497 

who found a high representation of neophytes for the historical centre. 498 

The climate might affect aliens’ increment in the southern area of the city (southerness) as this sector is warmer and hosts 499 

a more Mediterranean vegetation compared to the north (Fanelli 2002). Southern areas probably are more sensitive than 500 

northern areas, consistently with the results of Ellenberg Indicator values that showed an increase in Temperature values. 501 

The important role of the geographical gradients in explaining the distribution of species richness in the city has already 502 

been recognised by Celesti-Grapow et al. (2006), who found a decrease of richness along a north-south gradient. The 503 

increase of aliens in warm habitats has already been reported in the literature (Walther et al. 2009). Yet, to make pertinent 504 

comparison with the 1995-2018 data, further analyses with bioclimatic parameters should be performed.  505 

Differently from our expectations, change urbanisation has no significant relationship with the increase of alien species. 506 

This is in contrast with previous findings by Kühn et al. (2017) for Germany, where urbanised areas have an important 507 

effect in explaining neophyte richness patterns. 508 

Unexpectedly, the proportional increase of alien species is related to the increase of wood percentage cover over the years. 509 

Notwithstanding the important role of little remnants of seminatural woody areas in maintaining native species richness 510 

in urban ecosystems (Yang et al. 2021), our results report that the increase in cover of these woody areas is not to be 511 

consider solely a regrowth of natural potential woods but probably an increase of thickets of woody neophytes, such as 512 

Robinia pseudoacacia and Ailanthus altissima thickets which can host a great number of allochthonous species (Fanelli 513 

2002; Vítková et al. 2020). Especially understory communities of this thickets seem to be particularly vulnerable and 514 

prone to colonisation by alien plants (Trammell et al. 2020). For the city of Rome, at least for black locust canopies, such 515 

regrowth does not necessarily produce homogenisation of understorey communities (Sitzia et al. 2021) and, generally for 516 

urban areas, these regrowth are considered shared habitats of native and alien species (Kowarik et al. 2019). 517 

Despite the significant spread of aliens all over the city, particularly in the historical centre and southern areas, it’s 518 

interesting to note how the presence of the parks network has prevented the increase of aliens, acting as a filter. The 519 

RomaNatura variable is in fact negatively correlated with the increase of alien species. 520 

  521 
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Ecological evaluation of changes 522 

The analyses of the Ellenberg indicator values reported some significant changes. The significant increase in Temperature 523 

values could be correlated to global climate change and the urban heath island phenomenon (Bechtel and Schmidt 2011). 524 

The increase of this Ellenberg indicator value was found also by in Godefroid (2001) for Brussels, although only as a 525 

trend for total species number. The preference of neophytes for warmer habitats, as reported in Knapp et al. (2010) for 526 

the city of Halle, could partially explain the increase in aliens in Rome found in this study. Moreover, the most favourable 527 

conditions in urban habitats for thermophilous species is well documented in literature (Williams et al. 2015) and our case 528 

confirms these findings. 529 

The significant decrease in Nutrient values is harder to explain. Rome’s species richness decreases in more disturbed 530 

areas (Celesti-Grapow et al. 2006) and, even if in Ranta et al. (2013) an increase in Nutrient values has been observed, 531 

many studies stress the relation existing between high nutrient tolerant species and urban rich soils (Pyšek 1995; 532 

Godefroid 2001; Hill et al. 2002). A possible explanation is related to the structure of the inner urban texture: The 533 

Municipality of Rome has stabilised over the last 20 years, while urban expansion is still in act mainly outside the GRA 534 

highway (ISPRA 2020), where none of the grid-cells is located. This fact could have influenced the distributions of species 535 

related to shuffled soils, e.g., Dysphania ambrosioides. 536 

The analysis carried out on the subset of species that significantly changed over time returned strongly significant values 537 

for Temperature and Nutrients, highlighting how these trends are more pronounced for those species with major 538 

variations, which are the main agents of the change. 539 

 540 

Limitations of the study 541 

Floristic data research based on large-size grid-cells, especially if compared with data from different authors, may presente 542 

some weaknesses. One of the main drawbacks encountered during the field samplings is the large size of every grid-cell 543 

and the inner high heterogeneity: Rome, given its patchy urban texture, hosts a wide array of habitats even in small areas 544 

and these habitats are rich in species. At the scale of our research, it was hard to investigate all this heterogeneity. We are 545 

aware that a margin of uncertainty exists between the two surveys, due to above mentioned issues. Secondly, bias due to 546 

sampler/s is an important drawback to take into account that could lead to misinterpretations, although we were careful 547 

in assuring that sampling method and sampling efforts were the same in both surveys (1995 and 2018).  548 

However, we are confident that these weaknesses do not invalidate the interpretation of our results due to the range and 549 

size of study area, which allow to make pertinent ecological interpretations. 550 

Finally, our study concerns the frequency of species but not their abundance and this can mask local patterns such as 551 

patterns of establishment. 552 

 553 

Conclusions 554 

Our study added the temporal dimension to the important existing works about the flora of Rome. The results showed 555 

that the main changes in the flora of the city are represented by an increase in the total number of species and by an 556 

increase in alien species, resulting in a high turnover. Many species rather rare at regional level are still present in Rome, 557 

notwithstanding the moderate decrease in the number of not common species. 558 

Current changes are not limited to the inner area of the GRA highway: Thus, the urban sprawl is mainly regarding the 559 

outside areas in the last years and it would be interesting to study change in this outer suburban belt, although data in this 560 

format are not available for the past nor for current years. 561 
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If it is true that we are undertaking the way of the end of botany (Crisci et al. 2020), field research is becoming less and 562 

less, with a direct consequence of information loss, misinterpretation of current issues and inappropriate management 563 

plans. The conservation of urban biodiversity, above all in a period where more than half of the human population live in 564 

urban contexts, necessarily finds its foundation in the collection, analysis and interpretation of field data. Our approach, 565 

which is transferable to other cities, would allow useful comparisons in understanding patterns and processes of 566 

biodiversity in urban contexts. 567 

 568 
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