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Abstract –In this letter we present a finite temperature approach to a high-dimensional inference
problem, the Wigner spiked model, with group dependent signal-to-noise ratios. For two classes of
convex and non-convex network architectures the error in the reconstruction is described in terms
of the solution of a mean-field spin-glass on the Nishimori line. In the cases studied the order
parameters do not fluctuate and are the solution of finite dimensional variational problems. The
deep architecture is optimized in order to confine the high temperature phase where reconstruction
fails.

Consider the inference task of recovering a signal, made
of N bits belonging to K groups, sent through channels
with a group dependent noise. In the present paper we
consider N ≫ 1, K = O(1). In order to ease its recon-
struction the signal is encoded with some redundancy, i.e.,
not only bit by bit but also in products of bit pairs. In par-
ticular we focus on the special case of Gaussian noise and
signals made up of ±1 components drawn independently
with probability 1/2. The original signal (ground truth
from now on) is therefore an N -components binary vector
denoted with σ∗ = {σ∗

i }i∈Λ, where Λ = {1, 2, . . . , N} is a
set of indices. More specifically, the statistician that has
to infer the ground truth receives the following N + N2

observations

ỹi(σ
∗) =

√
hr σ

∗
i + z̃i , i ∈ Λs

yij(σ
∗) =

√
µrs

2N
σ∗
i σ

∗
j + zij , (i, j) ∈ Λr × Λs ,

(1)

where {Λr}Kr=1 is a partition of Λ withNr = |Λr|. The ran-
dom variables zij , z̃i

iid∼ N (0, 1) represent additive Gaus-
sian noise causing the corruption of the signal, while the
parameters µrs = µsr ≥ 0, hr ≥ 0 (called signal-to-noise
ratios) tune the amplitude of the signal. In the following
we will use the notations h = (hr)

K
r=1, µ = (µrs)

K
r,s=1.

The problem of reconstructing a ground truth signal
from noisy observations has been investigated in different
models of high-dimensional Statistical Inference. Equa-
tions (1) generalize the so calledWigner spiked model [1–3]
by grouping signal bits in K sets and allowing for group-
dependent signal-to-noise ratios: the Wigner spiked model

corresponds to the case K = 1 and describes the idealised
condition of homogeneous noise. Recently, in the context
of neural networks with associative memory features [4,5]
the classical Hebbian rule to store and retrive P patterns of
N bits each (ground truth) has been modified to take into
account a so-called “synaptic noise” that corrupts the in-
formation stored into the couplings between neurons. The
effects on the retrieval capability of the network have been
analyzed in presence of different realisations of the synap-
tic noise. In particular, one of those realisations for P = 1
would give couplings between neurons of the form of the
yij ’s in (1) and for a special choice of the temperature the
resulting Statistical Mechanics model is equivalent to stan-
dard Wigner spiked model. We also refer the interested
reader to the seminal paper [6].

The simplest way to account for inhomogeneity of the
noise is to weaken the permutation symmetry among the
observations components, preserving it only inside each
set of a given partition {Λr}Kr=1. We call the resulting
model multi-channel Wigner spiked model (see also [7] for
a similar model studied in different limits). From equa-
tions (1) one can see that the choice of the sizes Nr and
the parameters µ, h completely determines the distribu-
tion of the observed channels. The purpose of this work
is a systematic study of the problem for different choices
of these parameters.

When the distribution used to generate the ground
truth σ∗ and the parameters h, µ are known, the infer-
ence problem is said to be in the Bayesian Optimal Setting
(BOS), meaning that one can write the posterior distribu-
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tion given the observations. In the BOS the posterior is

P (σ∗ = σ|y, ỹ) ∝

∝ exp

−1

2

K∑
r,s=1

∑
(i,j)∈Λr×Λs

(
yij −

√
µrs

2N
σiσj

)2×

× exp

[
−1

2

K∑
r=1

∑
i∈Λr

(
ỹi −

√
hrσi

)2]
(2)

where we have used the Bayes rule together with the fact
that conditionally on σ∗ = σ the observations have inde-
pendent Gaussian distributions: yij ∼ N

(√
µrs

2N σiσj , 1
)
,

ỹi ∼ N
(√
hr σi, 1

)
for (i, j) ∈ Λr × Λs.

By replacing the observations y, ỹ with their definitions
(1) and absorbing the terms that depend on z, z̃, σ∗ only
into the normalization we can rewrite the posterior as a
random Boltzmann-Gibbs distribution P (σ∗ = σ| y, ỹ) =
exp

(
− H̃N (σ)

)
/ZN where:

H̃N (σ) =−
K∑

r,s=1

∑
ij∈Λr×Λs

[√
µrs

2N
zijσiσj +

µrs

2N
σiσjσ

∗
i σ

∗
j

]

−
K∑
r=1

∑
i∈Λr

[√
hr z̃iσi + hrσiσ

∗
i

]
.

(3)

In this work we are interested in the high dimensional
regime of the inference problem, with N → ∞ and form
factors Nr/N → αr. The main goal is the computation of
the limiting rescaled mutual information which coincides,
up to an additive constant, with the Statistical Mechan-
ics quenched free energy (at β = 1) of the model with
Hamiltonian (3):

fN = − 1

N
E log

∑
σ∈{−1,1}N

exp
(
−H̃N (σ)

)
, (4)

where E denotes the expectation w.r.t. the independent
quenched variables σ∗, z, z̃. We denote the quenched aver-
aged expectation with E⟨·⟩σ∗ . In our approach, also called
finite temperature in Statistical Mechanics [8, 9], the esti-
mator for the ground truth will be chosen to be the average
w.r.t. the posterior measure. The quality of the signal re-
construction is quantified by the minimum mean square
error (MMSE) defined by

MMSE =
1

N

N∑
i=1

E⟨(σ∗
i − σi)

2⟩σ∗ = 2

(
K∑
r=1

∂fN
∂hr

+ 1

)
.

(5)

Thanks to the Z2-gauge symmetry

z̃i 7→ z̃iσ
∗
i , zij 7→ zijσ

∗
i σ

∗
j , σi 7→ σiσ

∗
i (6)

the Hamiltonian H̃N becomes independent of the ground
truth signal (it can be evaluated at σ∗

i = 1 for any i ∈ Λ),

more precisely

H̃N (σ) 7→ −
K∑

r,s=1

∑
(i,j)∈Λr×Λs

[√
µrs

2N
zij +

µrs

2N

]
σiσj +

−
K∑
r=1

∑
i∈Λr

[√
hr z̃i + hr

]
σi

(7)

which is distributionally equivalent to

HN (σ) = −
K∑

r,s=1

∑
(i,j)∈Λr×Λs

Jrs
ij σiσj −

K∑
r=1

∑
i∈Λr

hriσi (8)

with Jrs
ij

iid∼ N (µrs/2N,µrs/2N) and hri
iid∼ N (hr, hr).

The previous Hamiltonian represents a multi-species
Sherrington-Kirkpatrick model [10, 11] on the Nishimori
line [12,13], where interactions and bias disorders are tied
to have means identical to their variances. We denote the
corresponding Boltzmann-Gibbs measure with ⟨·⟩. When
K = 1 the model reduces to the standard SK model on
the Nishimori line. For genericK the model enjoys a block
permutation symmetry and the interactions among blocks
are tuned by the parameters µ. When the matrix µ is pos-
itive definite we say that the system has a convex architec-
ture. The meaning of such architecture is that the interac-
tion between spins belonging to the same block dominates
those between different blocks. Such condition is violated
when the internal interactions of each block are absent. A
special non-convex case is the so called deep architecture
(a feature of deep Boltzmann machines) introduced in the
seminal paper [14] in the context of Machine Learning. In
this case the system is divided in K layers and only in-
teractions between two consecutive layers are allowed. In
this work we consider and solve the Statistical Mechanics
problem for both convex and deep architectures.

The distributionally equivalent models (3) and (8) ful-
fill two families of identities, called the Nishimori identi-
ties [9, 15], that are mapped into each other by the gauge
transformation (6). For the model (8) one finds for in-
stance E⟨σi⟩2 = E⟨σi⟩ which in particular implies

MMSE =

K∑
r=1

Nr

N
E[1− ⟨mr⟩] , mr :=

1

Nr

∑
i∈Λr

σi . (9)

The MMSE represents the information-theoretical lower
bound for the error that any algorithm can achieve in the
task of signal reconstruction. Therefore (9) provides a way
to characterize the best possible performance of an algo-
rithm in terms of the average magnetization of a spin glass
system. For this reason the study of the phase diagram
of the system, and in particular the location of the phase
transitions, is a crucial a priori information for algorithms
design. In the region of the phase space where the magne-
tization is zero the MMSE turns out to be maximum and
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equal to one. This implies there is no way to find an al-
gorithm that performs better than a random guess drawn
from the ground truth distribution.

The high dimensional limit of the MMSE, and in par-
ticular of the vector (E⟨mr⟩)Kr=1, can be derived from the
computation of the limiting free energy, which is done by
steps starting from the non interacting case where the sig-
nal to noise ratio matrix µ = 0. This is easily solved by a
convex combination of free energies:

ψ(h) := lim
N→∞

f
(0)
N = −

K∑
r=1

αr E log 2 cosh
(
z
√
hr + hr

)
(10)

where z is a standard Gaussian.
When instead µ ̸= 0 we solve the problem for two wide

classes of architectures, namely the topological structure
identified by µ, by showing that the solution is given by an
ordinary variational principle in K dimensions. Define the
matrix α := diag(α1, . . . , αK) and consider the variational
free energy

f(µ,h;x) =
x · (αµα)x

2
− (1− x) · (αµα)(1− x)

4
+

+ ψ(µαx+ h) ,
(11)

where x ∈ RK
≥0. Notice that, when µ is invertible, the

stationary points of f fulfill

x = Ez tanh
(
z
√
µαx+ h+ µαx+ h

)
, z ∼ N (0, 1) .

(12)
The proof of the following Propositions are outlined in the
Supplementary Material.

Proposition 1 (Convex architecture [12]). Let µ be pos-
itive definite. Then :

lim
N→∞

fN = inf
x∈RK

≥0

f(µ,h;x) . (13)

If the spectral radius of µα is smaller than 1, then
f(µ,h;x) is convex in x and the minimizer is unique.

Remark 1. When K = 1 one can easily see that the so-
lution x̄(µ, h) of (12) is continuous at (µ, h) = (1, 0) with
x̄(1, 0) = 0. Moreover, the critical behaviours turn out to
be

x̄(µ, 0) =
µ− 1

µ2
(1 + o(1)) , µ→ 1+ (14)

i.e. x̄ vanishes linearly in µ− 1,

x̄(1, h) =
√
h(1 + o(1)) , h→ 0+ (15)

and for a λ > 0

x̄(µ, λ(µ− 1)) =

√
λ(µ− 1)

µ2
(1 + o(1)) , µ→ 1+ . (16)

Proposition 2 (Deep architecture [13]). Let µ be a tridi-
agonal matrix with zero diagonal:

µ =



0 µ12 0 · · · 0
µ21 0 µ23 · · · 0

0 µ32 0
. . . 0

...
...

. . .
. . . µK−1,K

0 0 0 µK,K−1 0

 (17)

and let K be even. Then

lim
N→∞

fN = inf
xo

sup
xe

f(µ,h;x) (18)

where xo and xe denote the odd and even components of
the vector x ∈ RK

≥0 respectively. If the spectral radius of

the K/2×K/2 matrix obtained from (µα)2 by erasing the
even rows and columns is smaller than 1, then the solution
of the variational problem (18) is unique. If hs is positive
for every s, then the solution of (18) is unique.

The conditions on the spectral radii in Propositions 1, 2
identify the phase transitions in the corresponding archi-
tectures when h = 0. Indeed, in this case x = 0 is always
a solution to the consistency equations (12) both in the
convex and deep architectures. However, x = 0 is the sta-
ble solution of the optimization problem only when the
mentioned spectral radii are smaller than 1. Otherwise,
in both cases an arbitrarily small hr > 0 would bring the
system towards the stable solution which is a vector of pos-
itive entries x̄ ∈ RK

>0 that can be identified with the vector
of the limiting averaged magnetizations (E⟨mr⟩)Kr=1 .

Hence, by (9) the limiting MMSE is

lim
N→∞

MMSE =

K∑
r=1

αr(1− x̄r) . (19)

It is possible moreover to show that the magnetization is a
self-averaging quantity [12] (see also [16]) as suggested by
the finite dimensional nature of the variational principles
(13) and (18).

The free energies in Propositions 1 and 2 refer to the
N → ∞ limit. One may want to investigate the order in
N of the finite size corrections to the variational principles.
For the simpler case K = 1 this was done in [17] by means
of the cavity method and the interpolation technique. The
extension of this approach to the present multi-channel
setting is left for future work. The main idea, as for the
single channel case, would be to obtain a finer control on
the variance of the magnetization in the quenched mea-
sure, namely to identify the correct N -scaling at which its
fluctuations are significant. Once this is done by means of
the cavity method, one can use the interpolation technique
to evaluate the gap between the targeted variational prin-
ciple and the finite N pressure, which is usually expressed
as an integral of the variance of the magnetization.

In the next Proposition, we deal with the optimization
of a deep architecture at h = 0 [18, 19]. Precisely we see
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(a) (b)

(c) (d)

Figure 1: Plots of the asymptotic MMSE for K = 2 using the consistency equations (12). Convex architecture in the
top row, deep architecture in the bottom one. The critical line between MMSE= 1 (dark color) and MMSE< 1(brighter
colors) signals a second order phase transition. (a) displays MMSE as a function of µ12 ∈ [0, 1.5] and α1 with
µ11 = µ22 = 1.5. (b) plots MMSE vs α1, µ11 drawn with the constraint µ11 = µ22 ∈ [0.5, 2.5] and µ12 = 0.5. For
(a) and (b) the ranges of the parameters keep the SNR matrix µ positive semidefinite. (c) shows the MMSE as a
function of the only two free parameters µ12, α1. (d) is the 2D projection of (c), the contour draws the critical line of
the model. (d) shows that in the deep architecture it is impossible to have MMSE< 1 if µ12 < 2. Indeed for K = 2
the spectral radius equals at most µ2

12/4 (attained at α1 = 0.5) according to Proposition 3.

(a) (b)

Figure 2: Graphical representation of the two possible cases (a) and (b), with reference to Proposition 3, in which
the spectral radius attains its maximum value. The non extensive layers are not displayed.
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how the signal components can be partitioned in differ-
ent species (layers) in order to minimize the set of those
signal-to-noise ratios µ which do not allow for signal re-
construction, namely when all the E⟨mr⟩’s in (9) asymp-
totically vanish. Indeed in that case the MMSE reaches
its maximum value.

Proposition 3 (Deep architecture optimization [13]). Let
µ be the tridiagonal matrix (17) with K even. The spec-
tral radius of the K/2×K/2 matrix obtained from (µα)2

by erasing the even rows and columns equals at most
1
4 maxr µ

2
r,r+1. Moreover this maximum is attained if and

only if one of the following conditions is verified:

(a) there are only two extensive layers, which have
equal size and have the highest interaction strength.
Namely:

αr∗ = αr∗+1 =
1

2
, µr∗, r∗+1 = max

r
µr,r+1 (20)

for some r∗ ∈ {1, . . . ,K − 1} ;

(b) there are three consecutive extensive layers with the
highest interaction strengths. One half of the volume
is in the middle layer and the remaining half is arbi-
trarily shared by the other two. Namely:

αr∗ = αr∗−1 + αr∗+1 =
1

2
,

µr∗−1, r∗ = µr∗, r∗+1 = max
r
µr,r+1

(21)

for some r∗ ∈ {2, . . . ,K − 1} .

In this paper we have outlined the solution of a multi-
channel Wigner spiked model from a Statistical Mechan-
ics perspective. Two special architectures are explicitly
studied, the convex and the deep case, corresponding re-
spectively to a non-restricted Boltzmann Machine and a
restricted one. The inference problem that we present
here is in the Bayesian Optimal Setting, when the receiver
knows the signal-to-noise ratios and the distribution of
the ground truth signal. In this setting one is allowed to
use the Nishimori identities which remarkably simplify the
treatment. When instead the receiver ignores the prior or
the signal-to-noise ratio, only a few results are available
[20–24]. In such settings, called mismatched, the Nishi-
mori identities do not hold true and a replica symmetry
breaking variational principle may arise [25]. It is worth
noticing that the Statistical Mechanics model described by
the Hamiltonian (8) with centered interactions (which for
K = 1 reduces to the standard Sherrington-Kirkpatrick
model [26–29]) is still unsolved for non-convex architec-
tures such as the deep one, see nevertheless [19,30–32].
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