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Abstract

When producing complex and highly customisable products in low volumes (or in ‘batch sizes of one’),
automation of production systems is critical for competitiveness and profitability in high labour-cost economies.
To facilitate batch-size-of-one production, ‘topology generation’, ‘realisability’, and ‘control’ algorithms have been
developed as part of the Evolvable Assembly Systems (EAS) project. The topology generation algorithm computes
all the possible sequences of parallel activities that assembly resources can perform on parts and is run offline
whenever the layout of the production facility changes, whereas realisability checking and controller generation are
performed at run-time to check whether a production facility with a given set of assembly resources can assemble
a desired product, and how the product should be assembled, e.g., which resources to use, and when. Generated
controllers are output in Business to Manufacturing Markup Language (B2MML). Taken together, the algorithms
thus represent a step toward a complete path from the formal specification of an assembly system and the products
to be assembled, to the automated synthesis of executable process plans. This paper presents each algorithm in
sufficient detail to allow their reimplementation by other researchers. Topology generation is the most expensive
step in the approach. A preliminary experimental evaluation of the scalability of topology generation is presented,
which suggests that, for small to medium sized production facilities, the time required for recomputing the topology
is sufficiently small not to preclude frequent factory transformations, e.g., the addition of new resources.

Keywords: Evolvable Assembly Systems; Controller Synthesis; Standardisation.

†This paper extends and subsumes the work published in [11].
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1 Introduction

Advanced manufacturing is the result of the trend towards the integration of informatics with traditional manufacturing
and assembly systems. These dynamic, adaptive, decentralised systems are used to process product lines with a shorter
time to market, increased product diversity, greater specialisation, and shorter lifecycles. A number of government-
backed initiatives have arisen in recent years to support this trend, including the German Industrie 4.0 initiative [4, 37],
EU EFFRA Roadmap [2], US DMDII Strategic Plan [5], and the recent Japanese ‘Connected Manufacturing’ Industrial
Value Chain Initiative [3]. Academic research in the area includes reconfigurable manufacturing systems [38, 22] with
‘plug and produce’ technologies [47, 9], holonic manufacturing [39, 41, 10], organic computing [44, 14], and the
related evolvable production systems and evolvable assembly systems [46, 45, 47, 16, 48], among others.

The Evolvable Assembly Systems (EAS) project is investigating assembly systems that are self-adaptive [52] and
able to support ‘batch-size-of-one’ production, where each product to be assembled may be unique [16]. In [20, 11],
a formal approach was proposed to determine both whether a particular product can be assembled given a set of
available assembly resources (the realisability problem), and how the product should be assembled using the resources
(the control problem). The approach in that work takes as input the product in the form of a recipe specifying the
operations necessary to assemble the product, and the topology or ‘layout’ of the production facility, which is generated
offline from descriptions of the available assembly resources. Algorithms are given that convert a customer-requested
product (recipe) into a controller at runtime, specifying the detailed steps to be executed by each assembly resource in
the production facility. In [21] a tool implementing the controller synthesis algorithms in [20, 11] is briefly described.
The tool outputs a controller in Business to Manufacturing Markup Language (B2MML) [6], a format suitable for
execution by industrial assembly systems. In contrast to related work, the algorithms of [20, 11, 21] were motivated
by the need to rapidly both check realisability and generate a controller for assembling the product.

The algorithms presented in [20, 11] for controller synthesis are abstract, and the work does not explain how they
could be implemented in detail. In particular, [20, 11] (and also [21]) do not consider the key step of generating
the topology from the descriptions of the resources comprising a production line, and simply assume the topology is
available as an input to the synthesis algorithms. However, as topology generation is the most expensive step in the
process [20], its scalability is critical to the feasibility of the whole approach. This is especially true for assembly
systems that can transform, e.g. have resources or transport systems added or removed.

In this paper we give all algorithms (including topology generation) in sufficient detail to allow their reimplemen-
tation by other researchers, and report a preliminary experimental evaluation of the scalability of topology generation.
As in [11], the data structures manipulated by the algorithms are specified in a textual encoding using the ISO-standard
EBNF (Extended Backus-Naur Form) [1] notation. To evaluate the scalability of topology generation, we performed
experiments to determine the time required to generate the topology as the number of assembly resources is increased
in models of two practical production facilities: the SMC Pneumatics HAS-200 training platform described in [16],
and the Precision Assembly Demonstrator (PAD) described in [11, 9]. Our results suggest that topology generation is
feasible for small to medium sized transformable assembly systems.

This paper is organised as follows. We first outline the state of the art in Section 2, and then describe a simple
assembly cell in Section 3 that serves as a running example throughout the remainder of the paper. Section 4 defines
assembly resources and product recipes in EBNF notation. Section 5 describes the structure of an abstract controller
and how it can be translated into a more concrete format for controlling industrial processes, and the methods for
building a production topology, for checking realisability, and for synthesising an abstract controller. Section 6 evalu-
ates the scalability of the algorithm for building the production topology. Finally, Section 7 summarises the paper and
discusses future work.

2 State of the Art

The approach we propose is most closely related to that presented in [8], in that both approaches can check whether
a product can be produced by a set of production resources. However there are important differences. Firstly, unlike
[8], the work presented in this paper takes into account the parts that are being worked on by the production resources,
and the correct routing of these parts between resources. Secondly, while the specification of the product and the
controller (termed a “re-configuration” in [8]) required for producing it are both restricted to be a sequence of steps in
the case of [8], the corresponding representations in this paper allow for the specification of parallel operations, tests
and branching. Finally, the algorithms underlying the approach in [8] are only briefly mentioned in that paper, whereas
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the algorithms that form the basis of our approach are the main focus of this paper.
There is also a strand of work on dynamically adding and removing production resources from a production line

(i.e., ‘plug and produce’ systems), and on aggregating resource operations (or ‘capabilities’) to form composite oper-
ations at multiple levels of abstraction [9, 15, 12, 29, 34]. These are then matched against the desired product which is
also specified as a sequence of composite operations. In contrast, our approach is not concerned with aggregation of
operations: we assume that resource operations are specified at the same level of abstraction as the product specifica-
tion, or that the transformation from high-level product specifications to low-level operations has already taken place.
Moreover, in the body of work above, it is implicitly assumed either that production resources can service any order
of operations in the product specification, e.g., parts can be transferred from any resource to any other resource (this
is achieved via a shuttle conveyor system in [9] and a crane in [12]), or that separate software simulations will be run
to check whether the order of operations and the routing of parts suggested by the generated controller are actually
executable on the production system layout (as in [34]). In contrast, in our approach, the layout of the production
system is modelled explicitly, and the order of operations and routing of parts specified by the controller is guaranteed
to be executable by the production system.

Production systems have also been modelled as Petri Nets; see [54] for a survey. Both the product recipes and
assembly resources considered in this paper could be modelled as Petri Nets, and the realisability of the recipe on the
topology determined at runtime using Petri Net algorithms. However, such an approach is likely to be computationally
intractable, even for restricted classes of Petri Nets, see, e.g., [26, 17, 35, 18]. In contrast, one of the key advantages of
our approach is the ability to rapidly determine whether and how a product can be assembled (as we show in Section 6,
this can be done in a few milliseconds). This is possible by virtue of a customised specification language for products
and resources, which has lower expressive power than Petri Nets, but is sufficiently expressive for the assembly setting.

There is also work that uses customised languages for specifying processes. The most closely related approaches
to ours include the Process Specification Language (PSL) [13], the plan specification languages of Hierarchical Task
Network (HTN) planning systems [49], logic programming systems such as GOLOG [42], and Belief-Desire-Intention
(BDI) agent systems [24]. The product specification language in this paper has some commonalites with such lan-
guages, including parameterised and concurrent processes, and specifying processes independently from the resources
on which they are later executed. The main difference between our work and these languages, is that the latter were not
designed to allow the rapid checking of whether a plan/process specification can be realised by the agent’s resources.
Indeed, as with Petri Nets, the computational overhead of the more expressive languages such as PSL are likely to be
too great to support batch-size-of-one production.

From the remaining frameworks for production based on multiagent systems (see [40, 43] for comprehensive
surveys on the topic), of particular relevance to our work are [19, 51, 32], where BDI-agent based frameworks are
proposed that model the (manufacturing) environment as a dynamic set of ‘artifacts’, representing both physical en-
tities such as resources on the shop floor, and computational entities such as web services. In [19], the product is
specified ‘declaratively’ in terms of its machine-formable features, such as surface finish and colour, and any agent in
the multiagent system can use semantic descriptions of currently available artifacts together with a declarative product
specification to synthesise, on the fly, a production plan that is able to produce the product by requesting services
from relevant artifacts. However, [19] generates production plans via first principles planning, which is intractable
[30]. As a result, it is likely that the time required to generate a plan will rapidly become impractical as the number of
artifacts increases. Similarly, plans in [32] are synthesised via HTN planning, which is more expressive but also more
computationally expensive than first principles planning.

There are also other strands of work that focus on defining the product declaratively, such as [55, 56, 25, 28]. This
specification is used by an algorithm that finds a combination of the processes offered by the available production
resources that achieves the specification. The techniques used include planning a sequence of processes from first
principles as above, and choosing from a set of predefined production rules, which associate processes to each feature
in the specification. The work presented in this paper, on the other hand, assumes that the process combinations needed
to build a product are devised and supplied by the operator in the form of a procedural product specification (product
recipe).

Finally, we briefly consider the relationship to work on Joint Cognitive Systems (JCS) [33, 50]. Whereas traditional
approaches to system design lead to “human-machine systems” in which humans supervise and control machines
through interfaces, in a Joint Cognitive System humans and machines share cognitive functions in a collaborative
manner. This can be applied in both product design [7] and system design and control [58, 36]. The relationship
between JCS and the EAS project is briefly explored in [31]. In particular, the algorithms presented in this paper,
along with the general approach from EAS, address a number of considerations raised in JCS system design [58, 31]:
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Figure 1: The Precision Assembly Demonstrator (top) and its layout (bottom).

decentralisation, self-organisation/adaptation, goal-orientation, capacity for evolution (in that goals can be updated
over time), and enabling the system design process to take into account the relevant capabilities and resources.

3 An Experimental Assembly Cell
In this section, we briefly introduce the Precision Assembly Demonstrator (PAD) [9], which is used as a running
example in the remainder of the paper. The PAD is based on the Modutec flexible assembly platform by Feintool
Automation, and consists of six modules: a shuttle transport system linking modular stations to a loading/unloading
area, two KUKA six-axis robotic arms with associated workspaces, a shared tool changing rack, and a testing and
inspection station. The modules and their layout are shown in Figure 1.

The parts to be assembled into a product are mounted on a pallet. At the loading/unloading area, the system
operator can place the pallet on a shuttle that runs along a linear transfer system. The pallet can be removed from the
shuttle and placed at Workspace 1, where it can be worked on by Robot Arm 1 before being returned to the shuttle.
Robot Arm 2 and Workspace 2 are a mirror image of Robot Arm 1 and Workspace 1. The Tool-Changing Rack is shared
between the two robot arms and holds a number of end effectors, including grippers and suction tools, that are used
for product assembly. The Testing Station allows mechanical and visual tests to be performed on the product once it
has been assembled. The product is then returned to the loading/unloading area where an operator removes it.

In the example, the PAD is used to assemble a detent hinge for the cab interior of a truck. In the basic hinge,
interior and exterior plastic leaves are fitted together and linked with a metal hinge pin. More complex hinges can be
created by adding up to three metal ball–spring pairs within the interior leaf to adjust the engaging force. Additional
end effectors may be used to apply glue to secure the hinge pin, or to engrave serial codes onto the leaves.

4 Assembly System Topologies and Product Recipes
In this section, we formally define the assembly resources that make up the assembly system, the topology which
represents the layout of the resources, and product recipes which represent the products.

4.1 Assembly Resources and Assembly System Topologies
An assembly resource is a piece of hardware with a top-level controller (and potentially sub-controllers), which is
typically a Programmable Logic Controller (PLC). The top-level controller controls the resource, sending signals to
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Figure 2: An example of a product recipe (top left), and simplified labelled transition systems R1, . . . , R5 modelling
the resources in our assembly platform (top right). States s0 and A are initial states. A fragment of the associated
production topology is shown in the bottom figure.

the hardware to perform actions, and collecting readings from sensors. Assembly resources are either production
resources, which primarily perform observable operations on parts, or transport resources, such as a conveyor belt or
shuttle system, which perform internal operations on parts, e.g. transporting parts between resources or logging data
from sensors.

In [20, 11], assembly resources are defined as state diagrams, or more specifically, as labelled transition systems
(LTSs), where nodes correspond to the states of the resource, and edges correspond to operations that can be performed
in a state. For example, the LTSs representing the resources in the PAD are shown in Figure 2. The labels in and out
represent transfer operations, which allow a part to be transferred between the resource performing the out operation
and a resource performing the matching in operation. The nop labels denote special “no operation” tasks, that do
nothing to parts and represent the resource idling. Resource R1 is able to load a new pallet, transfer it to other
resources for assembly, and then receive a (potentially partially-)completed product and either remove it for disposal
or rework, or store it for delivery.1 Resources R2 and R3 are the two robotic arms: R2 can either take in a pallet
on in:2 and separate the hinge and pin, outputting each on a separate out:2 transition, or accept each of those two
parts on separate in:2 transitions, insert the pin into the hinge barrel, and produce a single part on out:2. Resource
R3 can either engrave a serial number or apply glue to a given part, and R4 is the testing station, which can perform
a vision test and then (optionally) a force test. The vision test checks that the hinge is correctly assembled, so it must
be performed before a force test, and it is not possible for the resource to idle between the two tests, hence the lack
of a nop transition from state s2. R5 is a transport resource that models the possible routing of parts by the shuttle
system. The transitions represent the allowable routes between production resources; e.g., although a newly loaded
pallet can be transported fromR1 toR2, a freshly glued part cannot be transported fromR3 toR4 in order to prevent it
becoming stuck to the testing equipment. Observe that the out transfer operations of production resources (e.g. out:1
in R1) match with in transfer operations of transport resources (e.g. in:1 in R5) and vice-versa.

Together the resources form the production topology representing the layout of the assembly system. This is
defined as the cross product of the LTSs representing the resources, excluding transitions with no matching ‘in’ and
‘out’ synchronisations (e.g., out:1 in R5 and in:2 in R2). A fragment of the topology obtained from the resources in
Figure 2 is shown at the bottom of the figure. The vector of five numbers representing a topology state comprises the
current state of each of the five resources, where “(s0,s0,s0,s0,s0)” (simplified to “(0,0,0,0,0)”) is the initial topology
state. Each topology transition is labelled with one vector of parallel resource operations that are possible from the
corresponding resource states. For example, the topology transition labelled “(-,separate,-,-,-)” from state “(0,1,0,0,0)”

1Multiple transitions from one state to another are shown on a single edge, separated by commas.
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indicates that one possible vector of parallel operations is where the second resource performs the ‘separate’ operation
from state s1 while all the other resources idle (dashes represent nop operations and commas represent parallelism).
Note that the size of the topology, i.e., the number of topology transitions, grows exponentially as the number of
resources increases [20]. Computing the topology thus takes time exponential in the number of resources. However, the
topology is only computed once for a given assembly system layout. In Section 6 we present preliminary experimental
results that demonstrate the scalability of our approach.

In this paper, we define resources, their operations and the production topology as EBNF [1] grammars (see Figure
3), as the EBNF representation corresponds more closely to the data structures used in the tool described in [21]. A
resource is a couple consisting of the initial state of the resource and a set of resource transitions. A resource transition
is a 3-tuple consisting of a possible state of the resource, an assembly operation that can be performed from that state,
and the resulting resource state. An assembly operation is either the (name of) an observable operation, an internal
operation, a transfer operation which transfers parts from one resource to another, or a special “no-op” operation
indicating that the resource is idling. A topology is a couple consisting of the initial topology state, which constitutes
the initial state of each resource, and a set of topology transitions representing the assembly and transport operations
that can be performed in parallel by the individual assembly resources (from the initial and subsequent topology states).
The RESPARTS element specifies the parts that are currently being held or worked on by each assembly resource.

One related representation for assembly resources in the context of cloud manufacturing is the one proposed
in [27], which differs from the representation presented here in that the former explicitly represents the arguments of
operations (parts and parameters) and allows distinguishing between operations that require a part to be loaded into the
resource, from the same operation which can be performed on a part located in a shared working area. There is however
no substantial difference, as one can easily encode those resources in the formalism presented here. Another related
resource representation is the Function Blocks (FB) standard, discussed for instance in [57]. FBs are event-triggered
components containing algorithms and an execution control chart, with inputs and outputs of data and events. Their
nature is therefore different, as they are intended for modelling control software, treating the encapsulated behavior
of a resource in a form that is similar to an electronic circuit. Similarly to our case, where an operation represents an
arbitrarily complex process within a resource, the encapsulated behavior of an FB is treated as a black box, so that
only the inputs and outputs are relevant. Our aim is analogous, but we abstract away from any specific technology,
focusing instead on defining and solving the problem of orchestrating the resources (assessing realisability), to support
automated reasoning. Indeed, approaches based on FBs rely on external production planning systems. Moreover, FBs
are used to capture low level processes, whereas our goal is to describe processes at the same level of abstraction as
the recipe. In our view, function blocks could constitute a viable implementation of the fine-grained execution control
module of a concrete system, once realisability has been established and a controller generated.

4.2 Product Recipes
The products to be assembled by the assembly system are defined by product recipes. A recipe includes the constituent
parts and the operations required to process and assemble these parts into the final product, any tests that must occur
to verify the product during and at the end of the assembly process, and how to respond to the results of tests (e.g.,
whether a partially completed product should be reworked or discarded following a test). The recipes specify how, but
not where, these operations and checks should be performed in order to assemble a given product.

In [20, 11], recipes are also formalised as LTSs, where nodes are states of parts in the assembly and edges represent
composite operations as shown in Figure 2. A composite operation associated with a recipe transition represents
the observable operations to be performed by the resources on their parts. Observable operations have parameters
specifying the parts that are ‘consumed’ and ‘produced’ by the operation, and operations can be combined in sequence
(denoted by the symbol ‘;’) and/or in parallel (denoted by the symbol ‘‖’). Each recipe transition is associated with
a guard (test) that tests whether the part(s) meet certain properties (e.g., whether a hole has the correct depth), to
determine whether the transition is applicable.2 A guard is an observable operation specifying only input parts (which
will be tested but not modified). While the guards on the outgoing transitions of a recipe state do not need to be
mutually exclusive, they must cater for all the possible outcomes, e.g. where a hole has the correct depth and where
it does not. This is straightforward to achieve as there can always be a ‘default’ guard, whose subsequent operation(s)
in the transition notifies the human operator or discards the product, for example.

Figure 2 shows an example hinge recipe that is to be assembled by the PAD. The first composite operation (between
statesA andB) loads a new fixture pallet f , separates the pin p and hinge h, applies glue to p, engraves a serial number

2For transitions which do not require a test, a ‘true’ guard is assumed.
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〈COMPOSITEOP〉 ::= 〈TEST〉 (“;” 〈STEP〉)∗

〈STEP〉 ::= 〈PARALLELSTEP〉 |
〈OBSERVABLEOP〉

〈PARALLELSTEP〉 ::= 〈OBSERVABLEOP〉
(“‖” 〈OBSERVABLEOP〉)+

〈TEST〉 ::= 〈OBSERVABLEOPNAME〉
〈INPUTPARTS〉

〈OBSERVABLEOP〉 ::= 〈OBSERVABLEOPNAME〉
〈INPUTPARTS〉
〈OUTPUTPARTS〉 |
〈OBSERVABLEOPNAME〉
“()” 〈OUTPUTPARTS〉

〈ASSEMBLYOP〉 ::= 〈OBSERVABLEOPNAME〉 |
〈INTERNALOP〉

〈INTERNALOP〉 ::= 〈INTERNALOPNAME〉 |
nop | 〈TRANSFER〉

〈TRANSFER〉 ::= in “:” integer+ | out “:” integer+

〈INPUTPARTS〉 ::= “(” 〈PARTS〉 “)”
〈OUTPUTPARTS〉 ::= “(” 〈PARTS〉 “)”

〈PARTS〉 ::= 〈PART〉 (“,” 〈PART〉)∗
〈PART〉 ::= string

〈OBSERVABLEOPNAME〉 ::= unique string
〈INTERNALOPNAME〉 ::= unique string

〈RECIPE〉 ::= 〈INITRECIPESTATE〉 “{”
〈RECIPETRANS〉
(“,” 〈RECIPETRANS〉)∗ “}”

〈RECIPETRANS〉 ::= “(” 〈RECIPESTATE〉 “,”
〈COMPOSITEOP〉 “,”
〈RECIPESTATETO〉 “)”

〈INITRECIPESTATE〉 ::= 〈RECIPESTATE〉
〈RECIPESTATE〉 ::= string

〈RESOURCE〉 ::= 〈INITRESOURCESTATE〉 “{”
〈RESOURCETRANS〉
(“,” 〈RESOURCETRANS〉)∗ “}”

〈RESOURCETRANS〉 ::= “(” 〈RESOURCESTATE〉 “,”
〈ASSEMBLYOP〉 “,”
〈RESOURCESTATETO〉 “)”

〈INITRESOURCESTATE〉 ::= 〈RESOURCESTATE〉
〈RESOURCESTATE〉 ::= string

〈TOPOLOGY〉 ::= 〈INITTOPSTATE〉 “{”
〈TOPTRANS〉
(“,” 〈TOPTRANS〉)∗ “}”

〈TOPTRANS〉 ::= “(” 〈RESSTATES〉 “,” 〈RESOPS〉
“,” 〈RESSTATESTO〉 “)”

〈INITTOPSTATE〉 ::= 〈RESSTATES〉
〈RESSTATESTO〉 ::= 〈RESSTATES〉
〈RESSTATES〉 ::= 〈RESOURCESTATE〉+
〈RESOPS〉 ::= 〈ASSEMBLYOP〉 (“‖” 〈ASSEMBLYOP〉)∗

〈RESPARTS〉 ::= 〈RESOURCEPARTS〉+
〈RESOURCEPARTS〉 ::= “(” 〈PARTS〉 “)” | “()”

Figure 3: The EBNF syntax of operations (left), and of recipes, resources and topologies (right).

on h, and inserts p into h to form h2, which is then visually examined, generating data. At this point, a test is performed
against the vision data (the guards are not shown in order to improve the readability of the diagram), and based on the
result the product is either removed from the system or a force analysis is performed. The outcome of performing a test
against the force data generated similarly determines whether the product is removed or sent to storage for delivery.

In this paper we define recipes and their associated (composite) operations as EBNF grammars (see Figure 3).
Composite operations represent the observable operations to be performed by the resources on the parts, and have
parameters specifying the parts that are consumed and produced by the operation. A recipe is a set of recipe transitions,
where each recipe transition is a 3-tuple consisting of a recipe state, a composite operation and the resulting state of
the recipe.

5 Realisability Assessment and Controller Generation Methodology
In this section, we describe how a production topology is computed, and how the realisability of a product recipe (i.e.,
whether the product can be assembled) on a precomputed topology is determined. We start with an informal definition
of what it means for a product recipe to be realisable on a production topology, or in other words, when it is possible
to assemble a product using a particular assembly system.

A recipe is realisable on a topology if it is possible to associate states in the recipe with states in the topology,
such that each transition (composite operation) in the recipe can be executed by transitions (assembly operations)
in the topology (taking into account the parts currently present in the resources), and the same is possible for the
entire recipe, irrespective of the outcome of guards and the ‘path’ through recipe transitions that might be followed at
runtime. If a recipe is realisable on a topology, then there is an associated controller which specifies how resources
may be orchestrated in order to assemble the product. Intuitively, a controller is a state diagram with the same structure
as the recipe. A controller is obtained by annotating each recipe state with the associated topology state (i.e., resource
states) and the parts being worked on in that state, and annotating each recipe transition with the sequence of topology
(i.e., resource) transitions that need to be carried out in order to execute the recipe transition.

As an example, Figure 4 shows a controller for the recipe and topology in Figure 2. Each controller transition is
labelled with the composite operation in the corresponding recipe transition (in bold), and the sequence of topology
transitions (shown in italics from top to bottom) that are needed to execute the composite operation. In the interests of
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Figure 4: A controller (left) for the recipe and topology in Figure 2, and the controller’s first transition (right).

readability, the transitions necessary to execute the first composite operation, between the first two recipe states A and
B, are shown on the right of the figure: the white states represent “intermediate” states between recipe states A and
B, and transitions depict the topology transitions needed to execute the individual observable operations comprising
the first composite operation in the controller. Each parenthesised row below a transition represents a transition of the
topology, and thus each element within such parentheses represents an operation to be performed in parallel by the
corresponding resource. The five vertical numbers in the left column of each controller state represent the states of the
five resources comprising the topology in that controller state; the strings in the right column correspond to the parts
held by each resource (the symbol ε indicates that no parts are held by the corresponding resource).

5.1 Controller Generation for Industrial Assembly Processes
Controllers are expressed in Business to Manufacturing Markup Language (B2MML) [6]. B2MML implements the
ANSI/ISA-95 (Enterprise-Control System Integration) standards in XML, and is increasingly being adopted in man-
ufacturing [23]. B2MML defines the data and process models that form the interface to manufacturing execution
systems (MESs) [53], which manage and monitor work-in-progress on low-level shop floor control systems, for ex-
ample, using PLCs. B2MML thus provides higher-level enterprise control systems with a convenient interface to
hardware.

The part of B2MML relevant to this paper is the operations-schedule. The operations-schedule specifies each
operation to be performed via an operations-request that captures the Bill of Process, Bill of Materials, and Bill of
Tooling within a ‘segment requirement’. The operations-request specifies the parameters to be passed to the equipment
controllers (such as the specific gripper or drill bit to use, or the gripper separation or depth of cut required), the
materials requirements (i.e., the parts required and produced by the operation), and the equipment requirements (i.e.,
the required assembly resources for each step). An operations-schedule combines operations-requests into an AND-
OR tree which represents an “unfolding” of the state diagram that encodes the controller. More precisely, whenever
multiple transitions in the state diagram have the same end-node, the node is duplicated for each transition. This
translation from a state diagram into a tree is necessary because the XML format used by B2MML encodes data in
a hierarchical structure, starting from a root node. In addition to this transformation, creating an operations-schedule
requires extracting certain details from the controller, such as: (i) the equipment requirements, (ii) the materials
requirements, and (iii) when parts need to be transferred and which pairs of resources need to work together in order
to achieve this. Such parallel ‘transfer’ operations within a controller transition are represented as a single ‘abstract’
operations-request within the operations-schedule, as B2MML does not support explicit parallelism. During execution,
an abstract operations-request is treated by the PLC as two separate parallel operations-requests when commands are
sent to hardware controllers.

The execution semantics of an operations-schedule is as follows. On reaching a choice point during execution, the
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〈OPERATIONSREQUEST〉
〈OPERATIONSTYPE〉 Loading 〈/OPERATIONSTYPE〉
〈ID〉 Load 〈/ID〉
〈DESC〉 Load a fresh part 〈/DESC〉
〈SEGMENTREQMNT〉
〈ID〉 load()(f) 〈/ID〉
〈DESC〉 First instance of the load type 〈/DESC〉
〈SEGMENTPARAM〉
〈ID〉 Integer 〈/ID〉
〈VALUE〉 3 〈/VALUE〉
〈DESC〉 Load from third shelf 〈/DESC〉
〈/SEGMENTPARAM〉
〈MATERIALREQMNT〉
〈MATERIALUSE〉 Produced 〈/MATERIALUSE〉
〈QUANTITY〉 1 〈/QUANTITY〉
〈MATERIALREQMNTPROPERTY〉
〈ID〉 f 〈/ID〉
〈VALUE〉 Fixture 〈/VALUE〉
〈/MATERIALREQMNTPROPERTY〉
〈/MATERIALREQMNT〉
〈/SEGMENTREQMNT〉
〈/OPERATIONSREQUEST〉

〈OPERATIONSREQUEST〉
〈OPERATIONSTYPE〉 Production 〈/OPERATIONSTYPE〉
〈ID〉 Separate 〈/ID〉
〈DESC〉 Separate pin and hinge from pallet-fixture 〈/DESC〉
〈SEGMENTREQMNT〉
〈ID〉 separate(f)(p,h) 〈/ID〉
〈DESC〉 First instance of the separate type 〈/DESC〉
〈SEGMENTPARAM〉
〈ID〉 String 〈/ID〉
〈VALUE〉 Gripper3 〈/VALUE〉
〈DESC〉 Use Gripper3 from tool rack 〈/DESC〉
〈/SEGMENTPARAM〉
〈MATERIALREQMNT〉
〈MATERIALUSE〉 Consumed 〈/MATERIALUSE〉
〈QUANTITY〉 1 〈/QUANTITY〉
〈MATERIALREQMNTPROPERTY〉
〈ID〉 f 〈/ID〉
〈VALUE〉 Fixture 〈/VALUE〉
〈/MATERIALREQMNTPROPERTY〉
〈/MATERIALREQMNT〉
〈MATERIALREQMNT〉
〈MATERIALUSE〉 Produced 〈/MATERIALUSE〉
〈QUANTITY〉 1 〈/QUANTITY〉
〈MATERIALREQMNTPROPERTY〉
〈ID〉 p 〈/ID〉
〈VALUE〉 Pin 〈/VALUE〉
〈/MATERIALREQMNTPROPERTY〉
〈/MATERIALREQMNT〉
〈MATERIALREQMNT〉
〈MATERIALUSE〉 Produced 〈/MATERIALUSE〉
〈QUANTITY〉 1 〈/QUANTITY〉
〈MATERIALREQMNTPROPERTY〉
〈ID〉 h 〈/ID〉
〈VALUE〉 Hinge 〈/VALUE〉
〈/MATERIALREQMNTPROPERTY〉
〈/MATERIALREQMNT〉
〈/SEGMENTREQMNT〉
〈/OPERATIONSREQUEST〉

〈OPERATIONSSCHEDULE〉
〈PUBLISHEDDATE〉 2016-11-24;12:38:50 〈/PUBLISHEDDATE〉
〈OPERATIONSREQUEST〉
〈OPERATIONSTYPE〉 Loading 〈/OPERATIONSTYPE〉
〈ID〉 Load 〈/ID〉
〈DESC〉 Load a fresh part 〈/DESC〉
〈SEGMENTREQMNT〉
〈ID〉 load()(f) 〈/ID〉
〈DESC〉 First instance of the load type 〈/DESC〉
〈SEGMENTPARAM〉 · · · 〈/SEGMENTPARAM〉
〈MATERIALREQMNT〉 · · · 〈/MATERIALREQMNT〉
〈EQUIPMENTREQMNT〉
〈EQUIPMENTID〉 Resource1 〈/EQUIPMENTID〉
〈EQUIPMENTREQMNTPROPERTY〉 〈ID〉 Loader 〈/ID〉
〈/EQUIPMENTREQMNTPROPERTY〉
〈/EQUIPMENTREQMNT〉 · · ·
〈/SEGMENTREQMNT〉
〈/OPERATIONSREQUEST〉
〈OPERATIONSREQUEST〉
〈OPERATIONSTYPE〉 Routing 〈/OPERATIONSTYPE〉
〈ID〉 TransferType 〈/ID〉
〈DESC〉 Parallel transfer from loader to conveyor 〈/DESC〉
〈SEGMENTREQMNT〉
〈ID〉 TransR1toR5 〈/ID〉
〈DESC〉 First instance of transfer 〈/DESC〉
〈SEGMENTPARAM〉 · · · 〈/SEGMENTPARAM〉
〈MATERIALREQMNT〉 · · · 〈/MATERIALREQMNT〉
〈EQUIPMENTREQMNT〉
〈EQUIPMENTID〉 Resource1 〈/EQUIPMENTID〉
〈EQUIPMENTREQMNTPROPERTY〉 〈ID〉 Loader 〈/ID〉
〈/EQUIPMENTREQMNTPROPERTY〉
〈/EQUIPMENTREQMNT〉
〈EQUIPMENTREQMNT〉
〈EQUIPMENTID〉 Resource5 〈/EQUIPMENTID〉
〈EQUIPMENTREQMNTPROPERTY〉 〈ID〉 Conveyor 〈/ID〉
〈/EQUIPMENTREQMNTPROPERTY〉
〈/EQUIPMENTREQMNT〉
〈/SEGMENTREQMNT〉
〈/OPERATIONSREQUEST〉
〈OPERATIONSREQUEST〉
〈OPERATIONSTYPE〉 Routing 〈/OPERATIONSTYPE〉
〈ID〉 TransferType 〈/ID〉 · · ·
〈SEGMENTREQMNT〉
〈ID〉 TransR5toR2 〈/ID〉 · · ·
〈/SEGMENTREQMNT〉
〈/OPERATIONSREQUEST〉
〈OPERATIONSREQUEST〉
〈OPERATIONSTYPE〉 Production 〈/OPERATIONSTYPE〉
〈ID〉 Separate 〈/ID〉 · · ·
〈/OPERATIONSREQUEST〉 · · ·
〈CHOICEPOINT〉
〈CHOICEPOINT〉 · · · 〈/CHOICEPOINT〉
〈SEQUENCE〉 · · · 〈/SEQUENCE〉
〈/CHOICEPOINT〉
〈/OPERATIONSSCHEDULE〉

Figure 5: A B2MML operations-request for the load()(f) operation in the recipe in Figure 2 (top left); a B2MML
operations-request for the separate(f)(p, h) operation in the recipe in Figure 2 (bottom left); and a B2MML
operations-schedule combining the two operations-request specifications. Some details are ommitted for brevity.

first operations-request on each outgoing branch (which corresponds to a guard (test) operation) is executed until one
of the test operations returns ‘success’. Then, the rest of the operation’s branch is executed until the next choice point
is reached. This process continues until a complete ‘path’ through the operations-schedule has been executed.

An example operations-schedule is shown in Figure 5, which shows how the two operations-requests on the left
are connected by a transfer operation (the TransR1toR5 operations-request). Note that the same assembly resources
that were allocated to the operations in the controller in Figure 4 appear in the operations-schedule as equipment
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requirements (within 〈EQUIPMENTID〉 tags), and the parts that are consumed and produced by the operations appear
as materials requirements (within 〈MATERIALREQMNT〉 tags). The first (outer) 〈CHOICEPOINT〉 tag toward the
bottom of the operations-schedule corresponds to the first ‘choice point’ (state B) in the controller, and the nested
〈CHOICEPOINT〉 tag in the operations-schedule corresponds to the second ‘choice point’ (state C) in the controller.
The 〈SEQUENCE〉 tag in the operations-schedule corresponds to the sequence of topology transitions that are associated
with the controller’s transition from state B to D.

5.2 Decision Making Methods
We now present flowcharts describing how a production topology is computed, and how the realisability of a product
recipe on a topology is determined. The corresponding algorithms can be found in the appendix. The flowcharts also
illustrate how sequences of topology transitions corresponding to individual composite operations in a recipe are stored
as part of a controller that specifies how the available assembly resources should be orchestrated in order to assemble
the product. The flowcharts (and the corresponding algorithms in the appendix) use the EBNF data structures defined
in Figure 3, and are based on the abstract algorithms in [20].

To compute the topology, we start from an empty set of topology transitions and then incrementally add (only) valid
transitions to the set. More precisely, the function ComputeTop shown in the flowchart in Figure 6 is invoked with the
following two inputs: the empty set of topology transitions, and the topology state INITTOPSTATE, comprising the
initial state of each resource. The flowchart picks an outgoing resource transition for each state in RESSTATES, and
forms a single topology transition TOPTRANS, which includes the resulting resource states within a single (resulting)
topology state. As in [20, 21], a topology transition formed from the combination of resource transitions is valid only
if the latter have either matching in and out transfer operations, or no transfer operations. For example, consider the
resource R1 in Figure 2. Transition in:1 from state s0 can only be performed in parallel with the matching transition
out:1 when resource R5 is in state s4. Since, in the initial state of the topology, all resources start in their initial state
(s0), such a joint transition from the initial state cannot form part of the topology. The same process is carried out
recursively from the resulting topology state by calling ComputeTop with parameter RESSTATESTO; after this the
remaining vectors of resource transitions associated with RESSTATES are considered (‘loop’). In order to ensure that
the recursive calls to the flowchart eventually terminate, all the vectors of resource states that have been considered
are marked as ‘visited’,3 and then checked at each recursive call to avoid reconsidering them.

Generating the topology in this way avoids computing all possible combinations of resource states and all possible
combinations of resource operations. Moreover, it ensures that only states reachable from the initial state of the
topology are generated. In Section 6 we evaluate the performance of the topology generation flowchart as the number
of assembly resources is increased for models of two practical production facilities.

Next, we provide flowcharts describing how the realisability of a product recipe RECIPE is determined on a
production topology TOPOLOGY computed as above. The top-level flowchart, Figure 7 works as follows. Given a
state of the recipe RECIPESTATE (e.g., the initial state of the recipe) and a vector of resource states RESSTATES (i.e.,
a state of the topology) representing the state of the entire production facility at a given point in time, the flowchart
determines, for each recipe transition of the form

(RECIPESTATE,COMPOSITEOP,RECIPESTATETO),

whether the available resources can execute COMPOSITEOP from their corresponding states as indicated in RESSTATES.
To this end, the flowchart in Figure 8 iterates over topology transitions from RESSTATES, i.e., the vectors of (parallel)
assembly operations RESOPS that are executable from RESSTATES by the various resources, to find a vector that can
perform the first (non-guard) step in COMPOSITEOP. More precisely, each topology transition of the following form
is considered:

(RESSTATES,RESOPS,RESSTATESTO),

where the last element is the vector of resource states that result from executing RESOPS. Checking whether the first
step (FIRSTOP) in COMPOSITEOP matches RESOPS amounts to checking whether the former can be allocated to
RESOPS (using function Allocate). This holds if two conditions are met: (i) there is a one-to-one mapping from the
names of the parallel recipe operations to the names of the parallel resource operations, and (ii) the parts required as
input to the recipe operations are consistent with RESPARTS, i.e., currently present in the resources that map to those
operations. If the allocation is successful, then RESPARTS2 (is not false and) contains the vector of parts that will be

3This trivial process of marking has been omitted from the flowchart for readability.
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start
Current states of all resources: RESSTATES

A global set of topology transitions: T

Visited
RESSTATES

already?
Return

A transition
exists from
each state in

RESSTATES?

Return

end

Create a topology
transition

TOPTRANS from
those transitions

TOPTRANS
has matching

in and out
operations?

Add
TOPTRANS
to the set T

Compute
ComputeTop

Parameter:
RESSTATESTO
in TOPTRANS

loop
loop

loop

no

yes

yes
yes

no

no

Figure 6: The flowchart for function ComputeTop. A dashed rectangle is a comment, a normal rectangle depicts a
processing step, a coloured rectangle depicts the invocation of a function defined as a flowchart, a diamond depicts a
decision point, a parallelogram depicts an input/output, and an ellipse depicts the start/end or a section of a flowchart.

start
Topology: TOPOLOGY & Recipe : RECIPE

Current state of recipe: RECIPESTATE
Current states of all resources: RESSTATES

A transition
exists from

RECIPESTATE?

Return
success

end

Set
RECIPETRANS

to such a
transition

RECIPETRANS is in
RECIPE and contains
COMPOSITEOP and
RECIPESTATETO

Compute
ProcessCompositeOp

Parameters are:
RESSTATES,

COMPOSITEOP,
RECIPESTATETO,
CURRENTPLAN

Result is
fail?

Return
fail

end
no

yes
yes

no

Figure 7: The flowchart for function CheckManuf. This is called in the flowchart of Figure 8, and vice versa.

produced by the recipe operations (e.g., the input parts with some holes in them). If RESOPS indicates that parts need
to be transferred between pairs of resources, i.e., it has pairs of matching in and out transfer operations (e.g. in:3 and
out:3), one part per pair is transferred (using function TransferParts) from the resource performing the out operation
to the one performing the in; the new locations of the parts in the assembly system are then referred to as RESPARTS2.

Next, the vector of resource states RESSTATESTO, i.e., the states that would result from performing the vector
of resource operations RESOPS, is annotated with the new locations of parts (using function AnnotateParts), and
RESOPS is appended (using function Append) to the current plan CURRPLAN that is being built (which is later
stored in the controller if the composite operation being considered does turn out to be executable, i.e., it is processed
completely). The flowchart is then followed recursively in order to check the executability of the remaining steps in
COMPOSITEOP above, until there are no steps left to process.

In the case where the allocation of FIRSTOP to RESOPS fails because the latter only contains internal operations,
such as maintenance or transfer operations (to which it will not be possible to allocate the observable parallel opera-
tions in FIRSTOP), the flowchart checks whether the first and subsequent steps in COMPOSITEOP could instead be
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Figure 8: The flowchart for function ProcessCompositeOp. The circled X refers to the steps in the dotted rectangle.
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Figure 9: A controller (solution) for producing the hinge recipe on the PAD (top), and a product recipe, loader, filler,
and tester corresponding to the SMC platform (bottom), respectively.

allocated once the internal operations—including part transfers if any—have completed, i.e., to a vector of parallel
resource operations that are possible from RESSTATESTO (relative to RESPARTS2).

6 Implementation and Experimental Results
We have implemented the flowcharts described above as part of a software tool that can be used by an operator of a
production facility to model assembly resources, and to compute and visualise the production topology, a controller,
and its corresponding B2MML operations-schedule. Screenshots of LTSs modelled in the tool are shown in Figure 9.
The figure also shows a controller for the hinge recipe and its corresponding operations-schedule, which correspond
to the controller in Figure 4 and the operations-schedule in Figure 5. In this section, we use the tool to empirically
evaluate the feasibility of our approach.

The computational complexity of checking the realisability of a recipe and synthesising a controller is known to
be polynomial on the size of the topology and exponential in the size of the recipe and number of resources [20],
and the time required for the tool to check realisability and generate a controller (reported in [21]) is on the order of
milliseconds. For example, given a precomputed topology for a 5-resource version of the PAD, the time required to
generate a controller for the hinge recipe is 2 milliseconds [21]. Compared to the time required to actually assemble the
hinge, this is sufficiently small as to allow batch size of one production, given a precomputed topology. However, the
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Figure 10: The size of the computed topology (log-scale) with an increasing number of resources for the PAD and
SMC (the two graphs on the left), and average CPU time (log-scale) with an increasing number of resources for the
PAD and SMC (the two graphs on the right).

time required to compute the topology has not previously been reported. The computational complexity of generating
the topology from descriptions of the assembly resources is known to be exponential in the number of resources, and
polynomial in their size [20]. It is therefore possible that topology generation may be prohibitively expensive, even for
production facilities consisting of a small number of assembly resources, or where the set of resources or the allowable
routes for the transfer of parts between them changes frequently.

To evaluate the scalability of topology generation, we performed experiments to determine the time required to
generate the topology as the number of assembly resources is increased for models of two practical assembly systems:
the PAD described in [9, 11] and summarised in Section 3, and the SMC Pneumatics HAS-200 training platform
described in [16]. The SMC platform has 8 stations connected by a ring-shaped conveyor belt, which are configured
as follows. The first station loads containers onto the conveyor belt as orders come into the production line. The next
three stations are blue, red and yellow particulate dispensers, respectively. These stations pick up the container, add
the necessary quantity of particulate (by weight), and return the container to the conveyor belt. The next two stations
are testing stations which perform the same task of measuring the volume of particulate in the container, and will reject
containers into a waste bin if they fail the test. The next station fits a lid to the container, prints a custom label, and
attaches it to the top of the container. The last station is a palletisation station which removes completed containers
from the system for packaging. All stations are able to let a container simply pass through to the next station along
the belt, without performing any operations on the container. A product recipe can request containers with different
quantities of blue, red, and yellow coloured particulate, where each container could represent a meal, pill, or blister
pack, and the particulate is representative of ingredients or individual pills. Figure 9 shows the main LTSs for the SMC
platform and an example product recipe that is realisable on the corresponding topology.

For the PAD experiments, we increased the number of resources beyond the 5 original ones by duplicating some
of the pre-existing production resources in a useful way and connecting them to the transport resource. In particular,
the 6-resource version of the PAD had a duplicate of R3, i.e., the gluing/engraving robot, which enabled doing these
operations in parallel on the hinge and pin. The larger versions of the PAD had a duplicate of either resource R1, R2,
orR4, in the PAD version one size smaller, and the largest version of the PAD comprised 10 resources. Since the SMC
already had 9 resources (including the conveyor belt), only one resource was added to obtain the largest version of
the SMC. The new resource modelled a station for collecting and storing containers that were rejected by the testing
stations. The experiments were performed on a Lenovo ThinkPad with a quad-core Intel Core i7 processor and 20GB
of RAM, running Windows 7 Enterprise SP1 64-bit and Java 1.8.

The two graphs on the left in Figure 10 show the size of the topology (the number of topology transitions) for
the PAD and SMC as the number of resources increases.4 For example, the topology for the PAD with 10 resources
contains about 2.3 million transitions.

The two graphs on the right in Figure 10 show the CPU time required to compute the topology for the PAD and
SMC as the number of resources increases. Each data point represents an average over 10 runs.5 As can be seen, the
time required to compute the topology increases with the number of resources, and the increase is greater for the PAD
than the SMC. Computing the topology for the 10-resource PAD required about 212 seconds (81 minutes) on average.
Given that the topology only needs to be computed when the set of assembly resources changes, e.g., when a new
resource is added, these times suggest that recomputing the topology in such circumstances is feasible, at least for

4Data is for a single run, as the topology size does not change for a given input.
5The standard deviations are omitted from the graphs as they are too small to be noticeable.
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small to medium sized production facilities.
While these results are encouraging, it is important to note that care is required in modelling the assembly resources

to minimise the time required to compute the topology and its size. For example, in the SMC model shown in Figure
9, there was no need for a nop transition from state1 of the loading station, as a loaded part can be immediately sent
out to some other resource via transfer operation out:10 (and temporarily held in the latter resource until an operation
needs to be performed on the part). Adding just the single nop transition—which loops back to state1—results in a
topology that is 24% larger in the 10-resource model of the SMC.

7 Conclusion and Future Work

In this paper we have developed and implemented methods for computing a production topology, assessing realisabil-
ity, and generating a controller, based on the formal approach presented in [20, 11]. Our approach takes as input a
recipe model specifying the operations necessary to assemble a product and the topology or ‘layout’ of the production
facility generated from models of the assembly resources comprising the facility, and transforms the recipe into a
controller specifying the detailed steps to be executed by each assembly resource. The controller is then translated
into B2MML [6], a format suitable for execution by industrial assembly systems. Crucially, we give the methods
for topology computation, realisability assessment, and controller generation in sufficient detail to allow their reim-
plementation by other researchers. The methods are presented in the form of flowcharts, and the data structures are
specified in ISO/IEC EBNF [1] notation.

In addition, we report a preliminary experimental evaluation of the scalability of topology generation. Topology
generation is the most expensive step in the process [20], and its scalability is critical to the feasibility of the whole ap-
proach. To evaluate the scalability, we performed experiments to determine the time required to generate the topology
as the number of assembly resources are increased for models of two practical production facilities: the SMC Pneu-
matics HAS-200 training platform described in [16], and the Precision Assembly Demonstrator described in [9, 11].
Our results suggest that topology generation is feasible for small to medium sized production facilities.

The core modules of the tool described in this paper are used for orchestrating the activities of agents in the
Evolvable Assembly Systems (EAS) architecture, an agent-based architecture for assembly control software designed
to address rapidly changing product and process requirements [16]. In the EAS architecture, a product recipe that is
received is handled by an individual software agent, that first checks that the recipe is realisable and then synthesises
a controller for orchestrating the agents.

While we have shown that our algorithms are feasible for small to medium sized production facilities, they are
unlikely to be useful in large production facilities whose layouts change frequently. This is due to the computational
complexity of recomputing the production topology. One line of future work could be to identify situations in which
the topology can be adapted (rather than recomputed) when the assembly system layout changes. For example, if a
resource at one end of an assembly line is removed, it is sometimes possible to simply delete the relevant topology
transitions (e.g. those corresponding to operations that transfer a part to the removed resource and then work on the
part) from the production topology, and then remove the nop operation corresponding to the resource in each remaining
topology transition.

A second limitation is that, while we are able to check whether a product recipe is realisable on the production
topology, and, if it is, synthesise a controller, we do not address the problem of what to do if the recipe is not realisable
on the topology. One solution could be to develop an algorithm that synthesises an ‘approximate controller’, which
assumes that a recipe operation that is missing in a resource (or a number of such operations, up to a predefined
maximum) could be installed by the engineer later as a new process. To facilitate this, the controller could indicate
the operation that was missing and the state in the resource from where the operation was assumed to be possible.
For example, if the recipe in Figure 9 and the corresponding controller have the fillGreen(a)(a) operation instead
of fillRed(a)(a), the engineer might be able to quickly create the associated process in the second SMC station, and
plug in a green particulate dispenser (assuming that the controller relied on the second station to have the process).
Alternatively, if all the operations specified in the recipe are provided by the resources comprising the topology, but
the recipe is not realisable, we could check if an alternative layout of the resources (i.e., reconfiguring the transport
resources) would allow the product to be assembled, by checking for the existence of a controller if the transport
resources form a complete graph. If this renders the recipe realisable, the transfer operations used by the controller
in the “relaxed topology” indicate how the layout of the resources could be reconfigured to allow the product to be
assembled. A similar approach could be used to determine if, for example, a recipe could be assembled in fewer steps

15



or at lower cost by changing the layout, that is, whether the current topology is the most appropriate for a particular
product. Clearly, such reconfiguration of the plant would only be worthwhile for larger batch sizes and/or where the
cost of assembly is high.

Finally, there are also some other interesting directions for future work. First, since this work checks realisability
against an ‘empty’ production line, i.e., where no parts or partially assembled products are initially present, future work
could take into account the products that are currently being assembled, and generate a controller that can essentially
‘interleave’ the new product recipe with the other products being assembled. Second, a set of algorithms could be
developed that synthesises multiple controllers (or all the possible ones) for assembling a product, and then chooses
the most desirable one, e.g. the one that minimises the makespan.
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[48] Giovanni Di Orio, Gonçalo Cândido, and José Barata. The adapter module: A building block for self-learning
production systems. Robotics and Computer-Integrated Manufacturing, 36:25 – 35, 2015.

[49] Anand S Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In Proceedings of the
European workshop on Modelling Autonomous Agents in a Multi-Agent World : agents breaking away, pages
42–55, 1996.

18



[50] Jens Rasmussen, Annelise Mark Pejtersen, and Len P Goodstein. Cognitive systems engineering. Wiley New
York, 1994.

[51] Mario Lucio Roloff, Marcelo Ricardo Stemmer, Jomi Fred Hübner, Robert Schmitt, Tilo Pfeifer, and Guido Hut-
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Appendix
In this section we list the algorithms that correspond to the flowcharts given in Figures 6, 7, and 8. Algorithms 2 and
3 were taken from [11] and slightly improved, e.g. to remove global variables.

Algorithm 1, when called with the following three parameters: the list RES of LTSs representing the assembly
resources in the production system, the corresponding list of initial resource states INITTOPSTATE, and the empty
set, returns the set of topology transitions T, which together with INITTOPSTATE forms the topology (see the EBNF
syntax in Figure 3). This topology is one of the inputs for Algorithms 2 and 3.
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Algorithm 1 ComputeTop
Input: The list of resources RESOURCE1, . . . , RESOURCEn, denoted by RES, comprising the assembly system;

Their corresponding current states RESOURCESTATE1, . . . , RESOURCESTATEn, denoted by RESSTATES;
A set of topology transitions T, which is initially the empty set.

Output: Set T is updated with the (valid) topology transitions that are possible from RESSTATES.
1: if RESSTATES was already visited then
2: return T
3: end if
4: for each list L of resource transitions from RESSTATES do // Each RESOURCETRANSi in L is from RESOURCESTATEi

5: Let TOPTRANS be the topology transition (RESSTATES, RESOPS, RESSTATESTO) corresponding to L
// RESOPS (resp. RESSTATESTO) combines ASSEMBLYOP (resp. RESOURCESTATETO) in each RESOURCETRANSi

6: if for each transfer operation in : x in RESOPS there exists exactly one out : x in RESOPS, and vice versa, then
7: T← T ∪ {TOPTRANS} // Topology transition TOPTRANS is valid, so add TOPTRANS to the set T
8: T← ComputeTop(RES, RESSTATESTO,T) // Repeat all the above steps from RESSTATESTO
9: end if

10: end for
11: return T

Algorithm 2 CheckManuf
Input: Topology TOPOLOGY and recipe RECIPE;

Current state of recipe RECIPESTATE;
Current states of all resources RESSTATES.

Output: Either success if RECIPE is manufacturable or fail otherwise.
1: Let CURRENTPLAN be the empty sequence
2: for each transition RECIPETRANS from RECIPESTATE do // Recall that RECIPETRANS is in RECIPE
3: result← ProcessCompositeOp(TOPOLOGY, RECIPE, RESSTATES,

COMPOSITEOP, RECIPESTATETO, CURRENTPLAN)
// Recall that COMPOSITEOP and RECIPESTATETO are in RECIPETRANS

4: if result = fail then
5: return fail
6: end if
7: end for
8: return success
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Algorithm 3 ProcessCompositeOp
Input: Topology TOPOLOGY and recipe RECIPE;

Current states of all (part-annotated) resources RESSTATES;
Composite operation currently being processed COMPOSITEOP;
The next recipe state to explore RECIPESTATETO;
The current plan being composed CURRPLAN.

Output: Either success if RECIPE is manufacturable or fail otherwise.
1: if COMPOSITEOP has been completely processed then
2: Store CURRPLAN in the controller for the initial COMPOSITEOP
3: result← CheckManuf(TOPOLOGY, RECIPE, RECIPESTATETO, RESSTATES)
4: return result
5: end if
6: if RESSTATES was already visited then
7: return fail
8: end if
9: for each transition TOPTRANS from RESSTATES do // RESOPS and RESSTATESTO are in TOPTRANS (in TOPOLOGY)

10: Let FIRSTOP be the first (non-guard) possibly parallel step of COMPOSITEOP
11: result← fail
12: RESPARTS2 ← Allocate(FIRSTOP, RESOPS, RESPARTS)
13: if RESPARTS2 6= false then
14: RESPARTS2 ← TransferParts(RESPARTS2, RESOPS)
15: RESSTATESTO ← AnnotateParts(RESSTATESTO, RESPARTS2)
16: CURRPLAN ← Append(RESOPS, CURRPLAN)
17: Let REST be the remaining steps of COMPOSITEOP
18: result← ProcessCompositeOp(TOPOLOGY, RECIPE, RESSTATESTO, REST, RECIPESTATETO, CURRPLAN)
19: end if
20: if RESOPS has no observable operations then // If this holds, then RESPARTS2 = false
21: RESPARTS2 ← TransferParts(RESPARTS, RESOPS)
22: RESSTATESTO ← AnnotateParts(RESSTATESTO, RESPARTS2)
23: CURRPLAN ← Append(RESOPS, CURRPLAN)
24: result← ProcessCompositeOp(TOPOLOGY, RECIPE, RESSTATESTO,

COMPOSITEOP, RECIPESTATETO, CURRPLAN)
25: end if
26: if result = success then
27: return result
28: end if
29: end for
30: return fail
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