
20 February 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Bengio Y., Lodi A., Prouvost A. (2021). Machine learning for combinatorial optimization: A methodological
tour d'horizon. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 290(2), 405-421
[10.1016/j.ejor.2020.07.063].

Published Version:

Machine learning for combinatorial optimization: A methodological tour d'horizon

Published:
DOI: http://doi.org/10.1016/j.ejor.2020.07.063

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/905302 since: 2024-03-01

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.ejor.2020.07.063
https://hdl.handle.net/11585/905302

Machine Learning for Combinatorial Optimization:
a Methodological Tour d’Horizon

Yoshua Bengioc,b, Andrea Lodia,b,∗, Antoine Prouvosta,b

a Canada Excellence Research Chair in Data Science for Decision Making,
École Polytechnique de Montréal,

Pavillon André-Aisenstadt 2920, Chemin de la Tour
Montreal, Qc, Canada H3T 1J4

b Mila, Institut Québecois d’Intelligence Artificielle,
Pavillon André-Aisenstadt 2920, Chemin de la Tour

Montreal, Qc, Canada H3T 1J4
c Université de Montréal, Département d’Informatique et de Recherche Opérationelle,

Pavillon André-Aisenstadt 2920, Chemin de la Tour
Montreal, Qc, Canada H3T 1J4

Abstract

This paper surveys the recent attempts, both from the machine learning and

operations research communities, at leveraging machine learning to solve

combinatorial optimization problems. Given the hard nature of these prob-

lems, state-of-the-art algorithms rely on handcrafted heuristics for making

decisions that are otherwise too expensive to compute or mathematically

not well defined. Thus, machine learning looks like a natural candidate to

make such decisions in a more principled and optimized way. We advocate

for pushing further the integration of machine learning and combinatorial

optimization and detail a methodology to do so. A main point of the paper

is seeing generic optimization problems as data points and inquiring what is

the relevant distribution of problems to use for learning on a given task.

∗Corresponding author

Preprint submitted to Elsevier March 1, 2024

1. Introduction

Operations research, also referred to as prescriptive analytics, started

in the second world war as an initiative to use mathematics and computer

science to assist military planners in their decisions (Fortun & Schweber,

1993). Nowadays, it is widely used in the industry, including but not limited

to transportation, supply chain, energy, finance, and scheduling. In this paper,

we focus on discrete optimization problems formulated as integer constrained

optimization, i.e., with integral or binary variables (called decision variables).

While not all such problems are hard to solve (e.g., shortest path problems),

we concentrate on combinatorial optimization (CO) problems (NP-hard).

This is bad news, in the sense that, for those problems, it is considered

unlikely that an algorithm whose running time is polynomial in the size of

the input exists. However, in practice, CO algorithms can solve instances

with up to millions of decision variables and constraints.

How is it possible to solve NP-hard problems in practical time? Let us

look at the example of the traveling salesman problem (TSP), a NP-hard

problem defined on a graph where we are searching for a cycle of minimum

length visiting once and only once every node. A particular case is that

of the Euclidian TSP. In this version, each node is assigned coordinates in

a plane,1 and the cost on an edge connecting two nodes is the Euclidian

distance between them. While theoretically as hard as the general TSP, good

approximate solution can be found more efficiently in the Euclidian case by

leveraging the structure of the graph (Larson & Odoni, 1981, Chapter 6.4.7).

Likewise, diverse types of problems are solved by leveraging their special

1 Or more generally in a vector space of arbitrary dimension.

2

structure. Other algorithms, designed to be general, are found in hindsight

to be empirically more efficient on particular problems types. The scientific

literature covers the rich set of techniques researchers have developed to

tackle different CO problems. An expert will know how to further refine

algorithm parameters to different behaviors of the optimization process, thus

extending this knowledge with unwritten intuition. These techniques, and the

parameters controlling them, have been collectively learned by the community

to perform on the inaccessible distribution of problem instances deemed

valuable. The focus of this paper is on CO algorithms that automatically

perform learning on a chosen implicit distribution of problems. Incorporating

machine learning (ML) components in the algorithm can achieve this.

Conversely, ML focuses on performing a task given some (finite and

usually noisy) data. It is well suited for natural signals for which no clear

mathematical formulation emerges because the true data distribution is not

known analytically, such as when processing images, text, voice or molecules,

or with recommender systems, social networks or financial predictions. Most

of the times, the learning problem has a statistical formulation that is solved

through mathematical optimization. Recently, dramatic progress has been

achieved with deep learning, an ML sub-field building large parametric

approximators by composing simpler functions. Deep learning excels when

applied in high dimensional spaces with a large number of data points.

1.1. Motivation

From the CO point of view, machine learning can help improve an

algorithm on a distribution of problem instances in two ways. On the one side,

the researcher assumes expert knowledge2 about the optimization algorithm,

2Theoretical and/or empirical.

3

but wants to replace some heavy computations by a fast approximation.

Learning can be used to build such approximations in a generic way, i.e.,

without the need to derive new explicit algorithms. On the other side,

expert knowledge may not be sufficient and some algorithmic decisions

may be unsatisfactory. The goal is therefore to explore the space of these

decisions, and learn out of this experience the best performing behavior

(policy), hopefully improving on the state of the art. Even though ML is

approximate, we will demonstrate through the examples surveyed in this

paper that this does not systematically mean that incorporating learning

will compromise overall theoretical guarantees. From the point of view of

using ML to tackle a combinatorial problem, CO can decompose the problem

into smaller, hopefully simpler, learning tasks. The CO structure therefore

acts as a relevant prior for the model. It is also an opportunity to leverage

the CO literature, notably in terms of theoretical guarantees (e.g., feasibility

and optimality).

1.2. Setting

Imagine a delivery company in Montreal that needs to solve TSPs. Every

day, the customers may vary, but usually, many are downtown and few on

top of the Mont Royal mountain. Furthermore, Montreal streets are laid on

a grid, making the distances close to the `1 distance. How close? Not as

much as Phoenix, but certainly more than Paris. The company does not care

about solving all possible TSPs, but only theirs. Explicitly defining what

makes a TSP a likely one for the company is tedious, does not scale, and it

is not clear how it can be leveraged when explicitly writing an optimization

algorithm. We would like to automatically specialize TSP algorithms for this

company.

4

The true probability distribution of likely TSPs in the Montreal scenario

is defining the instances on which we would like our algorithm to perform well.

This is unknown, and cannot even be mathematically characterized in an

explicit way. Because we do not know what is in this distribution, we can only

learn an algorithm that performs well on a finite set of TSPs sampled from

this distribution (for instance, a set of historical instances collected by the

company), thus implicitly incorporating the desired information about the

distribution of instances. As a comparison, in traditional ML tasks, the true

distribution could be that of all possible images of cats, while the training

distribution is a finite set of such images. The challenge in learning is that an

algorithm that performs well on problem instances used for learning may not

work properly on other instances from the true probability distribution. For

the company, this would mean the algorithm only does well on past problems,

but not on the future ones. To control this, we monitor the performance of the

learned algorithm over another independent set of unseen problem instances.

Keeping the performances similar between the instances used for learning

and the unseen ones is known in ML as generalizing. Current ML algorithms

can generalize to examples from the same distribution, but tend to have

more difficulty generalizing out-of-distribution (although this is a topic of

intense research in ML), and so we may expect CO algorithms that leverage

ML models to fail when evaluated on unseen problem instances that are too

far from what has been used for training the ML predictor. As previously

motivated, it is also worth noting that traditional CO algorithms might not

even work consistently across all possible instances of a problem family, but

rather tend to be more adapted to particular structures of problems, e.g.,

Euclidean TSPs.

Finally, the implicit knowledge extracted by ML algorithms is comple-

5

mentary to the hard-won explicit expertise extracted through CO research.

Rather, it aims to augment and automate the unwritten expert intuition

(or lack of) on various existing algorithms. Given that these problems are

highly structured, we believe it is relevant to augment solving algorithms

with machine learning – and especially deep learning to address the high

dimensionality of such problems.

In the following, we survey the attempts in the literature to achieve such

automation and augmentation, and we present a methodological overview

of those approaches. In light of the current state of the field, the literature

we survey is exploratory, i.e., we aim at highlighting promising research

directions in the use of ML within CO, instead of reporting on already mature

algorithms.

1.3. Outline

We have introduced the context and motivations for building combinato-

rial optimization algorithms together with machine learning. The remainder

of this paper is organized as follows. Section 2 provides minimal prerequi-

sites in combinatorial optimization, machine learning, deep learning, and

reinforcement learning necessary to fully grasp the content of the paper. Sec-

tion 3 surveys the recent literature and derives two distinctive, orthogonal,

views: Section 3.1 shows how machine learning policies can either be learned

by imitating an expert or discovered through experience, while Section 3.2

discusses the interplay between the ML and CO components. Section 5

pushes further the reflection on the use of ML for combinatorial optimization

and brings to the fore some methodological points. In Section 6, we detail

critical practical challenges of the field. Finally, some conclusions are drawn

in Section 7.

6

2. Preliminaries

In this section, we give a basic (sometimes rough) overview of combinato-

rial optimization and machine learning, with the unique aim of introducing

concepts that are strictly required to understand the remainder of the paper.

2.1. Combinatorial Optimization

Without loss of generality, a CO problem can be formulated as a con-

strained min-optimization program. Constraints model natural or imposed

restrictions of the problem, variables define the decisions to be made, while

the objective function, generally a cost to be minimized, defines the measure

of the quality of every feasible assignment of values to variables. If the objec-

tive and constraints are linear, the problem is called a linear programming

(LP) problem. If, in addition, some variables are also restricted to only as-

sume integer values, then the problem is a mixed-integer linear programming

(MILP) problem.

The set of points that satisfy the constraints is the feasible region. Every

point in that set (often referred to as a feasible solution) yields an upper

bound on the objective value of the optimal solution. Exact solving is

an important aspect of the field, hence a lot of attention is also given to

find lower bounds to the optimal cost. The tighter the lower bounds, with

respect to the optimal solution value, the higher the chances that the current

algorithmic approaches to tackle mixed-integer linear programmings (MILPs)

described in the following could be successful, i.e., effective if not efficient.

Linear and mixed-integer linear programming problems are the workhorse

of CO because they can model a wide variety of problems and are the best

understood, i.e., there are reliable algorithms and software tools to solve

them. We give them special considerations in this paper but, of course,

7

they do not represent the entire CO, mixed-integer nonlinear programming

being a rapidly expanding and very significant area both in theory and in

practical applications. With respect to complexity and solution methods,

LP is a polynomial problem, well solved, in theory and in practice, through

the simplex algorithm or interior points methods. Mixed-integer linear

programming, on the other hand, is an NP-hard problem, which does not

make it hopeless. Indeed, it is easy to see that the complexity of MILP is

associated with the integrality requirement on (some of) the variables, which

makes the MILP feasible region nonconvex. However, dropping the integrality

requirement (i) defines a proper relaxation of MILP (i.e., an optimization

problem whose feasible region contains the MILP feasible region), which

(ii) happens to be an LP, i.e., polynomially solvable. This immediately

suggests the algorithmic line of attack that is used to solve MILP through a

whole ecosystem of branch-and-bound (B&B) techniques to perform implicit

enumeration. Branch and bound implemements a divide-and-conquer type

of algorithm representable by a search tree in which, at every node, an LP

relaxation of the problem (possibly augmented by branching decisions, see

below) is efficiently computed. If the relaxation is infeasible, or if the solution

of the relaxation is naturally (mixed-)integer, i.e., MILP feasible, the node

does not need to be expanded. Otherwise, there exists at least one variable,

among those supposed to be integer, taking a fractional value in the LP

solution and that variable can be chosen for branching (enumeration), i.e.,

by restricting its value in such a way that two child nodes are created. The

two child nodes have disjoint feasible regions, none of which contains the

solution of the previous LP relaxation. We use Figure 1 to illustrate the

B&B algorithm for a minimization MILP. At the root node in the figure,

the variable x2 has a fractional value in the LP solution (not represented),

8

thus branching is done on the floor (here zero) and ceiling (here one) of

this value. When an integer solution is found, we also get an upper bound

(denoted as z) on the optimal solution value of the problem. At every node,

we can then compare the solution value of the relaxation (denoted as z)

with the minimum upper bound found so far, called the incumbent solution

value. If the latter is smaller than the former for a specific node, no better

(mixed-)integer solution can be found in the sub-tree originated by the node

itself, and it can be pruned.

InfeasiblePruned by bound

Integer solution

x2 ≥ 1x2 ≤ 0

x3 ≤ 0 x3 ≥ 1 x1 ≥ 1

x5 ≥ 1

x3 ≥ 1

x5 ≤ 0

x1 ≤ 0

x3 ≤ 0

z = 3:4

z = 5:7

z = z = 4

z = 3:8

Figure 1: A branch-and-bound tree for MILPs. The LP relaxation is computed at every
node (only partially shown in the figure). Nodes still open for exploration are represented
as blank.

All commercial and noncommercial MILP solvers enhance the above

enumeration framework with the extensive use of cutting planes, i.e., valid

linear inequalities that are added to the original formulation (especially at

the root of the B&B tree) in the attempt of strengthening its LP relaxation.

The resulting framework, referred to as the branch-and-cut algorithm, is

then further enhanced by additional algorithmic components, preprocessing

and primal heuristics being the most crucial ones. The reader is referred to

Wolsey (1998) and Conforti et al. (2014) for extensive textbooks on MILP

9

and to Lodi (2009) for a detailed description of the algorithmic components

of the MILP solvers.

We end the section by noting that there is a vast literature devoted to

(primal) heuristics, i.e., algorithms designed to compute “good in practice”

solutions to CO problems without optimality guarantee. Although a general

discussion on them is outside the scope here, those heuristic methods play a

central role in CO and will be considered in specific contexts in the present

paper. The interested reader is referred to Fischetti & Lodi (2011) and

Gendreau & Potvin (2010).

2.2. Machine Learning

Supervised learning. In supervised learning, a set of input (features) / target

pairs is provided and the task is to find a function that for every input has a

predicted output as close as possible to the provided target. Finding such a

function is called learning and is solved through an optimization problem

over a family of functions. The loss function, i.e., the measure of discrepancy

between the output and the target, can be chosen depending on the task

(regression, classification, etc.) and on the optimization methods. However,

this approach is not enough because the problem has a statistical nature. It

is usually easy enough to achieve a good score on the given examples but

one wants to achieve a good score on unseen examples (test data). This is

known as generalization.

Mathematically speaking, let X and Y , following a joint probability

distribution P , be random variables representing the input features and the

target. Let ` be the per sample loss function to minimize, and let {fθ | θ ∈ Rp}

be the family of ML models (parametric in this case) to optimize over. The

10

supervised learning problem is framed as

min
θ∈Rp

EX,Y∼P `(Y, fθ(X)). (1)

For instance, fθ could be a linear model with weights θ that we wish to

learn. The loss function ` is task dependent (e.g., classification error) and

can sometimes be replaced by a surrogate one (e.g., a differentiable one).

The probability distribution is unknown and inaccessible. For example, it

can be the probability distribution of all natural images. Therefore, it is

approximated by the empirical probability distribution over a finite dataset

Dtrain = {(xi, yi)}i and the optimization problem solved is

min
θ∈Rp

∑
(x,y)∈Dtrain

1

|Dtrain|
`(y, fθ(x)). (2)

A model is said to generalize, if low objective values of (2) translate in

low objective values of (1). Because (1) remains inaccessible, we estimate

the generalization error by evaluating the trained model on a separate test

dataset Dtest with ∑
(x,y)∈Dtest

1

|Dtest|
`(y, fθ(x)). (3)

If a model (i.e., a family of functions) can represent many different functions,

the model is said to have high capacity and is prone to overfitting: doing well

on the training data but not generalizing to the test data. Regularization is

anything that can improve the test score at the expense of the training score

and is used to restrict the practical capacity of a model. On the contrary, if

the capacity is too low, the model underfits and performs poorly on both

sets. The boundary between overfitting and underfitting can be estimated

by changing the effective capacity (the richness of the family of functions

reachable by training): below the critical capacity one underfits and test

11

error decreases with increases in capacity, while above that critical capacity

one overfits and test error increases with increases in capacity.

Selecting the best among various trained models cannot be done on the

test set. Selection is a form of optimization, and doing so on the test set

would bias the estimator in (2). This is a common form of data dredging, and

a mistake to be avoided. To perform model selection, a validation dataset

Dvalid is used to estimate the generalization error of different ML models is

necessary. Model selection can be done based on these estimates, and the

final unbiased generalization error of the selected model can be computed

on the test set. The validation set is therefore often used to select effective

capacity, e.g., by changing the amount of training, the number of parameters

θ, and the amount of regularization imposed to the model.

Unsupervised learning. In unsupervised learning, one does not have targets

for the task one wants to solve, but rather tries to capture some characteristics

of the joint distribution of the observed random variables. The variety of tasks

include density estimation, dimensionality reduction, and clustering. Because

unsupervised learning has received so far little attention in conjunction with

CO and its immediate use seems difficult, we are not discussing it any further.

The reader is referred to Bishop (2006); Murphy (2012); Goodfellow et al.

(2016) for textbooks on machine learning.

Reinforcement learning. In reinforcement learning (RL), an agent interacts

with an environment through a markov decision process (MDP), as illustrated

in Figure 2. At every time step, the agent is in a given state of the environment

and chooses an action according to its (possibly stochastic) policy. As a

result, it receives from the environment a reward and enters a new state.

The goal in RL is to train the agent to maximize the expected sum of future

12

rewards, called the return. For a given policy, the expected return given a

current state (resp. state and action pair) is known as the value function (resp.

state action value function). Value functions follow the Bellman equation,

hence the problem can be formulated as dynamic programming, and solved

approximately. The dynamics of the environment need not be known by

the agent and are learned directly or indirectly, yielding an exploration vs

exploitation dilemma: choosing between exploring new states for refining

the knowledge of the environment for possible long-term improvements, or

exploiting the best-known scenario learned so far (which tends to be in

already visited or predictable states).

π(ajs)

Environment

Agent

p(s0; rja; s)

ActionRewardState
AtRt+1St+1

Figure 2: The Markov decision process associated with reinforcement learning, modified
from Sutton & Barto (2018). The agent behavior is defined by its policy π, while the
environment evolution is defined by the dynamics p. Note that the reward is not necessary
to define the evolution and is provided only as a learning mechanism for the agent. Actions,
states, and rewards are random variables in the general framework.

The state should fully characterize the environment at every step, in the

sense that future states only depend on past states via the current state (the

Markov property). When this is not the case, similar methods can be applied

but we say that the agent receives an observation of the state. The Markov

property no longer holds and the MDP is said to be partially observable.

Defining a reward function is not always easy. Sometimes one would

13

like to define a very sparse reward, such as 1 when the agent solves the

problem, and 0 otherwise. Because of its underlying dynamic programming

process, RL is naturally able to credit states/actions that lead to future

rewards. Nonetheless, the aforementioned setting is challenging as it provides

no learning opportunity until the agent (randomly, or through advanced

approaches) solves the problem. Furthermore, when the policy is approxi-

mated (for instance, by a linear function), the learning is not guaranteed

to converge and may fall into local minima. For example, an autonomous

car may decide not to drive anywhere for fear of hitting a pedestrian and

receiving a dramatic negative reward. These challenges are strongly related

to the aforementioned exploration dilemma. The reader is referred to Sutton

& Barto (2018) for an extensive textbook on reinforcement learning.

Deep learning. Deep learning is a successful method for building parametric

composable functions in high dimensional spaces. In the case of the simplest

neural network architecture, the feedforward neural network (also called an

multilayer perceptron (MLP)), the input data is successively passed through

a number of layers. For every layer, an affine transformation is applied on

the input vector, followed by a non-linear scalar function (named activation

function) applied element-wise. The output of a layer, called intermediate

activations, is passed on to the next layer. All affine transformations are

independent and represented in practice as different matrices of coefficients.

They are learned, i.e., optimized over, through stochastic gradient descent

(SGD), the optimization algorithm used to minimize the selected loss function.

The stochasticity comes from the limited number of data points used to

compute the loss before applying a gradient update. In practice, gradients are

computed using reverse mode automatic differentiation, a practical algorithm

14

based on the chain rule, also known as back-propagation. Deep neural

networks can be difficult to optimize, and a large variety of techniques have

been developed to make the optimization behave better, often by changing

architectural designs of the network. Because neural networks have dramatic

capacities, i.e., they can essentially match any dataset, thus being prone to

overfitting, they are also heavily regularized. Training them by SGD also

regularizes them because of the noise in the gradient, making neural networks

generally robust to overfitting issues, even when they are very large and

would overfit if trained with more aggressive optimization. In addition, many

hyper-parameters exist and different combinations are evaluated (known as

hyper-parameters optimization). Deep learning also sets itself apart from

more traditional ML techniques by taking as inputs all available raw features

of the data, e.g., all pixels of an image, while traditional ML typically requires

to engineer a limited number of domain-specific features.

Deep learning researchers have developed different techniques to tackle

this variety of structured data in a manner that can handle variable-size data

structures, e.g., variable-length sequences. In this paragraph, and in the

next, we present such state-of-the-art techniques. These are complex topics,

but lack of comprehension does not hinder the reading of the paper. At a

high level, it is enough to comprehend that these are architectures designed

to handle different structures of data. Their usage, and in particular the way

they are learned, remains very similar to plain feedforward neural networks

introduced above. The first architectures presented are the recurrent neural

networks (RNNs). These models can operate on sequence data by sharing

parameters across different sequence steps. More precisely, a same neural

network block is successively applied at every step of the sequence, i.e., with

the same architecture and parameter values at each time step. The specificity

15

of such a network is the presence of recurrent layers: layers that take as input

both the activation vector of the previous layer and its own activation vector

on the preceding sequence step (called a hidden state vector), as illustrated

in Figure 3.

x

h

o

V
W

U

xt−1

ht−1

ot−1

V

U

xt

ht

ot

V

U

xt+1

ht+1

ot+1

V

U

W WW

Figure 3: A vanilla RNN modified from Goodfellow et al. (2016). On the left, the black
square indicates a one step delay. On the right, the same RNN is shown unfolded. Three
sets U , V , and W of parameters are represented and re-used at every time step.

Another important size-invariant technique are attention mechanisms.

They can be used to process data where each data point corresponds to a set.

In that context, parameter sharing is used to address the fact that different

sets need not to be of the same size. Attention is used to query information

about all elements in the set, and merge it for downstream processing in the

neural network, as depicted in Figure 4. An affinity function takes as input

the query (which represents any kind of contextual information which informs

where attention should be concentrated) and a representation of an element

of the set (both are activation vectors) and outputs a scalar. This is repeated

over all elements in the set for the same query. Those scalars are normalized

(for instance with a softmax function) and used to define a weighted sum of

the representations of elements in the set that can, in turn, be used in the

16

neural network making the query. This form of content-based soft attention

was introduced by Bahdanau et al. (2015). A general explanation of attention

mechanisms is given by Vaswani et al. (2017). Attention can be used to

build graph neural networks (GNNs), i.e., neural networks able to process

graph structured input data, as done by Veličković et al. (2018). In this

architecture, every node attends over the set of its neighbors. The process

is repeated multiple times to gather information about nodes further away.

GNNs can also be understood as a form of message passing (Gilmer et al.,

2017).

f f f

softmax

∗ ∗ ∗

Σ

:::v1 v2 vp q

Figure 4: A vanilla attention mechanism where a query q is computed against a set of
values (vi)i. An affinity function f , such as a dot product, is used on query and value
pairs. If it includes some parameters, the mechanism can be learned.

Deep learning and back-propagation can be used in supervised, unsuper-

vised, or reinforcement learning. The reader is referred to Goodfellow et al.

(2016) for a machine learning textbook devoted to deep learning.

17

3. Recent approaches

We survey different uses of ML to help solve combinatorial optimization

problems and organize them along two orthogonal axes. First, in Section 3.1

we illustrate the two main motivations for using learning: approximation

and discovery of new policies. Then, in Section 3.2, we show examples of

different ways to combine learned and traditional algorithmic elements.

3.1. Learning methods

This section relates to the two motivations reported in Section 1.1 for

using ML in CO. In some works, the researcher assumes theoretical and/or

empirical knowledge about the decisions to be made for a CO algorithm,

but wants to alleviate the computational burden by approximating some

of those decisions with machine learning. On the contrary, we are also

motivated by the fact that, sometimes, expert knowledge is not satisfactory

and the researcher wishes to find better ways of making decisions. Thus, ML

can come into play to train a model through trial and error reinforcement

learning.

We frame both these motivations in the state/action MDP framework

introduced in section 2.2, where the environment is the internal state of the

algorithm. We care about learning algorithmic decisions utilized by a CO

algorithm and we call the function making the decision a policy, that, given

all available information,3 returns (possibly stochastically) the action to be

taken. The policy is the function that we want to learn using ML and we

show in the following how the two motivations naturally yield two learning

settings. Note that the case where the length of the trajectory of the MDP

3 A state if the information is sufficient to fully characterize the environment at that
time in a Markov decision process setting.

18

has value 1 is a common edge case (called the bandit setting) where this

formulation can seem excessive, but it nonetheless helps comparing methods.

In the case of using ML to approximate decisions, the policy is often

learned by imitation learning, thanks to demonstrations, because the expected

behavior is shown (demonstrated) to the ML model by an expert (also called

oracle, even though it is not necessarily optimal), as shown in Figure 5. In

this setting, the learner is not trained to optimize a performance measure,

but to blindly mimic the expert.

Decision?

πexpert

π̂ml ^action

action

min distance

Figure 5: In the demonstration setting, the policy is trained to reproduce the action of an
expert policy by minimizing some discrepancy in the action space.

In the case where one cares about discovering new policies, i.e., optimizing

an algorithmic decision function from the ground up, the policy may be

learned by reinforcement learning through experience, as shown in Figure 6.

Even though we present the learning problem under the fundamental MDP of

RL, this does not constrain one to use the major RL algorithms (approximate

dynamic programming and policy gradients) to maximize the expected sum

of rewards. Alternative optimization methods, such as bandit algorithms,

genetic algorithms, direct/local search, can also be used to solve the RL

problem.4

4 In general, identifying which algorithm will perform best is an open research question
unlikely to have a simple answer, and is outside of the scope of the methodology presented
here.

19

Decision?

π̂ml

^action reward

score

max return

Figure 6: When learning through a reward signal, no expert is involved; only maximizing
the expected sum of future rewards (the return) matters.

It is critical to understand that in the imitation setting, the policy is

learned through supervised targets provided by an expert for every action

(and without a reward), whereas in the experience setting, the policy is

learned from a reward (possibly delayed) signal using RL (and without an

expert). In imitation, the agent is taught what to do, whereas in RL, the

agent is encouraged to quickly accumulate rewards. The distinction between

these two settings is far more complex than the distinction made here. We

explore some of this complexity, including their strengths and weaknesses, in

Section 5.1.

In the following, few papers demonstrating the different settings are

surveyed.

3.1.1. Demonstration

In Baltean-Lugojan et al. (2018), the authors use a neural network

to approximate the lower bound improvement generated by tightening the

current relaxation via cutting planes (cuts, for short). More precisely, Baltean-

Lugojan et al. (2018) consider non-convex quadratic programming problems

and aim at approximating the associated semidefinite programming (SDP)

relaxation, known to be strong but time-consuming, by a linear program. A

straightforward way of doing that is to iteratively add (linear) cutting planes

associated with negative eigenvalues, especially considering small-size (square)

submatrices of the original quadratic objective function. That approach has

20

the advantage of generating sparse cuts5 but it is computationally challenging

because of the exponential number of those submatrices and because of the

difficulty of finding the right metrics to select among the violated cuts. The

authors propose to solve SDPs to compute the bound improvement associated

with considering specific submatrices, which is also a proxy on the quality

of the cuts that could be separated from the same submatrices. In this

context, supervised (imitation) learning is applied offline to approximate the

objective value of the SDP problem associated with a submatrix selection

and, afterward, the model can be rapidly applied to select the most promising

submatrices without the very significant computational burden of solving

SDPs. Of course, the rational is that the most promising submatrices

correspond to the most promising cutting planes and Baltean-Lugojan et al.

(2018) train a model to estimate the objective of an SDP problem only in

order to decide to add the most promising cutting planes. Hence, cutting

plane selection is the ultimate policy learned.

Another example of demonstration is found in the context of branching

policies in B&B trees of MILPs. The choice of variables to branch on can

dramatically change the size of the B&B tree, hence the solving time. Among

many heuristics, a well-performing approach is strong branching (Applegate

et al., 2007). Namely, for every branching decision to be made, strong

branching performs a one step look-ahead by tentatively branching on many

candidate variables, computes the LP relaxations to get the potential lower

bound improvements, and eventually branches on the variable providing

the best improvement. Even if not all variables are explored, and the LP

5 The reader is referred to Dey & Molinaro (2018) for a detailed discussion on the
importance of sparse cutting planes in MILP.

21

value can be approximated, this is still a computationally expensive strategy.

For these reasons, Marcos Alvarez et al. (2014, 2017) use a special type

of decision tree (a classical model in supervised learning) to approximate

strong branching decisions using supervised learning. Khalil et al. (2016)

propose a similar approach, where a linear model is learned on the fly

for every instance by using strong branching at the top of the tree, and

eventually replacing it by its ML approximation. The linear approximator

of strong branching introduced in Marcos Alvarez et al. (2016) is learned in

an active fashion: when the estimator is deemed unreliable, the algorithm

falls back to true strong branching and the results are then used for both

branching and learning. In all the branching algorithms presented here,

inputs to the ML model are engineered as a vector of fixed length with

static features descriptive of the instance, and dynamic features providing

information about the state of the B&B process. Gasse et al. (2019) use a

neural network to learn an offline approximation to strong branching, but,

contrary to the aforementioned papers, the authors use a raw exhaustive

representation (i.e., they do not discard nor aggregate any information) of

the sub-problem associated with the current branching node as input to the

ML model. Namely, an MILP sub-problem is represented as a bipartite graph

on variables and constraints, with edges representing non-zero coefficients in

the constraint matrix. Each node is augmented with a set of features to fully

describe the sub-problem, and a GNN is used to build an ML approximator

able to process this type of structured data. Node selection, i.e., deciding on

the next branching node to explore in a B&B tree, is also a critical decision

in MILP. He et al. (2014) learn a policy to select among the open branching

nodes the one that contains the optimal solution in its sub-tree. The training

algorithm is an online learning method collecting expert behaviors throughout

22

the entire learning phase. The reader is referred to Lodi & Zarpellon (2017)

for an extended survey on learning and branching in MILPs.

Branch and bound is a technique not limited to MILP and can be use

for general tree search. Hottung et al. (2017) build a tree search procedure

for the container pre-marshalling problem in which they aim to learn, not

only a branching policy (similar in principle to what has been discussed

in the previous paragraph), but also a value network to estimate the value

of partial solutions and used for bounding. The authors leverage a form

of convolutional neural network (CNN)6 for both networks and train them

in a supervised fashion using pre-computed solutions of the problem. The

resulting algorithm is heuristic due the approximations made while bounding.

As already mentioned at the beginning of Section 3.1, learning a policy

by demonstration is identical to supervised learning, where training pairs of

input state and target actions are provided by the expert. In the simplest case,

expert decisions are collected beforehand, but more advanced methods can

collect them online to increase stability as previously shown in Marcos Alvarez

et al. (2016) and He et al. (2014).

3.1.2. Experience

Considering the TSP on a graph, it is easy to devise a greedy heuristic

that builds a tour by sequentially picking the nodes among those that have

not been visited yet, hence defining a permutation. If the criterion for

selecting the next node is to take the closest one, then the heuristic is known

as the nearest neighbor. This simple heuristic has poor practical performance

and many other heuristics perform better empirically, i.e., build cheaper

6 A type of neural network, usually used on image input, that leverages parameter
sharing to extract local information.

23

tours. Selecting the nearest node is a fair intuition but turns out to be far

from satisfactory. Khalil et al. (2017a) suggest learning the criterion for this

selection. They build a greedy heuristic framework, where the node selection

policy is learned using a GNN (Dai et al., 2016), a type of neural network

able to process input graphs of any finite size by a mechanism of message

passing (Gilmer et al., 2017). For every node to select, the authors feed

to the network the graph representation of the problem – augmented with

features indicating which of the nodes have already been visited – and receive

back an action value for every node. Action values are used to train the

network through RL (Q-learning in particular) and the partial tour length is

used as a reward.

This example does not do justice to the rich TSP literature that has

developed far more advanced algorithms performing orders of magnitude

better than ML ones. Nevertheless, the point we are trying to highlight

here is that given a fixed context, and a decision to be made, ML can be

used to discover new, potentially better performing policies. Even on state-

of-the-art TSP algorithms (i.e., when exact solving is taken to its limits),

many decisions are made in heuristic ways, e.g., cutting plane selection, thus

leaving room for ML to assist in making these decisions.

Once again, we stress that learning a policy by experience is well described

by the MDP framework of reinforcement learning, where an agent maximizes

the return (defined in Section 2.2). By matching the reward signal with the

optimization objective, the goal of the learning agent becomes to solve the

problem, without assuming any expert knowledge. Some methods that were

not presented as RL can also be cast in this MDP formulation, even if the

optimization methods are not those of the RL community. For instance,

part of the CO literature is dedicated to automatically build specialized

24

heuristics for different problems. The heuristics are build by orchestrating a

set of moves, or subroutines, from a pre-defined domain-specific collections.

For instance, to tackle bipartite boolean quadratic programming problems,

Karapetyan et al. (2017) represent this orchestration as a Markov chain

where the states are the subroutines. One Markov chain is parametrized by

its transition probabilities. Mascia et al. (2014), on the other hand, define

valid succession of moves through a grammar, where words are moves and

sentences correspond to heuristics. The authors introduce a parametric

space to represent sentences of a grammar. In both cases, the setting is

very close to the MDP of RL, but the parameters are learned though di-

rect optimization of the performances of their associated heuristic through

so-called automatic configuration tools (usually based on genetic or local

search, and exploiting parallel computing). Note that the learning setting is

rather simple as the parameters do not adapt to the problem instance, but

are fixed for various clusters. From the ML point of view, this is equivalent

to a piece-wise constant regression. If more complex models were to be used,

direct optimization may not scale adequately to obtain good performances.

The same approach to building heuristics can be brought one level up if,

instead of orchestrating sets of moves, it arranges predefined heuristics. The

resulting heuristic is then called a hyper-heuristic. Özcan et al. (2012) build a

hyper-heuristic for examination timetabling by learning to combine existing

heuristics. They use a bandit algorithm, a stateless form of RL (see Sutton

& Barto, 2018, Chapter 2), to learn online a value function for each heuristic.

We close this section by noting that demonstration and experience are not

mutually exclusive and most learning tasks can be tackled in both ways. In

the case of selecting the branching variables in an MILP branch-and-bound

25

tree, one could adopt anyone of the two prior strategies. On the one hand,

Marcos Alvarez et al. (2014, 2016, 2017); Khalil et al. (2016) estimate that

strong branching is an effective branching strategy but computationally too

expensive and build a machine learning model to approximate it. On the other

hand, one could believe that no branching strategy is good enough and try

to learn one from the ground up, for instance through reinforcement learning

as suggested (but not implemented) in Khalil et al. (2016). An intermediary

approach is proposed by Liberto et al. (2016). The authors recognize that,

among traditional variable selection policies, the ones performing well at the

top of the B&B tree are not necessarily the same as the ones performing

well deeper down. Hence, the authors learn a model to dynamically switch

among predefined policies during B&B based on the current state of the

tree. While this seems like a case of imitation learning, given that traditional

branching policies can be thought of as experts, this is actually not the case.

In fact, the model is not learning from any expert, but really learning to

choose between pre-existing policies. This is technically not a branching

variable selection, but rather a branching heuristic selection policy. Each

sub-tree is represented by a vector of handcrafted features, and a clustering

of these vectors is performed. Similarly to what was detailed in the previous

paragraph about the work of Karapetyan et al. (2017); Mascia et al. (2014),

automatic configuration tools are then used to assign the best branching

policy to each cluster. When branching at a given node, the cluster the

closest to the current sub-tree is retrieved, and its assigned policy is used.

3.2. Algorithmic structure

In this section, we survey how the learned policies (whether from demon-

stration or experience) are combined with traditional CO algorithms, i.e.,

26

considering ML and explicit algorithms as building blocks, we survey how

they can be laid out in different templates. The three following sections are

not necessarily disjoint nor exhaustive but are a natural way to look at the

literature.

3.2.1. End to end learning

A first idea to leverage machine learning to solve discrete optimization

problems is to train the ML model to output solutions directly from the

input instance, as shown in Figure 7.

SolutionML
Problem

definition

Figure 7: Machine learning acts alone to provide a solution to the problem.

This approach has been explored recently, especially on Euclidean TSPs.

To tackle the problem with deep learning, Vinyals et al. (2015) introduce

the pointer network wherein an encoder, namely an RNN, is used to parse

all the TSP nodes in the input graph and produces an encoding (a vector

of activations) for each of them. Afterward, a decoder, also an RNN, uses

an attention mechanism similar to Bahdanau et al. (2015) (Section 2.2)

over the previously encoded nodes in the graph to produce a probability

distribution over these nodes (through the softmax layer previously illustrated

in Figure 4). Repeating this decoding step, it is possible for the network

to output a permutation over its inputs (the TSP nodes). This method

makes it possible to use the network over different input graph sizes. The

authors train the model through supervised learning with precomputed TSP

solutions as targets. Bello et al. (2017) use a similar model and train it

with reinforcement learning using the tour length as a reward signal. They

27

address some limitations of supervised (imitation) learning, such as the need

to compute optimal (or at least high quality) TSP solutions (the targets),

that in turn, may be ill-defined when those solutions are not computed

exactly, or when multiple solutions exist. Kool & Welling (2018) introduce

more prior knowledge in the model using a GNN instead of an RNN to

process the input. Emami & Ranka (2018) and Nowak et al. (2017) explore

a different approach by directly approximating a double stochastic matrix in

the output of the neural network to characterize the permutation. The work

of Khalil et al. (2017a), introduced in Section 3.1.2, can also be understood

as an end to end method to tackle the TSP, but we prefer to see it under the

eye of Section 3.2.3. It is worth noting that tackling the TSP through ML is

not new. Earlier work from the nineties focused on Hopfield neural networks

and self organizing neural networks, the interested reader is referred to the

survey of Smith (1999).

In another example, Larsen et al. (2018) train a neural network to predict

the solution of a stochastic load planning problem for which a deterministic

MILP formulation exists. Their main motivation is that the application

needs to make decisions at a tactical level, i.e., under incomplete information,

and machine learning is used to address the stochasticity of the problem

arising from missing some of the state variables in the observed input. The

authors use operational solutions, i.e., solutions to the deterministic version

of the problem, and aggregate them to provide (tactical) solution targets to

the ML model. As explained in their paper, the highest level of description

of the solution is its cost, whereas the lowest (operational) is the knowledge

of values for all its variables. Then, the authors place themselves in the

middle and predict an aggregation of variables (tactical) that corresponds

to the stochastic version of their specific problem. Furthermore, the nature

28

of the application requires to output solutions in real time, which is not

possible either for the stochastic version of the load planning problem or

its deterministic variant when using state-of-the-art MILP solvers. Then,

ML turns out to be suitable for obtaining accurate solutions with short

computing times because some of the complexity is addressed offline, i.e., in

the learning phase, and the run-time (inference) phase is extremely quick.

Finally, note that in Larsen et al. (2018) an MLP, i.e., a feedforward neural

network, is used to process the input instance as a vector, hence integrating

very little prior knowledge about the problem structure.

3.2.2. Learning to configure algorithms

In many cases, using only machine learning to tackle the problem may

not be the most suitable approach. Instead, ML can be applied to provide

additional pieces of information to a CO algorithm as illustrated in Figure 8.

For example, ML can provide a parametrization of the algorithm (in a very

broad sense).

SolutionML
Problem

definition
ORDecision

Figure 8: The machine learning model is used to augment an operation research algorithm
with valuable pieces of information.

Algorithm configuration, detailed in Hoos (2012); Bischl et al. (2016),

is a well studied area that captures the setting presented here. Complex

optimization algorithms usually have a set of parameters left constant during

optimization (in machine learning they are called hyper-parameters). For

instance, this can be the aggressiveness of the pre-solving operations (usually

controlled by a single parameter) of an MILP solver, or the learning rate

29

/ step size in gradient descent methods. Carefully selecting their value

can dramatically change the performance of the optimization algorithm.

Hence, the algorithm configuration community started looking for good

default parameters. Then good default parameters for different cluster

of similar problem instances. From the ML point of view, the former is

a constant regression, while the second is a piece-wise constant nearest

neighbors regression. The natural continuation was to learn a regression

mapping problem instances to algorithm parameters.

In this context, Kruber et al. (2017) use machine learning on MILP

instances to estimate beforehand whether or not applying a Dantzig-Wolf

decomposition will be effective, i.e., will make the solving time faster. De-

composition methods can be powerful but deciding if and how to apply them

depends on many ingredients of the instance and of its formulation and there

is no clear cut way of optimally making such a decision. In their work, a

data point is represented as a fixed length vector with features representing

instance and tentative decomposition statistics. In another example, in the

context of mixed-integer quadratic programming, Bonami et al. (2018) use

machine learning to decide if linearizing the problem will solve faster. When

the quadratic programming (QP) problem given by the relaxation is convex,

i.e., the quadratic objective matrix is semidefinite positive, one could address

the problem by a B&B algorithm that solves QP relaxations7 to provide

lower bounds. Even in this convex case, it is not clear if QP B&B would solve

faster than linearizing the problem (by using McCormick (1976) inequalities)

and solving an equivalent MILP. This is why ML is a great candidate here

to fill the knowledge gap. In both papers (Kruber et al., 2017; Bonami

7 Note that convex QPs can be solved in polynomial time.

30

et al., 2018), the authors experiment with different ML models, such as

support vector machines and random forests, as is good practice when no

prior knowledge is embedded in the model.

The heuristic building framework used in Karapetyan et al. (2017) and

Mascia et al. (2014), already presented in Section 3.1.2, can be understood

under this eye. Indeed, it can be seen as a large parametric heuristic,

configured by the transition probabilities in the former case, and by the

parameter representing a sentence in the latter.

As previously stated, the parametrization of the CO algorithm provided

by ML is to be understood in a very broad sense. For instance, in the

case of radiation therapy for cancer treatment, Mahmood et al. (2018) use

ML to produce candidate therapies that are afterward refined by a CO

algorithm into a deliverable plan. Namely, a generative adversarial network

(GAN) is used to color CT scan images into a potential radiation plan,

then, inverse optimization (Ahuja & Orlin, 2001) is applied on the result to

make the plan feasible (Chan et al., 2014). In general, GANs are made of

two distinct networks: one (the generator) generates images, and another

one (the discriminator) discriminates between the generated images and a

dataset of real images. Both are trained alternatively: the discriminator

through a usual supervised objective, while the generator is trained to fool

the discriminator. In Mahmood et al. (2018), a particular type of GAN

(conditional GAN) is used to provide coloring instead of random images.

The interested reader is referred to Creswell et al. (2018) for an overview on

GANs.

We end this section by noting that an ML model used for learning some

representation may in turn use as features pieces of information given by

another CO algorithm, such as the decomposition statistics used in Kruber

31

et al. (2017), or the LP information in Bonami et al. (2018). Moreover,

we remark that, in the satisfiability context, the learning of the type of

algorithm to execute on a particular cluster of instances has been paired with

the learning of the parameters of the algorithm itself, see, e.g., Ansótegui

et al. (2017, 2019).

3.2.3. Machine learning alongside optimization algorithms

To generalize the context of the previous section to its full potential,

one can build CO algorithms that repeatedly call an ML model throughout

their execution, as illustrated in Figure 9. A master algorithm controls the

high-level structure while frequently calling an ML model to assist in lower

level decisions. The key difference between this approach and the examples

discussed in the previous section is that the same ML model is used by the

CO algorithm to make the same type of decisions a number of times in the

order of the number of iterations of the algorithm. As in the previous section,

nothing prevents one from applying additional steps before or after such an

algorithm.

SolutionOR
Problem

definition

ML

State Decision

Figure 9: The combinatorial optimization algorithm repeatedly queries the same ML model
to make decisions. The ML model takes as input the current state of the algorithm, which
may include the problem definition.

32

This is clearly the context of the branch-and-bound tree for MILP, where

we already mentioned how the task of selecting the branching variable is

either too heuristic or too slow, and is therefore a good candidate for learning

(Lodi & Zarpellon, 2017). In this case, the general algorithm remains a

branch-and-bound framework, with the same software architecture and the

same guarantees on lower and upper bounds, but the branching decisions

made at every node are left to be learned. Likewise, the work of Hottung et al.

(2017) learning both a branching policy and value network for heuristic tree

search undeniably fits in this context. Another important aspect in solving

MILPs is the use of primal heuristics, i.e., algorithms that are applied in the

B&B nodes to find feasible solutions, without guarantee of success. On top

of their obvious advantages, good solutions also give tighter upper bounds

(for minimization problems) on the solution value and make more pruning of

the tree possible. Heuristics depend on the branching node (as branching fix

some variables to specific values), so they need to be run frequently. However,

running them too often can slow down the exploration of the tree, especially

if their outcome is negative, i.e., no better upper bound is detected. Khalil

et al. (2017b) build an ML model to predict whether or not running a given

heuristic will yield a better solution than the best one found so far and then

greedily run that heuristic whenever the outcome of the model is positive.

The approximation used by Baltean-Lugojan et al. (2018), already dis-

cussed in Section 3.2.1, is an example of predicting a high-level description

of the solution to an optimization problem, namely the objective value.

Nonetheless, the goal is to solve the original QP. Thus, the learned model is

queried repeatedly to select promising cutting planes. The ML model is used

only to select promising cuts, but once selected, cuts are added to the LP

relaxation, thus embedding the ML outcome into an exact algorithm. This

33

approach highlights promising directions for this type of algorithm. The deci-

sion learned is critical because adding the best cutting planes is necessary for

solving the problem fast (or fast enough, because in the presence of NP-hard

problems, optimization may time out before any meaningful solving). At the

same time, the approximate decision (often in the form of a probability) does

not compromise the exactness of the algorithm: any cut added is guaranteed

to be valid. This setting leaves room for ML to thrive, while reducing the

need for guarantees from the ML algorithms (an active and difficult area

of research). In addition, note that, the approach in Larsen et al. (2018) is

part of a master algorithm in which the ML is iteratively invoked to make

booking decisions in real time. The work of Khalil et al. (2017a), presented

in Section 3.1.2, also belongs to this setting, even if the resulting algorithm

is heuristic. Indeed, an ML model is asked to select the most relevant node,

while a master algorithm maintains the partial tour, computes its length,

etc. Because the master algorithm is very simple, it is possible to see the

contribution as an end-to-end method, as stated in Section 3.2.1, but it can

also be interpreted more generally as done here.

Presented in Section 3.1.2, and mentioned in the previous section, the

Markov Chain framework for building heuristics from Karapetyan et al.

(2017) can also be framed as repeated decisions. The transition matrix can

be queried and sampled from in order to transition from one state to another,

i.e., to make the low level decisions of choosing the next move. The three

distinctions made in this Section 3.2 are general enough that they can overlap.

Here, the fact that the model operates on internal state transitions, yet is

learned globally, is what makes it hard to analyze.

Before ending this section, it is worth mentioning that learning recurrent

algorithmic decisions is also used in the deep learning community, for instance

34

in the field of meta-learning to decide how to apply gradient updates in

stochastic gradient descent (Andrychowicz et al., 2016; Li & Malik, 2017;

Wichrowska et al., 2017).

4. Learning objective

In the previous section, we have surveyed the existing literature by

orthogonally grouping the main contributions of ML for CO into families

of approaches, sometimes with overlaps. In this section, we formulate and

study the objective that drives the learning process.

4.1. Multi-instance formulation

In the following, we introduce an abstract learning formulation (inspired

from Bischl et al. (2016)). How would an ML practitioner compare opti-

mization algorithms? Let us define I to be a set of problem instances, and

P a probability distribution over I. These are the problems that we care

about, weighted by a probability distribution, reflecting the fact that, in a

practical application, not all problems are as likely. In practice, I or P are

inaccessible, but we can observe some samples from P , as motivated in the

introduction with the Montreal delivery company. For a set of algorithms

A, let m : I × A → R be a measure of the performance of an algorithm

on a problem instance (lower is better). This could be the objective value

of the best solution found, but could also incorporate elements from opti-

mality bounds, absence of results, running times, and resource usage. To

compare a1, a2 ∈ A, an ML practitioner would compare Ei∼P m(i, a1) and

Ei∼P m(i, a2), or equivalently

min
a∈{a1,a2}

Ei∼P m(i, a). (4)

35

Because measuring these quantities is not tractable, one will typically use

empirical estimates instead, by using a finite dataset Dtrain of independent

instances sampled from P

min
a∈{a1,a2}

∑
i∈Dtrain

1

|Dtrain|
m(i, a). (5)

This is intuitive and done in practice: collect a dataset of problem instances

and compare say, average running times. Of course, such expectation can

be computed for different datasets (different I’s and P ’s), and different

measures (different m’s).

This is already a learning problem. The more general one that we want

to solve through leaning is

min
a∈A

Ei∼P m(i, a). (6)

Instead of comparing between two algorithms, we may compare among an

uncountable, maybe non-parametric, space of algorithms. To see how we

come up with so many algorithms, we have to look at the algorithms in

Section 3, and think of the ML model space over which we learn as defining

parametrizing the algorithm space A. For instance, consider the case of

learning a branching policy π for B&B. If we define the policy to be a neural

network with a set of weights θ ∈ Rp, then we obtain a parametric B&B

algorithm a(πθ) and (6) becomes

min
θ∈Rp

Ei∼P m(i, a(πθ)). (7)

Unfortunately, solving this problem is hard. On the one hand, the perfor-

mance measure m is most often not differentiable and without closed form

expression. We discuss this in Section 4.2. On the other hand, computing the

36

expectation in (6) is intractable. As in (5), one can use an empirical distri-

bution using a finite dataset, but that leads to generalization considerations,

as explained in Section 4.3.

Before we move on, let us introduce a new element to make (6) more

general. That formula suggests that, once given an instance, the outcome of

the performance measure is deterministic. That is unrealistic for multiple

reasons. The performance measure could itself incorporate some source of

randomness due to external factors, for instance with running times which

are hardware and system dependent. The algorithm could also incorporate

non negligible sources of randomness, if it is designed to be stochastic, or

if some operations are non deterministic, or to express the fact that the

algorithm should be robust to the choice of some external parameters. Let τ

be that source of randomness, π ∈ Π the internal policy being learned, and

a(π, τ) the resulting algorithm, then we can reformulate (6) as

min
π∈Π

Ei∼P [Eτ [m(i, a(π, τ)) | i]] . (8)

In particular, when learning repeated decisions, as in Section 3.2.3, this

source of randomness can be expressed along the trajectory followed in the

MDP, using the dynamics of the environment p(s′, r|a, s) (see Figure 2). The

addition made in (8) will be useful for the discussion on generalization in

Section 4.3.

4.2. Surrogate objectives

In the previous section, we have formulated a proper learning objective.

Here, we try to relate that objective to the learning methods of Section 3.1,

namely, demonstration and experience. If the usual learning metrics of an ML

model, e.g., accuracy for classification in supervised (imitation) learning, is

improving, does it mean that the performance metric of (6) is also improving?

37

A straightforward approach for solving (8) is that of reinforcement learn-

ing (including direct optimization methods), as surveyed in Section 3.1.2.

The objective from (6) can be optimized directly on experience data by

matching the total return to the performance measure. Sometimes, a single

final reward can naturally be decoupled across the trajectory. For instance,

if the performance objective of a B&B variable selection policy is to min-

imize the number of opened nodes, then the policy can receive a reward

discouraging an increase in the number of nodes, hence giving an incentive

to select variables that lead to pruning. However, that may not be always

possible, leaving only the option of delaying a single reward to the end of the

trajectory. This sparse reward setting is challenging for RL algorithms, and

one might want to design a surrogate reward signal to encourage intermediate

accomplishments. This introduces some discrepancies, and the policy being

optimized may learn a behavior not intended by the algorithm designer.

There is a priori no relationship between two reward signals. One needs

to make use of their intuition to design surrogate signals, e.g., minimizing

the number of B&B nodes should lead to smaller running times. Reward

shaping is an active area of research in RL, yet it is often performed by a

number of engineering tricks.

In the case of learning a policy from a supervised signal from expert

demonstration, the performance measure m does not even appear in the

learning problem that is solved. In this context, the goal is to optimize

a policy π ∈ Π in the action space to mimic an expert policy πe (as first

introduced with Figure 5)

min
π∈Π

Ei∼P [Es[`(π(s), πe(s)) | i, πe]] , (9)

where ` is a task dependent loss (classification, regression, etc.). We have

38

emphasized that the state S is conditional, not only on the instance, but also

on the expert policy πe used to collect the data. Intuitively, the better the

ML model learns, i.e., the better the policy imitates the expert, the closer

the final performance of the learned policy should be to the performance of

the expert. Under some conditions, it is possible to relate the performance

of the learned policy to the performance of the expert policy, but covering

this aspect is out of the scope of this paper. The opposite is not true, if

learning fails, the policy may still turn out to perform well (by encountering

an alternative good decision). Indeed, when making a decision with high

surrogate objective error, the learning will be fully penalized when, in fact,

the decision could have good performances by the original metric. For that

reason, it is capital to report the performance metrics. For example, we

surveyed in Section 3.2.2 the work of Bonami et al. (2018) where the authors

train a classifier to predict if a mixed integer quadratic problem instance

should be linearized or not. The targets used for the learner are computed

optimally by solving the problem instance in both configurations. Simply

reporting the classification accuracy is not enough. Indeed, this metric gives

no information on the impact a misclassification has on running times, the

metric used to compute the targets. In the binary classification, a properly

classified example could also happen to have unsignificant difference between

the running times of the two configurations. To alleviate this issue, the

authors also introduce a category where running times are not significatively

different (and report the real running times). A continuous extension would

be to learn a regression of the solving time. However, learning this regression

now means that the final algorithm needs to optimize over the set of decisions

to find the best one. In RL, this is analoguous to learning a value function

(see Section 2.2). Applying the same reasoning to repeated decisions is better

39

understood with the complete RL theory.

4.3. On generalization

In Section 4.1, we have claimed that the probability distribution in (6) is

inaccessible and needs to be replaced by the empirical probability distribution

over a finite dataset Dtrain. The optimization problem solved is

min
a∈A

∑
i∈Dtrain

1

|Dtrain|
m(i, a). (10)

As pointed out in Section 2.2, when optimizing over the empirical probability

distribution, we risk having a low performance measure on the finite number

of problem instances, regardless of the true probability distribution. In this

case, the generalization error is high because of the discrepancy between

the training performances and the true expected performances (overfitting).

To control this aspect, a validation set Dvalid is introduced to compare a

finite number of candidate algorithms based on estimates of generalization

performances, and a test set Dtest is used for estimating the generalization

performances of the selected algorithm.

In the following, we look more intuitively at generalization in ML for

CO, and its consequences. To make it easier, let us recall different learning

scenarios. In the introduction, we have motivated the Montreal delivery

company example, where the problems of interest are from an unknown

probability distribution of Montreal TSPs. This is a very restricted set of

problems, but enough to deliver value for this business. Much more ambitious,

we may want our policy learned on a finite set of instances to perform well

(generalize) to any “real-world” MILP instance. This is of interest if you are in

the business of selling MILP solvers and want the branching policy to perform

well for as many of your clients as possible. In both cases, generalization

40

applies to the instances that are not known to the algorithm implementer.

These are the only instances that we care about; the one used for training

are already solved. The topic of probability distribution of instances also

appears naturally in stochastic programming/optimization, where uncertainty

about the problem is modeled through probability distributions. Scenario

generation, an essential way to solve this type of optimization programs,

require sampling from this distribution and solving the associated problem

multiple times. Nair et al. (2018) take advantage of this repetitive process to

learn an end-to-end model to solve the problem. Their model is composed

of a local search and a local improvement policy and is trained through RL.

Here, generalization means that, during scenario generation, the learned

search beats other approaches, hence delivering an overall faster stochastic

programming algorithm. In short, learning without generalization is pointless!

When the policy generalizes to other problem instances, it is no longer

a problem if training requires additional computation for solving problem

instances because, learning can be decoupled from solving as it can be done

offline. This setting is promising as it could give a policy to use out of the

box for similar instances, while keeping the learning problem to be handled

beforehand while remaining hopefully reasonable. When the model learned

is a simple mapping, as is the case in Section 3.2.2, generalization to new

instances, as previously explained, can be easily understood. However, when

learning sequential decisions, as in Section 3.2.3, there are intricate levels

of generalization. We said that we want the policy to generalize to new

instances, but the policy also needs to generalize to internal states of the

algorithm for a single instance, even if the model can be learned from complete

optimization trajectories, as formulated by (8). Indeed, complex algorithms

can have unexpected sources of randomness, even if they are designed to

41

be deterministic. For instance, a numerical approximation may perform

differently if the version of some underlying numerical library is changed or

because of asynchronous computing, such as when using Graphical Processing

Units (Nagarajan et al., 2019). Furthermore, even if we can achieve perfect

replicability, we do not want the branching policy to break if some other

parameters of the solver are set (slightly) differently. At the very least, we

want the policy to be robust to the choice of the random seed present in

many algorithms, including MILP solvers. These parameters can therefore be

modeled as random variables. Because of these nested levels of generalization,

one appealing way to think about the training data from multiple instances is

like separate tasks of a multi-task learning setting. The different tasks have

underlying aspects in common, and they may also have their own peculiar

quirks. One way to learn a single policy that generalizes within a distribution

of instances is to take advantage of these commonalities. Generalization in

RL remains a challenging topic, probably because of the fuzzy distinction

between a multi-task setting, and a large environment encompassing all of

the tasks.

Choosing how ambitious one should be in defining the characteristics of

the distribution is a hard question. For instance, if the Montreal company

expands its business to other cities, should they be considered as separate

distributions, and learn one branching policy per city, or only a single one?

Maybe one per continent? Generalization to a larger variety of instances is

challenging and requires more advanced and expensive learning algorithms.

Learning an array of ML models for different distributions asociated with

a same task means of course more models to train, maintain, and deploy.

The same goes with traditional CO algorithms, an MILP solver on its own

is not the best performing algorithm to solve TSPs, but it works across

42

all MILP problems. It is too early to provide insights about how broad

the considered distributions should be, given the limited literature in the

field. For scholars generating synthetic distributions, two intuitive axes of

investigation are “structure” and “size”. A TSP and a scheduling problem

seem to have fairly different structure, and one can think of two planar

euclidean TSPs to be way more similar. Still, two of these TSPs can have

dramatically different sizes (number of nodes). For instance, Gasse et al.

(2019) assess their methodology independently on three distributions. Each

training dataset has a specific problem structure (set covering, combinatorial

auction, and capacitated facility location), and a fixed problem size. The

problem instance generators used are state-of-art and representative of real-

world instances. Nonetheless, when they evaluate their learned algorithm,

the authors push the test distributions to larger sizes. The idea behind this is

to gauge if the model learned is able to generalize to a larger, more practical,

distribution, or only perform well on the restricted distribution of problems

of the same size. The answer is largely affirmative.

4.4. Single instance learning

An edge case that we have not much discussed yet is the single instance

learning framework. This might be the case for instance for planning the

design of a single factory. The factory would only be built once, with very

peculiar requirements, and the planners are not interested to relate this

to other problems. In this case, one can make as many runs (episodes)

and as many calls to a potential expert or simulator as one wants, but

ultimately one only cares about solving this one instance. Learning a policy

for a single instance should require a simpler ML model, which could thus

require less training examples. Nonetheless, in the single instance case, one

43

learns the policy from scratch at every new instance, actually incorporating

learning (not learned models but really the learning process itself) into the

end algorithm. This means starting the timer at the beginning of learning

and competing with other solvers to get the solution the fastest (or get the

best results within a time limit). This is an edge scenario that can only be

employed in the setting of the Section 3.2.3, where ML is embedded inside a

CO algorithm; otherwise there would be only one training example! There is

therefore no notion of generalization to other problem instances, so (6) is

not the learning problem being solved. Nonetheless, the model still needs

to generalize to unseen states of the algorithm. Indeed, if the model was

learned from all states of the algorithm that are needed to solve the problem,

then the problem is already solved at training time and learning is therefore

fruitless. This is the methodology followed by Khalil et al. (2016), introduced

in Section 3.1.1, to learn an instance-specific branching policy. The policy

is learned from strong-branching at the top of the B&B tree, but needs to

generalize to the state of the algorithm at the bottom of the tree, where it

is used. However, as for all CO algorithms, a fair comparison to another

algorithm can only be done on an independent dataset of instances, as in

(4). This is because through human trials and errors, the data used when

building the algorithm leaks into the design of the algorithm, even without

explicit learning components.

4.5. Fine tuning and meta-learning

A compromise between instance-specific learning and learning a generic

policy is what we typically have in multi-task learning: some parameters are

shared across tasks and some are specific to each task. A common way to do

that (in the transfer learning scenario) is to start from a generic policy and

44

then adapt it to the particular instance by a form of fine-tuning procedure:

training proceeds in two stages, first training the generic policy across many

instances from the same distribution, and then continuing training on the

examples associated with a given instance on which we are hoping to get

more specialized and accurate predictions.

Machine learning advances in the areas of meta-learning and transfer

learning are particularly interesting to consider here. Meta-learning considers

two levels of optimization: the inner loop trains the parameters of a model

on the training set in a way that depends on meta-parameters, which are

themselves optimized in an outer loop (i.e., obtaining a gradient for each

completed inner-loop training or update). When the outer loop’s objective

function is performance on a validation set, we end up training a system so

that it will generalize well. This can be a successful strategy for generalizing

from very few examples if we have access to many such training tasks. It is

related to transfer learning, where we want that what has been learned in one

or many tasks helps improve generalization on another. These approaches

can help rapidly adapt to a new problem, which would be useful in the

context of solving many MILP instances, seen as many related tasks.

To stay with the branching example on MILPs, one may not want the

policy to perform well out of the box on new instances (from the given distri-

bution). Instead, one may want to learn a policy offline that can be adapted

to a new instance in a few training steps, every time it is given one. Similar

topics have been explored in the context of automatic configuration tools.

Fitzgerald et al. (2014) study the automatic configuration in the lifelong

learning context (a form of sequential transfer learning). The automatic

configuration algorithm is augmented with a set of previous configurations

that are prioritized on any new problem instance. A score reflecting past

45

performances is kept along every configuration. It is designed to retain

configurations that performed well in the past, while letting new ones a

chance to be properly evaluated. The automatic configuration optimization

algorithm used by Lindauer & Hutter (2018) requires training an empirical

cost model mapping the Cartesian product of parameter configurations and

problem instances to expected algorithmic performance. Such a model is

usually learned for every cluster of problem instance that requires config-

uring. Instead, when presented with a new cluster, the authors combine

the previously learned cost models and the new one to build an ensemble

model. As done by Fitzgerald et al. (2014), the authors also build a set of

previous configurations to prioritize, using an empirical cost model to fill the

missing data. This setting, which is more general than not performing any

adaptation of the policy, has potential for better generalization. Once again,

the scale on which this is applied can vary depending on ambition. One can

transfer on very similar instances, or learn a policy that transfers to a vast

range of instances.

Meta-learning algorithms were first introduced in the 1990s (Bengio et al.,

1991; Schmidhuber, 1992; Thrun & Pratt, 1998) and have since then become

particularly popular in ML, including, but not limited to, learning a gradient

update rule (Hochreiter et al., 2001; Andrychowicz et al., 2016), few shot

learning (Ravi & Larochelle, 2017), and multi-task RL (Finn et al., 2017).

4.6. Other metrics

Other metrics from the process of learning itself are also relevant, such as

how fast the learning process is, the sample complexity (number of examples

required to properly fit the model), etc. As opposed to the metrics suggested

earlier in this section, these metrics provide us with information not about

46

final performance, but about offline computation or the number of training

examples required to obtain the desired policy. This information is, of course,

useful to calibrate the effort in integrating ML into CO algorithms.

5. Methodology

In the previous section, we have detailed the theoretical learning frame-

work of using ML in CO algorithms. Here, we provide some additional

discussion broadening some previously made claims.

5.1. Demonstration and experience

In order to learn a policy, we have highlighted two methodologies: demon-

stration, where the expected behavior is shown by an expert or oracle

(sometimes at a considerable computational cost), and experience, where the

policy is learned through trial and error with a reward signal.

In the demonstration setting, the performance of the learned policy is

bounded by the expert, which is a limitation when the expert is not optimal.

More precisely, without a reward signal, the imitation policy can only hope

to marginally outperform the expert (for example because the learner can

reduce the variance of the answers across similarly-performing experts). The

better the learning, the closer the performance of the learner to the expert’s.

This means that imitation alone should be used only if it is significantly

faster than the expert to compute the policy. Furthermore, the performance

of the learned policy may not generalize well to unseen examples and small

variations of the task and may be unstable due to accumulation of errors.

This is because in (9), the data was collected according to the expert policy

πe, but when run over multiple repeated decisions, the distribution of states

becomes that of the learned policy. Some downsides of supervised (imitation)

47

learning can be overcome with more advanced algorithms, including active

methods to query the expert as an oracle to improve behavior in uncertain

states. The part of imitation learning presented here is limited compared to

the current literature in ML.

On the contrary, with a reward, the algorithm learns to optimize for that

signal and can potentially outperform any expert, at the cost of a much

longer training time. Learning from a reward signal (experience) is also more

flexible when multiple decisions are (almost) equally good in comparison

with an expert that would favor one (arbitrary) decision. Experience is not

without flaws. In the case where policies are approximated (e.g., with a

neural network), the learning process may get stuck around poor solutions

if exploration is not sufficient or solutions which do not generalize well are

found. Furthermore, it may not always be straightforward to define a reward

signal. For instance, sparse rewards may be augmented using reward shaping

or a curriculum in order to value intermediate accomplishments (see Section

2.2).

Often, it is a good idea to start learning from demonstrations by an

expert, then refine the policy using experience and a reward signal. This is

what was done in the original AlphaGo paper (Silver et al., 2016), where

human knowledge is combined with reinforcement learning. The reader is

referred to Hussein et al. (2017) for a survey on imitation learning covering

most of the discussion in this section.

5.2. Partial observability

We mentioned in section 2.2 that sometimes the states of an MDP are not

fully observed and the Markov property does not hold, i.e., the probability

of the next observation, conditioned on the current observation and action,

48

is not equal to the probability of the next observation, conditioned on all

past observations and actions. An immediate example of this can be found

in any environment simulating physics: a single frame/image of such an

environment is not sufficient to grasp notions such as velocity and is therefore

not sufficient to properly estimate the future trajectory of objects. It turns

out that, on real applications, partial observability is closer to the norm than

to the exception, either because one does not have access to a true state of

the environment, or because it is not computationally tractable to represent

and needs to be approximated. A straightforward way to tackle the problem

is to compress all previous observations using an RNN. This can be applied

in the imitation learning setting, as well as in RL, for instance by learning a

recurrent policy (Wierstra et al., 2010).

How does this apply in the case where we want to learn a policy function

making decisions for a CO algorithm? On the one hand, one has full access

to the state of the algorithm because it is represented in exact mathematical

concepts, such as constraints, cuts, solutions, B&B tree, etc. On the other

hand, these states can be exponentially large. This is an issue in terms of

computations and generalization. Indeed, if one does want to solve problems

quickly, one needs to have a policy that is also fast to compute, especially if it

is called frequently as is the case for, say, branching decisions. Furthermore,

considering too high-dimensional states is also a statistical problem for

learning, as it may dramatically increase the required number of samples,

decrease the learning speed, or fail altogether. Hence, it is necessary to keep

these aspects in mind while experimenting with different representations of

the data.

49

5.3. Exactness and approximation

In the different examples we have surveyed, ML is used in both exact

and heuristic frameworks, for example Baltean-Lugojan et al. (2018) and

Larsen et al. (2018), respectively. Getting the output of an ML model to

respect advanced types of constraints is a hard task. In order to build exact

algorithms with ML components, it is necessary to apply the ML where

all possible decisions are valid. Using only ML as surveyed in Section 3.2.1

cannot give any optimality guarantee, and only weak feasibility guarantees

(see Section 6.1). However, applying ML to select or parametrize a CO

algorithm as in Section 3.2.2 will keep exactness if all possible choices that

ML discriminate lead to complete algorithms. Finally, in the case of repeated

interactions between ML and CO surveyed in Section 3.2.3, all possible

decisions must be valid. For instance, in the case of MILPs, this includes

branching among fractional variables of the LP relaxation, selecting the

node to explore among open branching nodes (He et al., 2014), deciding on

the frequency to run heuristics on the B&B nodes (Khalil et al., 2017b),

selecting cutting planes among valid inequalities (Baltean-Lugojan et al.,

2018), removing previous cutting planes if they are not original constraints

or branching decision, etc. A counter-example can be found in the work

of Hottung et al. (2017), presented in Section 3.1.1. In their branch-an-

bound framework, bounding is performed by an approximate ML model that

can overestimate lower bounds, resulting in invalid pruning. The resulting

algorithm is therefore not an exact one.

6. Challenges

In this section, we are reviewing some of the algorithmic concepts previ-

ously introduced by taking the viewpoint of their associated challenges.

50

6.1. Feasibility

In Section 3.2.1, we pointed out how ML can be used to directly output

solutions to optimization problems. Rather than learning the solution, it

would be more precise to say that the algorithm is learning a heuristic. As

already repeatedly noted, the learned algorithm does not give any guarantee

in terms of optimality, but it is even more critical that feasibility is not

guaranteed either. Indeed, we do not know how far the output of the

heuristic is from the optimal solution, or if it even respects the constraints

of the problem. This can be the case for every heuristic and the issue can

be mitigated by using the heuristic within an exact optimization algorithm

(such as branch and bound).

Finding feasible solutions is not an easy problem (theoretically NP-hard

for MILPs), but it is even more challenging in ML, especially by using neural

networks. Indeed, trained with gradient descent, neural architectures must

be designed carefully in order not to break differentiability. For instance,

both pointer networks (Vinyals et al., 2015) and the Sinkhorn layer (Emami

& Ranka, 2018) are complex architectures used to make a network output

a permutation, a constraint easy to satisfy when writing a classical CO

heuristic.

6.2. Modelling

In ML, in general, and in deep learning, in particular, we know some

good prior for some given problems. For instance, we know that a CNN is an

architecture that will learn and generalize more easily than others on image

data. The problems studied in CO are different from the ones currently being

addressed in ML, where most successful applications target natural signals.

The architectures used to learn good policies in combinatorial optimization

51

might be very different from what is currently used with deep learning. This

might also be true in more subtle or unexpected ways: it is conceivable

that, in turn, the optimization components of deep learning algorithms (say,

modifications to SGD) could be different when deep learning is applied to

the CO context.

Current deep learning already provides many techniques and architectures

for tackling problems of interest in CO. As pointed out in section 2.2,

techniques such as parameter sharing made it possible for neural networks to

process sequences of variable length with RNNs or, more recently, to process

graph structured data through GNNs. Processing graph data is of uttermost

importance in CO because many problems are formulated (represented)

on graphs. For a very general example, Selsam et al. (2018) represent a

satisfiability problem using a bipartite graph on variables and clauses. This

can generalize to MILPs, where the constraint matrix can be represented as

the adjacency matrix of a bipartite graph on variables and constraints, as

done in Gasse et al. (2019).

6.3. Scaling

Scaling to larger problems can be a challenge. If a model trained on

instances up to some size, say TSPs up to size fifty nodes, is evaluated

on larger instances, say TSPs of size a hundred, five hundred nodes, etc,

the challenge exists in terms of generalization, as mentioned in Section 4.3.

Indeed, all of the papers tackling TSP through ML and attempting to

solve larger instances see degrading performance as size increases much

beyond the sizes seen during training (Vinyals et al., 2015; Bello et al.,

2017; Khalil et al., 2017a; Kool & Welling, 2018). To tackle this issue,

one may try to learn on larger instances, but this may turn out to be a

52

computational and generalization issue. Except for very simple ML models

and strong assumptions about the data distribution, it is impossible to know

the computational complexity and the sample complexity, i.e. the number

of observations that learning requires, because one is unaware of the exact

problem one is trying to solve, i.e., the true data generating distribution.

6.4. Data generation

Collecting data (for example instances of optimization problems) is a

subtle task. Larsen et al. (2018) claim that “sampling from historical data

is appropriate when attempting to mimic a behavior reflected in such data”.

In other words, given an external process on which we observe instances of

an optimization problem, we can collect data to train some policy needed

for optimization, and expect the policy to generalize on future instances of

this application. A practical example would be a business that frequently

encounters optimization problems related to their activities, such as the

Montreal delivery company example used in the introduction.

In other cases, i.e., when we are not targeting a specific application for

which we would have historical data, how can we proactively train a policy for

problems that we do not yet know of? As partially discussed in Section 4.3,

we first need to define to which family of instances we want to generalize

over. For instance, we might decide to learn a cutting plane selection

policy for Euclidian TSP problems. Even so, it remains a complex effort to

generate problems that capture the essence of real applications. Moreover,

CO problems are high dimensional, highly structured, and troublesome to

visualize. The sole exercise of generating graphs is already a complicated

one! The topic has nonetheless received some interest. Smith-Miles & Bowly

(2015) claim that the confidence we can put in an algorithm “depends on

53

how carefully we select test instances”, but note however that too often, a

new algorithm is claimed “to be superior by showing that it outperforms

previous approaches on a set of well-studied instances”. The authors propose

a problem instance generating method that consists of: defining an instance

feature space, visualizing it in two dimensions (using dimensionality reduction

techniques such as principal component analysis), and using an evolutionary

algorithm to drive the instance generation toward a pre-defined sub-space.

The authors argue that the method is successful if the easy and hard instances

can be easily separated in the reduced instance space. The methodology is

then fruitfully applied to graph-based problems, but would require redefining

evolution primitives in order to be applied to other type of problems. On

the contrary, Malitsky et al. (2016) propose a method to generate problem

instances from the same probability distribution, in that case, the one of

“industrial” boolean satisfiability problem instances. The authors use a large

neighborhood search, using destruction and reparation primitives, to search

for new instances. Some instance features are computed to classify whether

the new instances fall under the same cluster as the target one.

Deciding how to represent the data is also not an easy task, but can

have a dramatic impact on learning. For instance, how does one properly

represent a B&B node, or even the whole B&B tree? These representations

need to be expressive enough for learning, but at the same time, concise

enough to be used frequently without excessive computations.

7. Conclusions

We have surveyed and highlighted how machine learning can be used to

build combinatorial optimization algorithms that are partially learned. We

have suggested that imitation learning alone can be valuable if the policy

54

learned is significantly faster to compute than the original one provided by an

expert, in this case a combinatorial optimization algorithm. On the contrary,

models trained with a reward signal have the potential to outperform current

policies, given enough training and a supervised initialization. Training

a policy that generalizes to unseen problems is a challenge, this is why

we believe learning should occur on a distribution small enough that the

policy could fully exploit the structure of the problem and give better

results. We believe end-to-end machine learning approaches to combinatorial

optimization can be improved by using machine learning in combination with

current combinatorial optimization algorithms to benefit from the theoretical

guarantees and state-of-the-art algorithms already available.

Other than performance incentives, there is also interest in using machine

learning as a modelling tool for discrete optimization, as done by Lombardi

& Milano (2018), or to extract intuition and knowledge about algorithms as

mentioned in Bonami et al. (2018); Khalil et al. (2017a).

Although most of the approaches we discussed in this paper are still

at an exploratory level of deployment, at least in terms of their use in

general-purpose (commercial) solvers, we strongly believe that this is just

the beginning of a new era for combinatorial optimization algorithms.

Acknowledgments

The authors are grateful to Emma Frejinger, Simon Lacoste-Julien, Ja-

son Jo, Laurent Charlin, Matteo Fischetti, Rémi Leblond, Michela Milano,

Sébastien Lachapelle, Eric Larsen, Pierre Bonami, Martina Fischetti, Elias

Khalil, Bistra Dilkina, Sebastian Pokutta, Marco Lübbecke, Andrea Tramon-

tani, Dimitris Bertsimas and the entire CERC team for endless discussions

on the subject and for reading and commenting a preliminary version of the

55

paper.

References

Ahuja, R. K., & Orlin, J. B. (2001). Inverse Optimization. Operations

Research, 49 , 771–783. doi:10.1287/opre.49.5.771.10607.

Andrychowicz, M., Denil, M., Gómez, S., Hoffman, M. W., Pfau, D., Schaul,

T., Shillingford, B., & de Freitas, N. (2016). Learning to learn by gradient

descent by gradient descent. In D. D. Lee, M. Sugiyama, U. V. Luxburg,

I. Guyon, & R. Garnett (Eds.), Advances in Neural Information Processing

Systems 29 (pp. 3981–3989). Curran Associates, Inc.

Ansótegui, C., Heymann, B., Pon, J., Sellmann, M., & Tierney, K. (2019).

Hyper-Reactive Tabu Search for MaxSAT. In R. Battiti, M. Brunato,

I. Kotsireas, & P. M. Pardalos (Eds.), Learning and Intelligent Optimization

Lecture Notes in Computer Science (pp. 309–325). Springer International

Publishing.

Ansótegui, C., Pon, J., Sellmann, M., & Tierney, K. (2017). Reactive

Dialectic Search Portfolios for MaxSAT. In Thirty-First AAAI Conference

on Artificial Intelligence. URL: https://www.aaai.org/ocs/index.php/

AAAI/AAAI17/paper/view/14872.

Applegate, D., Bixby, R., Chvátal, V., & Cook, W. (2007). The traveling

salesman problem. A computational study . Princeton University Press.

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by

jointly learning to align and translate. In ICLR’2015, arXiv:1409.0473 .

56

http://dx.doi.org/10.1287/opre.49.5.771.10607
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14872
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14872

Baltean-Lugojan, R., Misener, R., Bonami, P., & Tramontani, A. (2018).

Strong Sparse Cut Selection via Trained Neural Nets for Quadratic Semidef-

inite Outer-Approximations. Technical Report Imperial College, London.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., & Bengio, S. (2017). Neural

Combinatorial Optimization with Reinforcement Learning. In International

Conference on Learning Representations. URL: https://openreview.

net/forum?id=Bk9mxlSFx.

Bengio, Y., Bengio, S., Cloutier, J., & Gecsei, J. (1991). Learning a synaptic

learning rule. In IJCNN (pp. II–A969).

Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M., Malit-

sky, Y., Fréchette, A., Hoos, H., Hutter, F., Leyton-Brown,

K., Tierney, K., & Vanschoren, J. (2016). ASlib: A bench-

mark library for algorithm selection. Artificial Intelligence, 237 ,

41–58. URL: http://www.sciencedirect.com/science/article/pii/

S0004370216300388. doi:10.1016/j.artint.2016.04.003.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning . springer.

Bonami, P., Lodi, A., & Zarpellon, G. (2018). Learning a Classification

of Mixed-Integer Quadratic Programming Problems. In Integration of

Constraint Programming, Artificial Intelligence, and Operations Research

Lecture Notes in Computer Science (pp. 595–604). Springer, Cham. doi:10.

1007/978-3-319-93031-2_43.

Chan, T. C. Y., Craig, T., Lee, T., & Sharpe, M. B. (2014). Generalized

Inverse Multiobjective Optimization with Application to Cancer Therapy.

Operations Research, 62 , 680–695. doi:10.1287/opre.2014.1267.

57

https://openreview.net/forum?id=Bk9mxlSFx
https://openreview.net/forum?id=Bk9mxlSFx
http://www.sciencedirect.com/science/article/pii/S0004370216300388
http://www.sciencedirect.com/science/article/pii/S0004370216300388
http://dx.doi.org/10.1016/j.artint.2016.04.003
http://dx.doi.org/10.1007/978-3-319-93031-2_43
http://dx.doi.org/10.1007/978-3-319-93031-2_43
http://dx.doi.org/10.1287/opre.2014.1267

Conforti, M., Conrnuéjols, G., & Zambelli, G. (2014). Integer Programming .

Springer.

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., &

Bharath, A. A. (2018). Generative Adversarial Networks: An Overview.

IEEE Signal Processing Magazine, 35 , 53–65. doi:10.1109/MSP.2017.

2765202.

Dai, H., Dai, B., & Song, L. (2016). Discriminative Embeddings of Latent

Variable Models for Structured Data. In M. F. Balcan, & K. Q. Weinberger

(Eds.), Proceedings of The 33rd International Conference on Machine

Learning (pp. 2702–2711). New York, New York, USA: PMLR volume 48

of Proceedings of Machine Learning Research.

Dey, S., & Molinaro, M. (2018). Theoretical challenges towards cutting-plane

selection. Mathematical Programming , 170 , 237–266.

Emami, P., & Ranka, S. (2018). Learning Permutations with Sinkhorn Policy

Gradient. arXiv:1805.07010 [cs, stat] , . arXiv:1805.07010.

Finn, C., Abbeel, P., & Levine, S. (2017). Model-Agnostic Meta-Learning

for Fast Adaptation of Deep Networks. In D. Precup, & Y. W. Teh (Eds.),

Proceedings of the 34th International Conference on Machine Learning (pp.

1126–1135). International Convention Centre, Sydney, Australia: PMLR

volume 70 of Proceedings of Machine Learning Research.

Fischetti, M., & Lodi, A. (2011). Heuristics in mixed integer program-

ming. In J. J. Cochran, L. A. C. Jr., P. Keskinocak, J. P. Kharoufeh,

& J. C. Smith (Eds.), Wiley Encyclopedia of Operations Research

and Management Science (pp. 2199–2204). Wiley Online Library vol-

58

http://dx.doi.org/10.1109/MSP.2017.2765202
http://dx.doi.org/10.1109/MSP.2017.2765202
http://arxiv.org/abs/1805.07010

ume 3. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/

9780470400531.eorms0376. doi:10.1002/9780470400531.eorms0376.

Fitzgerald, T., Malitsky, Y., O’Sullivan, B., & Tierney, K. (2014). ReACT:

Real-Time Algorithm Configuration through Tournaments. In Seventh

Annual Symposium on Combinatorial Search. URL: https://www.aaai.

org/ocs/index.php/SOCS/SOCS14/paper/view/8910.

Fortun, M., & Schweber, S. S. (1993). Scientists and the legacy

of world war ii: The case of operations research (or). So-

cial Studies of Science, 23 , 595–642. URL: https://doi.org/

10.1177/030631293023004001. doi:10.1177/030631293023004001.

arXiv:https://doi.org/10.1177/030631293023004001.

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., & Lodi, A. (2019). Exact

combinatorial optimization with graph convolutional neural networks.

arXiv preprint arXiv:1906.01629 , .

Gendreau, M., & Potvin, J.-Y. (Eds.) (2010). Handbook of metaheuris-

tics volume 2. Springer. URL: https://www.springer.com/gp/book/

9783319910857. doi:10.1007/978-3-319-91086-4.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E.

(2017). Neural Message Passing for Quantum Chemistry. In D. Precup,

& Y. W. Teh (Eds.), Proceedings of the 34th International Conference

on Machine Learning (pp. 1263–1272). International Convention Centre,

Sydney, Australia: PMLR volume 70 of Proceedings of Machine Learning

Research.

59

https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470400531.eorms0376
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470400531.eorms0376
http://dx.doi.org/10.1002/9780470400531.eorms0376
https://www.aaai.org/ocs/index.php/SOCS/SOCS14/paper/view/8910
https://www.aaai.org/ocs/index.php/SOCS/SOCS14/paper/view/8910
https://doi.org/10.1177/030631293023004001
https://doi.org/10.1177/030631293023004001
http://dx.doi.org/10.1177/030631293023004001
http://arxiv.org/abs/https://doi.org/10.1177/030631293023004001
https://www.springer.com/gp/book/9783319910857
https://www.springer.com/gp/book/9783319910857
http://dx.doi.org/10.1007/978-3-319-91086-4

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning . MIT

press.

He, H., Daume III, H., & Eisner, J. M. (2014). Learning to Search in Branch

and Bound Algorithms. In Z. Ghahramani, M. Welling, C. Cortes, N. D.

Lawrence, & K. Q. Weinberger (Eds.), Advances in Neural Information

Processing Systems 27 (pp. 3293–3301). Curran Associates, Inc.

Hochreiter, S., Younger, A. S., & Conwell, P. R. (2001). Learning to learn

using gradient descent. In G. Dorffner, H. Bischof, & K. Hornik (Eds.),

Artificial Neural Networks — ICANN 2001 (pp. 87–94). Berlin, Heidelberg:

Springer Berlin Heidelberg.

Hoos, H. H. (2012). Automated Algorithm Configuration and Parame-

ter Tuning. In Y. Hamadi, E. Monfroy, & F. Saubion (Eds.), Au-

tonomous Search (pp. 37–71). Berlin, Heidelberg: Springer Berlin

Heidelberg. URL: https://doi.org/10.1007/978-3-642-21434-9_3.

doi:10.1007/978-3-642-21434-9_3.

Hottung, A., Tanaka, S., & Tierney, K. (2017). Deep Learning As-

sisted Heuristic Tree Search for the Container Pre-marshalling Prob-

lem. arXiv:1709.09972 [cs] , . URL: http://arxiv.org/abs/1709.09972.

ArXiv: 1709.09972.

Hussein, A., Gaber, M. M., Elyan, E., & Jayne, C. (2017). Imitation Learning:

A Survey of Learning Methods. ACM Computing Surveys , 50 , 21:1–21:35.

doi:10.1145/3054912.

Karapetyan, D., Punnen, A. P., & Parkes, A. J. (2017). Markov

Chain methods for the Bipartite Boolean Quadratic Programming

60

https://doi.org/10.1007/978-3-642-21434-9_3
http://dx.doi.org/10.1007/978-3-642-21434-9_3
http://arxiv.org/abs/1709.09972
http://dx.doi.org/10.1145/3054912

Problem. European Journal of Operational Research, 260 , 494–

506. URL: http://www.sciencedirect.com/science/article/pii/

S0377221717300061. doi:10.1016/j.ejor.2017.01.001.

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., & Song, L. (2017a). Learning

Combinatorial Optimization Algorithms over Graphs. In I. Guyon, U. V.

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett

(Eds.), Advances in Neural Information Processing Systems 30 (pp. 6348–

6358). Curran Associates, Inc.

Khalil, E. B., Bodic, P. L., Song, L., Nemhauser, G., & Dilkina, B. (2016).

Learning to Branch in Mixed Integer Programming. In Proceedings of

the Thirtieth AAAI Conference on Artificial Intelligence AAAI’16 (pp.

724–731). Phoenix, Arizona: AAAI Press.

Khalil, E. B., Dilkina, B., Nemhauser, G. L., Ahmed, S., & Shao, Y. (2017b).

Learning to Run Heuristics in Tree Search. In Proceedings of the Twenty-

Sixth International Joint Conference on Artificial Intelligence, IJCAI-17

(pp. 659–666).

Kool, W. W. M., & Welling, M. (2018). Attention Solves Your TSP, Approx-

imately. arXiv:1803.08475 [cs, stat] , . arXiv:1803.08475.

Kruber, M., Lübbecke, M. E., & Parmentier, A. (2017). Learning When

to Use a Decomposition. In Integration of AI and OR Techniques in

Constraint Programming Lecture Notes in Computer Science (pp. 202–

210). Springer, Cham. doi:10.1007/978-3-319-59776-8_16.

Larsen, E., Lachapelle, S., Bengio, Y., Frejinger, E., Lacoste-Julien, S., &

Lodi, A. (2018). Predicting Solution Summaries to Integer Linear Programs

61

http://www.sciencedirect.com/science/article/pii/S0377221717300061
http://www.sciencedirect.com/science/article/pii/S0377221717300061
http://dx.doi.org/10.1016/j.ejor.2017.01.001
http://arxiv.org/abs/1803.08475
http://dx.doi.org/10.1007/978-3-319-59776-8_16

under Imperfect Information with Machine Learning. arXiv:1807.11876

[cs, stat] , . arXiv:1807.11876.

Larson, R. C., & Odoni, A. R. (1981). Urban operations research. Monograph.

Li, K., & Malik, J. (2017). Learning to Optimize Neural Nets.

arXiv:1703.00441 [cs, math, stat] , . arXiv:1703.00441.

Liberto, G. D., Kadioglu, S., Leo, K., & Malitsky, Y. (2016). DASH: Dynamic

Approach for Switching Heuristics. European Journal of Operational Re-

search, 248 , 943–953. URL: http://www.sciencedirect.com/science/

article/pii/S0377221715007559. doi:10.1016/j.ejor.2015.08.018.

Lindauer, M., & Hutter, F. (2018). Warmstarting of Model-Based Algo-

rithm Configuration. In Thirty-Second AAAI Conference on Artificial

Intelligence.

Lodi, A. (2009). MIP computation. In M. Jünger, T. Liebling, D. Naddef,

G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, & L. Wolsey (Eds.),

50 Years of Integer Programming 1958-2008 (pp. 619–645). Springer-

Verlag.

Lodi, A., & Zarpellon, G. (2017). On learning and branching: A survey.

TOP , 25 , 207–236. doi:10.1007/s11750-017-0451-6.

Lombardi, M., & Milano, M. (2018). Boosting Combinatorial Problem

Modeling with Machine Learning. In Proceedings of the Twenty-Seventh

International Joint Conference on Artificial Intelligence, IJCAI-18 (pp.

5472–5478). International Joint Conferences on Artificial Intelligence

Organization. doi:10.24963/ijcai.2018/772.

62

http://arxiv.org/abs/1807.11876
http://arxiv.org/abs/1703.00441
http://www.sciencedirect.com/science/article/pii/S0377221715007559
http://www.sciencedirect.com/science/article/pii/S0377221715007559
http://dx.doi.org/10.1016/j.ejor.2015.08.018
http://dx.doi.org/10.1007/s11750-017-0451-6
http://dx.doi.org/10.24963/ijcai.2018/772

Mahmood, R., Babier, A., McNiven, A., Diamant, A., & Chan, T. C. Y.

(2018). Automated Treatment Planning in Radiation Therapy using

Generative Adversarial Networks. In Proceedings of Machine Learning for

Health Care. volume 85 of Proceedings of Machine Learning Research.

Malitsky, Y., Merschformann, M., O’Sullivan, B., & Tierney, K. (2016).

Structure-Preserving Instance Generation. In P. Festa, M. Sellmann, &

J. Vanschoren (Eds.), Learning and Intelligent Optimization Lecture Notes

in Computer Science (pp. 123–140). Springer International Publishing.

Marcos Alvarez, A., Louveaux, Q., & Wehenkel, L. (2014). A Supervised

Machine Learning Approach to Variable Branching in Branch-and-Bound .

Technical Report Université de Liège.

Marcos Alvarez, A., Louveaux, Q., & Wehenkel, L. (2017). A Machine

Learning-Based Approximation of Strong Branching. INFORMS Journal

on Computing , 29 , 185–195. doi:10.1287/ijoc.2016.0723.

Marcos Alvarez, A., Wehenkel, L., & Louveaux, Q. (2016). Online Learning

for Strong Branching Approximation in Branch-and-Bound . Technical

Report Université de Liège.

Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., & Stützle, T. (2014).

Grammar-based generation of stochastic local search heuristics through au-

tomatic algorithm configuration tools. Computers & Operations Research,

51 , 190–199. URL: http://www.sciencedirect.com/science/article/

pii/S0305054814001555. doi:10.1016/j.cor.2014.05.020.

McCormick, G. P. (1976). Computability of global solutions to factorable

63

http://dx.doi.org/10.1287/ijoc.2016.0723
http://www.sciencedirect.com/science/article/pii/S0305054814001555
http://www.sciencedirect.com/science/article/pii/S0305054814001555
http://dx.doi.org/10.1016/j.cor.2014.05.020

nonconvex programs: Part I — Convex underestimating problems. Mathe-

matical Programming , 10 , 147–175. doi:10.1007/BF01580665.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT

press.

Nagarajan, P., Warnell, G., & Stone, P. (2019). Deterministic implementa-

tions for reproducibility in deep reinforcement learning. In AAAI 2019

Workshop on Reproducible AI .

Nair, V., Dvijotham, D., Dunning, I., & Vinyals, O. (2018). Learning fast

optimizers for contextual stochastic integer programs. In Conference on

Uncertainty in Artifical Intelligence (pp. 591–600). URL: http://auai.

org/uai2018/proceedings/papers/217.pdf.

Nowak, A., Villar, S., Bandeira, A. S., & Bruna, J. (2017). A Note on Learn-

ing Algorithms for Quadratic Assignment with Graph Neural Networks.

arXiv:1706.07450 [cs, stat] , . arXiv:1706.07450.

Ravi, S., & Larochelle, H. (2017). Optimization as a model for few-shot

learning. In International Conference on Learning Representations.

Schmidhuber, J. (1992). Learning to control fast-weight memories: An alterna-

tive to dynamic recurrent networks. Neural Computation, 4 , 131–139. URL:

https://doi.org/10.1162/neco.1992.4.1.131. doi:10.1162/neco.

1992.4.1.131. arXiv:https://doi.org/10.1162/neco.1992.4.1.131.

Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., & Dill, D. L. (2018).

Learning a SAT Solver from Single-Bit Supervision. arXiv:1802.03685 [cs] ,

. arXiv:1802.03685.

64

http://dx.doi.org/10.1007/BF01580665
http://auai.org/uai2018/proceedings/papers/217.pdf
http://auai.org/uai2018/proceedings/papers/217.pdf
http://arxiv.org/abs/1706.07450
https://doi.org/10.1162/neco.1992.4.1.131
http://dx.doi.org/10.1162/neco.1992.4.1.131
http://dx.doi.org/10.1162/neco.1992.4.1.131
http://arxiv.org/abs/https://doi.org/10.1162/neco.1992.4.1.131
http://arxiv.org/abs/1802.03685

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche,

G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M.,

Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I.,

Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D.

(2016). Mastering the game of Go with deep neural networks and tree

search. Nature, 529 , 484–489. doi:10.1038/nature16961.

Smith, K. A. (1999). Neural Networks for Combinatorial Optimization:

A Review of More Than a Decade of Research. INFORMS Journal on

Computing , 11 , 15–34. doi:10.1287/ijoc.11.1.15.

Smith-Miles, K., & Bowly, S. (2015). Generating new test instances

by evolving in instance space. Computers & Operations Research,

63 , 102–113. URL: http://www.sciencedirect.com/science/article/

pii/S0305054815001136. doi:10.1016/j.cor.2015.04.022.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduc-

tion. (2nd ed.). MIT press Cambridge. URL: http://incompleteideas.

net/book/the-book-2nd.html.

Thrun, S., & Pratt, L. Y. (Eds.) (1998). Learning to Learn. Kluwer Academic.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser, L., & Polosukhin, I. (2017). Attention is All you Need. In I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, &

R. Garnett (Eds.), Advances in Neural Information Processing Systems

30 (pp. 5998–6008). Curran Associates, Inc.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Bengio, Y.

65

http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1287/ijoc.11.1.15
http://www.sciencedirect.com/science/article/pii/S0305054815001136
http://www.sciencedirect.com/science/article/pii/S0305054815001136
http://dx.doi.org/10.1016/j.cor.2015.04.022
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html

(2018). Graph attention networks. In International Conference on Learning

Representations. URL: https://openreview.net/forum?id=rJXMpikCZ.

Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer Networks. In

C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.),

Advances in Neural Information Processing Systems 28 (pp. 2692–2700).

Curran Associates, Inc.

Wichrowska, O., Maheswaranathan, N., Hoffman, M. W., Colmenarejo, S. G.,

Denil, M., de Freitas, N., & Sohl-Dickstein, J. (2017). Learned Optimizers

that Scale and Generalize. In D. Precup, & Y. W. Teh (Eds.), Proceedings

of the 34th International Conference on Machine Learning (pp. 3751–3760).

International Convention Centre, Sydney, Australia: PMLR volume 70 of

Proceedings of Machine Learning Research.

Wierstra, D., Förster, A., Peters, J., & Schmidhuber, J. (2010). Recurrent

policy gradients. Logic Journal of the IGPL, 18 , 620–634. URL: http:

//dx.doi.org/10.1093/jigpal/jzp049. doi:10.1093/jigpal/jzp049.

Wolsey, L. A. (1998). Integer Programming . Wiley.

Özcan, E., Misir, M., Ochoa, G., & Burke, E. K. (2012). A Reinforcement

Learning: Great-Deluge Hyper-Heuristic for Examination Timetabling.

Modeling, Analysis, and Applications in Metaheuristic Computing:

Advancements and Trends, (pp. 34–55). URL: https://www.igi-global.

com/chapter/reinforcement-learning-great-deluge-hyper/63803.

doi:10.4018/978-1-4666-0270-0.ch003.

66

https://openreview.net/forum?id=rJXMpikCZ
http://dx.doi.org/10.1093/jigpal/jzp049
http://dx.doi.org/10.1093/jigpal/jzp049
http://dx.doi.org/10.1093/jigpal/jzp049
https://www.igi-global.com/chapter/reinforcement-learning-great-deluge-hyper/63803
https://www.igi-global.com/chapter/reinforcement-learning-great-deluge-hyper/63803
http://dx.doi.org/10.4018/978-1-4666-0270-0.ch003

	Introduction
	Motivation
	Setting
	Outline

	Preliminaries
	Combinatorial Optimization
	Machine Learning

	Recent approaches
	Learning methods
	Demonstration
	Experience

	Algorithmic structure
	End to end learning
	Learning to configure algorithms
	Machine learning alongside optimization algorithms

	Learning objective
	Multi-instance formulation
	Surrogate objectives
	On generalization
	Single instance learning
	Fine tuning and meta-learning
	Other metrics

	Methodology
	Demonstration and experience
	Partial observability
	Exactness and approximation

	Challenges
	Feasibility
	Modelling
	Scaling
	Data generation

	Conclusions

