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4

SUMMARY5

Volcano deformation monitoring is fundamental to detect pressurizations of magma bod-6

ies and forecasting any ensuing eruptions. Analytical and quasi-analytical solutions for7

pressurized cavities are routinely used to constrain volcano deformation sources through8

inversion of surface displacement data. Due to their computational efficiency, such solu-9

tions enable a thorough exploration of the parameter space and thereby provide insight10

into the physics of magma-rock interaction. Developing more general deformation models11

can help us better characterize subsurface magma storage. We develop quasi-analytical12

solutions for the surface deformation field and gravity changes due to the pressurization13

of a finite (triaxial) ellipsoidal cavity in a half-space. The solution is in the form of a non-14

uniform distribution of triaxial point sources within the cavity. The point sources have the15

same aspect ratio, determined by the cavity shape, while their strengths and spacing are16

determined in an adaptive manner, such that the net point-source potency per unit volume17

is uniform. We validate and compare our solution with analytical and numerical solutions.18

We provide computationally-efficient MATLAB codes tailored for source inversions. This19

solution opens the possibility of exploring the geometry of shallow magma chambers for20

potential deviations from axial symmetry.21
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2 Mehdi Nikkhoo, Eleonora Rivalta

Key words: Geomechanics; Kinematics of crustal and mantle deformation; Physics of22

magma and magma bodies; Volcano monitoring.23

1 INTRODUCTION24

Volcano deformation is an indicator of ongoing fluid transport or pressure build-up within magma25

reservoirs and is often a reliable precursor to eruptions (Dvorak & Dzurisin 1997; Dzurisin 2006).26

Pressurization of magma chambers may be caused by replenishment with new magma from below,27

or degassing of the magma residing in the chamber (Edmonds & Woods 2018; Degruyter et al. 2019;28

Trasatti et al. 2019; Hill et al. 2020; Wicks et al. 2020; Caricchi et al. 2021). Pressure may also build29

up within shallow magma bodies, such as lava domes (Salzer et al. 2014; Wang & Aoki 2019), or30

hydrothermal reservoirs due to rapid ascent of volatiles or magma-water interaction (Kobayashi et al.31

2018; Ueda et al. 2018; Narita et al. 2020; Yunjun et al. 2021). Magma bodies may also expand, or con-32

tract, due to thermal effects (Furuya 2004, 2005; Wang & Aoki 2019). Critically pressurized magma33

chambers may rupture leading to injection of a magmatic dike and ensuing chamber depressuriza-34

tion (Narita et al. 2019). These processes may generate measurable surface deformations (Dvorak &35

Dzurisin 1997; Dzurisin 2000; Lu & Dzurisin 2014; Biggs & Pritchard 2017), which can be evaluated36

through mathematical models to infer the source parameters: the shape, location, spatial orientation37

and volume change (Dvorak & Dzurisin 1997; Dzurisin 2003; Lisowski 2007; Segall 2010). Such38

analyses have immensely contributed to our understanding of volcanic processes (Dvorak & Dzurisin39

1997; Dzurisin 2006; Segall 2010). This has motivated both advancing the technologies for acquiring40

deformation data with higher spatio-temporal resolutions (Pinel et al. 2014; Poland & Zebker 2022),41

and developing new analytical and numerical deformation source models (Amoruso & Crescentini42

2011; Segall 2016; Nikkhoo et al. 2017).43

Analytical or quasi-analytical source models, which are fast to compute and need no expert set-44

up, are key assets for these inversions during volcanic crises (Beauducel et al. 2020a,b) or for in-depth45

studies of multiple eruptive cycles over extended time periods (Amoruso et al. 2014; Lisowski et al.46

2021; Bruno et al. 2022). This has motivated the development of several new analytical source inver-47

sion software packages (Battaglia et al. 2013; Bagnardi & Hooper 2018; Cannavó 2019; Beauducel48

et al. 2020a; Heimann et al. 2019; Vasyura-Bathke et al. 2019, 2020; Trasatti 2022). Moreover, ana-49

lytical solutions can be used as components of both data assimilation frameworks (Bato et al. 2017;50

Zhan et al. 2017) and physical volcano deformation models describing the evolution of the plumb-51

ing systems (Anderson & Segall 2011, 2013; Anderson & Poland 2016). New generalized analytical52

solutions would offer more flexibility for all these applications.53
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The finite ellipsoidal cavity model 3

The surface displacements caused by deep volumetric deformation sources can be adequately54

modelled through point-source models such as the point spherical (Mogi 1958), point spheroidal55

(Davis et al. 1974) and point ellipsoidal (Davis 1986) models. A triaxial point-source model that56

includes the mentioned solutions as special cases is the point Compound Dislocation Model (point57

CDM; Nikkhoo et al. 2017).58

McTigue (1987) and Yang et al. (1988) showed that point sources (Mogi (1958) and Davis (1986)59

models, respectively) fail to properly simulate the near-field surface displacements associated with60

shallow pressurized cavities if the depth to semi-major axis ratio of the cavity is smaller than 2. In the61

case of pressurized penny-shaped cracks, a point tensile dislocation can adequately simulate the near-62

field surface displacements if the depth to semi-major axis ratio is greater than 5 (Sun 1969; Fialko63

et al. 2001). This is because the near-field displacements are affected by the finite dimension of the64

source. For such cases, finite source models are required to constrain all source parameters reliably65

(Lisowski 2007; Segall 2010). The most commonly-used finite source models of uniform pressure are66

the finite spherical (McTigue 1987), finite spheroidal (Yang et al. 1988) and penny-shaped crack (Sun67

1969; Fialko et al. 2001) models. As these models are all axisymmetric, they cannot properly represent68

the deformation field caused by triaxial sources.69

After Eshelby (1957), a solution for a uniformly pressurized finite ellipsoidal cavity in the full70

space can be obtained by appropriate triaxial point sources uniformly distributed throughout the cavity71

(Yang et al. 1988; Segall 2010). Davis et al. (1974) and Davis (1986) incorporated the Mindlin (1936)72

half-space Green’s functions instead of the full-space Green’s functions into the Eshelby’s solution,73

a procedure that we call below the “Davis approximation”, to derive their approximate half-space74

point-source solution. Similarly, Yang et al. (1988) used the Davis approximation to develop a closed-75

form, approximate solution for finite prolate spheroids. Cervelli (2013) extended the Yang et al. (1988)76

solution to a model for both prolate and oblate spheroids. Yang et al. (1988) also showed for vertical77

prolate spheroids that, as a rule of thumb, the solution is fairly accurate if the depth to the top of the78

spheroid is larger than the radius of curvature at the spheroid top.79

Amoruso & Crescentini (2011) proposed a multipole expansion up to quadrupole terms of the80

Eshelby (1957) solution as a finite-source model for pressurized triaxial ellipsoids—the closed-form81

analytical expression of this model were provided later by Amoruso & Crescentini (2013). Moreover,82

Amoruso & Crescentini (2011) developed a configuration composed of 7 triaxial point sources (Davis83

1986) of appropriate strength and location (one source at the center and six sources located symmet-84

rically on the axes of the ellipsoidal cavity). They showed that the 7-point source solution is in good85

agreement with the closed-form analytical version of their model. Amoruso & Crescentini (2011) also86

compared the 7-point-source model with the Davis (1986), McTigue (1987), Yang et al. (1988) and87
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4 Mehdi Nikkhoo, Eleonora Rivalta

Fialko et al. (2001) models. However, the comparisons did not explore a wide range of source param-88

eters, especially for shallow sources. To our knowledge, the Amoruso & Crescentini (2013) analytical89

solution has been compared only with the 7-point-source solution, and only for 3 cavities with dC/aC90

of 1.88 and 3.75 (see supporting information in Amoruso & Crescentini 2011). Thus, the range of91

applicability of the Amoruso & Crescentini (2011) and Amoruso & Crescentini (2013) models is not92

clear. At present, solutions properly-validated for shallow ellipsoidal sources along with computer93

programs suitable for inversions are yet to be developed and adopted by the community.94

In principle, it is straightforward to follow Eshelby (1957) and use the Davis approximation to95

derive a half-space solution for finite ellipsoids in the form of an evenly-spaced distribution of triaxial96

point sources. Amoruso et al. (2007) applied this approach to simulate the surface displacements of a97

finite horizontal penny-shaped crack, showing that the solution is accurate if the depth-to-radius ratio98

is larger than 0.8. However, there are at least two issues with this approach when generic finite triaxial99

sources are considered. First, the spacing between the point sources needs to be chosen carefully such100

that accurate results are achieved within reasonable computation times, which are imposed by the101

application type. Specifically, rapid inversions require a large number of forward calculations to be102

performed within a few hours or in a day—this narrows down the acceptable computation time for a103

single forward simulation to a few seconds. The second issue is that the optimal point-source spacing104

should be defined in a fully automatic way for any cavity geometry and accuracy requirement. This is105

because it is plausible that the optimal spacing depends on the aspect ratio, orientation and depth of106

the cavity. Adopting the same small spacing for all cavity geometries, or requiring the user to adapt107

spacing to each geometry explored during the inversion, would be inefficient or even impractical.108

Here we propose that a solution for the surface displacements associated with finite cavities can be109

developed in the form of a non-uniform distribution of point sources (here point CDMs) with depth-110

dependent spacing and strengths. This way, fewer, but larger magnitude, point sources are distributed111

at deeper locations within the cavity. We first introduce an adaptive algorithm that involves a set of112

analytical solutions controlling the location, spacing and strengths of the point CDMs. Next, we com-113

pare our solutions with published results from analytical and numerical models. Finally, we discuss the114

advantages, limitations and the implications of the new solution for inversions involving deformation115

data as well as joint inversions of deformations and gravity changes.116
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The finite ellipsoidal cavity model 5

2 METHODS117

2.1 A new adaptive configuration118

In the following we develop a solution for uniformly pressurized ellipsoidal cavities in a homogeneous,119

linear, elastic half-space with Poisson’s ratio, ν, and bulk modulus, K. We refer to this solution as120

the finite Ellipsoidal Cavity Model (finite ECM). We adopt a Cartesian right-handed xyz coordinate121

system with the origin on the free surface and the z axis pointing upward. The parameters defining122

a finite ECM are: the coordinates of its center (x0, y0,−dC), where dC is the depth to the center of123

the cavity, the semiaxes (ax, ay, az), the rotation angles (ωx, ωy, ωz) and the overpressure δp. If the124

rotation angles are zero, ax, ay and az are aligned with the x, y and z axes, respectively.125

To implement the solution based on the the Eshelby (1957) and the Davis approximation, we126

distribute within the cavity a set of expanding triaxial point sources. Such triaxial point sources can127

be formed as a superposition of three mutually orthogonal force dipoles (Mindlin 1936; Davis 1986),128

or alternatively, three mutually orthogonal point tensile dislocations (Lisowski et al. 2008; Bonafede129

& Ferrari 2009). Here we employ the point CDM (Nikkhoo et al. 2017), which implements the latter130

configuration. The potencies of the three individual point dislocations (the product of opening and131

surface area) define the aspect ratio and the strength of the point CDM.132

The far-field deformations due to any ellipsoidal cavity can be represented by a point CDM located133

at the cavity center and having potencies134 
∆Vx

∆Vy

∆Vz

 =
−V δp

3K
(S− I3)

−1


1

1

1

 , (1)135

where V = 4π
3 axayaz is the volume of the cavity, I3 is the identity matrix and136

S =


S1111 S1122 S1133

S2211 S2222 S2233

S3311 S3322 S3333

 ,137

where Siijj are the Eshelby (1957) tensor components, with the indices 1, 2 and 3 indicating the138

x, y and z directions, respectively (Nikkhoo et al. 2017). The terms Siijj are nonlinear functions of139

ax, ay, az and ν (see Eshelby 1957; Amoruso & Crescentini 2009; Segall 2010). Let aC denote the140

characteristic dimension (semi-major axis) of the cavity:141

aC = max{ax, ay, az}. (2)142

The point-source approximation is accurate if the distance between the cavity and the observation143

points—here dC—is much larger than aC (Sun 1969; McTigue 1987; Fialko et al. 2001; Segall 2010).144
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6 Mehdi Nikkhoo, Eleonora Rivalta
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c
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Figure 1. a) The adaptive source model for c∗r = 10. The ellipsoid parameters are: center at (x0, 0,−dC),

ax/az = 0.714, az/dC = 0.826, ωx = ωz = 0◦ and ωy = 30◦. dT and dB are the depths to the ellipsoid top

(T) and bottom (B), respectively. dT/dC = 0.226 and dB/dC = 1.774. Red lines: uppermost and lowermost

partitioning planes. The j-th partition is bounded by the ellipsoid and partitioning planes (dashed lines) at

depths dj and dj+1. Cross symbols are the point CDMs, with a total number N = 879. Inset: point CDM

configuration. For this ellipsoid geometry and for ν = 0.25, ∆Vz/∆Vx = 0.671. b) Adaptive source model

(c∗r = 10) for the same ellipsoid as in a) but with ωx = ωy = ωz = 0◦. az/dC is 0.344, 0.466 and 0.724 for I, II

and III, respectively. dT/ρT is 3.75, 2.25 and 0.85 for I, II and III, respectively. c) For the same source geometry

as in panel b), the solid curves show N , for c∗r varying between 10 and 22, as a function of dT/ρT. Numbers on

the thick curves indicate c∗r . The vertical dashed line is dT = ρT, which represents the Yang et al. (1988) rule of

thumb. Note that for the tilted cavity in a) ρT/az = 0.620, whereas for the cavities in b) we have ρT/az = 0.510.

The approximation error is, thus, a function of the ratio145

cr =
dC

aC
. (3)146

Following Eshelby (1957), the near-field deformations of a finite ellipsoidal cavity can be rep-147

resented by a set of point CDMs—with potencies proportional to those in equation 1—continuously148

distributed throughout the cavity. Each point CDM of the set can be interpreted as an “auxiliary el-149

lipsoid”, that is, an infinitesimal ellipsoidal cavity with the same aspect ratio, pressure and spatial150

orientation as the finite cavity. In practice, a finite number of point CDMs can approximate the near-151

field solution with arbitrary accuracy. By trial and error we found that satisfactory results are achieved152
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The finite ellipsoidal cavity model 7

if: 1) the point CDM spacing is such that the auxiliary ellipsoids are regularly packed (ellipsoids tan-153

gent to each other at the tips of their axes), and 2) the crs associated with the auxiliary ellipsoids are154

larger than a certain threshold, c∗r , which we refer to as the “grid-spacing parameter” (section 2.3).155

Thus, if the semi-axes of the auxiliary ellipsoids are a′x = kax, a′y = kay, a′z = kaz , where k < 1156

is a scale factor, the spacing between the point CDMs in the three directions becomes 2kax, 2kay,157

2kaz , respectively. Denoting the depth to the top and bottom of the ellipsoidal cavity with dT and dB,158

respectively, and defining159

aV = (dB − dT)/2, (4)160

as half of the vertical extent of the cavity (see Fig. 1a), the cr for the shallowest auxiliary ellipsoid will161

be162

c′r =
d′C
a′C

=
dT + kaV

kaC
, (5)163

where d′C and a′C are the depth to the center and semi-major axis of the shallowest auxiliary ellipsoid,164

respectively. We note that 2aV is the vertical extent of the cavity and 2kaV is the vertical extent of the165

auxiliary ellipsoids. For a given c∗r , equation 5 can be solved for k, which determines the point CDM166

spacing. The potencies of the point CDMs in this configuration are (∆Vx/N,∆Vy/N,∆Vz/N), where167

∆Vx, ∆Vy and ∆Vz are calculated from equation 1 and N is the total number of the point CDMs.168

Numerical convergence tests show that c∗r =∼ 10 provides very good results (see section 2.3), but it169

may lead to a large N and thus, long computation times.170

To address this problem, we have devised a new configuration in which the size of the auxiliary el-171

lipsoids increases with depth such that they all have the same cr. In this new configuration the auxiliary172

ellipsoids are regularly packed in horizontal layers stacked on top of each other. The vertical extent173

of the layers—that is, the vertical extent of the auxiliary ellipsoids—are obtained from top to bottom174

through an iterative procedure. Assuming c′r = c∗r , from equation 5 we calculate the scale factor for175

the auxiliary ellipsoids on the top layer as176

k1 = dT/(c
∗
r aC − aV), (6)177

from which the vertical extent of the first layer can be calculated as 2k1aV. The depth to the top of the178

second layer is then179

d2 = dT(1 + 1/np), (7)180

where181

np = dT/(2k1aV). (8)182

Using d2 in place of dT, and the same c∗r , in equation 5, we determine k2 and thus, the vertical extent of183

the second layer. By repeating this procedure, we determine the depths, and thus the vertical extents,184
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8 Mehdi Nikkhoo, Eleonora Rivalta

of further layers. Now we determine the point CDM spacing and potencies in each layer. Let aH and ah185

denote the semi-major axis and semi-minor axis, respectively, of the horizontal ellipse formed by the186

intersection of the ellipsoidal cavity and a horizontal plane passing through itsthe cavity center. The187

spacing of the point CDMs in the j-th layer will be 2kjaH and 2kjah in the directions parallel to aH188

and ah, respectively. Finally, we adjust the point CDM potencies in each layer such that the potency189

per unit volume remains uniform throughout the cavity.190

The new configuration is obtained through the following adaptive algorithm:191

1. We set c∗r depending on the desired accuracy or the maximum total number of allowed point192

CDMs, Nmax.193

2. We determine dT and dB analytically (Appendix A) and then calculate np from equation 8.194

3. We partition the cavity by using the planes z = −dT, z = −dB and z = −dj , where dj = dT
(
1 + 1/np

)j−1,195

j = 2, 3, . . . ,M − 1 (dashed lines in Fig. 1a) in which M is the number of partitioning planes.196

4. We calculate the volumes Vj of the cavity partitions analytically (see Appendix B).197

5. We determine analytically the ellipses formed by the intersections of the cavity and the planes198

z = −dj = −(dj + dj+1)/2 passing through the middle of the partitions (see Fig. 1a and Ap-199

pendix C).200

6. On every intersection ellipse we create a regular grid of point CDMs such that one point CDM lies201

at the center of the ellipse (Fig. 1a). As the grid spacing parallel to aH and ah we use sH
j = 2kjaH202

and sh
j = 2kjah, respectively, where kj = dj/(c

∗
r aC − aV). Nj and N denote the total number of203

point CDMs within the j-th partition and within the cavity, respectively. Note that every partition204

will contain at least one point CDM at its center.205

7. For the top and bottom partitions, we calculate h′i, for i = 1, . . . , Nj , as the vertical distance206

between each point CDM and the cavity surface.207

8. We set the potencies of the point CDMs as (αij
Vj
V ∆Vx, αij

Vj
V ∆Vy, αij

Vj
V ∆Vz), where for the top208

and bottom partitions (j = 1 and j = M − 1) αij = hi/
∑Nj

k=1 hk in which hi = h′i + kjaV, and209

for all the other partitions αij = 1/Nj .210

9. We calculate the volume change, δV , associated with the finite ECM from the Eshelby (1957)211

solution. The calculated volume change corresponds to a pressurized cavity in full space (see sec-212

tion 4.3).213

10. We calculate dT/ρ
max
T and dT/ρ

min
T , where ρmax

T and ρmin
T are the maximum and minimum radii of214

curvature at T, respectively (Appendix D). Later, we consider dT/ρ
max
T and dC/aC of the cavity for215

further assessment of the solution quality.216
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The finite ellipsoidal cavity model 9

2.2 Computational efficiency of the finite ECM217

The computation time associated with the finite ECM depends on N . For a specific c∗r in the adaptive218

algorithm, N is determined by the shape (aspect ratio and size), depth and spatial orientation of the219

cavity (Fig. 1a-c). The non-linear link between the cavity depth and N can be better appreciated in220

Fig. 1b-c, where a varying depth for cavities of the same shape and orientation leads to different values221

forN . As the source gets very shallow,N becomes very large. However, we have to keep in mind that,222

similar to the Yang et al. (1988) solution, the accuracy of the finite ECM degrades if the source is too223

shallow. Thus, by applying some source-quality criteria, very large values for N can be automatically224

excluded. According to Yang et al. (1988), dT & ρT defines, as a rule of thumb, a minimum depth225

for vertical prolate cavities (cavity top below the dashed line in Fig 1b). For such cavities, N does not226

exceed a few thousands, even for c∗r = 22 (left-hand side of the red dashed line in Fig 1c), which is227

much larger than needed for an excellent solution (Section 2.3).228

Once c∗r is fixed in the adaptive algorithm, the shallower the cavity, the higher the computational229

efficiency achieved by using the adaptive configuration in comparison with an evenly-spaced config-230

uration. For example for the cavity in Fig 1a, the N for the evenly-spaced configuration of equivalent231

accuracy is 21.5 times larger than the N for the adaptive configuration. Similar factors calculated for232

the first (I), second (II) and third (III) cavities in Fig 1b are 1, 2.7, 14.4, respectively. For a given c∗r ,233

N also depends on the other source parameters beside the cavity depth.234

The finite ECM involves computing the surface displacements forN point CDMs on the same grid235

of observation points. Thus, similar to Beauducel et al. (2020b), we achieved further computational236

efficiency through a full vectorization of the original point CDM computer codes. From experimenting237

with the codes, we verified that the computation time associated with the finite ECM scales roughly238

linearly with the number of point CDMs. As an example, the computation of surface displacements at239

100 observation points caused by a configuration of N = 1000 point CDMs requires 0.12 seconds on240

a personal computer (with 2.80 GHz processor with 8 threads). Similar computations for N = 10000241

and N = 20000 point CDMs require 1.3 and 2.4 seconds, respectively. The adaptive algorithm along242

with the vectorization speed up the computation times sufficiently to render the finite ECM suitable243

for rapid source inversions, akin to conventional analytical solutions.244

2.3 Calibration of the grid-spacing parameter245

As stated earlier, the accuracy of the solution depends on c∗r . In order to calibrate c∗r , we use the only246

exact solution for finite non-spherical sources, namely, the Yang et al. (1988) solution for spheroidal247

cavities. We conduct systematic comparisons between the finite ECM and the Yang et al. (1988) sur-248

face displacements for ∼ 7500 oblate and prolate spheroids with various aspect ratios, depths and249
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10 Mehdi Nikkhoo, Eleonora Rivalta

dip angles (see caption of Table 1). To do so, we calculate the surface displacements associated with250

the Yang et al. (1988) solution on a regular grid of points using the MATLAB codes provided by251

Cervelli (2013) and Battaglia et al. (2013). Next, on the same grid, we calculate the surface displace-252

ments using the finite ECM for various c∗r . As measures of the deviation between the two solutions253

we calculate εx = max{(u(1)x − u(2)x )/u
(2)
z } and εz = max{(u(1)z − u(2)z )/u

(2)
z }, where the “max” is254

calculated over all observation points, superscript “(1)” refers to the finite ECM and superscript “(2)”255

refers to the Yang et al. (1988) solution. We evaluate both the maximum of these deviations among256

all models, and the fraction of models where εx and εz are below 0.01. In order to avoid errors due to257

normalizing by near-zero vertical displacements, we limit the calculation to observation points with258

a vertical displacement larger than 10 per cent of the maximum vertical displacement on the grid.259

Results confirm that already with c∗r = 10 a very good accuracy (relative errors smaller than ∼ 0.05)260

is obtained. An excellent accuracy (relative errors smaller than ∼ 0.02), sufficient for most practical261

applications, is reached with c∗r = 12 for prolate sources and c∗r = 14 for oblate sources. A simi-262

lar analysis for triaxial ellipsoids is only possible through a convergence test. Using solutions with263

c∗r = 20 as the benchmark, we find that setting c∗r = 12 leads to an excellent accuracy (relative errors264

smaller than ∼ 0.02) for triaxial ellipsoids (see Table 1).265

3 COMPARISON TO PUBLISHED ANALYTICAL AND NUMERICAL SOLUTIONS266

We compare the finite ECM with published analytical and numerical solutions. We choose source pa-267

rameters close to the limits of the range of applicability of the finite ECM. Unless otherwise stated, we268

use c∗r = 14 andNmax = 4000. Note that when comparing two solutions, displacements are commonly269

normalized in two different ways: method I) Both solutions normalized by the maximum vertical dis-270

placement of one of the solutions; method II) Each solution normalized by its own maximum vertical271

displacement. First, we compare the finite ECM with analytical solutions and next with numerical272

solutions for triaxial ellipsoids. We use normalization method I in our analytical comparisons (Fig. 2)273

and both normalization methods I and II in the numerical comparisons (Fig. 3). We later expand on274

the implications of the normalization methods.275

For the first analytical comparison we consider the Yang et al. (1988), Amoruso & Crescentini276

(2011) and Amoruso & Crescentini (2013) solutions (Fig. 2a). The source in this case is a prolate277

spheroid with ax/az = 1/3 and az/dC = 5/6. Despite the rather low dC/aC = 1.2 of the cavity,278

the displacements from the finite ECM and Yang et al. (1988) solution are in excellent agreement. In279

contrast, the Amoruso & Crescentini (2011) and Amoruso & Crescentini (2013) models underestimate280

the near-field surface displacements by almost 20%. Comparisons similar to that illustrated in Fig. 2a281
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Figure 2. Comparison of the finite ECM with selected analytical solutions. “Quadrupole 2011” and “Quadrupole

2013” refer to the Amoruso & Crescentini (2011) and Amoruso & Crescentini (2013) models. For all displace-

ments, normalization method I has been used. The horizontal and vertical displacements are indicated in a)

and c). The curves below “H” and those above “V” in b) and d) represent the horizontal and vertical displace-

ments, respectively. In all cases ωx = ωy = ωz = 0◦. a) Comparison with a prolate spheroid. Source parameters

are ax/az = 1/3, ax = ay and az/dC = 5/6, and N = 3297. b) Comparison with an oblate spheroid. Source

parameters are ax/az = 18, ax = ay and az/dC = 1/18, and N = 1439. c) Comparison with the finite spher-

ical source. Source parameters are ax = ay = az = R and R/dC = 0.556, and N = 385. d) Comparison with

the penny-shaped crack and a square tensile dislocation (Okada 1985). Source parameters are az/ax = 10−6,

ax = ay and ax/dC = 0.867, and N = 933. The square dislocation has the same potency as the finite ECM and

its edge length is (πa2x)1/2.
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12 Mehdi Nikkhoo, Eleonora Rivalta

Table 1. Systematic comparison of the Yang et al. (1988) solution (prolate and oblate spheroids) with the finite

ECM for varying c∗r , and convergence test of the finite ECM for triaxial ellipsoids. tC is the mean compu-

tation time, max εx and max εz are the maximum relative errors for the ux and uz components of the sur-

face displacements, respectively, and α(εx < 0.01) and α(εz < 0.01) are the percentages of cases with rela-

tive errors below 1 per centpercent of models with errors smaller than 0.01. The comparison involves 3800

prolate spheroids with parameters x0 = y0 = 0 m, dC ∈ [100, 1000] m, az = 1000 m, ax = ay ∈ [50, 950] m,

ωx = ωz = 0◦, ωy ∈ [0◦, 90◦]. For c∗r = 10, we have Nmin = 20, Nmax = 2884, whereas for c∗r = 20 we

have Nmin = 163 and Nmax = 15035. The comparison also involves 3716 oblate spheroids, with parame-

ters ax = ay = 1000 m and az ∈ [50, 950] m; all the other parameters are the same as those for the prolate

sources. For oblate cavities, c∗r = 10 leads to Nmin = 20 and Nmax = 1413, and c∗r = 20 results in Nmin = 163

and Nmax = 11410. The convergence test involves 5868 triaxial ellipsoids, with parameters x0 = y0 = 0 m,

dC ∈ [1000, 2000] m, ax = 1000 m, ay ∈ [50, 950] m, az ∈ [50, 950] m and ωy ∈ [0◦, 90◦]. For these ellipsoids

the finite ECM solution with c∗r = 12 is compared to the solution with c∗r = 20. In all cases, the surface obser-

vation grid consists of 496 points with a spacing of 200 m within x ∈ [−3000, 3000] m and y ∈ [0, 3000] m. For

all sources dT ≥ 200 m.

c∗r Nmin Nmax tC max εx max εz α(εx < 0.01) α(εz < 0.01)

[s] [%] [%] [%] [%]

Prolate spheroids

10 20 2884 0.097 0.012 0.021 98.9 90.0

12 29 4010 0.17 0.0088 0.014 100 98.5

14 57 4018 0.27 0.0076 0.013 100 99.4

20 163 15035 0.79 0.0045 0.0073 100 100

Oblate spheroids

10 20 1413 0.10 0.034 0.049 85.0 53.0

12 29 2456 0.17 0.027 0.035 87.7 80.0

14 57 3918 0.27 0.021 0.028 99.5 91.3

20 163 11410 0.80 0.009 0.013 100 99.8

Triaxial ellipsoids

12 111 2985 0.40 0.015 0.028 99.7 95.7

show that the Amoruso & Crescentini (2011) and Amoruso & Crescentini (2013) models perform well282

for a range of rather shallow, vertically-elongated sources.283

The second comparison (Fig. 2b) involves the same analytical solutions, but for an oblate spheroid284

(Yang et al. 1988; Cervelli 2013) with ax/az = 18 and ax/dC = 1. Again, the finite ECM and the Yang285
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Figure 3. Comparison with selected numerical solutions for triaxial sources. The black solid lines are BEM

solutions. The gray and green solid lines are the finite ECM displacements, normalized through methods I and

II, respectively (see text). a) Vertically elongated source with ax/az = 1/2, ay/az = 1/3, az/dC = 1/2 and

ωx = ωy = ωz = 0◦. Displacements are shown for the xz plane. b) Same as a), but for the yz plane. c) Lens-

shaped source with ax/az = 15, ay/az = 12, az/dC = 15 and ωx = ωy = ωz = 0◦. Displacements are shown

for the xz plane. d) Same as c), but for the yz plane. The finite ECM is shown for c∗r = 14 which leads to

N = 260 and N = 1439 for the vertically elongated source (a and b) and the horizontal lens-shaped source (c

and d), respectively.

et al. (1988) solutions are almost identical; however, the Amoruso & Crescentini (2011) and Amoruso286

& Crescentini (2013) models break down with large errors, especially for the horizontal displacements.287

Interestingly, the Amoruso & Crescentini (2011) solution, which is a finite difference approximation of288

the Amoruso & Crescentini (2013) quadrupole solution, works better than the Amoruso & Crescentini289

(2013) model. We will expand on the underlying reason later.290

The next comparison involves the McTigue (1987) and Yang et al. (1988) solutions in the case291

of a sphere (Fig. 2c). The mismatch between the McTigue (1987) and the Yang et al. (1988) and292

finite ECM solutions is because both the latter solutions involve the Davis approximation, while the293
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14 Mehdi Nikkhoo, Eleonora Rivalta

McTigue (1987) solution contains higher-order terms correcting for the resulting misrepresentation294

of the boundary conditions on the cavity walls. For spherical cavities (except for the McTigue 1987,295

solution) the surface displacements from the finite-source solutions (Yang et al. 1988, and the finite296

ECM) are in theory expected to be identical to their equivalent point-source solutions (Mogi 1958;297

Davis 1986, and the point CDM). The Amoruso & Crescentini (2011) and Amoruso & Crescentini298

(2013) models are also comparable to those models. Thus, for the sake of clarity, we only show the299

McTigue (1987), Yang et al. (1988) and the finite ECM displacements in Fig. 2c.300

As the last analytical comparison, we consider a uniformly pressurized penny-shaped crack (Sun301

1969; Fialko et al. 2001), the Yang et al. (1988) solution, a horizontal tensile square dislocation (Davis302

1983; Okada 1985), and again, the Amoruso & Crescentini (2011) and Amoruso & Crescentini (2013)303

models. For this special case, the finite ECM has only one layer of point sources with varying po-304

tencies. Again, there is an excellent agreement between the finite ECM and the Yang et al. (1988)305

solution; also the Sun (1969) solution (not shown in Fig. 2d) perfectly agrees with these solutions.306

The difference with the Fialko et al. (2001) solution is due to the fact that the boundary conditions on307

the source walls are more accurately implemented in the Fialko et al. (2001) solution. However, com-308

pared to the square dislocation, the finite ECM and the Yang et al. (1988) solutions provide a better309

approximation to the Fialko et al. (2001) solution. This is because the opening of the square disloca-310

tion is uniform while the opening of the cracks represented by the Yang et al. (1988) solution and finite311

ECM have an elliptic form. This feature is implemented through step “7” of the adaptive algorithm.312

Also in this case, the Amoruso & Crescentini (2011) solution performs better than the Amoruso &313

Crescentini (2013) model. Both models, however, perform well only in the far field.314

Finally, we compare the finite ECM with numerical solutions for 114 uniformly-pressurized triax-315

ial ellipsoids involving a wide range of parameters (see Table S1 in Supplementary Information). We316

calculate the surface displacements and volume changes associated with the triaxial cavities by using317

the Nikkhoo & Walter (2015) half-space solution for Triangular Dislocations (TDs; see also Yoffe318

1960; Comninou & Dundurs 1975) in a numerical scheme based on the Boundary Element Method319

(BEM; see Crouch 1976; Crouch & Starfield 1983; Kuriyama & Mizuta 1993). We illustrate the sur-320

face displacements associated with two representative cases (see Fig. 3). For the vertically elongated321

cavity, we find that, except for the vertical displacements right above the ellipsoid, the finite ECM322

and BEM solutions are nearly identical (Fig. 3a,b). The agreement is best along the y-axis, which is323

parallel to the semi-minor axis. For the second source, which is sill-like, the agreement is not as good324

(Fig. 3c,d). However, the functional shape of the solutions is very similar: indeed, a substantially better325

agreement is achieved if the displacements are normalized by method II (Fig. 3c,d). This implies that326

applying the finite ECM and Yang et al. (1988) solution (the Cervelli 2013, code) to source inversions327
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The finite ellipsoidal cavity model 15

involving sill-like sources may lead to fairly good constraints on the source shape, but the volume328

change and depth of the source may be biased considerably.329

We further perform a systematic comparison between the finite ECM and BEM surface displace-330

ments and volume changes for the 114 triaxial ellipsoids (see Table S1 in Supplementary Information).331

For these ellipsoids we calculate the volume change, δV , the horizontal and vertical surface displace-332

ments along the x axis, (uh
x, u

v
x), and those along the y axis, (uhy , u

v
y). The relative volume change333

misfit is calculated as334

εδV =
|δV (fECM)− δV (BEM)|

δV (BEM)
, (9)335

where “fECM” and “BEM” refer to the finite ECM and BEM calculations, respectively. Also, we use336

εh
x =

∫ 3dC
0

∣∣uh
x(fECM)− uh

x(BEM)
∣∣dx∫ 3dC

0 |uh
x(BEM)|dx

, (10)337

as a measure of misfit between uh
x(fECM) and uh

x(BEM). Similarly, we calculate εv
x, εh

y and εv
y as338

misfits between the finite ECM and BEM displacement components uv
x, uh

y and uv
y, respectively. We339

define340

εh =
εh
x + εh

y

2
,341

εv =
εv
x + εv

y

2
, (11)342

343

as the mean horizontal and mean vertical misfits. We calculate such misfit for displacements normal-344

ized by both method I and method II as εh
I , εv

I , εh
II and εv

II. To determine the range of applicability of345

the finite ECM we evaluate the mean horizontal and vertical misfits as a function of dC/aC, dT/aC,346

dT/ρ
max
T and dT/ρ

min
T (see Table S1 in Supplementary Information). The results show that347

1. dT/ρ
max
T and dT/ρ

min
T are only useful for vertical prolate sources as they misevaluate oblate and348

triaxial sources and also, rotated prolate sources.349

2. the misfits εh
I and εv

I are below 10% and 15% for dC/aC & 1.75 and dC/aC & 1.25, respectively.350

3. the misfits εh
II and εv

II are below 7% and 15% for dT/aC & 0.7 and dT/aC & 0.5, respectively.351

4. εδV is smaller than 10% and 5% for dC/aC & 1.75 and dC/aC & 2.5, respectively. The largest εδV352

values correspond to shallow oblate ellipsoids. For very shallow oblate cavities εδV may become353

extremely large, occasionally even exceeding 100% (see “D0”, “P0”, “P1”, “Q0” and “Q1” cases354

in Table S1 in Supplementary Information).355

Note that the criteria based on dC/aC and dT/aC are in agreement with the Amoruso et al. (2007)356

criterion, dC/aC & 0.8, for penny-shaped cracks.357

The dT/ρ
max
T for the cavities in Fig. 2a-d are 1.8, 0.053, 0.8 and 0, respectively; the dC/aC are 1.2,358

1, 1.8 and 1, respectively; and the dT/aC are 0.2, 0.94, 0.8 and 1, respectively. Thus, all these cavities359
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16 Mehdi Nikkhoo, Eleonora Rivalta

satisfy at least one of the criteria listed above: the cavity in Fig. 2a satisfies dT/ρ
max
T & 1, the cavity360

in Fig. 2b satisfies the criteria based on dC/aC and dT/aC, the cavity in Fig. 2c satisfies the criteria361

based on dT/ρ
max
T , dC/aC and dT/aC, and the cavity in Fig. 2d satisfies the criteria based on dC/aC362

and dT/aC.363

The comparisons above show that the finite ECM is a reliable model for shallow triaxial sources,364

beyond what previously published solutions offer.365

4 DISCUSSION366

4.1 The approximations involved in the finite ECM and the other solutions367

We developed the finite ECM in the form of distributed point CDMs having depth-dependent strengths368

but the same aspect ratio determined through the Eshelby (1957) shape functions (eq. 1). Unless the369

cavity shape is spherical, spheroidal or crack-like, these functions involve elliptic integrals, which can370

be calculated only numerically (see Carlson 1995). All other components of the finite ECM—all steps371

of the adaptive algorithm controlling the configuration of the solution—are analytical.372

Distributed point sources have been proposed in earlier works as a straightforward approach to373

simulate the near field deformations caused by shallow pressurized cavities with non-negligible char-374

acteristic dimension in comparison with the cavity depth (see Davis 1986; Wang et al. 2018). Amoruso375

et al. (2007) used a uniform distribution of point sources (Wang et al. 2006, semi-analytical solution) to376

simulate the surface displacements associated with a horizontal penny-shaped crack in a layered half-377

space, and applied it to the 2004–2006 uplift period at Campi Flegrei caldera. Also, Amoruso et al.378

(2008) used a similar approach for the joint inversion of surface displacements and gravity changes379

recorded during the 1982–1984 unrest period at Campi Flegrei. The finite ECM can facilitate similar380

inversions for generic ellipsoidal geometries.381

The calibration and systematic comparisons between the finite ECM and the Yang et al. (1988)382

solution for a few thousand prolate and oblate cavities show that for c∗r > 14 the mismatch between383

the surface displacements from the two models are . 1% (Table 1). For most rapid source inversions,384

c∗r = 10 may be optimal, as it provides acceptable accuracy for reasonably short computation times.385

If it is clear from preliminary inversions (e.g. using the point CDM) that the source is prolate, smaller386

values for c∗r may be sufficient. In any case, starting an inversion with the point CDM, before switching387

to the finite ECM first with c∗r = 10 and then higher c∗r s for more limited parameter space may be a388

good procedure to follow.389

Compared with the finite ECM, the Amoruso & Crescentini (2011) and Amoruso & Crescentini390

(2013) models require shorter computation times and thus, could potentially be useful for rapid source391
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The finite ellipsoidal cavity model 17

inversions. However, this demands a rigorous assessment of the range of applicability of these models.392

This is especially necessary regarding shallow oblate sources, for which the displacement patterns393

from the Amoruso & Crescentini (2011) and Amoruso & Crescentini (2013) models may perform394

worse than point source solutions such as the Davis (1986) or the point CDM (Fig. 2b,d).395

The fluctuations of the Amoruso & Crescentini (2011) and Amoruso & Crescentini (2013) models396

for shallow oblate sources, together with the interesting observation that the 7-point-source solution,397

at least in those cases from Fig 2, performs better than the Amoruso & Crescentini (2013) model call398

for an explanation. To understand the reason for this, it is important to note that, although both the399

Amoruso & Crescentini (2011) and Amoruso & Crescentini (2013) models are based on the same400

“quadrupole approximation”, there are inherent differences between the two models. The Amoruso &401

Crescentini (2013) model is in fact a higher-order point-source model—it represents a special case of402

a rank-4 moment tensor. On the other hand, the Amoruso & Crescentini (2011) model is formed as403

the superposition of 7 rank-2 moment tensors of both positive and negative sign, distributed within the404

cavity. This distributed configuration gives the source some “finiteness”, which might be what makes405

the 7-point-source model perform better, at least in the examined cases, than a rank-4 moment tensor.406

In the far field, these models reduce to a rank-2 moment tensor, but for oblate sources in the near field407

this fails to happen.408

Among analytical volcano deformation sources, the McTigue (1987) and Fialko et al. (2001) so-409

lutions fulfil very accurately (although still not exactly) the uniform-pressure boundary conditions on410

the source walls. All the other available analytical source models, including Sun (1969); Yang et al.411

(1988); Amoruso & Crescentini (2011, 2013) and the finite ECM, make use of the Davis approxima-412

tion. Therefore, inferring the parameters of uniformly pressurized magma bodies by using the latter413

group of source models may come with a substantial bias if the source is very shallow. Examples414

of this can be seen in Fig. 3a-d, where a perfect fit is achieved for oblate sources, but with a biased415

volume change. As also shown by Amoruso & Crescentini (2011), such a bias is likely to emerge on416

depth and source aspect ratio, beside volume change. Similarly, biases on the spatial orientation of the417

source could be expected. The extent of these biases as a function of source depth and shape has not418

been thoroughly investigated yet and should be addressed by future studies.419

Our results concerning the normalization method I and method II, which we used in section 3,420

have direct implications for forward and inverse modelling using the finite ECM or any other source421

model involving the Davis approximation. Suppose that the surface displacements associated with a422

given pressurized cavity are calculated by using two different source models: an accurate model and423

an approximate model. Applying the normalization method I preserves the relative misfit between the424

displacements from the two models—this misfit reflects the actual accuracy (or error) associated with425
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18 Mehdi Nikkhoo, Eleonora Rivalta

the approximate model for a given set of parameters. Evaluating this misfit is important when using426

the approximate model for forward modelling purposes (e.g. analyzing the synthetic displacements427

expected for a certain cavity). On the other hand, applying normalization method II scales the dis-428

placements such that the maximum vertical displacements from the two models become equal to 1.429

This leads to overall smaller misfits for the normalized displacements. The implication is that the ap-430

proximate model may lead to an acceptable, or even an excellent, fit when used for inverse modelling431

of actual deformation data measured in the field. A significant difference between the misfits from432

normalization method I and those from normalization method II imply that, in an inversion using the433

approximate source, the source strength (volume change), and possibly other source parameters, may434

be misestimated.435

4.2 The added value of triaxial finite-source solutions436

The deformation signals measured at the Earth’s surface can be used to infer some large-scale features437

of pressurized magma chambers. These large-scale features are in fact the deformation source param-438

eters, which can be constrained through deformation modelling. For deep sources, these parameters439

are limited to the location, spatial orientation and strength; in this case point-source and finite-source440

models yield the same results. For shallow sources, in addition to the location, spatial orientation and441

strength, it is possible to constrain the source dimensions, provided that displacement data in the near-442

field are available. Finite triaxial sources help better constrain the aspect ratio and size, and thus, the443

volume of pressurized magma bodies. This would be of great benefit, as the overall volume of magma444

reservoirs is a poorly constrained quantity in volcanology. In this case, point-source solutions can-445

not be used because they cannot represent the displacements in the near field. Therefore, to infer the446

parameters of shallow magma chambers correctly, finite-source models need to be used.447

It is difficult to estimate how often a triaxial finite source can be applied. So far, triaxial point448

sources were applied to study the geometry of magma storage at Kilauea volcano (Davis 1986) and449

Long Valley caldera(Langbein et al. 1995), to constrain a draining magma reservoir at Calbuco volcano450

(Nikkhoo et al. 2017), offshore Mayotte (Cesca et al. 2020) and Erta Ale volcano (Xu et al. 2020),451

and to track magma ascent at Piton de la Fournaise (Beauducel et al. 2020b). A finite triaxial source452

may help better explore some of these cases, or constrain other unexplored cases involving shallow453

sources.454

In standard inversion procedures, different analytical solutions are tested one by one searching for455

an optimal match with observations. Nikkhoo et al. (2017), Beauducel et al. (2020b) and Peltier et al.456

(2020) showed the benefit of avoiding such one-by-one matching and relying on the ability of the point457

CDM to span the entire model space with just one model. By feeding the data into such an automatic458
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The finite ellipsoidal cavity model 19

procedure, it is possible to reveal the underlying cause of the deformation, be it the (de)pressurization459

of an equi-dimensional body such as a reservoir (Cesca et al. 2020; Xu et al. 2020), or the propagation460

of a dike (Sigmundsson et al. 2015; Xu et al. 2016; Dumont et al. 2018; Beauducel et al. 2020b; Peltier461

et al. 2020; Davis et al. 2021). The finite ECM extends this capability to deformation sources in the462

near field.463

4.3 The volume change and the compressibility associated with the finite ECM464

In order to fully characterize a volcano deformation source, it is critical to provide the practical means465

to calculate the volume change upon pressurization. The volume change is a measure of the source466

strength and can be used to estimate other important quantities such as the chamber compressibility,467

defined as the relative volume change for a unit pressurization. The chamber compressibility, together468

with the magma compressibility, is critical to estimate the real intrusion volume.469

The volume change associated with ellipsoidal sources in a full space can be calculated from the470

Eshelby (1957) solution (see Amoruso & Crescentini 2009, 2013). This “full-space” volume change is471

also used as an approximation for the half-space models. This is because the exact volume change in472

half-space source models cannot be calculated analytically. One caveat is that the volume change for473

shallow sources in a half-space may be substantially different from the full-space volume change—474

accurate half-space volume change calculations require numerical methods (see Amoruso & Cres-475

centini 2009; Anderson & Segall 2011). Since volume change and chamber compressibility may be476

important magma chamber properties both for inversions and for forward modelling of eruptive vol-477

umes (Mastin et al. 2008; Anderson & Segall 2011; Wasser et al. 2021), we include codes based on the478

Eshelby (1957) approach for the accurate calculation of the full-space volume change and chamber479

compressibility (see Segall et al. 2001; Rivalta & Segall 2008; Segall 2010).480

4.4 Implications for modelling deformation-induced gravity changes481

Okubo (1991) developed an analytical solution for surface gravity changes caused by point disloca-482

tions. Based on Okubo (1991)’s work, Nikkhoo & Rivalta (2022) developed an analytical solution483

for deformation-induced gravity changes associated with the point CDM. We use the Nikkhoo & Ri-484

valta (2022) point-source solution for gravity changes within the adaptive algorithm in section 2.1 to485

develop the gravity change solution associated with the finite ECM.486

A major contribution to the surface gravity changes caused by any deformation source is due to the487

source volume change (e.g., Okubo 1991; Nikkhoo & Rivalta 2022). Considering that the estimated488

volume change for the finite ECM may be subject to large biases (see section 3), caution is advised489

while applying the finite ECM to joint inversions of surface deformations and gravity changes.490
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5 CONCLUSIONS491

1. We developed a computationally-efficient solution for the surface deformation field caused by492

a finite triaxial ellipsoidal source in the form of a non-uniform (depth-dependent) distribution of493

point CDMs. The finite ECM is especially suitable for inversions of surface deformation data.494

2. The finite ECM includes an adaptive algorithm that determines the optimal spacing and location495

of the point CDMs as a function of the depth, shape, and spatial orientation of the cavity, and a496

grid-spacing parameter c∗r .497

3. We showed that the Yang et al. (1988) solution can be used to benchmark the finite ECM and498

calibrate c∗r , or alternatively Nmax, to achieve any desired accuracy while maintaining computation499

time minimal. We further validated the finite ECM through comparisons with other analytical and500

numerical solutions.501

4. Through comparisons with numerical solutions we found new empirical criteria for the accuracy502

of the finite ECM calculations. As rules of thumb, a finite ECM with dC/aC & 2 yields excellent503

results—this criterion is especially useful for forward modelling of the surface displacements; a504

finite ECM with dT/aC & 1 performs very well in source inversions, with the caveat that some505

parameters (especially volume change and depth) may be biased. Our results show that the Yang506

et al. (1988) criterion (dT & ρT) is only appropriate for vertical prolate spheroids and cannot be507

extended to triaxial ellipsoids.508

5. We provide MATLAB codes for the finite ECM (surface displacements and deformation-induced509

gravity changes) and additional codes to calculate the volume change and chamber compressibility510

of ellipsoidal sources. The codes do not contain any MATLAB-specific function and it is straight-511

forward to convert them to any other programming language.512
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https://volcanodeformation.com/onewebmedia/fECM.zip. Further details about the model and521

other related codes can be found under https://www.volcanodeformation.com/.522

APPENDIX A: ANALYTICAL SOLUTIONS FOR THE SHALLOWEST AND DEEPEST523

POINTS ON THE SURFACE OF A GENERIC ELLIPSOID524

The standard ellipsoid ES centered at the origin of a Cartesian xyz coordinate system has the form525

x2

a2x
+
y2

a2y
+
z2

a2z
= 1, (A.1)526

where the semi-axes ax, ay and az are aligned with the x, y and z coordinate axes, respectively. If527

(θ, λ) denote the spherical coordinates, of an arbitrary point P on the surface of ES, we have528

x = ax sin θ cosλ,529

y = ay sin θ sinλ,530

z = az cos θ, (A.2)531
532

where θ ∈ [0, π] and λ ∈ [0, 2π). The matrices533

Rx (ωx) =


1 0 0

0 cosωx sinωx

0 − sinωx cosωx

534

535

Ry (ωy) =


cosωy 0 − sinωy

0 1 0

sinωy 0 cosωy

 ,536

537

Rz (ωz) =


cosωz sinωz 0

− sinωz cosωz 0

0 0 1

 , (A.3)538

represent general rotations about the x, y and z axes, respectively. Any arbitrary rotation in xyz can539

be represented in the form of540

R = Rx (ωx)Ry (ωy)Rz (ωz) =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 , (A.4)541
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22 Mehdi Nikkhoo, Eleonora Rivalta

with a unique set of angles (ωx, ωy, ωz). After applying such a rotation, the new coordinates of P are542 
x′

y′

z′

 =


r11 r12 r13

r21 r22 r23

r31 r32 r33



x

y

z

 . (A.5)543

Combining equations A.5 and A.2 yields544

z′ = r31ax sin θ cosλ+ r32ay sin θ sinλ+ r33az cos θ. (A.6)545

The spherical coordinates of the two points with the minimum and maximum z values on the ellipsoid546

are the solutions of the equation547

∂z′

∂λ
= 0,

∂z′

∂θ
= 0, (A.7)548

that can be written in explicit form as549

λ = atan

(
r32ay
r31ax

)
, θ = atan


√
r231a

2
x + r232a

2
y

r33az

. (A.8)550

APPENDIX B: AN ANALYTICAL EXPRESSION FOR THE VOLUME OF A PARTITION551

OF AN ELLIPSOID BOUNDED BY TWO HORIZONTAL PLANES552

Let CP denote the ellipsoidal cap formed by the intersection of the standard ellipsoid, ES (equation553

A.1) and an arbitrary plane, S : Ax+By + Cz = D, where the vector (A,B,C) is normal to the554

plane and points towards CP. The volume of CP is555

VP(S) =

∫∫∫
CP

dxdydz. (B.1)556

In a new Cartesian XY Z coordinate system, where x = axX , y = ayY and z = azZ the ellipsoid557

is mapped onto the unit sphere, X2 + Y 2 + Z2 = 1, and the plane is mapped onto the new plane558

S′ : AaxX +BayY + CazZ = D. Also, equation B.1 can be rewritten as559

VP(S) = VP(S′) = axayaz

∫∫∫
C′

P

dXdY dZ, (B.2)560

where561 ∫∫∫
C′

P

dXdY dZ =
1

3
π(1− dn)2(2 + dn), (B.3)562

is the volume of the spherical cap, C ′P, that is bounded by the unit sphere and the new plane (see Kern563

& Bland 1938, p. 37 and Harris & Stöcker 1998, p. 107) and dn = D/(A2a2x +B2a2y + C2a2z)
1/2 is564

the shortest distance from the origin of XY Z to the new plane. Substituting equation B.3 in equation565
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B.2 yields:566

VP(S) =
1

3
πaxayaz(1− dn)2(2 + dn). (B.4)567

Thus, the volume of the region insideES and bounded by two parallel planes S1 : Ax+By + Cz = D1568

and S2 : Ax+By + Cz = D2 can be calculated as569

VD1D2 = |VP(S2)− VP(S1)|. (B.5)570

For an arbitrary ellipsoid subjected to the rotationsRx(ωx)Ry(ωy)Rz(ωz) and centered at (x0, y0,−d),571

the volume of the region inside the ellipsoid and bounded by two horizontal planes z = z1 and572

z = z2 can be calculated from equation B.5 after applying the translation (−x0,−y0, d) and rotations573

Rz(−ωz)Ry(−ωy)Rx(−ωx) to the ellipsoid and both planes.574

APPENDIX C: INTERSECTION OF A PLANE AND AN ARBITRARY ELLIPSOID575

In order to determine the intersection ellipse associated with a horizontal plane, SH : z = zj , and an576

arbitrary ellipsoid ER subjected to the rotations Rx(ωx)Ry(ωy)Rz(ωz) and centered at (x0, y0,−d),577

we first apply the translation (−x0,−y0, d) and rotationsRz(−ωz)Ry(−ωy)Rx(−ωx) to both ER and578

SH. These transformations lead to a standard ellipsoid ES (equation A.1, and a plane of the form579

S : Ax+By + Cz = D. The intersection ellipse formed by ES and S can be determined through the580

Klein (2012) formulas. Applying the rotations Rx(ωx)Ry(ωy)Rz(ωz) and the translation (x0, y0,−d)581

to the ellipse from the previous step yields the solution.582

APPENDIX D: PRINCIPAL CURVATURES AT ANY POINT ON THE SURFACE OF AN583

ELLIPSOID584

The principal curvatures, κmax and κmin, at any point P (θ, λ) on the surface of the standard ellipsoid585

(equation A.1) are the solutions of the following equation:586

(EG− F 2)κ2 − (EN +GL− 2FM)κ+ (LN −M2) = 0, (D.1)587

where E, F and G are the first fundamental coefficients and L, M and N are the second fundamental588

coefficients of the ellipsoid (see Lipschutz 1969, p. 183). A simplified form of equation D.1 can be589

written as590

Aκ2 +Bκ+ C = 0, (D.2)591
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24 Mehdi Nikkhoo, Eleonora Rivalta

where592

A = (a2x cos2 θ cos2 λ+ a2y cos2 θ sin2 λ

+ a2z sin2 θ)(a2x sin2 λ+ a2y cos2 λ)

− (a2y − a2x)2 cos2 θ sin2 λ cos2 λ,

593

B =
−axayaz

qn
(a2x cos2 θ cos2 λ+ a2y cos2 θ sin2 λ

+ a2z sin2 θ + a2x sin2 λ+ a2y cos2 λ),

594

C = (axayaz/qn)2, (D.3)595
596

in which597

qn = (a2ya
2
z sin2 θ cos2 λ+ a2xa

2
z sin2 θ sin2 λ+ a2xa

2
y cos2 θ)

1/2.598

A singularity in equation D.1 at θ = 0 has been addressed analytically in equation D.2. The maximum599

and minimum radii of curvature at P are600

ρmax = 1/κmin, ρmin = 1/κmax. (D.4)601
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Comparisons using the BEM solutions

We compared the surface displacements and volume changes calculated from the finite ECM and BEM for 114 triaxial ellipsoidal cavities
(see Table S1). The number of TDs forming the cavities (except “Y1” and “Y2”, last two lines in Table S1) varies between 792 and 1984,
with an average of 1138; the shallower and larger cavities possess more TDs. The cavity mesh in the “Y1” and “Y2” models is composed of
2456 and 4092 TDs, respectively—these models represent the same source and were used for a convergence test. Based on similar tests, we
estimate a relative error of up to a few per cent for both the surface displacements and volume changes calculated using the BEM.

Table S1: Numerical benchmarking of the finite ECM using the BEM solutions. The semiaxes, ax, ay , az , and
depth, dC, of the cavities have the same arbitrary unit; the rotation angles, ωx and ωy , are given in degrees. The
mean horizontal and vertical misfits associated with normalization method I, εh

I and εv
I , respectively, and those

associated with method II, εh
II, ε

v
II, and also the relative volume change misfit, εδV , are given in per cent (see

section 3).

# ax ay az dC ωx ωy εhI εvI εhII εvII εδV
dC
aC

dT
aC

dT
ρmax

dT
ρmin

A1 0.6 0.4 1.2 1.5 0 0 7.7 11 9.9 7.4 7.8 1.25 0.25 1 2.25
A2 0.6 0.4 1.2 1.8 0 0 6.0 7.8 3.8 3.6 6.3 1.5 0.5 2 4.5
A3 0.6 0.4 1.2 2.4 0 0 5.2 6.2 3.2 2.7 5.4 2.0 1.0 4 9
A4 0.6 0.4 1.2 3.0 0 0 5.0 5.7 3.2 2.6 5.1 2.5 1.5 6 14
A5 0.6 0.4 1.2 3.6 0 0 4.8 5.5 3.2 2.5 5.0 3.0 2.0 8 18
B1 0.3 0.2 1.2 1.5 0 0 6.2 7.1 4.1 3.5 5.4 1.25 0.25 4 9
B2 0.3 0.2 1.2 1.8 0 0 5.8 6.4 4.2 3.4 5.1 1.5 0.5 8 18
B3 0.3 0.2 1.2 2.4 0 0 5.6 6.0 4.2 3.4 4.8 2.0 1.0 16 36
B4 0.3 0.2 1.2 3.0 0 0 5.6 6.0 4.2 3.5 4.8 2.5 1.5 24 54
B5 0.3 0.2 1.2 3.6 0 0 5.5 5.9 4.2 3.4 4.8 3.0 2.0 32 72
C1 0.1 1.2 1.2 1.5 0 0 9.8 12 1.9 4.6 8.4 1.25 0.25 0.25 36
C2 0.1 1.2 1.2 1.8 0 0 6.0 7.9 1.3 3.3 6.1 1.5 0.5 0.5 72
C3 0.1 1.2 1.2 2.4 0 0 4.0 5.9 1.1 2.7 4.5 2.0 1.0 1 140
C4 0.1 1.2 1.2 3.0 0 0 3.3 5.2 1.0 2.6 4.0 2.5 1.5 1.5 220
C5 0.1 1.2 1.2 3.6 0 0 3.2 5.1 1.1 2.4 3.8 3.0 2.0 2 290
D0 1.5 1.2 0.1 0.9 0 0 45 46 11 7.3 77 0.6 0.53 0.036 0.056
D1 1.5 1.2 0.1 1.5 0 0 20 21 2.3 1.3 25 1.0 0.93 0.062 0.097
D2 1.5 1.2 0.1 1.8 0 0 14 15 1.2 0.6 17 1.2 1.1 0.076 0.12
D3 1.5 1.2 0.1 2.4 0 0 8.1 8.3 0.5 0.3 9.2 1.6 1.5 0.10 0.16
D4 1.5 1.2 0.1 3.0 0 0 5.0 5.2 0.4 0.2 5.9 2.0 1.9 0.13 0.20
D5 1.5 1.2 0.1 3.6 0 0 3.7 3.8 0.4 0.1 4.3 2.4 2.3 0.16 0.24
J0 1.5 0.3 0.3 0.9 0 0 9.4 12 7.1 4.1 11 0.6 0.4 0.08 2
J1 1.5 0.3 0.3 1.2 0 0 6.5 7.5 3.4 2.0 8.0 0.8 0.6 0.12 3
J2 1.5 0.3 0.3 1.5 0 0 5.0 5.5 1.6 1.0 6.6 1.0 0.8 0.16 4
J3 1.5 0.3 0.3 1.8 0 0 4.2 4.4 0.9 0.5 5.9 1.2 1.0 0.20 5
J5 1.5 0.3 0.3 2.4 0 0 3.5 3.5 0.7 0.2 5.3 1.6 1.4 0.28 7
J6 1.5 0.3 0.3 2.7 0 0 3.3 3.2 0.6 0.3 5.2 1.8 1.6 0.32 8
J7 1.5 0.3 0.3 3.0 0 0 3.0 3.0 0.6 0.3 5.1 2.0 1.8 0.36 9
K1 0.6 0.4 1.2 1.5 0 -10 7.7 11 10 7.3 7.8 1.3 0.26 1.0 2.3
K2 0.6 0.4 1.2 1.5 0 -20 7.6 11 11 7.3 7.8 1.3 0.29 1.0 2.5
K3 0.6 0.4 1.2 1.5 0 -30 7.8 11 11 7.2 7.7 1.3 0.35 1.0 2.8
K4 0.6 0.4 1.2 1.5 0 -40 7.9 11 10 6.4 7.7 1.3 0.42 0.96 3.1
K5 0.6 0.4 1.2 1.5 0 -50 8.0 11 8.7 5.5 7.7 1.3 0.50 0.84 3.4
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Continuation of Table S1
# ax ay az dC ωx ωy εI

H εI
V εII

H εII
V εδV

dC
aC

dT
aC

dT
ρmax

dT
ρmin

K6 0.6 0.4 1.2 1.5 0 -60 8.1 10 7.9 5.0 7.7 1.3 0.59 0.68 3.5
K7 0.6 0.4 1.2 1.5 0 -70 7.9 9.9 7.0 4.5 7.7 1.3 0.67 0.53 3.5
K8 0.6 0.4 1.2 1.5 0 -80 7.9 9.7 6.9 4.5 7.7 1.3 0.73 0.41 3.4
K9 0.6 0.4 1.2 1.5 0 -90 7.7 9.5 6.7 4.5 7.7 1.3 0.75 0.38 3.4
L1 0.6 0.4 1.2 1.5 -10 0 8.0 11 8.1 6.1 8.0 1.3 0.26 1.0 2.3
L2 0.6 0.4 1.2 1.5 -20 0 8.0 10 7.3 5.2 8.3 1.3 0.30 1.2 2.3
L3 0.6 0.4 1.2 1.5 -30 0 7.9 9.8 6.5 4.6 8.9 1.3 0.37 1.3 2.3
L4 0.6 0.4 1.2 1.5 -40 0 7.8 9.5 5.9 4.1 9.5 1.3 0.46 1.5 2.1
L5 0.6 0.4 1.2 1.5 -50 0 7.7 9.1 5.2 3.5 10 1.3 0.56 1.5 1.7
L6 0.6 0.4 1.2 1.5 -60 0 7.5 8.9 4.3 2.8 11 1.3 0.67 1.2 1.6
L7 0.6 0.4 1.2 1.5 -70 0 7.6 8.8 3.9 2.5 11 1.3 0.79 0.71 1.5
L8 0.6 0.4 1.2 1.5 -80 0 7.7 8.9 3.5 2.1 11 1.3 0.88 0.41 1.3
L9 0.6 0.4 1.2 1.5 -90 0 7.7 8.9 2.9 1.5 11 1.3 0.92 0.31 1.2
M1 0.6 0.4 1.2 1.8 0 -10 6.1 7.9 4.1 3.8 6.3 1.5 0.51 2.0 4.6
M2 0.6 0.4 1.2 1.8 0 -20 6.3 8.1 4.5 3.9 6.3 1.5 0.55 1.9 4.7
M3 0.6 0.4 1.2 1.8 0 -30 6.5 8.1 5.1 3.9 6.3 1.5 0.60 1.8 4.9
M4 0.6 0.4 1.2 1.8 0 -40 6.7 8.1 5.7 4.0 6.4 1.5 0.67 1.5 5.0
M5 0.6 0.4 1.2 1.8 0 -50 6.9 8.1 5.7 3.9 6.4 1.5 0.75 1.3 5.1
M6 0.6 0.4 1.2 1.8 0 -60 6.9 8.0 5.2 3.5 6.4 1.5 0.84 0.97 5.0
M7 0.6 0.4 1.2 1.8 0 -70 6.8 7.9 4.9 3.3 6.5 1.5 0.92 0.72 4.8
M8 0.6 0.4 1.2 1.8 0 -80 6.5 7.6 4.3 2.9 6.5 1.5 0.98 0.56 4.6
M9 0.6 0.4 1.2 1.8 0 -90 6.3 7.5 4.3 2.9 6.5 1.5 1.0 0.5 4.5
N1 0.6 0.4 1.2 1.8 -10 0 6.0 7.3 3.3 3.1 6.4 1.5 0.51 2.0 4.4
N2 0.6 0.4 1.2 1.8 -20 0 5.8 6.8 2.8 2.4 6.6 1.5 0.55 2.1 4.2
N3 0.6 0.4 1.2 1.8 -30 0 5.5 6.4 2.5 1.9 7.0 1.5 0.62 2.2 3.8
N4 0.6 0.4 1.2 1.8 -40 0 5.4 6.2 2.5 1.8 7.4 1.5 0.71 2.2 3.2
N5 0.6 0.4 1.2 1.8 -50 0 5.2 5.9 2.2 1.5 7.9 1.5 0.81 2.2 2.4
N6 0.6 0.4 1.2 1.8 -60 0 5.2 5.9 2.0 1.3 8.2 1.5 0.92 1.6 2.1
N7 0.6 0.4 1.2 1.8 -70 0 5.1 5.7 1.6 0.9 8.5 1.5 1.04 0.93 1.9
N8 0.6 0.4 1.2 1.8 -80 0 5.4 5.9 1.4 0.8 8.7 1.5 1.13 0.52 1.7
N9 0.6 0.4 1.2 1.8 -90 0 5.6 6.0 1.2 0.7 8.8 1.5 1.17 0.39 1.6
O1 0.6 0.4 1.2 2.1 -10 0 5.2 6.1 3.0 2.6 5.7 1.8 0.76 3.0 6.6
O2 0.6 0.4 1.2 2.1 -20 0 4.8 5.4 2.5 2.0 5.9 1.8 0.80 3.0 6.1
O3 0.6 0.4 1.2 2.1 -30 0 4.4 4.9 2.0 1.4 6.1 1.8 0.87 3.1 5.4
O4 0.6 0.4 1.2 2.1 -40 0 4.2 4.6 1.5 1.1 6.4 1.8 0.96 3.0 4.3
O5 0.6 0.4 1.2 2.1 -50 0 4.1 4.4 1.2 0.9 6.7 1.8 1.06 2.9 3.2
O6 0.6 0.4 1.2 2.1 -60 0 3.9 4.1 0.8 0.6 7.0 1.8 1.2 2.0 2.7
O7 0.6 0.4 1.2 2.1 -70 0 4.0 4.2 0.7 0.5 7.2 1.8 1.3 1.15 2.4
O8 0.6 0.4 1.2 2.1 -80 0 3.8 4.0 0.3 0.1 7.4 1.8 1.4 0.64 2.1
O9 0.6 0.4 1.2 2.1 -90 0 4.1 4.1 0.2 0.2 7.4 1.8 1.4 0.47 1.9
P0 1.5 1.5 0.1 0.9 0 0 52 53 14 8.9 100 0.6 0.53 0.036 0.036
P1 1.5 1.5 0.1 1.2 0 0 36 37 6.8 4.4 53 0.8 0.73 0.049 0.049
P2 1.5 1.5 0.1 1.5 0 0 25 25 3.2 2.0 33 1.0 0.93 0.062 0.062
P3 1.5 1.5 0.1 1.8 0 0 18 18 1.6 1.0 22 1.2 1.1 0.076 0.076
P4 1.5 1.5 0.1 2.1 0 0 13 13 0.6 0.4 16 1.4 1.3 0.089 0.089
P5 1.5 1.5 0.1 2.4 0 0 10 11 0.6 0.3 12 1.6 1.5 0.10 0.10
P6 1.5 1.5 0.1 2.7 0 0 7.8 8.0 0.4 0.2 9.3 1.8 1.7 0.12 0.12
P7 1.5 1.5 0.1 3 0 0 6.4 6.7 0.4 0.2 7.5 2.0 1.9 0.13 0.13
P8 1.5 1.5 0.1 3.3 0 0 4.9 5.2 0.8 0.6 6.3 2.2 2.1 0.14 0.14
P9 1.5 1.5 0.1 3.6 0 0 4.7 4.7 0.3 0.1 5.4 2.4 2.3 0.16 0.16
Q0 1.5 1.5 0.3 0.9 0 0 54 58 29 16 120 0.6 0.4 0.08 0.08
Q1 1.5 1.5 0.3 1.2 0 0 37 40 15 8.3 60 0.8 0.6 0.12 0.12
R1 0.6 0.4 1.2 2.1 0 -10 5.6 6.8 3.2 3.0 5.7 1.8 0.76 2.9 6.8
R2 0.6 0.4 1.2 2.1 0 -20 5.8 6.9 3.4 3.1 5.7 1.8 0.80 2.8 6.8
R3 0.6 0.4 1.2 2.1 0 -30 6.0 7.0 3.7 3.0 5.7 1.8 0.85 2.5 6.9
R4 0.6 0.4 1.2 2.1 0 -40 6.2 7.0 4.1 3.0 5.8 1.8 0.92 2.1 6.9
R5 0.6 0.4 1.2 2.1 0 -50 6.4 7.0 4.5 3.0 5.8 1.8 1.0 1.7 6.8
R6 0.6 0.4 1.2 2.1 0 -60 6.5 7.0 4.3 2.9 5.8 1.8 1.1 1.3 6.5
R7 0.6 0.4 1.2 2.1 0 -70 6.1 6.8 3.8 2.5 5.9 1.8 1.2 0.92 6.1
R8 0.6 0.4 1.2 2.1 0 -80 6.0 6.7 3.6 2.5 5.9 1.8 1.2 0.70 5.8
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Supplementary Information: The finite ellipsoidal cavity model 3

Continuation of Table S1
# ax ay az dC ωx ωy εI

H εI
V εII

H εII
V εδV

dC
aC

dT
aC

dT
ρmax

dT
ρmin

R9 0.6 0.4 1.2 2.1 0 -90 5.9 6.7 3.6 2.5 5.9 1.8 1.3 0.63 5.6
S1 0.6 0.4 1.2 2.4 0 -10 5.3 6.2 3.3 2.8 5.4 2.0 1.0 3.9 9.0
S2 0.6 0.4 1.2 2.4 0 -20 5.5 6.3 3.4 2.8 5.4 2.0 1.0 3.6 9.0
S3 0.6 0.4 1.2 2.4 0 -30 5.7 6.4 3.6 2.7 5.4 2.0 1.1 3.2 8.9
S4 0.6 0.4 1.2 2.4 0 -40 5.9 6.4 3.7 2.6 5.4 2.0 1.2 2.7 8.7
S5 0.6 0.4 1.2 2.4 0 -50 6.0 6.4 3.9 2.5 5.5 2.0 1.3 2.1 8.4
S6 0.6 0.4 1.2 2.4 0 -60 6.1 6.4 3.8 2.5 5.5 2.0 1.3 1.6 8.0
S7 0.6 0.4 1.2 2.4 0 -70 6.1 6.4 3.6 2.5 5.5 2.0 1.4 1.1 7.4
S8 0.6 0.4 1.2 2.4 0 -80 5.5 6.1 3.3 2.1 5.5 2.0 1.5 0.84 6.9
S9 0.6 0.4 1.2 2.4 0 -90 5.3 5.9 3.1 1.9 5.5 2.0 1.5 0.75 6.8
T1 0.6 0.4 1.2 2.4 -10 0 4.8 5.5 3.0 2.5 5.4 2.0 1.0 4.0 8.8
T2 0.6 0.4 1.2 2.4 -20 0 4.3 4.6 2.6 1.9 5.5 2.0 1.1 4.0 8.0
T3 0.6 0.4 1.2 2.4 -30 0 3.8 4.0 2.1 1.4 5.7 2.0 1.2 3.9 6.9
T4 0.6 0.4 1.2 2.4 -40 0 3.5 3.6 1.6 1.0 5.9 2.0 1.2 3.8 5.5
T5 0.6 0.4 1.2 2.4 -50 0 3.3 3.4 1.2 0.8 6.1 2.0 1.3 3.6 3.9
T6 0.6 0.4 1.2 2.4 -60 0 3.4 3.4 0.9 0.6 6.3 2.0 1.4 2.5 3.3
T7 0.6 0.4 1.2 2.4 -70 0 3.0 3.0 0.6 0.4 6.5 2.0 1.5 1.4 2.9
T8 0.6 0.4 1.2 2.4 -80 0 3.1 3.0 0.5 0.2 6.6 2.0 1.6 0.75 2.4
T9 0.6 0.4 1.2 2.4 -90 0 3.3 3.0 0.8 0.4 6.6 2.0 1.7 0.56 2.2
Y1 0.2 0.2 1.2 3.6 0 0 3.5 4.4 1.4 1.4 4.8 3.0 2.0 72 72
Y2 0.2 0.2 1.2 3.6 0 0 3.0 3.8 1.3 1.3 3.7 3.0 2.0 72 72

This paper has been produced using the Blackwell Scientific Publications GJI LATEX2e class file.
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