
25 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Federico Sabbatini, G.C. (2022). Semantic Web-based Interoperability for Intelligent Agents with PSyKE.
Springer [10.1007/978-3-031-15565-9_8].

Published Version:

Semantic Web-based Interoperability for Intelligent Agents with PSyKE

Published:
DOI: http://doi.org/10.1007/978-3-031-15565-9_8

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/899474 since: 2022-11-03

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/978-3-031-15565-9_8
https://hdl.handle.net/11585/899474


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Sabbatini, F., Ciatto, G., Omicini, A. (2022). Semantic Web-Based Interoperability 
for Intelligent Agents with PSyKE. In: Calvaresi, D., Najjar, A., Winikoff, M., Främling, 
K. (eds) Explainable and Transparent AI and Multi-Agent Systems. EXTRAAMAS 
2022. Lecture Notes in Computer Science, vol 13283. Springer, Cham. pp. 124-142 

The final published version is available online at  https://dx.doi.org/10.1007/978-3-
031-15565-9_8 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the 
publishing policy. For all terms of use and more information see the publisher's website.   

 

https://cris.unibo.it/
https://dx.doi.org/10.1109/AICAS54282.2022.9869996
https://dx.doi.org/10.1109/AICAS54282.2022.9869996
https://dx.doi.org/10.1109/AICAS54282.2022.9869996
https://dx.doi.org/10.1109/AICAS54282.2022.9869996


Semantic Web-based Interoperability
for Intelligent Agents with PSyKE

Federico Sabbatini?1,2[0000−0002−0532−6777],
Giovanni Ciatto2[0000−0002−1841−8996], and

Andrea Omicini2[0000−0002−6655−3869]

1 Dipartimento di Scienze Pure e Applicate (DiSPeA)
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Abstract. Modern distributed systems require communicating agents
to agree on a shared, formal semantics for the data they exchange and
operate upon. The Semantic Web offers tools to encode semantics in
the form of ontologies, where data is represented in the form knowledge
graphs (KG). Applying such tools to intelligent agents equipped with
machine learning (ML) capabilities is of particular interest, as it may
enable a higher degree of interoperability among heterogeneous agents.
Indeed, inputs and outputs of ML models can be formalised through
ontologies, while the data they operate upon can be represented as KG.
In this paper we explore the combination of Semantic Web tools with
knowledge extraction—that is, a research line aimed at extracting intelli-
gible rules mimicking the behaviour of ML predictors, with the purpose
of explaining their behaviour. Along this line, we study whether and to
what extent ontologies and KG can be exploited as both the source and
the outcome of a rule extraction procedure. In other words, we inves-
tigate the extraction of semantic rules out of sub-symbolic predictors
trained upon data as KG—possibly adhering to some ontology. In doing
so, we extend our PSyKE framework for rule extraction with Semantic
Web support. In practice, we make PSyKE able to (i) train ML predic-
tors out of OWL ontologies and RDF knowledge graphs, and (ii) extract
semantic knowledge out of them, in the form of SWRL rules. A discus-
sion among the major benefits and issues of our approach is provided,
along with a description of the overall workflow.

Keywords: explainable AI · knowledge extraction · Semantic Web ·
intelligent agents · PSyKE

1 Introduction

There are two compelling needs in modern computational systems, namely: in-
telligence of the components, and interoperability [37,28] among them. On the
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one side, intelligence – here intended as the set of cognitive capabilities rang-
ing through image, speech, or text recognition, as well as automated reasoning,
deliberation, and planning; plus the criterion by which intertwining them –, is
required to improve the effectiveness of computational systems, as well as to
ease their interaction with humans. On the other side, interoperability – here
intended as the feature by which computational agents supported by different
computational technologies or platforms are capable to interact with each others
–, is necessary to keep the systems open to the addition of novel agents possibly
bringing novel capabilities.

Both intelligence and interoperability are increasingly necessary in computa-
tional systems, because of their complexity and pervasiveness. Indeed, many ca-
pabilities constituting intelligence are not programmed from scratch, but rather
learned from examples, via sub-symbolic machine learning (ML), and a plethora
of methods and toolkits are being designed and developed to serve this pur-
pose. Interoperability, in turn, is commonly achieved by letting agents exploit
shared syntaxes and semantics for the information they exchange—which of
course requires some (sufficiently flexible and expressive) common knowledge
representation means to be in place. Needless to say, the large variety of data
representation formats and tools for data processing and ML hinders interoper-
ability. Vice versa, targeting interoperability as the most relevant concern may
constrain the choice of the most adequate method/algorithm/technology for ML,
hence potentially hindering the way intelligence is attained. So, intelligence and
interoperability are competing features as well.

In this paper we address the issue of favouring data-driven intelligence while
preserving interoperability. We do so under the assumption that interoperability
is attained by letting intelligent agents adopt knowledge graphs and ontolo-
gies for symbolic knowledge representation, as supported by Semantic Web (SW
henceforth) technologies [5] such as RDF [29], OWL [19], and SWRL [22]. In
particular, we focus on the problem of letting these agents interoperate despite
the different data formats and schemas, and the different ML algorithms and
toolkits they leverage upon when dealing with the sub-symbolic knowledge.

Within the explainable artificial intelligence [17] community, sub-symbolic
knowledge can be tackled via symbolic knowledge extraction (SKE), which pro-
vides methods and algorithms to distil symbolic knowledge – mostly in the form
of rule lists or trees – out of sub-symbolic predictors. There, a key goal for SKE
is to make the sub-symbolic knowledge agents acquire from data intelligible to
human beings. Conversely, in this paper we address the problem of extracting
semantic knowledge to reach inter-agent explainability—reifying the vision pro-
posed in [8]. In other words, we aim at letting agents extract semantic knowledge
– in the form of SWRL rules, possibly adhering to some OWL ontology – out of
ML predictors of any shape—hence enabling a wider degree of interoperability
among heterogeneous distributed agents. This is clearly based on the assump-
tion that agents are levering upon a data-driven, ML-based approach to support
their intelligent behaviour—e.g. by wrapping trained neural networks or other
predictors of any sorts, or by training them as part of their operation.
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Along this line, we focus on extending the PSyKE framework [35] for sym-
bolic knowledge extraction towards SW-compatibility. Indeed, at the time of
writing, PSyKE consists of a Python library supporting the extraction of Pro-
log rules out of ML predictors of any sort and shape—there including neural
networks. However, while this is very interesting for human beings and for logic
programmers, intelligent agents may need knowledge to be extracted in semantic
form—possibly, out of predictors trained upon semantic data.

Accordingly, in this paper we propose an extension for PSyKE’s design and
technology aimed at supporting SW technologies. Notably, PSyKE is a general-
purpose framework supporting the extraction of logic rules out of ML predic-
tors, via multiple algorithms. To the best of our knowledge, it is also the only
available technology providing a general API for symbolic knowledge extraction.
Currently, however, PSyKE is only capable of extracting symbolic knowledge in
the form of Horn clauses lists (a.k.a. Prolog theories).

In this work, we study whether and to what extent ontologies and knowledge
graphs (KG) can be exploited as both the source and the outcome of a rule
extraction procedure. In other words, we investigate the extraction of semantic
rules out of sub-symbolic predictors trained upon data as KG—possibly adhering
to an ontology. In practice, we make PSyKE able to train ML predictors out
of OWL ontologies and RDF knowledge graphs, and then to extract semantic
knowledge out of them, in the form of SWRL rules. A discussion among the
major benefits and issues of our approach is provided as well, along with a
description of the overall workflow.

Accordingly, the remainder of this work is structured as follows. In Section 2 a
brief overview on the main topics covered in this paper is reported. In Section 3
the extended design of PSyKE is presented, whereas in Section 4 a concrete
applicative example is shown. Open issues are summarised in Section 5; while
conclusions are drawn in Section 6.

2 State of the Art

In this section, we provide a brief description of the main topics covered by this
paper, namely: symbolic knowledge extraction, the PSyKE framework, and the
Semantic Web. Furthermore, as our contribution relies on the Owlready Python
library [26], we also provide an overview of its main features.

2.1 Symbolic Knowledge Extraction

ML techniques and, in particular, (deep) artificial neural networks (ANN) are
more and more applied to face a growing amount of real-world problems. Despite
their impressive predictive capabilities, one of the most critical issues related to
most ML solutions is their black-box (BB) behaviour [27], intended as their
inability in providing to human users a comprehensible explanation about either
the knowledge they acquired during the training, or the logic leading from a
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given input to the corresponding output prediction. This opacity is inherently
bound to the sub-symbolic nature of ML algorithms.

Several solutions have been suggested by the XAI community to overcome
this inconvenience. One of them is the adoption of more (human-)interpretable
models [34], even though they may not have equivalent predictive capabilities.
Alternatively, inspection techniques are applicable to the BB predictors [16] to
obtain interpretable [9] outputs without sacrificing the underlying model predic-
tive capability.

Among the most promising methods to derive post-hoc explanations there
are symbolic knowledge extraction techniques, based on the construction of a
symbolic model that mimics the behaviour of a BB predictor in terms of input-
output relationship. Symbols adopted by SKE algorithms to represent intelligible
knowledge are, for instance, lists or trees of rules [14,24,31,32,33] that can be
used to make human-understandable predictions as well as to shed a light on
the internal behaviour of a BB model.

SKE is a precious resource when dealing with critical application fields – e.g.,
healthcare [6,13,18], financial forecasting [3,4,43], credit card screening [38], but
not only [2,21] –, where it is not acceptable to make decisions on the basis of
“blind” AI predictions. For example, consider the case of an autonomous vehicle
that does not steer when it is about to collide with a pedestrian. This unexpected
behaviour may be caused by a misclassification of the pedestrian or by a wrong
conclusion corresponding to the detection of a pedestrian on the road.

Within the scope of this paper, SKE is the key mechanism by which semantic
knowledge can be grasped by trained ML predictors rather than being manually
crafted by humans. Under this perspective, ML predictors can be considered as
the tools by which sub-symbolic knowledge is extracted from data, whereas SKE
can be considered as the tool by which knowledge is converted from sub-symbolic
to symbolic form.

2.2 PSyKE

PSyKE [35] is a general-purpose software library providing a unified application
programming interface (API) for SKE algorithms. In other words, it provides
a common way of exploiting different SKE algorithms on different kinds of ML
predictors.

At the time of writing, PSyKE supports several pedagogical [1] SKE pro-
cedures (e.g., [7,10,11,23,36]), for both supervised classification and regression
tasks, letting users choose the most suitable extraction method w.r.t. the data
and task at hand. The library also provides several utilities to help users with
ML-related tasks—e.g., data set manipulation, performance assessment, algo-
rithm comparison.

W.r.t. our goal of making PSyKE SW-compatible, two major aspects are
currently lacking, namely: (i) the capability of training ML predictors out of
knowledge graphs, and (ii) the capability of extracting knowledge in SWRL
format, possibly adhering to an OWL ontology. Indeed, so far, PSyKE enables
users to train ML algorithms from data sets structured as tables – where each
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column is a feature and each row is an instance – and to extract knowledge in
the form of lists of Horn clauses—in particular, rules in Prolog format. Hence,
in the remainder of this paper, we discuss how the design and implementation
of PSyKE can be extended to enable such capabilities.

2.3 Semantic Web

The Semantic Web is considered since its birth as a tool for interoperability—
between humans and machines as well as between software agents [5]. It aims at
allowing automated systems to consciously handle contents available on the Web
by providing methods to formalise data together with their implicit semantics
and inference rules useful to reason with the data. One of the Semantic Web
enabling technologies is the Resource Description Framework (RDF) [29], used to
represent objects and relationships between them. Concepts described through
RDF – named resources – are represented by a Universal Resource Identifier
(URI) and encoded as triples representing a subject (i.e., a thing), a verb (i.e., a
property or a relationship) and an object (i.e., a value or another thing). In the
SW vision semantic interoperability is possible thanks to ontologic languages and
ontologies—i.e., taxonomies defining classes, subclasses, properties, relationships
and inference rules.

The Web Ontology Language (OWL) [19] is an ontologic language extending
RDF with First-Order Logic expressiveness. It is expressed in triples as well, but
it also provides a semantics for the represented RDF resources, enabling the def-
inition of classes and properties, hierarchies – i.e., subclasses and subproperties
–, restrictions and peculiar characteristics—e.g., inverse or transitive properties.

Inductive rules involving Semantic Web entities are represented thanks to
the Semantic Web Rule Language (SWRL) [22]. Rules are expressed in terms of
OWL concepts—i.e., classes, properties and particular individuals. SWRL also
provides a number of built-in concepts similar to the standard Prolog predi-
cates, for instance to represent arithmetic, relational and commonly used string
operators. SWRL rules can be added to OWL ontologies and are compatible
with automated reasoners. SWRL and other ontologic languages make it possi-
ble to perform automatic reasoning with Web resources. Examples of automated
reasoners are HermiT [15,30,39] and Pellet [41,42].

Thanks to the Semantic Web heterogeneous agents acting inside a distributed
system can communicate and exchange data even if they are not explicitly de-
signed to cooperate together. This is possible since all the involved entities agree
on an implicit semantics through a shared ontology.

On the other hand, the main ontology drawbacks are the time and human
expertise required to build them and the implications deriving from their de-
coupled structure, possibly leading to incompleteness or inconsistency of the
ontologies [12,20,40].
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2.4 Owlready

According to its online documentation,3 Owlready [26] is a Python package
enabling ontology-oriented programming. It considers OWL ontologies as Python
objects, allowing users to modify and save them, as well as to add methods to
the classes defined in the ontologies. In addition, Owlready supports semantic
reasoning via the HermiT or Pellet reasoners.

From a technical perspective, Owlready supports the construction of OWL
ontologies, as well as the loading and inspection of pre-existing ontologies. As
practical features, it supports enumerating the classes, individuals and rules con-
tained in a given ontology, as well as all the properties of a class. Furthermore,
Owlready supports SWRL rules, enabling the empowerment of OWL ontology
expressiveness with if-then logic rules. In the conditional part of rules it is pos-
sible to insert typical SWRL built-in predicates involving class properties and
constant values.

The HermiT and Pellet reasoners included in Owlready make it possible to
perform automated reasoning on the basis of the information included in ontolo-
gies. Thus, they may be exploited to grant predictive capabilities to ontologies,
especially in classification tasks, if they contains SWRL rules explaining how to
perform such predictions. In addition, they allow users to highlight inconsisten-
cies in the ontologies—for instance, rules in contradictions between each others
or w.r.t. specific individuals.

In this work we use version 2 of Owlready.

3 Interoperability via PSyKE

Fig. 1. PSyKE design.

3 https://owlready2.readthedocs.io [Online; last accessed February 28, 2022]

https://owlready2.readthedocs.io
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PSyKE is a software tool to extract logic rules from opaque ML predictors. It
offers several interoperable and interchangeable SKE algorithms, to be chosen on
the basis of the task and data at hand, and it exposes a unified application pro-
gramming interface (API) for all of them. The architecture of PSyKE – reported
in Figure 1 – is designed around the idea of extractor, i.e., a generic knowledge
extraction procedure accepting BB predictors as inputs, together with the data
set used during their training, and producing theories of logic rules as output.
The input data set should be provided along with its corresponding schema—
that is, a formal description of the data set’s features in terms of names and data
types. This allows extractors to inspect the knowledge the BB predictor has ac-
quired from that data set, as well as to take data- and type-driven decisions
while the extraction procedure is going on. This, in turn, enables the generation
of more readable logic rules, possibly leveraging on the feature names and data
types described into the data schema.

As the reader may notice from Figure 1, any data set provided to some
extractor is assumed to be manipulated by some processor entity. This is where
input data is discretised or scaled through one of the utilities included in PSyKE.
Of course, where and how data should be discretised or scaled really depends
on the task at hand, other than on the requirements of the particular extraction
algorithm chosen by the user (among the many available in PSyKE).

The presented architecture is here extended to support SW-related features,
following the purpose of making PSyKE suitable as an interoperability tool for
intelligent heterogeneous agents. While pursuing this goal, we assume agents to
be entities capable to perform ML tasks on locally available data. In our vision
– depicted in Figure 2 –, agents apply SKE techniques to gain the ability to
represent in a symbolic form what they learn from local data. The extracted
symbolic knowledge may then be exchanged among agents, by assuming that its
form follows a shared syntax and semantics. Semantic Web technologies – such
as RDF, OWL, and SWRL – fit the picture by playing exactly this role.

Along this line, we enrich the design of PSyKE to loosen its strict dependency
on (i) input tabular data sets and (ii) output Prolog theories. In other words,
the extended version of PSyKE accepts more than one kind of input data and
produces results in more than one format, to be chosen by the user. In more
details, PSyKE gains the ability to work on input data encoded in the form of
OWL ontologies and to represent the extracted knowledge as agent-interpretable
SWRL rules inserted into an OWL ontology, for instance the one given as input.
This brings at least two benefits to the users of PSyKE. The first benefit is
that in this way it is possible to apply ML techniques to data gathered by
intelligent agents and encoded as knowledge graphs. On the other hand, the
output knowledge is no longer bounded to be a human-readable Prolog theory
alone, but it can now be represented in a new format that is suitable to be
exchanged between heterogeneous entities as well.

To serve these purposes, PSyKE is enriched with two further modules: one
aimed at loading input training data from either tabular (e.g. CSV files) or
semantic (e.g. OWL or RDF files) sources, and the other aimed at representing
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the extracted rules in some output format of choice—currently, either Prolog or
SWRL, which can be chosen interchangeably without information loss.

Behind the scenes, both modules rely upon software utilities aimed at con-
verting tabular data in semantic form and vice versa. These processes are called
relationalisation and propositionalisation, respectively. Propositionalisation is re-
quired to apply existing ML algorithms to data that is not represented according
to the expected format—i.e., a tensor. Thanks to this conversion it is possible to
obtain a proper representation to avoid reinventing all the ML layer of PSyKE.
Conversely, relationalisation is necessary when there is the need to extract se-
mantic rules from tabular data sets, since the output SWRL rules produced by
PSyKE assume the existence of an OWL ontology containing the definitions of
the classes involved in the SWRL rules.

It is worth mentioning that, besides interoperability, the proposed extensions
bring key benefits to the SKE playground as well. For instance, by extracting
rules in semantic format, one may detect the presence of inconsistencies in the
extracted rules themselves, as well as between these rules and the individuals of
an ontology

Accordingly, in the following subsections we delve into the details of (i) how
SWRL rules are constructed, (ii) how propositionalisation and relationalisation
work, and (iii) which benefits Semantic Web technologies brings to the SKE
playground.

3.1 Output Rules in SWRL Format

The extension of PSyKE presented in this paper is able to output extracted
knowledge in the form of SWRL rules, more agent-interpretable than the Pro-
log rules supported in the previous version of our framework. SWRL rules
are structured as logical implications, where a list of preconditions imply a
postcondition—that is, if all of the preconditions are satisfied, then the postcon-
dition is true. All conditions are expressed as triples composed of subject, pred-
icate and object. Subjects are generally data set instances or properties. In the
first case the predicate is a “has-a” relationship and the object is a property. Oth-
erwise, the predicate is a relational operator and the object is a constant value.
Property names recall those of the input features to ease human-readability, even
if it is not the definite goal of this work.

For problems described by m input features the precondition list is composed
of at least m+ 3 triples, since (i) the first predicate ensures that the instance at
hand belongs to a class defined in the ontology; (ii) the following m predicates
bind each input feature to a variable to be used in other predicates; (iii) one
predicate is used in the same manner for the output variable; (iv) at least one
predicate discriminates the rule by introducing some constraints on the input
variables. Since rules are not ordered, it is not possible to have the equivalent of
Prolog facts, because facts would be default rules always true, causing inconsis-
tencies with any other rule having a different output value.
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A mono-dimensional classification task on a data set having m input features
is represented by the following SWRL rules:

Object(?o),

Prop_1(?o, ?p1), ..., Prop_m(?o, ?pm),

Cond(?p1, c11), ..., Cond(?p1, c1j),

...,

Cond(?pm, cm1), ..., Cond(?pm, cmk) =⇒ Output(?o, out),

where o is an entity of class Object (first row), having Prop_1, ..., Prop_m

properties which corresponding values are represented by the p1, ..., pm vari-
ables (second row). Each variable pi is subject to a non-fixed number of condi-
tions Cond. Conditions express equality or inequality constraints related to the
variables pi w.r.t. the specified constants cij. Specifically, available conditions
are equal, not equal, less than, less or equal than, greater than and greater or
equal than. Constant values can be numeric or strings. If all the preconditions
are true – i.e., if o is an object of a certain class with specific properties and
these properties assume values in defined ranges –, then the value of the Output

property of o is equal to the constant out. Such property represents the target
of the classification task.

A similar rule structure is adopted for regression tasks having constant output
values and, in general, for all BB having discrete outputs. So far, regression
SWRL rules are not supported, since their triple-based syntax does not allow
to encode linear combinations of input variables without having an explosion of
the number of rule preconditions.

3.2 Propositionalisation

Propositionalisation [25] accepts data encoded as knowledge graphs as input, and
outputs the equivalent tabular representation. This means that all the entities
and relations mentioned in the KG are extracted and rearranged as a table.

In PSyKE the propositionalisation of an ontology containing n individuals
having m distinct properties produces a tabular data set composed of n rows
and m columns and is performed as follows. Individuals contained in an ontology
are sequentially examined and for each individual a new row is created in the
tabular translation. For each ontology individual the corresponding properties
are copied into the proper column of the table.

Formally, the i-th individual of class ClassName encoded in an OWL ontology,
having m properties of which the first is numeric and the second and the last
are string, is encoded as follows:�

1 <ClassName rdf:about="#individual_i">
2 <rdf:type
3 rdf:resource="http: //www.w3.org /2002/07/ owl#NamedIndividual"/>
4 <Prop_1 rdf:datatype="http://www.w3.org /2001/ XMLSchema#decimal">v_1</Prop_1 >
5 <Prop_2 rdf:datatype="http://www.w3.org /2001/ XMLSchema#string">v_2</Prop_2 >
6 ...
7 <Prop_m rdf:datatype="http://www.w3.org /2001/ XMLSchema#string">v_m</Prop_m >
8 </ClassName >
� �

The individual can be propositionalised into the following tabular instance:
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# Prop 1 Prop 2 ... Prop m

... ... ... ... ...
i v 1 v 2 ... v m
... ... ... ... ...

3.3 Relationalisation

Dually w.r.t. propositionalisation, relationalisation accepts tabular data as input
and it outputs an equivalent OWL ontology. This is achieved by creating a class
for the concept represented by the table and a property for each data set column,
having the domain equal to the created class and a range equal to the type of
the column data. Then, for each row of the table an individual is added to the
ontology, by copying the corresponding table values. This means that in PSyKE
a table having n rows and m columns is converted to an ontology with 1 class,
m functional properties and n individuals.

Starting from the table shown in the previous subsection, and assuming the
same conditions about the property types, the following class and functional
properties are produced:�

1 <owl:Class rdf:about="#ClassName">
2 <rdfs:subClassOf rdf:resource="http://www.w3.org /2002/07/ owl#Thing"/>
3 </owl:Class >
4
5 <owl:DatatypeProperty rdf:about="#Prop_1">
6 <rdf:type rdf:resource="http: //www.w3.org /2002/07/ owl#FunctionalProperty"/>
7 <rdfs:domain rdf:resource="#ClassName"/>
8 <rdfs:range rdf:resource="http://www.w3.org /2001/ XMLSchema#decimal"/>
9 </owl:DatatypeProperty >

10
11 <owl:DatatypeProperty rdf:about="#Prop_2">
12 <rdf:type rdf:resource="http: //www.w3.org /2002/07/ owl#FunctionalProperty"/>
13 <rdfs:domain rdf:resource="#ClassName"/>
14 <rdfs:range rdf:resource="http://www.w3.org /2001/ XMLSchema#string"/>
15 </owl:DatatypeProperty >
16
17 ...
18
19 <owl:DatatypeProperty rdf:about="#Prop_m">
20 <rdf:type rdf:resource="http: //www.w3.org /2002/07/ owl#FunctionalProperty"/>
21 <rdfs:domain rdf:resource="#ClassName"/>
22 <rdfs:range rdf:resource="http://www.w3.org /2001/ XMLSchema#string"/>
23 </owl:DatatypeProperty >
� �

The individual corresponding to the i-th row of the table is exactly the one
reported at the beginning of the previous Subsection.

3.4 Semantic Web for SKE: Pros and Cons

The extraction of knowledge adhering to a specific SW format enables, above
all, direct interoperability between heterogeneous intelligent agents, intended
as mutual exchange of symbolic knowledge. Ontologies containing SWRL rules
represent self-contained objects able to perform (agent-)interpretable predictions
but not only. Indeed, the reasoning capabilities provided by ontologies can be
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exploited to check the quality of the extracted knowledge in terms of consistency.
An ontology is consistent if (i) all the SWRL rules do not express contradictions
among each others, and (ii) all the individuals follow at the same time all the
ontology rules, without contradictions. For instance, two rules having the same
preconditions but opposite postconditions produce a contradiction, so the on-
tology containing them is not consistent. Analogously, there is a contradiction
– and therefore an inconsistency – for a classification task when the extracted
rules list contains (i) a rule r1 with a precondition on the input feature f1 and
corresponding postcondition equal to class c1, and (ii) a different rule r2 with
a precondition on the input feature f2 6= f1 and corresponding postcondition
equal to class c2 6= c1. Hence, if there is an individual with features f1 and f2
satisfying at the same time both r1 and r2 the ontology is not consistent.

In the case of PSyKE extraction mechanism, contradictions between rules
may occur after using a knowledge extraction algorithm that do not provide
exclusive rules, whereas contradictions between individuals and rules may occur
when extracted rules are inserted into an ontology containing individuals with
known output values, if such values are different w.r.t. those provided by the
rules—for instance, if some rules predict wrong labels in classification tasks.
However, it is possible to reason in presence of overlapping rules, if for each
individual to be analysed there is at most one SWRL rule encompassing it.

The inference of missing data is the mechanism enabling to make predic-
tions based on the ontology and without any supplementary tool. Since all the
extracted rules refer to the output variable of a data set on the basis of its in-
put variables, these rules can be exploited to predict the output of unknown
instances, if the required inputs are provided—as happens with any predictive
model. This inference mechanism may be exploited to remove inconsistencies
between individuals obtained from a data set – and thus containing known out-
put values – and rules extracted via SKE methods—possibly leading to output
values different from the true ones, since they approximate a BB approximating,
in turn, the input/output relationship of the data set itself. It is sufficient to
remove the true output values and to use the inferred output instead.

4 An Example: The Iris Data Set

In the following we provide a simple relationalisation example performed with
PSyKE on a real-world data set, then we exploit its extended capabilities to
extract symbolic knowledge in the form of SWRL rules. We use the well-known
Iris data set,4 composed of 150 instances representing individuals of Iris plants.
Each exemplary is described by 4 numeric input features – i.e., width and length
of petals and sepals – and a single output label—corresponding to the Iris species.
The data set is commonly used to perform classification tasks and there are 3
possible different classes.

For our experiment we consider the tabular data set available on the UCI
ML Repository. We use it to train a k-NN predictor and then we relationalise

4 https://archive.ics.uci.edu/ml/datasets/iris [Online; last accessed 5 March 2022]

https://archive.ics.uci.edu/ml/datasets/iris
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it to obtain an equivalent knowledge graph. Finally, we extract knowledge from
the k-NN via the CART algorithm in the form of SWRL rules, merging them
with the knowledge graph to obtain the resulting OWL ontology.

# SepalLength SepalWidth PetalLength PetalWidth iris

1 5.1 3.5 1.4 0.2 setosa
2 7.0 3.2 4.7 1.4 virginica
3 6.3 3.3 6.0 2.5 versicolor
...

...
...

...
...

...
Table 1. A portion of the Iris dataset

Table 1 depicts (a portion of) the Iris dataset and its structure. Conversely,
the following listing reports the corresponding ontology structure—i.e., the Iris
class and two example properties (the sepal length, real-valued, and the output
iris class, having type string):�

1 <owl:Class rdf:about="#Iris">
2 <rdfs:subClassOf rdf:resource="http://www.w3.org /2002/07/ owl#Thing"/>
3 </owl:Class >
4
5 <owl:DatatypeProperty rdf:about="#SepalLength">
6 <rdf:type rdf:resource="http: //www.w3.org /2002/07/ owl#FunctionalProperty"/>
7 <rdfs:domain rdf:resource="#Iris"/>
8 <rdfs:range rdf:resource="http://www.w3.org /2001/ XMLSchema#decimal"/>
9 </owl:DatatypeProperty >

10
11 <owl:DatatypeProperty rdf:about="#iris">
12 <rdf:type rdf:resource="http: //www.w3.org /2002/07/ owl#FunctionalProperty"/>
13 <rdfs:domain rdf:resource="#Iris"/>
14 <rdfs:range rdf:resource="http://www.w3.org /2001/ XMLSchema#string"/>
15 </owl:DatatypeProperty >
� �

An example of individual – assuming all input and output features have been
defined –, is the following:�

1 <Iris rdf:about="#iris1">
2 <rdf:type
3 rdf:resource="http: //www.w3.org /2002/07/ owl#NamedIndividual"/>
4 <SepalLength rdf:datatype="http://www.w3.org /2001/ XMLSchema#decimal">
5 5.1
6 </SepalLength >
7 <SepalWidth rdf:datatype="http://www.w3.org /2001/ XMLSchema#decimal">
8 3.5
9 </SepalWidth >

10 <PetalLength rdf:datatype="http://www.w3.org /2001/ XMLSchema#decimal">
11 1.4
12 </PetalLength >
13 <PetalWidth rdf:datatype="http://www.w3.org /2001/ XMLSchema#decimal">
14 0.2
15 </PetalWidth >
16 <iris rdf:datatype="http: //www.w3.org /2001/ XMLSchema#string">
17 setosa
18 </iris>
19 </Iris>
� �
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Finally, the knowledge graph representing the complete domain structure and the
other 2 individuals previously described is graphically represented in Figure 3.

Fig. 3. Knowledge graph corresponding to the Iris data set obtained with PSyKE.

The rules extracted during the experiment are the following: (i) class is “se-
tosa” if the petal length is less than or equal 2.75 cm; (ii) otherwise, class is
“virginica” if the petal width is greater than 1.68 cm; (iii) otherwise, class is
“versicolor”.

The same concepts can be formalised as SWRL rules and appended to the
previous ontology:�

1 Iris(?iris), SepalLength (?iris , ?sepalLength),
2 SepalWidth (?iris , ?sepalWidth), PetalLegth (?iris , ?petalLength),
3 PetalWidth (?iris , ?petalWidth), lessThanOrEqual (? petalLength , 2.75)
4 -> iris(?iris , "setosa")
5
6 Iris(?iris), SepalLength (?iris , ?sepalLength),
7 SepalWidth (?iris , ?sepalWidth), PetalLegth (?iris , ?petalLength),
8 PetalWidth (?iris , ?petalWidth), greaterThan (? petalLength , 2.75),
9 greaterThan (?petalWidth , 1.68) -> iris(?iris , "virginica")

10
11 Iris(?iris), SepalLength (?iris , ?sepalLength),
12 SepalWidth (?iris , ?sepalWidth), PetalLegth (?iris , ?petalLength),
13 PetalWidth (?iris , ?petalWidth), greaterThan (? petalLength , 2.75),
14 lessThanOrEqual (? petalWidth , 1.68) -> iris(?iris , "versicolor")
� �
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5 Open Issues

Even though the new design of the PSyKE platform proved to be efficient and
reliable in the presented case study, during our work we highlighted several critic
situations that require further investigations.

The first issue is related to the semantics of output SWRL rules w.r.t. the
classical PSyKE Prolog rules. Prolog rules, for their nature, are always non-
overlapping, since they are evaluated in order and, thus, only one rule can be
applied at a time. Conversely, the SWRL rules belonging to an ontology are not
ordered, so a given individual can match more than one rule contemporaneously.
This may lead to the detection of inconsistencies during predictions performed
via PSyKE, since some SKE algorithms supported by the platform produce
output lists with possibly overlapping rules. In the case of classification this
implies that an individual, according to the ontology rules, can belong to more
than one different class, resulting in an inconsistency. Since the described issue
comes along with a positive potential, we plan to exploit the ontology capability
of highlighting inconsistencies to enable a better inspection/debugging of the BB
behaviour as well as of the extraction algorithms’ implementations, providing to
developers exact motivations for BB misclassifications and the precise boundaries
of overlapping rules.

The second issue is related to the representation of continuous output values
in SWRL rules. Due to their reduced expressiveness w.r.t. Prolog language, they
do not allow a linear combination of input variables to be used in the conse-
quent part of rules. This means that only constant values can be associated to
rule outputs. While this is not a problem in classification tasks, where the output
predictions should be exactly a constant value representing the class labels of
classified individuals, the inability to handle continuous output limits the appli-
cation of some SKE algorithms devoted to regression tasks. However, since many
SKE procedures supported by PSyKE that are designed for regression introduce
– due to their design – a discretisation of continuous outputs, SWRL rules can
be produced in the majority of cases.

Finally, inconsistencies may arise after the addition of the extracted knowl-
edge in the form of SWRL rules to the ontology containing the input data. This
is caused – besides by conflicts in overlapping extracted rules – by (i) wrong
class predictions of the underlying BB classifier, or (ii) discretised or approxi-
mated output values in regression rules. In the first case, the underlying model
gives for some individuals a wrong prediction. An extraction procedure is then
applied to the model, resulting in the production of rules having misclassifica-
tion issues following those of the model itself. When added to the input ontology
these rules are inconsistent, since lead to a (partial) wrong classification of the
training set individuals, having known class label encoded in the ontology. In
the second case, a similar reasoning holds, since the inconsistency is a mismatch
between continuous output values given in input as training individuals and the
approximated/discretised rule output values. This issue can be overcome by re-
moving the output variable values from the ontology and by relying only on the
extracted SWRL rules to obtain the predicted output values instead.
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6 Conclusions

In this paper we present an extension of the design of the PSyKE platform
aimed at combining SW tool and SKE from black-box predictors. PSyKE is ex-
tended with the capability of managing knowledge graphs and ontologies other
than tabular data as inputs, since these are the most common formats shared
in the SW. As for the output knowledge, the new version of PSyKE can provide
SWRL rules included into an ontology, thus enabling automatic reasoning and
knowledge consistency checks. In addition, several utilities to relationalise and
propositionalise data encoded in various formats are added. Thanks to the pre-
sented extension, the knowledge extraction workflow of PSyKE is generalised,
since it can now begin and terminate in the semantic domain, without being
bounded to specific input data and output rule formats.

Notably, our contributions – in particular, w.r.t. the extraction of semantic
knowledge out of ML models – promotes interoperability (based on extracted
KG) between heterogeneous intelligent agents leveraging upon sub-symbolic AI—
provided, of course, that they adopt PSyKE for knowledge extraction. Further-
more, despite our contribution is tailored on PSyKE – at least, at the techno-
logical level –, we argue that this paper can also be read as guide describing how
to extract semantic knowledge out of ML predictors in the general case. Hence,
in our future works, we plan to describe the extraction of semantic knowledge
in a general, technology-agnostic way.

Even though our platform provides the expected results for classification
tasks, further investigations should be carried out regarding problems having
regressive nature, since the SWRL rules provided in output are not suited to
represent linear combinations of variables. Our future works will be focused also
on addressing consistency issues after the extraction of overlapping rules. Finally,
we plan to perform more complete tests, especially on complex real-world data
sets and involving end-users.
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R. (eds.) Proceedings of the 2004 International Workshop on Description Log-
ics (DL2004), Whistler, British Columbia, Canada, June 6-8, 2004. CEUR Work-
shop Proceedings, vol. 104. CEUR-WS.org (2004), http://ceur-ws.org/Vol-104/
30Sirin-Parsia.pdf

42. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. Journal of Web Semantics 5(2), 51–53 (2007). https://doi.org/
10.1016/j.websem.2007.03.004

43. Steiner, M.T.A., Steiner Neto, P.J., Soma, N.Y., Shimizu, T., Nievola, J.C.: Using
neural network rule extraction for credit-risk evaluation. International Journal of

https://dl.acm.org/doi/10.5555/152181
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
http://ceur-ws.org/Vol-2963/paper14.pdf
http://ceur-ws.org/Vol-2963/paper14.pdf
https://doi.org/10.1007/978-3-030-82017-6_2
https://doi.org/10.1007/978-3-030-82017-6_2
https://doi.org/10.1109/ISGTEUROPE.2010.5638876
https://doi.org/10.1109/ISGTEUROPE.2010.5638876
https://doi.org/10.1142/S0129065711002821
https://doi.org/10.1142/S0129065711002821
http://ceur-ws.org/Vol-432/owled2008eu_submission_12.pdf
https://doi.org/10.1007/978-3-540-76890-6_50
https://doi.org/10.1007/978-3-540-76890-6_50
http://ceur-ws.org/Vol-104/30Sirin-Parsia.pdf
http://ceur-ws.org/Vol-104/30Sirin-Parsia.pdf
https://doi.org/10.1016/j.websem.2007.03.004
https://doi.org/10.1016/j.websem.2007.03.004
https://doi.org/10.1016/j.websem.2007.03.004
https://doi.org/10.1016/j.websem.2007.03.004


20 F. Sabbatini et al.

Computer Science and Network Security 6(5A), 6–16 (2006), http://paper.ijcsns.
org/07 book/200605/200605A02.pdf

http://paper.ijcsns.org/07_book/200605/200605A02.pdf
http://paper.ijcsns.org/07_book/200605/200605A02.pdf

