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Algorithms based on Branch and Bound for the
Flying Sidekick Traveling Salesman Problem

Mauro Dell’Amico Roberto Montemanni∗ Stefano Novellani

University of Modena and Reggio Emilia, Italy

Abstract

The use of drones in urban logistics is gaining more and more interest. In this
paper we consider the flying sidekick traveling salesman problem, where some
customers require a delivery and they can be served either by a truck or by a drone.
The aim is minimizing the total time required to service all the customers.

We present a branch and bound algorithm especially designed to efficiently tar-
get small instances up to 15 customers and a heuristic algorithm, using the branch
and bound as a subroutine, to attack larger instances. Extensive experimental re-
sults suggest the effectiveness of the exact solver for small instances and shows the
heuristic is able to provide state-of-the-art results for medium/large instances.

Keywords: Traveling Salesman Problem; Drone-Assisted Deliveries; Branch
and Bound; Heuristic Algorithms.

1 Introduction
Unmanned vehicles, and aerial drones in particular, are becoming of great interest in
many sectors ranging from precision agriculture to catastrophic events management
and freight delivery. Logistics operators are concretely considering the use of these
vehicles for deliveries to customers, due to the potential economical advantages and
flexibility of such a solution (Otto et al. [23], Carlsson and Song [8], Pei et al. [24], De
Boeck, Decouttere and Vandaele [5], Dönmez et al [15]).

The first optimization work involving the use of one truck and one drone was the
seminal paper by Murray and Chu [22], where the Flying Sidekick Traveling Sales-
man Problem (FSTSP) was firstly introduced. In this problem, the truck and the drone
cooperate to serve customers. The drone operates from/to the truck when the latter is
stationary, and the drone can serve one customer at a time. There is a synchronization
phase when a truck has to collect back a drone. The objective function is to minimize
the time required to serve all the customers and to go back to the depot. Some cus-
tomers can be visited only by the truck, due to the characteristics of the delivery. In
this form of the problem, the drone cannot return at the launching point, each drone
flight is limited by a given battery endurance, and there are handling times to launch
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and collect the drone. Finally each customer can be visited only once. In [22] a Mixed
Integer Linear Programming (MILP) formulation and three basic heuristic methods are
proposed. Dell’Amico et al [14] propose a random restart local search matheuristic ap-
proach for the FSTSP, while De Freitas and Penna [10] propose a randomized variable
neighborhood descent and a hybrid general variable neighbourhood search algorithm
for a variant of the FSTSP. Yurek and Ozmutlu [30] propose an iterative algorithm
based on a decomposition approach. Ha et al. [17] solve a FSTSP whose objective
function minimizes the costs depending on travelled distance and waiting times of both
the truck and the drone, in contrast with the original version that minimizes the com-
pletion time of all the operations. They propose a MILP based on the Murray and Chu
one and two heuristic algorithms. One heuristic first solves the TSP and then includes
drone service with local search procedures. The second one is a greedy randomized
adaptive search procedure that splits a TSP solution so to include drone flights and
then improves the solution thanks to local search procedures. Ha et al. [18] propose a
hybrid genetic algorithm to solve the minimum cost and the minimum completion time
versions of the FSPTSP. Dell’Amico et al. [11] solve the FSTSP and some variants.
They propose two mixed integer linear programming formulations that substantially
refine the one of [22]. The same authors also propose in [13] further improved formu-
lations able to solve larger instances.

Another problem involving the use of a truck and a drone is the TSP with drone
(TSP-D), introduced in Agatz et al. [1]. It shares many characteristics with the FSTSP,
but there are some substantial differences: the customers can be visited multiple times
by the truck if it is a convenient location for launching and collecting a drone, the drone
can return to the same place it has been launched, the battery endurance of the drone
is unlimited and launching and rendezvous times are not considered. An integer linear
programming model and some heuristics are presented by the authors. Of particular
interest for the current research are the heuristic methods, since they can be easily
adapted to the FSTSP. The most promising of them will be used as a reference later
on in the experimental section. Bouman et al. [6] extend the work by Agatz et al. [1]
by solving the TSP-D with dynamic programming that first enumerates the shortest
paths that a truck can do, then combines some of the truck paths with drone flights, and
eventually it combines the components to provide the optimal solution. To shorten the
computing times the authors also propose a heuristic method obtained by restricting on
the number of nodes visited by the truck during a drone flight.

Poikonen et al. [25] propose a branch and bound for a variation of the TSP-D that
considers a maximum endurance for drone missions and forbids multiple visits by the
truck to the same customer, but allows the truck to be stationary at a customer for a
whole drone delivery. The logic of the branch and bound approach is to treat ordered
sequences of customers that are then split between the truck and the drone in the most
convenient way. This approach is diametrically opposed to the one we will propose
in Section 3, where we work directly on possible truck missions to which we add
drone launches. The authors of [25] also propose several heuristic algorithms, some
strictly derived from the branch and bound solver (by heuristically using non valid
lower bounds in a clever way, a major contribution of the paper) and another one based
on a divide-and-conquer paradigm.

A comprehensive literature review on optimization problems with drones, fully



covering the problems mentioned above and many others, can be found, together with
perspectives for future research in the surveys by Otto et al. [23], Rojas Viloria et al.
[29], Chung et al. [9] and Macrina et al. [20]. A substantial research effort is currently
spent on distribution problems with trucks and drones. In parallel with the present
research more relevant papers have been submitted or published. We mention the exact
methods based on mathematical programming models that appeared in Schermer et al.
[27] (new MILP formulations and branch and cut method), El-Adle et al. [16] (a MILP
formulation improved enriched by valid inequalities and bounds), Vásquez et al. [28]
(a novel approach based on Bender’s decomposition), Boccia et al. [4] (a new MILP
formulation solved by a column and row generation method), and Roberti and Ruthmair
[26] for variants of the TSP-D. The paper presents a new compact formulation and a
solving technique based on branch and price. The latter approach isable to solve to
optimality instances with up to 39 customers.

In this paper we present some algorithms for the FSTSP. A first contribution is a
branch and bound algorithm characterized by not completely specified solutions in the
search tree, that are later fully determined by solving an Assignment Problem [7]. Such
a choice limits the size of the search tree, but on the other hand tends to weaken lower
bounds. Experimental results show, however, that the choice pays off for instances of
limited size, leading to very good results in terms of speed for instances up to 10-15
customers. The same branch and bound algorithm is later used as a subroutine for
a simple heuristic algorithm, which is the second contribution of this work. Again,
experimental results prove that such a heuristic approach is extremely competitive on
large instances, being able to effectively deal with instances with up to 229 customers
in a reasonably short time.

2 Problem Description
The FSTSP can be formally described as follows. A set of customers C = {1, . . . ,n}
has to be visited. The truck starts from the depot 0 and returns to the final depot n+1.
It is equipped with an autonomous flying drone that can be used to visit customers in
parallel to the truck while the latter is traveling or serving other customers. A drone
service is called sortie, defined by a launching node (corresponding to either depot 0
or a customer), one served customer, and a rendezvous node (again corresponding to
either a customer or depot n+1). Note that only one customer can be served in a sortie.
All customers of C can be served by the truck, but only a given subset C′ ⊆C can be
served alternatively by the drone. The problem is modelled via a digraph G = (N,A),
where the node set N = {0,1, . . . ,n+ 1} represents all the customers and depots, and
A be the set of all the arcs (i, j), i ∈ N0, j ∈ N+, i 6= j, with N0 = {0,1, . . . ,n} and
N+ = {1, . . . ,n + 1}. Each arc (i, j) is associated with two non-negatives traveling
times: τT

i j and τD
i j . They represent, respectively, the time for traveling arc (i, j) by

the truck and by the drone. Serving times at customers for both drone and truck are
included in the travel times, while the time for preparing the drone at launch is given by
σL and the time to collect a landing drone is given by σR. No launch time is considered
when a sortie starts from the depot 0. A battery limit (endurance) of E time units
characterizes the drone. Rendezvous time σR contributes to the endurance computation



while σL does not. The rationale is that the drone lies on the truck when it is prepared
for the launch, while it flies during the rendez-vous operations. The objective of the
optimization is to minimize the completion time, that is the moment when the last
vehicle arrives at the final depot n+1, with all the customers having been visited.

Note that the drone can be launched from the truck only when the truck is stopped
at a customer or at the depot; the drone cannot leave the depot before the truck starts
its route; the truck has to keep serving customers while the drone is performing a
sortie. So the so-called loops, with a drone performing a delivery while the truck is
parked, are forbidden. A synchronization phase is implied by the previous settings: the
vehicle (drone or truck) that arrives first at a rendezvous point has to wait for the other,
consuming battery in case of the drone.

3 A branch and bound exact algorithm
The main concept in the Branch and Bound algorithm (BB) we propose is that of mis-
sion. A mission can be either the move of the truck from one customer to another, or
a phase where the truck and the drone operate in parallel. In the latter case the truck
visits a sequence of customers, with the first customer being the launching point of the
drone, and the last customer being where the drone is collected. In our branch and
bound, a partial solution is incrementally augmented with new missions at each level
of the search tree, until the final depot is reached. Note that in our design customers are
assigned to drones only in a final stage, as described in the remainder of this section.
The choice has been made to limit the size of the search-tree, and to avoid an excessive
explosion of it. In a final stage an Assignment Problem [7] is solved to complete a
solution with drone deliveries in the most convenient feasible way (if any). The whole
algorithm is designed more towards execution speed than quality of the bounds. The
rationale of this choice is that we purposely target instances with a limited number of
missions (corresponding to 10-15 customers). The secondary aim for the branch and
bound method is to use it as a subroutine for the heuristic solver that will be discussed
in Section 4.

A mission M is formally characterized by the following elements:

• C(M) =
(

cM
1 ,cM

2 , . . . ,cM
|C(M)|

)
is an ordered list of customers visited by the truck

in the given sequence;

• T (M) =
|C(M)|−1

∑
i=1

τ
T
cM

i ,cM
i+1

is the travel time required by the truck to visit the cus-

tomers of C(M);

• DT (M) is the drone handling time, and is defined as follows, assuming the drone
will not be used if |C(M)|= 2 (this assumption is eventually retracted later when
evaluating a solution):

DT (M) =


0 if |C(M)|= 2
σR if |C(M)|> 2 and cM

1 = 0
σL +σR if |C(M)|> 2 and cM

1 6= 0



The logic adopted within the algorithm is that if |C(M)| > 2, then there is always a
drone delivery associated with the mission M. In case |C(M)| = 2, a drone delivery
is possible (and in this case the drone handling times will be added a posteriori), but
not compulsory. The rationale behind the choice of postponing the decision wether
there is a drone deliveries associated with missions with exactly two truck customers is
motivated by computational reasons: deciding already within the search tree wether a
mission M with |C(M)|= 2 has or not a drone delivery associated would substantially
increase the size of the search tree itself (doubling the nodes corresponding to these
missions). Preliminary experiments very clearly suggested to avoid the latter strategy.

The customers visited by the drone are however not assigned inside the branch and
bound tree, but only at the end, when truck paths from 0 to n+1 have been built, using
several missions, and the complete solutions are evaluated by assigning the customers
to the drone’s sorties (see Section 3.3). This design choice is motivated by the reduction
of the size of the search tree, that would have been much more severe otherwise. A
side effect is a worsening of the lower bounds quality, but preliminary experiments
suggested to go for the chosen trade off.

Note also that the method we describe in the remainder of this section is devised to
target efficiently small/medium instances with up to 15 customers. This represented the
limit of current state-of-the-art solvers at the time the present study was devised. Very
recently a solver able to provide exact solutions for instances with up to 39 customers
have been proposed [26].

3.1 Feasible missions and dominanated missions
A mission M with more than 2 customers is feasible only if at least a customer c
not visited in the current partial solution and that can be visited by the drone exists
such that τD

cM
1 ,c + τD

c,cM
|C(M)|

+σR ≤ E, and anyway T (M)+σR ≤ E, i.e. the constraint

about the battery endurance of the drone is fulfilled. These missions are intrinsically
characterized by a very few customers, given the current technological restrictions on
batteries.

Given a new mission identified by a first and last customers and by a set of cus-
tomers to visit in between by the truck, we only focus on the order of the customers
associated with the shortest route. All the other permutations are dominated and there-
fore not considered. Note that calculating the best route is not prohibitive from a com-
putational viewpoint since only feasible missions (that are instrinsecally short) have to
be considered.

We will only consider non-dominated missions in the algorithm we propose.

3.2 Search Tree node structure
A search tree node ν represents a partial feasible solutions (later evolving into a full
one), and contains the following elements:

• MI(ν) =
(
M1,M2, . . . ,M|MI(ν)|

)
: an ordered list of feasible missions. Note that

the first customer of the first mission has to be the depot and that given two



Figure 1: Partial solution associated with a leaf of the branch and bound tree. Nodes
0 and 7 represent the starting and ending depots, respectively; customers 1 and 2 are
unassigned; the association of drone sorties to red missions is optional; the customer
visited by the drone in the black mission is still unassigned, but compulsory.

consecutive missions, the last customer of the former one has to coincide with
the first of the latter one;

• T T (ν) =
|MI(ν)|

∑
i=1

(T (Mi)+DT (Mi)) is the current estimation for the time required

by the partial solution associated with node ν . Only truck time and drone han-
dling times for missions with more than 2 customers are considered at this stage,
and any eventual truck waiting time is neglected. The real cost of a complete
solution will be calculated only at the end, as described in Section 3.3;

• LB(ν) is a lower bound on the total time required by a complete solution built
upon the partial solution associated with the current search tree node. Details on
the calculation of the lower bound will be provided in Section 3.4.

Note that only non-dominated feasible partial solutions, involving only non-
dominated feasible missions, are considered (see Section 3.1).

3.3 Evaluation of a solution
A leaf of the branch and bound tree is a node associated with a solution with the des-
tination depot n+ 1 as the last element of the last mission, with all the customers in
C\C′ already assigned to the truck, and with a number of unassigned customers – i.e.
customers not involved in any mission. Note that for feasible solutions the number of
unassigned customers is greater than or equal to the number of missions with more than
2 customers, and anyway less than or equal to the total number of missions. Leaves
not fulfilling these properties are not generated, being not associated with feasible so-
lutions.

In Figure 1 a solution is depicted, where 0 and 7 represent the starting and ending
depots, customers 1 and 2 are unassigned, and the solution is composed of four mis-
sions, one of which (the black one with customers 3, 4, 6) must have an associated
drone mission, while the others (red) have an optional drone mission associated. In the
context of our algorithm, we need to assign unassigned customers to the missions.

Once a search tree leaf is encountered, the corresponding solution has to be evalu-
ated both for feasibility and cost (total time requirement). In our implementation, the



evaluation is carried out by solving a Linear Min Sum Assignment Problem [7], oper-
ation requiring polynomial time. An Assignment Problem can be defined as follows.
There are two sets A and B of equal size, and a cost gi j for each i ∈ A and j ∈ B.
The objective is to find a bijection f : A −→ B such that the quantity ∑i∈A gi, f (i) is
minimized. Note that in case |A| 6= |B|, polynomial-time manipulation techniques are
known to transform the problem into a problem with identically sized sets.

The Assignment Problem to be solved is as follows. Let set A contain unassigned
customers (note that they can be visited by the drone by definition, otherwise the so-
lution under investigation would not be feasible), and set B contain the missions in
MI(ν). In order to simplify the next formulae, let us redefine the sequence of cus-
tomers visited by a mission M j, as C(M j) =

(
c j

1,c
j
2, . . . ,c

j
|C(M j)|

)
. Note that generating

only partial feasible solution we always have |A| ≤ |B|. Before giving the rest of the
details, let us also provide the following definitions:

αi j = max

{
T (M j); tD

c j
1,i
+ tD

i,c j
|C(M j)|

}
(1)

βi j = max

{
tD
c j

1,i
+ tD

i,c j
|C(Mj)|

−T (M j);0

}
(2)

Value αi j reports the maximum traveling time of the truck or drone, from c j
1 to

c j
|C(M j)|

, while βi j gives the possible time the truck must wait for the drone in c j
|C(M j)|

.
For each i∈ A and j ∈ B the cost gi j for the assignment problem is given as follows:

gi j =


+∞ if αi j +σR > E
βi j if αi j +σR ≤ E and |C(M j)|> 2
βi j +σR +Q if αi j +σR ≤ E and |C(M j)|= 2 and c j

1 = 0
βi j +σL +σR +Q if αi j +σR ≤ E and |C(M j)|= 2 and c j

1 6= 0

(3)

Where Q is a sufficiently large constant (e.g. Q = ∑(i, j)∈A(tT
i j + tD

i j )) inserted to guar-
antee that already defined missions with more than 2 customers get assigned a drone
before any other assignment happens. The first option of (3) covers unfeasible assign-
ments; the second compulsory assignments to the missions with at least 3 customers;
the third and the forth assignments to missions with exactly 2 customers (distinguishing
the special case where the first node corresponds to the starting depot 0).

In Figure 2 the Assignment Problem corresponding the solution depicted in Figure
1 is provided.

Let γ denote the value of the optimal solution of the Assignment Problem and θ the
number of missions with more than 2 customers in MI(ν). If γ ≥ Q · (|A| − θ + 1),
then no feasible solution exists at node ν , since not all the missions with more than
2 customers have been assigned an element of A. Otherwise, the value of the best
complete solution associated to ν is as follows:

cost(ν) = T T (ν)+ γ−Q · (|A| − θ)



Figure 2: Sketch of the Assignment Problem solved to complete the partial solution
depicted in Figure 1. Edge costs g are assigned based on the characteristics of the
instance, as described in Section 3.3.

Figure 3: Partial solution associated with an inner node of the branch and bound tree.
Nodes 0 and 7 (unassigned) represent the starting and ending depots, respectively;
customers 1, 2, 5 are unassigned; the association of a drone sortie to the red mission is
optional; the customer visited by the drone in the black mission is still unassigned, but
compulsory.

3.4 Calculation of the lower bound LB(ν)

Given a search tree node ν , associated with a partial solution still not reaching the
destination depot, the value of the lower bound LB(ν) is computed as described in
the remainder of the section. An example of partial incomplete solution is provided
in Figure 3, where customers 1, 2 and 5 are unassigned together with the destination
depot 7.

The idea behind the lower bound is to solve an Assignment Problem built in such
a way that some unassigned customers are associated with missions requiring a drone
customer, while the rest are assigned in a convenient way, either to the truck or to the
drone. The bound can be seen as an extension of the evaluation method described in
Section 3.3, where unassigned customers are assigned in the cheapest possible way
according to some simplified rules easy to compute. These assignments potentially
lead to infeasible solutions, and therefore the resulting cost is a lower bound. The
overall idea is mainly designed to be fast, with less emphasis on retrieving tight bounds.
Preliminary experiments suggested to adopt this strategy.



In the context of the lower bound, we need to assign unassigned customers either
as drone customers for missions previously defined, or to be in new missions served
by truck or drone. For ease of notation, we define a set H to contain all unassigned
customers, the arrival depot, and ĉ, the last customer visited in the partial solution
MI(ν). We have a set A containing unassigned customers (note that in this case some
of them can be visited by the drone, others not). Note that H = A∪{ĉ,n+1}. Finally,
a set B = B1∪B2∪B3 is defined as follows:

B1: Each mission M j ∈MI(ν) is associated with a node b1
j ∈ B1. Note that this set

corresponds to B in the evaluation of a complete solution, see Section 3.3;

B2: All possible unordered pairs of customers from the set H are contained in the set
B2. The pairs represent potential previous and next customers for an unassigned
customer assigned to be visited by the truck. Note that by definition |B2| =
|H|·(|H|−1)

2 ;

B3: Possible drone visits for unassigned customers during the part of the solution
still unknown are contained in the set B3. By construction |B3|=

⌊
|H|−1

2

⌋
, since

it represents a trivial upper bound for the number of drone missions in the part
of the solution still to be completed.

For i ∈ A, j ∈ B1, the cost gi j is defined according to (3).
Referring to the pair of customers associated to the node j as {c j

a,c
j
b} for ease of

notation, For i ∈ A, j ∈ B2, we have:

gi j =

+∞ if i = c j
a or i = c j

bor i /∈C′

1
2 ·min

{
τT

c j
a,i
+ τT

i,c j
b
;τT

c j
b,i
+ τT

i,c j
a

}
+Q otherwise

(4)

The rationale for the infinite cost is that a customer cannot be before or after itself. In
the second option, the cost is given by the truck time required to have the customer i
inserted between the two customers associated with node j. The division by 2 is related
to the calculation of the lower bound after the solution of the Assignment Problem, as
described later in this section: the contribution of each customer assigned to the truck
is taken as half of the cost of its incoming arc and half of the cost of its outgoing arc.
The meaning and the role of Q are the same as in Section 3.3.

For i ∈ A, j ∈ B3, we have the following definition:

gi j =

{
+∞ if i /∈C′

σL +σR +Q if i ∈C′

This case covers the situation where the customer i ∈C′ is assigned to the drone for the
chunk of solutions still undisclosed: we have no element for judging any synchroniza-
tion issue, so the cost only consider launching and collecting costs.

Figure 4 contains an example of the Assignment Problem solved to calculate the
lower bound for the partial solution provided in Figure 3. Also in this case, costs are
not instantiated in the figure, and they depend on the characteristics of the instance.



Figure 4: Sketch of the Assignment Problem solved to complete the partial solution
depicted in Figure 2. Edge costs g are assigned based on the characteristics of the
instance, as described in Section 3.4.



Let again θ be the number of missions with more than 2 customers in MI(ν). If
the optimal solution of the Assignment Problem has a cost larger than Q · (|A|−θ +1),
then no feasible expansion is possible for the partial solution associated with node ν ,
and pruning can be triggered. The infeasibility is motivated by the impossibility of
assigning customers to be served by the drone to all the missions with more than 2
customers. Otherwise, if the optimal assignment has a finite cost γ , then a lower bound
for the cost of the best extension of the partial solution associated with node ν can be
derived as follows (we racall ĉ is the last customer of the last mission of the partial
solution associated with the search tree node ν):

LB(ν) = T T (ν)+(γ−Q · (|A|−θ))+
1
2
·
(

min
i∈H\{ĉ}

τ
T
ĉ,i + min

i∈H\{n+1}
τ

T
i,n+1

)
(5)

The second term being the solution of the Assignment Problem minus the penalty
based on Q corresponding to a feasible solution. The last term being the cost for com-
pleting the estimation of the cost of the truck tour, given by half of the cost of the most
convenient outgoing arc from ĉ plus half of the cost of the most convenient incoming
arc for n+ 1. Note that both in (4) and (5), the rationale behind the factor 1

2 is that
giving the hypothetic truck tour leading to the lower bound, we split the cost of each of
its arcs between the extremes of the arc itself, being them either customers or depots.

If LB(ν) is not lower than the cost of the best solution retrieved so far, then node ν

can be pruned.

3.5 Starting solution
Given an instance, a feasible solution for the FSTSP can be easily computed by consid-
ering only truck deliveries, which means to solve a classic Traveling Salesman Prob-
lem (TSP, see [3]) associated with the customers of the problem. Given a TSP solution
S = (0 = s0,s1, . . . ,sn, . . . ,sn+1 = n+ 1), we can translated it into a solution for the

FSTSP of cost
n

∑
i=0

τ
T
si,si+1

.

Note that the order of the customers induced by the starting solution has an im-
portant role within the branch and bound solver, since the customers will be analysed
according to this order for branching purposes (see Section 3.6). The rationale is that
the sequence provided by the TSP should vaguely resemble the shape of the truck route
of the optimal FSTSP solution.

3.6 Branching and Visiting Strategies
The root of the search tree is associated with an empty solution, and all its children
nodes will be associated with a mission starting at the depot 0.

Given the partial solution associated with a node ν at a generic level L of the search
tree (which means there are L missions in the current partial solution), new search
tree nodes are created at level L+1 in such a way that all the non-dominated feasible
missions are considered as possible expansions. The number of new nodes can be



exponential, being a new mission with more than 2 customers only limited by the
availability of a customer for a drone mission and by the total truck travel time, that
cannot be longer than the drone endurance E. The explosion is however not dramatic
for instances with up to 15 nodes (the designed target for the method we propose).

The expanded search tree nodes are generated from the largest to the smallest (in
terms of number fo customers). The search-tree nodes are visited in a depth-first fash-
ion, and the nodes are expanded in the order they are created. In this way the nodes
with a longer last mission will be expanded first. The combination of the branching and
visiting rules described above is motivated by practical considerations: long missions
are likely to better exploit the drone, and consequently are more promising and likely
to lead to better solutions earlier.

The overall branch and bound algorithm can be summarized as follows:

• Step 1: Set BestSol = TSP solution for the customers of the FSTSP instance (see
Section 3.5);
We set L = 0 as the current level of the search tree;
We set PSol(i) = /0 for all i ∈ {1, . . . ,n+1} as the stacks (see [2]) containing the
partial solutions to expand at each level of the search tree;
We insert the solution containing only the starting depot into the stack of level 0:
Push({0},PSol[0]);

• Step 2: If PSol[L] = /0 then L = L−1 and goto Step 5;

• Step 3: Set Partial = Pop(PSol[L]) as the partial solution to expand;
For each feasible and not dominated mission M extending solution Partial:

– We set Temp as the solution obtained by appending M to Partial: Temp =
Append(M,Partial);

– If Temp ends in depot n+1, then we calculate its cost (see Section 3.3) and
if it improves the cost of BestSol, then BestSol = Temp;

– If Temp does not end in depot n+ 1, then we calculate the lower bound
(see Section 3.4) and if it is lower than the cost of BestSol, then we add the
partial solution to be examined at the next level: Push(Temp,PSol[L+1]);

• Step 4: L = L+1;

• Step 5: If L > 0 goto Step 2.

4 An iterative heuristic algorithm
The heuristic method we propose is heavily based on the branch and bound exact
method described in Section 3, which is here employed as a subroutine.

Given an initial feasible TSP solution S = (0 = s0,s1, . . . ,sn, . . . ,sn+1 = n+ 1) re-
trieved as described in Section 3.5, we can have an initial FSTSP solution composed
by the set of missions MI = (M1,M2, . . . ,Mn+1) with Mi = (si−1,si), i = 1,2, . . . ,n+1.
The idea is to repeatedly apply the branch and bound method presented in Section 3 on



chunks of the current solution. The aim is to produce improved incumbent solutions,
that are then used as reference solutions in the subsequent iterations. The rationales
behind this general idea are:

• the order provided by a TSP high-quality solution is intuitively a good starting
point from which to remove customers from the truck tour and assigning them
to the drone [1];

• reoptimizing short chunks of a solution with about 10-12 customers is normally
enough to cover a few drone sorties, while computation times remain substan-
tially short (see Section 5.1);

• iteratively and repeatedly locally reoptimizing solutions chunks of different length
should create a global optimization after a few applications.

Formally, the heuristic algorithm we propose - and we will refer to it as HeuBB -
works based on parameters a and b, that control the length of the subproblems solved
to optimality. The overall method can be summarized as follows:

• Step 1: A TSP is solved on the customers of the FSTSP instance, as described in
Section 3.5, to have a starting reference solution;

• Step 2: We set CurMis = 1, as the index of the next mission to analyze;

• Step 3: An integer r such that a≤ r ≤ b is picked at random;

• Step 4: NextMis is set to the index of a mission in such a way that

NextMis = argmin
d:CurMis≤d≤|MI|+1

{
d−1

∑
i=CurMis

(|C(Mi)|−1)≥ r

}
. If such an index does

not exist, NextMis is set to |MI|+1, which corresponds to the end of the current
solution;

• Step 5: The subproblem characterized by the customer set C =
NextMis−1⋃
i=CurMis

C(Mi)

is solved to optimality by the algorithm described in Section 3, where the start-
ing depot is artificially given by the first customer of MCurMis and the ending
depot by the last node of MNextMis−1. In case the artificial starting depot is not
0, eventual drone sortie starting from it will require to pay the launching time
σL. The optimized solution MI becomes the new reference solution, and in case
the total number of its missions |MI| is changed, the index NextMis is updated
consequently;

• Step 6: If NextMis 6= |MI|+1 then CurMis = NextMis and goto Step 3;

• Step 7: If the exit condition is not met, go to Step 2.

In our implementation the exit condition is given by a maximum computation time.



5 Experimental results
The algorithms have been implemented in ANSI C. An Intel Core i3-2100 CPU com-
puter, with 3.10 GHz and 8.00 GB of RAM, has been used for the experiments. The
LKH solver described in [19] has been used to solve the Traveling Salesman Problem.

Results for several instance sets previously adopted in the literature are reported,
and a comparison with previously appeared method is provided. We first test in Section
5.1 the exact BB algorithm on small instances. Section 5.2 is instead devoted to the
heuristic method HeuBB, which is tested on medium and large size instances. Detailed
results for all the experiments are available, together with the instances, upon request
to the authors.

5.1 Results of the exact algorithm BB
This section is devoted to the assessment of the exact algorithm described in Section
3. The method is compared with some exact methods based on the solution of MILP
models available from the literature, and later tested on increasingly larger instances,
originally proposed for a similar problem, in order to take the method to its limits.

The first set of experiments is carried out on the 36 randomly generated benchmark
setups with 10 customers proposed in [22] (details on the instances can be found in this
paper). The customers are positioned in a 4 x 4 square, the position of the depot is of
interest for our study: according to [13], position ‘a’ indicates that the depot is near the
center of gravity of the customers; positions ‘b’, ‘c’ and ‘d’ have instead the following
(x,y) coordinates, respectively: (4.0,2.7), (4.0,0.0), and (4,-2.7). The endurance E
was set either to 20 or 40 in [22]. In [13] the set has been enlarged considering the
extra values 60, 80 and 100, leading to a total of 180 instances. An optimal solution
is known for each of the instances. The results for this set of instances are provided
in Table 1, where for each value of E the results are grouped by the four possible
positions of the depot. For the statistics from [13], we consider for each instance the
average computation time over 9 instances for the fastest method reported in the paper,
representing the best results reported so far in the literature (up to our knowledge). For
the BB method we detail the average time to retrieve the optimal solution, the average
time to prove its optimality and the average number of search tree nodes expanded.

The results of Table 1 mainly suggest that the novel BB is very consistent in its
results, being only marginally influenced by the characteristics of the instances, and
always providing very short computation times: the optimal solution is normally re-
trieved on average within the first second and confirmed soon after. The number of
search-tree nodes visited by the method varies proportionally to the computation times,
and shows a very high rate of iterations per second. In terms of relative performance
with respect to the methods proposed in [13], BB appears substantially faster, often pro-
viding computation times shorter by orders of magnitude. Another interesting property
that it is possible to observe by the experiments, is the substantial absence of correla-
tion between the endurance E and the computation times of BB. Such a correlation is
known to exist for MILP-based approaches (see [13], [26], [27]). This property makes
therefore BB suitable for applications where drones are equipped with long-lasting bat-
teries.



Table 1: Results on 180 instances with 10 customers from Murray and Chu [22] and
Dell’Amico et al. [13].

Instances MILPs [13] BB
E Depot Nr. of Sec Sec Sec Tree

Position Inst. Total Opt Total Nodes
20 a 9 179.2 0.6 5.9 206533.22
20 b 9 29.7 0.5 3.8 120324.67
20 c 9 4.6 0.3 2.4 67421.78
20 d 9 7.8 0.7 3.2 114873.89

Average 55.3 0.5 3.8 127288.39
40 a 9 597.7 0.5 6.0 125675.67
40 b 9 167.0 0.3 3.7 63280.44
40 c 9 61.5 0.4 3.9 87140.22
40 d 9 73.6 1.6 5.2 145142.33

Average 225.0 0.7 4.7 105309.67
60 a 9 345.3 0.4 4.2 69577.11
60 b 9 120.8 0.0 1.9 77084.33
60 c 9 133.4 0.0 1.4 42874.33
60 d 9 229.5 0.0 1.7 67777.67

Average 207.3 0.1 2.3 64328.36
80 a 9 331.2 0.4 4.2 69585.89
80 b 9 128.1 0.3 2.5 34679.33
80 c 9 87.4 0.3 2.8 50937.56
80 d 9 251.1 1.2 4.1 94775.11

Average 199.5 0.6 3.4 62494.47
100 a 9 371.5 0.4 4.2 69585.89
100 b 9 120.8 0.3 2.5 34679.33
100 c 9 87.1 0.3 2.8 50937.56
100 d 9 201.1 1.2 4.1 94775.11
Average 195.1 0.6 3.4 62494.47

A second experiment is carried out on 177 benchmark setups with 9, 14 and 19
customers originally proposed for the variation of the TSP-D tackled in [25]. The
customers with index 5i+1, with 0≤ i≤ n/5−1 are not drone-eligible. We considered
σL = σR = 0, the values 2 and 3 for a parameter regulating the ratio between the speed
of the drone and the speed of the truck, and values of endurance E of 20 and 30, in
order to have some variations, for a total of 708 instances. The results are reported
in Table 2, where a maximum computation time of 3600 seconds is considered. Each
row reports the averages over 100, 52 and 25 instances, for 9, 14 and 19 customers,
respectively. The columns report the characteristics of the instances, the number of
solved instances, the CPU time to find the best solution, the average running time and
the average number of search tree nodes expanded.

A direct comparison between BB, the exact branch and bound method proposed in
[25] and the approached proposed in [13] is not possible since the objective function
is different (the one of TSP-D appears to produce more challenging instances). As a
reference, the exact solver of [25] was taking 77.8 seconds to certify optimality for
some instances with 9 customers on a standard computer, while no result for the exact
solver is reported for larger instances. On the same version of TSP-D, the best of
the approaches discussed in [13] required 3.5 seconds for the same instances with 9
customers and 621.3 seconds for the same instances with 14 customers. On the set



Table 2: Results on 708 instances with 9, 14 and 19 customers from Poikonen et al.
[25].

Instances BB (max 3600s)
|C| Drone Speed E Solved Sec Sec Tree

Factor Intances Best Total Nodes
9 2 20 100/100 0.1 0.4 17281.9
9 2 30 100/100 0.0 0.1 3069.8
9 3 20 100/100 0.0 0.0 5272.2
9 3 30 100/100 0.0 0.0 1155.7
14 2 20 52/52 43.1 78.3 838965.4
14 2 30 52/52 8.3 14.8 87130.4
14 3 20 52/52 8.6 19.9 127727.4
14 3 30 52/52 3.3 7.6 38248.4
19 2 20 2/25 345.1 2715.3 2294581.5
19 2 30 5/25 688.3 2676.0 2233685.2
19 3 20 10/25 630.0 1289.5 1288558.2
19 3 30 14/25 525.3 1574.3 1261888.3

of TSP-D instances proposed in [25], the newly-presented MILP-based approaches
discussed in [27] required in the best case 1.6, 273.5 and 1836.1 seconds to solve some
of the instances with 9, 14 and 19 customers, respectively (on a computer substantially
faster than the one we adopted). These indications, together with the results of BB
presented in Table 2, suggest that the method we propose is competitive, and often
better better than previously published approaches. The methods discussed in [26]
appear to have similar performance to BB on the instances with 9 customers, and to
be superior on instances with 19 customers. It would be interesting to carry out a
comparison on the instances with 14 customers, but no result is presented in [26] for
this size, since the focus there is on large instances up to 39 customers (out of our
applicability domain).

Table 2 suggests that the method we propose is very effective on small instances,
while its scalability on large instances is questionable: although still effective on the
instances with 14 customers, the increase in computation times is remarkable, and as
a consequence only a few of the instances with 19 customers are closed within the
time limit. Indeed, this set of instances appear easier than the one used for Table
1, when 10 customers are considered. Another observation is about the impact of the
characteristics of the instances on the solving times and on the number of nodes visited:
instances with higher speed for the drone and longer endurance appear to be easier to
solve by the method we propose. This might depend on the presence of a few dominant
missions that characterize good solutions, making the others clearly suboptimal.

5.2 Results of the heuristic algorithm HeuBB
In this section we focus our attention on HeuBB, the heuristic algorithm described in
Section 4. The experiments will be on medium/large size instances previously adopted
in the literature for the FSTSP or for similar problems. Since, up to our knowledge, no
other heuristic is available in the literature for the FSTSP we consider, our method is
compared with the adaptation of the heuristic TSP-ep originally proposed for a varia-



tion of D-TSP in [1], and proving very effective in that context. The method starts from
a TSP solution then applies one-point moves (repositioning of a customer) and two-
point moves (classic 2-opt moves) to generate further solutions. Each of the TSP solu-
tions generated is evaluated in terms of FSTSP by splitting the customers between the
truck and the drone via a very efficient exact partitioning method. The one-point and
two-points operators are applied to every new improved solution eventually found, un-
til no further improvements are possible, or a maximum computation time has elapsed.
Full details can be found in [1]). We have implemented the method in ANSI C, adapted
to the FSTSP. Also in this context the LKH solver described in [19] has been used to
provide the initial TSP solution. For all the tests, a maximum computation times of
3600 seconds is considered for TSP-ep (although it often concludes the computation
earlier, and this happens consistently for small instances), while 720 seconds are con-
sidered for the different versions of HeuBB. HeuBB is given a shorter time because it
has been observed that it rarely improves after the given 720 seconds, independently of
the characteristics of the instances.

The first set of instances considered is formed by 120 benchmarks setup with 20
customers originally proposed in [22] for the Parallel Drone Scheduling Traveling
Salesman Problem (PDSTSP), a problem in which a fleet of drones can serve a set
of customers only departing from the depot, the remaining customers are served by a
truck ([12]). These instances could be easily adapted to the FSTSP, having the very
same characteristics. Two values of endurance are considered: 20 and 40 time units,
for a total of 240 instances. The same instances had already been considered in [13],
where upper bounds are provided. The results are summarized in Table 3, where a
percentage gap with respect to the best results from [13] is reported for the adapta-
tion to FSTSP of the TSP-ep heuristic from [1] and HeuBB, together with statistics
on the time when the best solutions were retried. Along the paper, percentage gap are
calculated as 100 · (UBH −UBB)/UBB, where UBH is the upper bound provided by
the algorithm under evaluation and UBB is the upper bound provided by the baseline
algorithm (the best results from [13] in this case). Negative values indicate improve-
ments over the baseline. Two different settings of the HeuBB are considered: one with
a = 7 and b = 10 is designed to be fast (BB is run on short subproblem chunks), while
the one with a = 9 and b = 13 is designed to be more precise (BB is run on longer
chunks). The parameter settings leading to these variations have been found after some
preliminary tests, and are reported in the table. The results are grouped by endurance,
and by the different positions of the depot considered: ‘centered’ means the depot is
centrally located with respect to the customers; ‘edge’ means the depot is at the edge
of the squared area induced by the positions of the customers; ‘origin’ means the depot
is positioned at the origin of the axes of the whole area considered.

A few conclusions can be drawn from the results reported in Table 3. The methods
TSP-ep and HeuBB with fast settings retrieve their best solutions in almost negligible
time, with comparable quality on the instances with E = 20, and with results in favour
of TSP-ep when E = 40 (which is able to sensibly improve some of the best known
upper bounds from [13]). The method HeuBB with more precise settings is able to
improve the results of TSP-ep for E = 20 and to partially close the gap with TSP-ep
for E = 40. The computation time to retrieve the best solution increases substantially,
however. In general, TSP-ep seems to be preferable on these medium size instances.



Table 3: Results by depot position on 240 instances with 20 customers from Murray
and Chu [22] with |C|= 20.

Instances TSP-ep [1] HeuBB HeuBB
a = 7, b = 10 a = 9, b = 13

E Dep. Pos. Nr. of Inst. Gap % Sec Gap % Sec Gap % Sec
20 centered 40 0.43 0.0 0.60 0.2 0.00 77.9
20 edge 40 0.56 0.0 0.36 0.2 0.01 85.9
20 origin 40 0.96 0.0 0.89 0.2 0.28 117.9
40 centered 40 -2.13 0.0 -0.22 0.3 -2.20 68.1
40 edge 40 -1.01 0.0 1.31 0.2 0.21 14.6
40 origin 40 -0.57 0.0 1.49 0.3 -0.28 66.1

A second set of experiments is run on some of the instances proposed in [21] for
the PDSTSP, here re-considered as FSTSP instances. These instances have between 48
and 229 customers, with several percentage of drone eligible nodes, with several drone
speeds, and with two different depot locations (we refer the reader to [21] for a detailed
description of the settings). A total of 60 instances is considered. The results are
presented in Table 4. The first columns define each instance based on the characteristics
and on the name of the benchmark setup (the last digit of the name indicates the number
of customers). Then, similarly to what already seen in Table 3, the results for the
different methods are summarized, with the difference that now for each instance we
also report the cost of the best solution retrieved be each method and the results of
TSP-ep are the baseline for the calculation of the percentage gaps. All the available
results of the Random Restart Local Search (RRLS) matheuristic discussed in [14] for
this set of instances, also appear in the table. It is important to point out that these
results have been obtained with a maximum computation time of 720 seconds per run
on a computer (Intel Xeon E5-2620 v4 running at 2.10 GHz) approximately 15% faster
than our reference machine1, so the comparison is slightly biased in favour of RRLS.

Table 4 suggests that on these instances HeuBB outpeforms TSP-ep and RRLS of-
ten obtaining better results already when its fast version is considered, in a fraction
of the time. On the other hand, when the more precise version is taken into account,
the results improve even further (still with computation times shorter than TSP-ep and
comparable with RRLS). This shows that by playing with parameters a and b it is possi-
ble to modulate the trade-off between performance and computation times. Looking at
the results for single instances, it can be observed how in several cases TSP-ep finds the
best solution, but apparently it has a worst exploration of the search space with respect
to HeuBB, with the latter appearing more robust already in the less accurate but faster
version. On the other hand, RRLS seems to be the less robust method, sometimes find-
ing best-known solutions, sometimes performing extremely bad. This is particularly
evident for the instances with many drone-eligible customers, and on large instances
in general. HeuBB appears to definitely perform better on larger instances, providing
substantially and systematically better results than TSP-ep and RRLS as the number of
customers increases. All the heuristics do not seem to be very much affected by the
other parameters of the instances.

A third set of instances considered in these experiments is the one proposed in
1Source http://www.cpubenchmark.net.



[10] (where details can be found), which is composed of 24 instances with a number
of customers ranging between 50 and 199 (the number in the names of the instances
is the number of customers augmented by 1). A direct comparison with the results
reported in [10] is unfortunately not possible2. Results are summarized in Table 5, and
the meaning of the column is analogous to that of Table 4. Also in this case, all the
results available for the method RRLS from [14] (again obtained on the slightly faster
machine) are presented in the table.

Table 5 confirm all the observation reported on the previous experiments, with the
exception that on these instances TSP-ep appears more competitive than before and
on the other hands RRLS seems to perform poorly. Only the more precise version of
HeuBB is able to improve the average results of TSP-ep (however with considerably
shorter computation times).

A forth set of instances considered in these experiments is the one proposed in
[17] (where details can be found) and later used again in [18], which is composed of 60
instances with 50 or 100 customers. In the settings considered here the drone endurance
E is 13.3 and handling times σL and σR are both 0.6. A direct comparison with the
results reported in [18] is again not possible3. Results are summarized in Table 6, and
the meaning of the column is analogous to that of Table 4. For this experiment, results
are not available for RRLS, which was however dominated in the previous experiments.
Moreover, only the more precise version of HeuBB is considered.

Table 6 confirm all the observation reported on the previous experiments. The main
finding here is that TSP-ep tends to be slower than HeuBB on the larger instances of
this set and that HeuBB seems – on top of being slightly better – to be more robust of
the counterpart, since it never have particularly large positive gaps, but it sometimes
produces substantial improvements above 1.5. On the larger instances TSP-ep appears
also to be slower than HeuBB.

As a final note on the results reported for the heuristic algorithms, it is worth men-
tioning that a better validation of the methods would have been possible by comparing
the costs of the solutions retrieved against valid lower bounds. Unfortunately, viable
lower bounds are currently not available for large instances, so only comparative con-
siderations among different techniques like those we reported are possible.

6 Conclusions
A branch and bound method has been presented for the Flying Sidekick Traveling
Salesman Problem, and it has been shown how it can be used within a heuristic rou-
tine. The methods are designed to exploit the characteristics of the problem and to
provide effective and efficient solving methods. Experimental results corroborate this
conclusion, showing improved state-of-the-art results for the heuristic algorithm.

Future work might involve the use of other exact solvers within the heuristic frame-
work we propose, in particular the method discussed in Roberti and Ruthmair [26]. It

2We infer the problem solved is slightly different – although the differences are not detailed in [10] –
because according to our model, some of the results they report are super-optimal.

3From [18] it is possible to infer that the problem is different.



would be interesting to investigate wether considering larger solution chunks for re-
optimization could lead to better solution, even if this would probably imply signifi-
cantly longer converging times. Another research line in need of a deeper investigation
is about the development of effective lower bounds for large instances. They would
allow to better evaluate the heuristics algorithms currently available and at the same
time lead to exact algorithms for such instances.
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Table 4: Results on 60 instances with 48 to 229 customers from Mbiadou Saleu et al.
[21].

Instances TSP-ep [1] RRLS [14] HeuBB (720s) HeuBB (720s)
Name a b c (max 3600s) (720s) a = 7, b = 10 a = 9, b = 13

UB Sec UB Gap % Sec UB Gap % Sec UB Gap % Sec
att48 20 2 1 39348.00 1.8 38662.0 -1.74 78.9 40082.00 1.87 0.0 40082.00 1.87 22.3
berlin52 20 2 1 9385.00 5.1 9350.0 -0.37 150.9 9385.00 0.00 0.0 9350.00 -0.37 3.3
eil101 20 2 1 755.00 260.0 755.0 0.00 191.2 759.00 0.53 0.6 755.00 0.00 248.3
gr120 20 2 1 1818.00 1148.8 1812.0 -0.33 411.8 1825.81 0.43 0.4 1770.00 -2.64 534.8
pr152 20 2 1 84304.00 2588.9 84623.0 0.38 225.9 83172.00 -1.34 1.7 82734.00 -1.86 19.8
gr229 20 2 1 1918.70 3342.1 - - - 1893.57 -1.31 0.8 1889.54 -1.52 130.2
att48 40 2 1 36014.00 5.4 33348.0 -7.40 58.4 34832.00 -3.28 0.3 32688.00 -9.24 52.1
berlin52 40 2 1 8480.00 12.9 8410.0 -0.83 45.7 8638.75 1.87 0.1 8455.00 -0.29 7.2
eil101 40 2 1 690.00 354.6 687.0 -0.43 14.3 701.00 1.59 0.5 694.29 0.62 18.6
gr120 40 2 1 1698.00 1071.9 1718.0 1.18 46.7 1676.35 -1.28 0.9 1649.16 -2.88 60.6
pr152 40 2 1 78512.00 3532.0 82586.0 5.19 108.2 78827.23 0.40 5.5 77740.80 -0.98 41.0
gr229 40 2 1 1853.81 2679.4 - - - 1807.02 -2.52 2.5 1794.68 -3.19 157.4
att48 60 2 1 34030.00 7.2 34190.0 0.47 223.0 34030.00 0.00 0.1 31264.00 -8.13 124.9
berlin52 60 2 1 7670.00 13.2 7943.7 3.57 27.3 7842.69 2.25 1.0 7670.00 0.00 183.6
eil101 60 2 1 615.37 472.0 599.3 -2.61 168.4 644.64 4.76 0.6 615.37 0.00 218.7
gr120 60 2 1 1489.48 1957.9 1582.6 6.25 499.5 1571.98 5.54 2.4 1489.48 0.00 648.7
pr152 60 2 1 74376.88 3217.4 79294.0 6.61 228.5 77978.92 4.84 1.7 75873.92 2.01 27.0
gr229 60 2 1 1733.99 3534.8 - - - 1703.32 -1.77 1.1 1698.67 -2.04 105.4
att48 80 1 1 34710.36 5.5 34011.6 -2.01 131.4 35874.35 3.35 2.5 34136.42 -1.65 27.0
berlin52 80 1 1 7193.97 12.1 7339.0 2.02 128.3 7418.84 3.13 0.4 7331.02 1.91 37.3
eil101 80 1 1 626.68 418.8 605.0 -3.46 38.8 599.73 -4.30 0.6 598.80 -4.45 50.3
gr120 80 1 1 1478.76 1006.2 1503.5 1.68 491.5 1531.37 3.56 0.5 1437.77 -2.77 638.3
pr152 80 1 1 75394.58 3119.7 77622.1 2.95 265.9 74759.07 -0.84 2.5 73413.35 -2.63 165.3
gr229 80 1 1 1728.34 3306.8 - - - 1728.34 0.00 1.8 1728.34 0.00 223.7
att48 80 2 1 31711.95 8.8 32666.0 3.01 35.9 31127.55 -1.84 1.3 30948.37 -2.41 46.7
berlin52 80 2 1 6735.55 20.0 7151.3 6.17 55.3 6915.19 2.67 1.5 6784.75 0.73 61.5
eil101 80 2 1 544.41 717.4 547.5 0.56 268.3 556.92 2.30 1.5 539.45 -0.91 348.5
gr120 80 2 1 1284.84 1695.8 1400.0 8.96 42.0 1325.18 3.14 2.2 1240.43 -3.46 54.5
pr152 80 2 1 72556.08 2988.0 77062.2 6.21 13.9 69291.02 -4.50 2.2 68680.32 -5.34 51.4
gr229 80 2 1 1693.42 3404.1 - - - 1626.38 -3.96 3.2 1608.87 -4.99 117.9
att48 80 2 2 30164.00 12.4 32483.6 7.69 10.6 30381.10 0.72 2.3 29849.80 -1.04 13.8
berlin52 80 2 2 7260.00 10.6 7695.6 6.00 32.5 7708.73 6.18 0.1 6862.08 -5.48 42.2
eil101 80 2 2 563.58 748.2 525.0 -6.85 267.6 574.56 1.95 0.8 518.06 -8.08 347.5
gr120 80 2 2 1505.27 1904.9 1404.6 -6.69 39.2 1472.01 -2.21 5.6 1111.72 -26.14 50.9
pr152 80 2 2 71962.08 2823.5 76158.0 5.83 157.9 70820.27 -1.59 1.7 67971.46 -5.55 20.8
gr229 80 2 2 1570.60 3136.3 - - - 1570.60 0.00 1.6 1615.39 2.85 289.9
att48 80 3 1 30164.00 15.4 32680.0 8.34 28.6 32053.38 6.26 1.7 29382.40 -2.59 37.2
berlin52 80 3 1 6616.35 17.3 7158.8 8.20 6.1 6813.09 2.97 0.1 6054.92 -8.49 56.0
eil101 80 3 1 531.09 663.4 523.0 -1.52 22.0 532.81 0.32 0.7 519.00 -2.28 28.6
gr120 80 3 1 1262.58 1904.3 1400.0 10.88 22.6 1296.61 2.70 1.1 1106.08 -12.40 29.4
pr152 80 3 1 71728.00 3022.8 76980.0 7.32 69.8 68422.67 -4.61 1.9 66158.48 -7.76 45.0
gr229 80 3 1 1692.49 3599.6 - - - 1593.71 -5.84 3.9 1560.60 -7.79 86.4
att48 80 4 1 31782.00 9.2 33350.0 4.93 20.7 32880.00 3.45 0.2 30120.00 -5.23 26.9
berlin52 80 4 1 6725.00 16.0 7180.0 6.77 11.1 6616.21 -1.62 0.1 6045.00 -10.11 14.5
eil101 80 4 1 531.00 604.3 517.2 -2.60 92.4 535.00 0.75 0.5 503.43 -5.19 120.1
gr120 80 4 1 1174.29 2448.6 1443.5 22.92 90.4 1237.06 5.35 1.0 1122.00 -4.45 10.6
pr152 80 4 1 71922.00 3286.4 77246.0 7.40 95.4 68464.16 -4.81 1.9 64917.46 -9.74 60.0
gr229 80 4 1 1692.49 3555.5 - - - 1585.89 -6.30 2.7 1556.00 -8.06 647.7
att48 80 5 1 31596.00 8.2 33024.0 4.52 8.5 32578.00 3.11 0.1 27174.68 -13.99 11.1
berlin52 80 5 1 6600.00 17.2 7245.0 9.77 16.3 6589.97 -0.15 0.2 6176.57 -6.42 21.2
eil101 80 5 1 527.00 658.4 596.9 13.27 380.6 533.71 1.27 1.7 490.24 -6.98 494.3
gr120 80 5 1 1170.00 2486.1 1294.6 10.65 5.9 1250.00 6.84 0.9 1083.87 -7.36 7.7
pr152 80 5 1 71867.71 3024.3 76756.0 6.80 85.3 67507.25 -6.07 2.9 66397.93 -7.61 56.7
gr229 80 5 1 1692.49 3313.3 - - - 1575.06 -6.94 2.9 1536.90 -9.19 136.4
att48 100 2 1 27174.68 9.1 27905.8 2.69 96.8 26124.76 -3.86 0.8 26053.32 -4.13 16.3
berlin52 100 2 1 5830.34 17.1 6610.0 13.37 254.7 5962.40 2.27 0.4 5851.55 0.36 21.5
eil101 100 2 1 490.24 573.5 467.3 -4.67 13.9 465.98 -4.95 1.0 452.05 -7.79 18.1
gr120 100 2 1 1209.66 1917.6 1334.1 10.29 172.9 1206.67 -0.25 1.3 1166.37 -3.58 53.0
pr152 100 2 1 71774.02 2888.4 76586.5 6.70 189.0 68452.58 -4.63 3.0 67468.59 -6.00 70.3
gr229 100 2 1 1563.70 3422.7 - - - 1422.16 -9.05 4.4 1387.93 -11.24 99.9
Average 1450.4 3.76 122.8 -0.06 1.5 -4.43 122.7



Table 5: Results on 24 instances with 50 to 199 customers from de Freitas and Penna
[10].

TSP-ep [1] RRLS [14] HeuBB (720s) HeuBB (720s)
Instances (max 3600s) (720s) a = 7, b = 10 a = 9, b = 13

UB Sec UB Gap % Sec UB Gap % Sec UB Gap % Sec
berlin52 199.75 6.5 202.85 1.55 159.0 203.66 1.96 0.2 199.75 0.00 2.9
bier127 3502.12 702.9 3509.99 0.22 117.9 3506.58 0.13 1.2 3505.40 0.09 569.6
ch130 183.52 335.4 187.78 2.32 23.9 185.51 1.09 0.3 184.52 0.54 387.4
d198 461.86 2910.4 - - - 462.12 0.06 1.5 461.23 -0.14 482.6
eil51 13.45 0.0 13.45 0.00 1.0 13.45 0.00 0.0 13.45 0.00 0.0
eil76 16.90 0.0 16.90 0.00 3.4 16.90 0.00 0.0 16.90 0.00 0.0
kroA100 540.81 410.6 582.03 7.62 40.0 560.90 3.71 0.7 540.81 0.00 225.4
kroA150 722.12 704.5 716.65 -0.76 166.4 731.51 1.30 4.9 717.44 -0.65 546.0
kroA200 835.73 3122.7 - - - 850.63 1.78 2.5 832.10 -0.43 139.8
kroB150 706.00 688.7 823.65 16.66 24.8 708.83 0.40 2.7 694.06 -1.69 670.2
kroB200 806.43 3398.8 - - - 825.72 2.39 5.1 813.49 0.87 153.0
kroC100 556.38 468.9 586.71 5.45 250.2 579.11 4.09 1.6 564.28 1.42 519.2
kroD100 565.95 409.5 591.13 4.45 424.0 590.54 4.34 1.0 560.14 -1.03 674.2
kroE100 590.70 456.8 618.55 4.71 290.5 599.91 1.56 2.5 589.02 -0.28 211.0
lin105 387.62 339.7 396.31 2.24 219.0 401.24 3.51 9.5 387.62 0.00 217.7
pr107 1054.37 668.4 1063.96 0.91 251.9 1073.66 1.83 3.6 1044.11 -0.97 249.0
pr124 1620.06 165.8 1620.03 0.00 330.5 1620.23 0.01 0.8 1620.23 0.01 8.7
pr136 2618.70 667.3 2661.21 1.62 155.1 2569.83 -1.87 2.5 2525.62 -3.55 234.6
pr144 1676.75 54.4 1688.75 0.72 24.4 1676.75 0.00 1.0 1676.75 0.00 28.8
pr152 1992.44 519.8 2123.95 6.60 24.7 1988.69 -0.19 2.1 1981.94 -0.53 10.2
rat99 37.45 0.0 37.45 0.00 12.1 37.45 0.00 0.0 37.45 0.00 0.0
rat195 71.50 0.0 - - - 71.50 0.00 0.0 71.50 0.00 0.0
rd100 229.15 175.2 235.37 2.71 37.4 235.62 2.82 2.2 221.53 -3.33 163.0
st70 21.00 7.9 21.00 0.00 3.5 21.00 0.00 0.0 21.00 0.00 0.0
Average 675.6 2.85 128.0 1.21 1.9 -0.40 228.9



Table 6: Results on 60 instances with 50 (B*, C*, D*) or 100 (E*, F*, G*) customers
from Ha et al. [17].

TSP-ep [1] HeuBB (720s) TSP-ep [1] HeuBB (720s)
Inst. (max 3600s) a = 9, b = 13 Inst. (max 3600s) a = 9, b = 13

UB Sec UB Gap % Sec UB Sec UB Gap % Sec

B1 121.48 3.5 121.48 0.00 0.5 E1 188.32 182.5 188.28 -0.03 658.5
B2 119.54 1.8 119.54 0.00 3.4 E2 189.56 221.4 189.56 0.00 25.1
B3 116.66 3.6 116.66 0.00 17.2 E3 189.05 71.4 189.05 0.00 82.2
B4 125.47 6.2 125.47 0.00 43.3 E4 188.38 106.9 188.24 -0.08 16.4
B5 118.77 2.7 118.77 0.00 1.5 E5 189.05 288.9 189.47 0.22 199.4
B6 118.03 5.3 116.99 -0.88 408.6 E6 190.05 178.0 190.05 0.00 31.2
B7 119.29 9.0 119.29 0.00 2.8 E7 191.38 148.0 191.09 -0.15 23.4
B8 119.14 4.1 119.21 0.06 22.5 E8 190.12 141.9 190.45 0.18 662.3
B9 121.34 6.0 121.34 0.00 4.6 E9 190.78 141.1 190.43 -0.18 56.4
B10 120.15 3.6 120.34 0.16 11.7 E10 189.45 106.4 189.45 0.00 33.1
C1 218.28 6.4 218.28 0.00 14.2 F1 335.84 351.8 330.50 -1.59 44.7
C2 210.86 3.8 210.82 -0.02 53.2 F2 315.30 388.5 316.31 0.32 142.7
C3 213.13 2.7 213.13 0.00 2.2 F3 328.36 422.0 328.31 -0.01 473.9
C4 220.11 4.4 220.11 0.00 4.4 F4 324.05 247.8 322.06 -0.61 47.6
C5 235.98 2.7 235.98 0.00 56.1 F5 331.65 426.1 331.65 0.00 27.9
C6 240.61 0.9 240.61 0.00 3.5 F6 300.52 252.2 300.52 0.00 261.1
C7 226.69 3.5 224.22 -1.09 11.5 F7 314.45 338.3 314.90 0.14 57.1
C8 238.58 7.0 238.58 0.00 26.8 F8 331.93 426.6 330.71 -0.37 691.8
C9 236.14 4.6 235.99 -0.07 17.1 F9 335.12 358.4 334.31 -0.24 299.2
C10 228.77 3.5 229.77 0.44 39.7 F10 318.78 407.6 318.78 0.00 19.0
D1 322.32 2.7 322.32 0.00 2.7 G1 422.17 317.2 419.29 -0.68 220.0
D2 319.12 3.5 316.59 -0.79 15.7 G2 399.65 376.4 400.94 0.32 64.1
D3 303.23 5.2 296.70 -2.15 6.6 G3 437.02 293.0 434.74 -0.52 31.9
D4 329.21 3.6 329.21 0.00 11.2 G4 449.30 184.4 442.99 -1.40 375.0
D5 321.84 5.2 321.84 0.00 8.4 G5 428.36 352.5 429.58 0.28 13.2
D6 316.00 4.4 316.00 0.00 13.4 G6 434.47 351.4 434.47 0.00 35.4
D7 317.37 7.8 317.37 0.00 10.4 G7 411.75 282.7 411.75 0.00 15.6
D8 296.58 6.1 296.58 0.00 7.9 G8 418.35 412.9 418.35 0.00 18.0
D9 336.07 4.4 336.21 0.04 143.9 G9 450.57 422.4 451.74 0.26 114.0
D10 306.89 6.1 302.92 -1.29 30.8 G10 449.80 426.9 449.80 0.00 59.7
Agerage 4.5 -0.19 33.2 287.5 -0.14 160.0
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