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BOUNDED COHOMOLOGY

OF FINITELY PRESENTED GROUPS:

VANISHING, NON-VANISHING, AND COMPUTABILITY

FRANCESCO FOURNIER-FACIO, CLARA LÖH, AND MARCO MORASCHINI

Abstract. We provide new computations in bounded cohomology:
A group is boundedly acyclic if its bounded cohomology with trivial

real coefficients is zero in all positive degrees. We show that there exists a
continuum of finitely generated non-amenable boundedly acyclic groups
and construct a finitely presented non-amenable boundedly acyclic group.

On the other hand, we construct a continuum of finitely generated
groups, whose bounded cohomology has uncountable dimension in all
degrees greater than or equal to 2, and a concrete finitely presented one.

Countable non-amenable groups with these two extreme properties
were previously known to exist, but these constitute the first finitely
generated/finitely presented examples.

Finally, we show that various algorithmic problems on bounded co-
homology are undecidable.

1. Introduction

Bounded cohomology of groups is defined via the topological dual of the
simplicial resolution. This rich theory has applications to the geometry of
manifolds [33], dynamics [27], rigidity theory [13, 64], quasimorphisms [9, 31]
and stable commutator length [14]. However, beyond the case of amenable
groups, computing the bounded cohomology of a group is a very hard task,
which can typically only be done in low degrees. We provide new compu-
tations in bounded cohomology of finitely generated and finitely presented
groups in arbitrarily large degrees.

1.1. Finitely generated non-amenable boundedly acyclic groups.
Boundedly acyclic groups are those groups whose bounded cohomology with
trivial real coefficients vanishes in all positive degrees:

Definition 1 (Boundedly acyclic groups). A group Γ is boundedly acyclic
if Hn

b (Γ;R) ∼= 0 for all n ≥ 1. Here, R denotes the real coefficients endowed
with the trivial Γ-action.

We write BAc for the class of boundedly acyclic groups.

The main examples of boundedly acyclic groups are amenable groups,
as proved by Johnson [46]. Matsumoto and Morita showed that the class
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2 BOUNDED COHOMOLOGY OF FINITELY PRESENTED GROUPS

of boundedly acyclic groups also contains non-amenable groups, by prov-
ing that the group of homeomorphisms of Rn with compact support has
this property [54]. Similar techniques show that there exist non-amenable
boundedly acyclic groups that are countable: all mitotic groups are bound-
edly acyclic [52]. However, also these examples are not finitely generated.

Recently, the interest in finding finitely presented bounded acyclic groups
has increased significantly because of the following applications to spaces:
The version of Gromov’s Vanishing Theorem for boundedly acyclic covers by
Ivanov [44] and the extended version of Gromov’s Mapping Theorem [65].

Combining mitoses and suitable HNN-extensions, we show:

Theorem 2 (Finitely generated non-amenable boundedly acyclic groups;
Theorem 4.1). There exists a functor µ : Groups → Groups associating
to each group Γ a boundedly acyclic group µ(Γ) into which Γ embeds. The
group µ(Γ) has the following properties:

(1) Torsion elements of µ(Γ) are conjugate to elements of Γ.
(2) If Γ is infinite, then µ(Γ) has the same cardinality as Γ, otherwise

µ(Γ) is countably infinite.
(3) The group µ(Γ) contains a non-abelian free subgroup.
(4) If Γ is n-generated, then µ(Γ) is (n+ 3)-generated. In particular, if

Γ is finitely generated, then µ(Γ) is finitely generated.

Thanks to parts (1) and (4) of the theorem, in the same spirit as in
classical embedding results [37], we deduce:

Corollary 3 (Corollary 4.4). There exist continuum many non-isomorphic
5-generated non-amenable boundedly acyclic groups.

Furthermore, we construct a finitely presented non-amenable boundedly
acyclic group:

Theorem 4 (A finitely presented non-amenable boundedly acyclic group;
Corollary 5.2). There exists a finitely presented non-amenable boundedly
acyclic group.

This group is non-amenable in a very strong sense, since it contains an
isomorphic copy of every finitely presented group.

Our proofs are based on constructions with mitotic groups by Baumslag–
Dyer–Heller [2] and Baumslag–Dyer–Miller [3]. As mitotic groups are far
from being finitely generated, we proceed as follows:

• Apply HNN-extensions to obtain finitely generated or finitely pre-
sented groups from mitotic groups;
• Preserve bounded acyclicity along the construction.

This can be achieved by combining Monod–Popa’s result on ascending HNN-
extensions [63] with appropriate algebraic constructions.

A note from the future. After the first version of this article was posted,
new computations of bounded cohomology have emerged. It is now known
that the bounded cohomology of Homeo+(S1) is a polynomial ring, gener-
ated by the Euler class [62]; similarly, the bounded cohomology of Thomp-
son’s group T is a polynomial ring, generated by the Euler class [21], pro-
vided that Thompson’s group F is boundedly acyclic.
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A proof of bounded acyclicity of F was recently given by Monod [61].
Along the way, he also shows that wreath products of the form Γ o Z are
boundedly acyclic, for every group Γ. This provides an alternative proof of
the fact that every finitely generated group embeds into a finitely generated
boundedly acyclic group.

1.2. Finitely generated groups with large bounded cohomology.
Conversely, it is also interesting to construct finitely generated groups with
large bounded cohomology :

Definition 5 (Groups with large bounded cohomology). A group Γ has
large bounded cohomology if dimR Hn

b (Γ;R) ≥ |R| for all n ≥ 2.

Countable examples with large bounded cohomology can be constructed
through product constructions [52]. Recently, Nitsche proved that certain
groups of homeomorphisms have similar properties [66].

Until now, no finitely generated examples with large bounded cohomology
were known [59, 34, 24]. As recently remarked by Heuer [35], “It is notori-
ously hard to explicitly compute bounded cohomology, even for most basic
groups: There is no finitely generated group G for which the full bounded
cohomology (Hn

b (G;R))n∈N with real coefficients is known except where it
is known to vanish in all degrees”.

Theorem 6 (Finitely generated groups with large bounded cohomology
(Corollary 6.2)). There exist continuum many non-isomorphic 8-generated
groups with large bounded cohomology.

The main challenge in the proof of Theorem 6 is to find a finitely generated
group whose bounded cohomology is large in infinitely many degrees (e.g., all
even degrees): the rest can be done by taking appropriate cross products.
Our construction starts with a finitely generated group Γ introduced by
Meier [55] with the striking property of being isomorphic to its direct square.
We then introduce a sufficient condition for groups with this property to have
large bounded cohomology in all even degrees (Theorem 6.7) and we show
that Γ satisfies that hypothesis.

It is not clear whether this construction can produce finitely presented
examples (Scholium 6.15). But a concrete finitely presented example can be
obtained through Thompson’s group T :

Theorem 7 (A finitely presented group with large bounded cohomology
(Theorem 7.3)). If Λ is the fundamental group of an oriented closed con-
nected hyperbolic 3-manifold, then T × Λ has large bounded cohomology.

1.3. Non-computability. We consider the problem of algorithmic com-
putability of bounded cohomology. Despite of the Hopf formula for group
homology, the algorithmic problem

Given a finite presentation 〈S |R〉, decide whether H2(〈S |R〉 ;Z) is
trivial or not.

is undecidable, as one can show by a variation of the Adian–Rabin construc-
tions [29, Theorem 4]. The same method also shows that the algorithmic
problem
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Given a finite presentation 〈S |R〉, decide whether H2(〈S |R〉 ;R) is
trivial or not.

is undecidable. Similarly, we obtain for bounded cohomology:

Theorem 8 (Non-computability; Theorem 8.1). Let d ∈ N≥2. The following
algorithmic problems are undecidable: Given a finite presentation 〈S |R〉,
decide whether

(1) Hd
b(〈S |R〉 ;R) ∼= 0 or not;

(2) dimR Hd
b(〈S |R〉 ;R) = |R| or not;

(3) 〈S |R〉 is boundedly acyclic or not.

Further statements of this type are contained in Theorem 8.1. The wit-
ness constructions used in the proof of Theorem 8 also apply to show non-
computability results for L2-Betti numbers and cost (Remark 8.11).

Ordinary cohomology of finite simplicial complexes with coefficients in R
or Z is computable through elementary algorithms from linear algebra. In
contrast, Gromov’s Mapping Theorem lets us deduce from Theorem 8 that
the corresponding property does not hold for bounded cohomology:

Theorem 9 (Non-computability for spaces; Corollary 8.2). Let d ∈ N≥2.
The following algorithmic problems are undecidable: Given a finite simplicial
complex X, decide whether

(1) Hd
b(X;R) ∼= 0 or not;

(2) dimR Hd
b(X;R) = |R| or not;

(3) X is boundedly acyclic or not.

Undecidability of vanishing in degrees ≥ 5 could also be deduced from
Weinberger’s non-computability result for simplicial volume [71, Chapter 2.6].
Our proof is based on similar witness constructions.

We conclude by asking:

Question 10. Which sequences of semi-normed vector spaces can be re-
alised as bounded cohomology H∗b(Γ;R) of finitely generated/finitely presented
groups Γ?

Acknowledgements. We are grateful to James Farre, Stefan Friedl, Ro-
berto Frigerio, Yash Lodha, Nicolas Monod and George Raptis for some
useful conversations.

Organisation of this article. In Section 2, we collect background ma-
terial: We recall the basics of bounded cohomology and `1-homology with
some of their properties. In Section 2.2 we list classical embedding theorems
that we will need in the sequel. In Section 2.3, we define mitotic groups and
discuss some classical constructions.

Section 3 is devoted to the study of some closure properties of the class
of boundedly acyclic groups. In Section 4, we construct finitely generated
boundedly acyclic groups; in particular, we prove Theorem 2. In Section 5,
we construct a finitely presented non-amenable boundedly acyclic group,
proving Theorem 4. Section 6 contains the construction of groups with
large bounded cohomology and the proof of Theorem 6. The proof of Theo-
rem 7 is given in Section 7. Finally, we prove the non-computability results
Theorem 8 and Theorem 9 in Section 8. The appendix contains basics on
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(co)homological dimension in the setting of bounded cohomology, which are
used in Section 8.

2. Basic definitions

Unless explicitly stated, all groups considered are discrete.

2.1. `1-Homology and bounded cohomology. We recall the notions of
`1-homology and bounded cohomology of groups. Bounded cohomology of
groups was introduced by Johnson [46] and Trauber and then extended to
spaces by Gromov [33]. We recall the definition of bounded cohomology
of groups. For convenience, we introduce bounded cohomology as a dual
construction to `1-homology [51].

2.1.1. `1-Homology. For a group Γ, let C•(Γ) denote the simplicial resolution
of Γ over R. For n ∈ N = {0, 1, . . . }, we have Cn(Γ) :=

⊕
g∈Γn+1 R · g and

∂n : Cn(Γ)→ Cn−1(Γ)

(g0, . . . , gn) 7→
n∑

j=0

(−1)n · (g0, . . . , ĝj , . . . , gn).

We endow C•(Γ;R) with the `1-norm:∣∣∣∣∣ ∑
g∈Γ•+1

ag · g

∣∣∣∣∣
1

:=
∑

g∈Γ•+1

|ag|.

The boundary operator ∂• is bounded in each degree; thus, we can define

the `1-resolution C`1
• (Γ) of Γ as the completion of C•(Γ) with respect to the

`1-norm.

Definition 2.1 (`1-Homology of groups). Let Γ be a group and let V be a
Banach Γ-module (e.g., R with the trivial Γ-action). We set

C`1

• (Γ;V ) := C`1

• (Γ)⊗Γ V,

where ⊗ denotes the projective tensor product. Then the `1-homology of Γ
with coefficients in V is defined by

H`1

• (Γ;V ) := H•
(
C`1

• (Γ;V )
)
.

We will mainly be interested in the case of trivial R-coefficients. The con-

struction of H`1
• ( · ;R) is functorial with respect to group homomorphisms.

Remark 2.2. We recall that `1-homology groups are endowed with an `1-

seminorm induced by the `1-norm on C`1
• (Γ;R). In the sequel we will also

make use of the reduced `1-homology H
`1

• (Γ;R):

H
`1

• (Γ;R) :=
ker
(
∂• : C`1

• (Γ;R)→ C`1
•−1(Γ;R)

)
| · |1-closure of ∂•+1 C`1

•+1(Γ;R)
.
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2.1.2. Bounded cohomology. The construction of `1-homology allows us to
define bounded cohomology as follows [50]:

Definition 2.3 (Bounded cohomology). Let Γ be a group and let V be a
Banach Γ-module. The bounded cochain complex of Γ with coefficients in V
is defined as the Γ-invariants of the topological dual:

C•b(Γ;V ) := B
(
C`1

• (Γ), V
)Γ
.

The bounded cohomology of Γ with coefficients in V is then defined as

H•b(Γ;V ) := H•
(
C•b(Γ;V )

)
.

The construction of H•b( · ;R) is functorial with respect to group homo-
morphisms.

Remark 2.4. Bounded cohomology with trivial real coefficients is well
known in degrees 0 and 1: For every group Γ we have H0

b(Γ;R) ∼= R and
H1

b(Γ;R) ∼= 0 [33, 22]. For this reason, we did not specify low degrees in
Definitions 1 and 5.

2.1.3. Duality with `1-homology. We recall how to use reduced `1-homology

and the interaction through the evaluation map H•b ⊗RH
`1

• → R to show
non-vanishing of bounded cohomology:

Definition 2.5. Let Γ be a group and let k ∈ N. We set

b`
1

k (Γ) := dimR H
`1

k (Γ;R).

Proposition 2.6 ([52, Proposition 3.2, Proposition 3.3]). Let Γ and Λ be
groups and let k,m ∈ N. Then, we have:

(1) dimR Hk
b (Γ;R) ≥ b`

1

k (Γ);

(2) b`
1

2 (Γ) ≥ dimR H2
b(Γ;R) [54, Theorem 2.3, Corollary 2.7];

(3) b`
1

k+m(Γ× Λ) ≥ b`
1

k (Γ) · b`
1

m (Λ);

Remark 2.7. The previous proposition has the following special situations:

• If Γd = Λ× Λd
2 for some group Λ2, then

dimR H2d
b (Γd;R) ≥ b`

1

2d(Γd) ≥ b`
1

2 (Λ2)d.

• For every group Λ3, the above property in degree 2d still holds
for Γd × Λ3, and moreover

dimR H2d+3
b (Γd × Λ3;R) ≥ b`

1

2d+3(Γd × Λ3) ≥ b`
1

2d(Γd) · b`
1

3 (Λ3).

For k ∈ {2, 3}, choosing Λk with b`
1

k (Λk) > 0, we thus obtain lower bounds
on the dimension of the bounded cohomology spaces. This will be used in
Sections 6 and 7 to construct groups with large bounded cohomology, and
in Section 8 to extend results in degree 2 and 3 to higher degrees.

Example 2.8. If Γ is the fundamental group of an oriented closed connected

hyperbolic n-manifold M , then b`
1

n (Γ) > 0, because the simplicial volume
of M is non-zero [33, 70] and hence the fundamental class of M yields a

non-trivial element of H
`1

n (M ;R) ∼= H
`1

n (Γ;R).
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2.2. Embedding theorems. We collect some classical embedding theo-
rems, which we will need in the sequel (Sections 4, 5 and 6). We will adopt
the following notation for group presentations: Given a group presentation
H = 〈S | R〉 and a disjoint set of generators S′, we will simply write

〈H;S′ | R′〉 := 〈S ∪ S′ | R ∪R′〉,
where R′ is a new set of relations (possibly) involving both elements in S
and S′. Moreover, it will always be clear from the context whether 〈S |R〉
denotes a presentation or the group given by this presentation.

Definition 2.9 (Recursively presented group). A group presentation 〈S | R〉
is recursively enumerable if the generating set S is countable and the set of
relations R is a recursively enumerable subset of the free group over S. A
group is recursively presented if it has a recursively enumerable presentation.

The importance of recursively presented groups is elucidated by the fol-
lowing well-known result by Higman:

Theorem 2.10 ([36, Theorem 1]). A group is recursively presented if and
only if it embeds into a finitely presented group.

Moreover, Higman also showed that there exists a universal finitely pre-
sented group in the following sense:

Theorem 2.11 ([36, p. 456]). There exists a universal finitely presented
group, that is, a finitely presented group that contains an isomorphic copy
of every finitely presented group.

To move from one to continuum many examples in Corollary 3 and The-
orem 6, we make use of the following:

Theorem 2.12 ([37, Section 4]). Every countable group Γ embeds into a
2-generator group K with the following property: For every prime p the
group K contains p-torsion if and only if Γ does.

Corollary 2.13. There exist continuum many 2-generator groups, which
are pairwise distinguished by their torsion.

Proof. For each (possibly infinite) set P of prime numbers, it is sufficient to
apply Thorem 2.12 to

⊕
p∈P Z/pZ. �

Remark 2.14. More explicit constructions allow to show that there ex-
ist continuum many pairwise non-isomorphic 2-generator groups, which are
moreover torsion-free [15].

Remark 2.15. Notice that all these results make essential use of HNN-
extensions. Indeed, every group Γ embeds into every HNN-extension of the
form Γ∗ϕ [37]. We will use this fact repeatedly in the sequel.

2.3. Mitotic groups. Mitotic groups are acyclic groups, first introduced
by Baumslag, Dyer and Heller [2] as building blocks in order to prove new
results about functorial embeddings of groups into acyclic groups. Mitotic
groups are based on mitoses:

Definition 2.16 (Mitosis). Let H be a subgroup of a group Γ. We say
that Γ is a mitosis of H if there exist two elements s, d ∈ Γ such that the
following hold
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(1) Γ is generated by H, s and d;
(2) For all h, h′ ∈ H, we have [h′, s−1hs] = 1.
(3) For all h ∈ H, we have d−1hd = hs−1hs;

We use the commutator convention [x, y] := x−1y−1xy.

The second condition says that Γ contains two conjugate, commuting
copies of H (which are allowed to intersect non-trivially). This implies that
there exists a third, diagonal copy, and the third condition says that this
is also conjugate to the first copy. This is better illustrated by the next
example: Following Baumslag, Dyer and Heller [2, Section 5], we recall how
to embed every group into its standard mitosis:

Example 2.17 (Standard mitosis). Let Γ be a group. We begin by embed-
ding Γ into Γ × Γ via the identification g 7→ (g, 1). Then, we construct a
mitotis for Γ by applying two HNN-extensions as follows: We add an ele-
ment s that conjugates (g, 1) to (1, g), and then an element d that conjugates
(g, 1) to (g, g). This leads to a group

m(Γ) := 〈Γ× Γ; s, d | s−1(g, 1)s = (1, g), d−1(g, 1)d = (g, g)〉
= 〈Γ; s, d | d−1gd = gs−1gs, [g, s−1hs] = 1 : g, h ∈ Γ〉,

which is called the standard mitosis of Γ. It is immediate to check that Γ is
embedded into m(Γ) (Remark 2.15).

This construction is functorial in the following sense [2, Lemma 5.2]: Ev-
ery homomorphism ϕ : Γ1 → Γ2 induces a homomorphism m(ϕ) : m(Γ1) →
m(Γ2) just by sending g → ϕ(g) for every g ∈ Γ1 and s1 7→ s2, d1 7→ d2.
Moreover, the functor m : Groups→ Groups preserves monomorphisms.

To prove non-amenability of the boundedly acyclic groups constructed in
Theorem 2, the following will be useful:

Remark 2.18. The subgroup of m(Γ) generated by s and d is free of rank 2:
Indeed, the map m(Γ) → F2 sending s and d to the two generators and
annihilating Γ is a surjective homomorphism, as can be easily seen from the
latter presentation of m(Γ).

Definition 2.19 (Mitotic groups). A group Γ is mitotic if every finitely
generated subgroup of Γ admits a mitotis in Γ.

Using the construction of Example 2.17, it is easy to show that every
group embeds into a mitotic group [2, Lemma 5.4]:

Example 2.20 (Standard mitotic embedding). Given a group Γ we al-
ready know that it can be embedded into its standard mitosis m(Γ) (Exam-
ple 2.17). Moreover, since the functor m preserves monomorphisms, we can
construct the direct union (colimit) m∞(Γ) =

⋃
i≥0m

i(Γ), which is mitotic.

Mitotic groups are known to be acyclic [2]. Our interest in them is moti-
vated by the following result (see Definition 1):

Theorem 2.21 ([52, Theorem 1.2]). All mitotic groups are boundedly acyclic.
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3. Basic properties of boundedly acyclic groups

The class BAc of boundedly acyclic groups consists of those groups with
vanishing bounded cohomology in all positive degrees and trivial real co-
efficients R (Definition 1). They appeared in the literature also under the
name of groups with zero bounded cohomological dimension [52], but we
prefer to stick with the name boundedly acyclic because of the recent char-
acterisation of boundedly acyclic maps [65] and Ivanov’s work on boundedly
acyclic open covers [44]. Moreover, this choice also avoids any confusion
with the bounded cohomological dimension cdb that we will introduce and
discuss later (Sections 8 and Appendix A). In this section we discuss some
hereditary properties of boundedly acyclic groups.

3.1. Boundedly acyclic groups and HNN extensions. We recall the
definition of co-amenability and how this property provides information
about BAc and HHN-extensions.

Proposition 3.1 ([65, Corollary 4.2.2]). Let 1 → H → Γ → Q → 1 be a
short exact sequence of groups. Suppose H ∈ BAc. Then Γ ∈ BAc if and
only if Q ∈ BAc.

In the situation of Proposition 3.1, if H ∈ BAc and Q is amenable, then
Γ ∈ BAc. In fact, following a result by Monod and Popa [63], one can
strengthen this statement via co-amenability:

Definition 3.2 (Co-amenable subgroups). Let Γ be a group and let H ≤ Γ
be a subgroup. We say that H is co-amenable in Γ if there exists a Γ-
invariant mean on the space `∞(Γ/H) of bounded functions on Γ/H.

Example 3.3. The following are examples of co-amenable subgroups:

(1) Suppose that H is normal in Γ. Then H is co-amenable in Γ if and
only if the quotient Γ/H is amenable.

(2) Let H be a group and let ϕ : H → H a monomorphism. Let Γ =
H∗ϕ be the corresponding HNN-extension: Following most of the
literature, we will call such HNN-extensions ascending. Then, H is
co-amenable in Γ [63, Proposition 2].

(3) Given a chain K < H < Γ of groups, we have: If K is co-amenable
in H and H is co-amenable in Γ, then K is also co-amenable in Γ [63].

(4) Given a chain K < H < Γ of groups, we have: If K is co-amenable
in Γ, then H is co-amenable in Γ [63].

(5) On the other hand, it is not true in general that the co-amenability
of K in Γ implies that K is co-amenable in H [63].

The importance of co-amenability in our setting is evident from the fol-
lowing result by Monod and Popa:

Proposition 3.4 ([63, Proposition 3], [58, 8.6]). Let H ≤ Γ be a co-
amenable subgroup. Then, the inclusion map i : H → Γ induces an injective
map in bounded cohomology:

H•b(i) : H•b(Γ;R) ↪→ H•b(H;R)

In particular, if H ∈ BAc, then Γ ∈ BAc.
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We will see in Corollary 5.3 that H•b(i) is, in general, far from being
surjective.

Corollary 3.5. Ascending HNN-extensions of groups in BAc are in BAc.

Proof. We combine Proposition 3.4 and Example 3.3.2. �

The following example shows that Corollary 3.5 does not hold for general
HNN-extensions.

Example 3.6. The group BS(2, 3) is an HNN-extension of Z along finite-
index subgroups isomorphic to Z. However, BS(2, 3) is not a boundedly
acyclic group. Indeed, it admits non-trivial quasimorphisms [32, 25], whence
it has non-trivial second bounded cohomology group.

3.2. Quotients and Lex groups. One of the most remarkable proper-
ties of mitotic groups is that they are closed under quotients [6, Appen-
dix B]. Since the same property is also true for amenable groups [22, Propo-
sition 3.4], a natural question is whether the quotient of a boundedly acyclic
group is still boundedly acyclic.

This problem is related to the problem of showing existence of a non-Lex
group, i.e., of groups that are not left-exact in the following sense:

Definition 3.7 (Lex groups [8]). We say that a group Γ lies in the family
Lex if it satisfies the following left-exactness property: For every group Λ
and every epimorphism ψ : Λ → Γ, the induced map H•b(ψ) in bounded
cohomology with trivial real coefficients is injective in all degrees.

It is an open problem to find examples of groups that do not lie in Lex. On
the other hand, in degree 2 the situation is understood: Every group epimor-
phism induces an injective map between the second bounded cohomology
groups [7] (in fact the induced map is even isometric [41, Theorem 2.14] and
the result also holds for a larger family of coefficients [65, Example 4.1.2]).

Of course amenable groups and, more generally, boundedly acyclic groups
lie in Lex. Some more interesting examples are for instance:

• Free groups;
• Fuchsian groups [8, Corollaire 3.9];
• Fundamental groups of geometric 3-manifolds [8, Corollaire 3.13 and

p. 267] (together with Agol’s proof of Thurston’s Virtual Fibering
Conjecture [1]).
• The class Lex is closed under the following constructions: Quotients

by amenable subgroups, extensions of an amenable group by an el-
ement in Lex [8, Proposition 3.16] and free products of amenable
groups amalgamated over a common normal subgroup [8, Corol-
laire 3.17].

Remark 3.8. Following Bouarich’s proof [8, Proposition 3.16], one can
in fact deduce the corresponding statement for boundedly acyclic groups.
Namely, Lex is also closed under the following constructions:

• Quotients by boundedly acyclic groups;
• Extensions of a boundedly acyclic group by an element in Lex.
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The proof follows verbatim the one by Bouarich with the additional fact
that epimorphisms with boundedly acyclic kernels induce isomorphism in all
bounded cohomology groups with trivial real coefficients [65, Theorem 4.1.1]

The connection between quotients of BAc groups and Lex groups is given
in the following proposition:

Proposition 3.9. The family BAc is closed under quotients if and only if
all quotients of boundedly acyclic groups lie in Lex.

Proof. Since boundedly acyclic groups lie in Lex, one implication trivially
holds. Vice versa, if we assume that BAc is not closed under quotients,
there exists an epimorphism ψ : Γ→ Λ with Γ ∈ BAc and Λ 6∈ BAc. Then,
ψ cannot induce an injective map in bounded cohomology for all degrees.
This shows that Λ 6∈ Lex, whence the thesis. �

This proposition provides a strategy to find a non-Lex group: namely, it
would suffice to exhibit a quotient of a BAc group that is not in BAc. Note
that by the discussion above, every quotient of a BAc group has vanishing
second bounded cohomology with trivial real coefficients. Several groups of
geometric nature are then natural candidates for a counterexample:

Example 3.10. Let X be an n-dimensional irreducible symmetric space of
non-compact type, and G the associated Lie group. Let Γ < G be a torsion-
free cocompact lattice. Then ‖Γ\X‖ > 0 [48], and so by Gromov’s Duality
Principle [33] it follows that Hn

b (Γ;R) 6∼= 0 (in fact something can be said
about lower degrees as well [49]).

On the other hand, if X is not Hermitian symmetric and has real rank at
least 3, then H2

b(Γ;R) ∼= 0 [12].

4. Finitely generated boundedly acyclic groups

In this section, we show that each finitely generated group embeds into a
finitely generated boundedly acyclic group. The latter will always contain
a non-abelian free group, providing the first examples of (an infinite family
of) non-amenable finitely generated boundedly acyclic groups.

Theorem 4.1. There exists a functor µ : Groups → Groups associating
to each group Γ a boundedly acyclic group µ(Γ) into which Γ embeds. The
group µ(Γ) has the following properties:

(1) Torsion elements of µ(Γ) are conjugate to elements of Γ.
(2) If Γ is infinite, then µ(Γ) has the same cardinality as Γ, otherwise

µ(Γ) is countably infinite.
(3) The group µ(Γ) contains a non-abelian free subgroup.
(4) If Γ is n-generated, then µ(Γ) is (n+ 3)-generated. In particular, if

Γ is finitely generated, then µ(Γ) is finitely generated.

Proof. We construct our functor starting with the standard mitosis of Γ
(Example 2.17): Every group Γ embeds into its standard mitosis

m(Γ) = 〈Γ; s, d | d−1gd = gs−1gs, [g, s−1hs] = 1 : g, h ∈ Γ〉.
To make the notation more transparent, let us denote s by s1 and d by
d1. Then, we iterate the process as in the standard mitotic embedding
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(Example 2.20): Denoting by si and ti the new generators of mi(Γ), we
obtain the directed union (colimit) m∞(Γ), which is generated by Γ, together
with {s1, d1, . . .}. There exists a self-monomorphism ϕ of m∞(Γ) given by
g 7→ g, si 7→ si+1, di 7→ di+1 [2, p. 20]. We now set µ(Γ) to be the ascending
HNN-extension m∞(Γ)∗ϕ:

µ(Γ) := 〈m∞(Γ); t | t−1xt = ϕ(x) : x ∈ m∞(Γ)〉.
Notice that µ is in fact a functor, because it is constructed via iterated
standard mitoses (Example 2.17) followed by an HNN-extension. Moreover,
µ(Γ) is a boundedly acyclic group because it is an ascending HNN-extension
of the mitotic group m∞(Γ) (Theorem 2.21 and Corollary 3.5). Finally, by
construction, Γ embeds into µ(Γ) (Remark 2.15).

We are left to check that µ(Γ) satisfies the properties (1)–(4).
Ad 1. The statement on torsion follows from the fact that all torsion in

an HNN-extension is conjugate into the base group [37].
Ad 2. The statement on the cardinality follows from the fact that HNN-

extensions of infinite groups preserve the cardinality, while HNN-extensions
of finite groups are countably infinite.

Ad 3. By Remark 2.18, the subgroup of m(Γ) generated by s1 and d1 is
free of rank 2. Since m(Γ) also embeds into µ(Γ) (Remark 2.15), we also
have that µ(Γ) contains a non-abelian free group.

Ad 4. It is immediate to check that the generators of Γ, together with
s1, d1 and t, suffice to generate µ(Γ). This shows that if Γ is n-generated,
then µ(Γ) is (n+ 3)-generated, whence the claim. �

Remark 4.2. Notice that µ(Γ) is not acyclic. Indeed, the presentation
of µ(Γ) shows that its abelianization is an infinite cyclic group, whence
H1(µ(Γ);Z) ∼= Z [2, p. 20]. Nevertheless, it is worth mentioning that
Hn(µ(Γ);Z) ∼= 0 for all n > 1, because m∞(Γ) is acyclic [2, Theorem 4.2;
p. 20].

Corollary 4.3. Every countable group Γ embeds into a 5-generated non-
amenable boundedly acyclic group that has p-torsion if and only if Γ does.

Proof. This is the combination of parts (1), (3) and (4) of Theorem 4.1
together with Theorem 2.12. �

Similar embedding results for mixing coefficients have been obtained by
Monod [60, Proposition 6.5].

Using Corollary 4.3, the same proof as Corollary 2.13 gives:

Corollary 4.4. There exist continuum many 5-generated non-amenable
boundedly acyclic groups, which are pairwise distinguished by their torsion.

Remark 4.5. In fact, there exist continuum many torsion-free 5-generated
non-amenable boundedly acyclic groups, which are pairwise non-isomorphic.
Indeed, there exist continuum many pairwise non-isomorphic 2-generated
torsion-free groups (Γi)i∈I , by Remark 2.14. Now each group µ(Γi) is finitely
generated, in particular it is countable, and so has only countably many
finitely generated subgroups. Therefore there must be continuum many
distinct isomorphism types in the collection (µ(Γi))i∈I as well. Finally, they
are torsion-free by Theorem 4.1.
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One natural question is whether the same construction leads to finitely
presented boundedly acyclic groups. Unfortunately, as in the classical case
of acyclic groups, this is never the case [2, Theorem 5.6]. Let us recall the
following construction by Baumslag, Dyer and Heller [2, Section 5]: Let A
be a finitely presented torsion-free acyclic group with generators a, b, c (one
such example can be found in [2, Section 3]), and let A(Γ) := µ(Γ) ∗t=a A.
Then, A(Γ) has the following properties:

(P1) The group A(Γ) is never finitely presented [2, Theorem 5.6];
(P2) If A(Γ) is finitely generated, then so is Γ [2, Lemma 5.7];
(P3) If Γ is recursively presented, then so is A(Γ) [3, p. 38].

Using this group we can deduce the following additional properties of µ(Γ):

Proposition 4.6. The functor µ : Groups→ Groups associating to each
group Γ the boundedly acyclic group µ(Γ) also satisfies the following proper-
ties:

(1) The group µ(Γ) is finitely generated if and only if Γ is;
(2) The group µ(Γ) is never finitely presented;
(3) If Γ is recursively presented, then so is µ(Γ).

Proof. We can easily deduce all the properties from the ones of A(Γ):
Ad 1. We have already shown in Theorem 4.1.4 that if Γ is finitely gen-

erated, then also µ(Γ) is finitely generated. Vice versa, if µ(Γ) is finitely
generated, then so is A(Γ). This shows that Γ is also finitely generated
by (P2) of A(Γ).

Ad 2. By contradiction, assume that µ(Γ) is finitely presented. Then
also A(Γ) is finitely presented being a free product of finitely presented
groups amalgamated along a finitely generated subgroup. This leads to a
contradiction ((P1) of A(Γ)).

Ad 3 If Γ is recursively presented, we already know that A(Γ) is too ((P3)
of A(Γ)). This implies that µ(Γ) is also recursively presented, as subgroups
of recursively presented groups are recursively presented [36]. �

The previous result has an important consequence, which will be a build-
ing block in our construction of a finitely presented non-amenable boundedly
acyclic group (Theorem 4). Let U denote a universal finitely presented group
(Theorem 2.11). Then we have the following:

Corollary 4.7. Let Γ be a finitely presented group. Then, µ(Γ) embeds
into U .

Proof. By definition of U we know that every finitely presented group em-
beds into U . So it is sufficient to show that we can embed µ(Γ) into a
finitely presented group. Since Γ is finitely presented (whence recursively
presented), Proposition 4.6.3 shows that µ(Γ) is also recursively presented.
Hence, by Theorem 2.10 µ(Γ) embeds into a finitely presented group, which
in turn embeds into U (Theorem 2.11). �

5. A finitely presented non-amenable boundedly acyclic group

The aim of this section is to make use of Theorem 4.1 in order to con-
struct a finitely presented boundedly acyclic group that contains all finitely
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presented groups. In particular this provides the first example of a finitely
presented non-amenable boundedly acyclic group. The fundamental tool
in the process is the following result, which is based on the techniques by
Baumslag, Dyer and Miller [3, Section 4]:

Theorem 5.1. Let Γ be a group such that µ(Γ) embeds into Γ. Then Γ has
a boundedly acyclic ascending HNN-extension. In particular, a universal
finitely presented group has a boundedly acyclic ascending HNN-extension.

Proof. Let Γ′ be an isomorphic copy of Γ with µ(Γ) ≤ Γ′. Let f : Γ′ → Γ be
such an isomorphism. Then there exists a monomorphism ϕ : Γ′ → Γ ≤ Γ′

obtained by composing f with the inclusion of Γ into µ(Γ) ≤ Γ′ (Theo-
rem 4.1). We claim that the corresponding ascending HNN-extension Γ′∗ϕ
is boundedly acyclic. Indeed, since ϕ(Γ′) = t−1Γ′t inside Γ′∗ϕ, we have the
following chain of inclusions:

Γ′ = tΓt−1 < tµ(Γ)t−1 < tΓ′t−1 < Γ′ ∗ϕ .

Moreover, Γ′ is co-amenable in Γ′∗ϕ (Example 3.3.2) and so by Example 3.3.4
we also know that tµ(Γ)t−1 is co-amenable in Γ′∗ϕ. By using the fact that
tµ(Γ)t−1 is isomorphic to µ(Γ), whence boundedly acyclic, we conclude that
Γ′∗ϕ is boundedly acyclic as claimed (Proposition 3.4).

A universal finitely presented group (Theorem 2.11) satisfies the hypoth-
esis of the theorem. Indeed by Theorem 4.1 and Corollary 4.7, we have
embeddings U < µ(U) < U . Therefore U admits a boundedly acyclic as-
cending HNN-extension. �

Corollary 5.2. There exists a finitely presented boundedly acyclic group
that contains an isomorphic copy of every finitely presented group.

Proof. Let U be a universal finitely presented group. It admits a boundedly
acyclic ascending HNN-extension, by the last statement of Theorem 5.1.
This is finitely presented, being an ascending HNN-extension of a finitely
presented group, and it contains U , thus all finitely presented groups. �

By Proposition 3.4, if Λ is an ascending HNN-extension of Γ, then Γ is
co-amenable in Λ and so the embedding Γ → Λ induces an injection in
bounded cohomology. The techniques from this section allow us to show
that, in general, this injection is very far from being an isomorphism:

Corollary 5.3. For all d ≥ 2 there exists a finitely presented group Γ with
Hd

b(Γ;R) 6∼= 0 that admits a boundedly acyclic ascending HNN-extension.

Proof. For every d ≥ 2, let Λd be the fundamental group of an oriented
closed connected hyperbolic d-manifold. Then, we know that Hd

b(Λd;R) 6∼= 0
(Proposition 2.6 and Example 2.8)). Since Λd is finitely presented, we can
set Γ := U × Λd, where U is a universal finitely presented group. As Γ
retracts onto Λd, we have Hd

b(Γ;R) 6∼= 0. On the other hand, Γ is itself a
universal finitely presented group, so by the last statement of Theorem 5.1
it has a boundedly acyclic ascending HNN-extension. �
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6. Finitely generated groups with large bounded cohomology

In this section, we turn to groups with large bounded cohomology, namely
whose bounded cohomology is at least continuum-dimensional in every de-
gree at least 2 (Definition 5). Countable examples have been constructed
before [52], but no finitely generated example was known. Here, we provide
the first recipe for finitely generated examples:

Theorem 6.1. There exists a 6-generated group with large bounded coho-
mology. Moreover, this group can be chosen to be torsion-free.

The proof of Theorem 6.1 will be completed in Section 6.3.
Combining this theorem with Theorem 2.12 [37], we obtain:

Corollary 6.2. There exist continuum many non-isomorphic 8-generated
groups with large bounded cohomology.

Proof. Let Γ be a 6-generated torsion-free group with large bounded coho-
mology (Theorem 6.1). Then, for every group Λ the product Λ × Γ also
has large bounded cohomology, because the product retracts onto Γ. Now
by Corollary 2.13 there exist continuum many 2-generated groups pairwise
distinguished by their torsion. Taking Λ to be in this family, since Γ is
torsion-free, we obtain continuum many non-isomorphic 8-generated groups
with large bounded cohomology. �

Remark 6.3. Again, we can also choose these groups to be torsion-free
using Remark 4.5.

6.1. Constructing groups with large bounded cohomology. We pro-
vide a criterion to construct finitely generated groups with large bounded
cohomology, by starting with a group that is isomorphic to a proper direct
factor of itself. We begin by introducing a local version of Definition 5:

Definition 6.4. Let n ≥ 2. A group Γ has large n-th bounded cohomology
if dimR Hn

b (Γ;R) ≥ |R|.

Remark 6.5. Let Γ be a group. The following inequality always holds:

dimR Hn
b (Γ;R) ≤ |Cn

b (Γ;R)| ≤ |R|Γn+1

In particular, if Γ is countable, then dimR Hn
b (Γ;R) ≤ |R|. This shows that

countable groups with large n-th bounded cohomology have n-th bounded
cohomology of dimension equal to |R|. For arbitrary groups, larger cardi-
nalities are possible [20].

Example 6.6. The following examples will be useful in the rest of this
section:

(1) Let G ∗C H be an amalgamated product with |C\G/C| ≥ 3 and
C 6= H. Then G∗CH has large second bounded cohomology [32, 25].

(2) If ∆ has large second bounded cohomology and Γ surjects onto ∆,
then Γ has large second bounded cohomology (Section 3.2).

(3) If H is a retract of Γ, and H has large n-th bounded cohomology,
then so does Γ, since the epimorphism Γ → H induces an injection
in bounded cohomology. A special case of this is when H is a direct
factor of Λ, which was used in the proof of Corollary 6.2.
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(4) Acylindrically hyperbolic groups have large second [42] and third [24]
bounded cohomology. We will only need the case of fundamental
groups of oriented closed connected hyperbolic 3-manifolds for the
proof of Theorem 6.1. This case was known earlier [9, 19, 69].

A further example is contained in Lemma 8.10.

The main tool in the proof of Theorem 6.1 is the following:

Theorem 6.7. Let Γ and Σ be groups such that Γ ∼= Γ×Σ. Suppose that Σ
has large second bounded cohomology. Then Γ has large bounded cohomology
in all even degrees.

Moreover, if Λ is the fundamental group of an oriented closed connected
hyperbolic 3-manifold, then Γ× Λ has large bounded cohomology.

Proof. For every d ≥ 1 we can write Γ as Γ × Σd. Now it follows at once
from Remark 2.7 that Γ has large bounded cohomology in all even degrees.

Next, since b`
1

3 (Λ) > 0 (Example 2.8), again it follows from Remark 2.7 that
Γ× Λ has large bounded cohomology in all even degrees, and all degrees of
the form 2d+3 for d ≥ 1, which includes all integers n ≥ 2, except for n = 3.
Finally, Γ× Λ retracts onto Λ, and so has large third bounded cohomology
by Examples 6.6.3 and 6.6.4. �

Remark 6.8. The last statement of Theorem 6.7 also holds if we only
assume that H2

b(Σ;R) 6∼= 0. Indeed, it is still true that Γ × Λ has large

second and third bounded cohomology, and that b`
1

2 (Γ × Λ) ≥ |R|. We
can write all greater even integers as 2d + 2 (Remark 2.7), thus obtaining
largeness in all even degrees. For the larger odd degrees we proceed as in
the proof of Theorem 6.7.

Remark 6.9. Notice that we might replace Λ in the product above by

an arbitrary acylindrically hyperbolic group A, if we knew that b`
1

3 (A) >
0. This, however, seems to be an open problem, even for non-abelian free
groups.

The remaing part of this section is devoted to the construction of a finitely
generated group Γ satisfying the assumptions of Theorem 6.7.

6.2. Meier’s finitely generated group. Finitely generated groups Γ with
the property that Γ ∼= Γ × Σ for some Σ 6∼= 1 were first constructed by
Jones [47]. Further constructions were given by Meier [55], Rhemtulla [67]
and Hirshon [38]. The last paper provides examples with Σ finitely pre-
sented. Among the constructions, particular attention has been devoted to
the case in which Γ = Σ. We will show that Meier’s group satisfies the
assumption of Theorem 6.7.

Definition 6.10 (Meier’s finitely generated group). Let

B := 〈a, t | t−1a2t = a3〉

be the Baumslag–Solitar group BS(2, 3) and let B be another copy of B
with generators a, t. Let

L := 〈t, [a, t−1at]〉 ≤ B,
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which is a free subgroup of rank 2, and let L be its copy inside B. We
then set ∆ to be the free product of B and B amalgamated over L ∼= L by
switching the generators; namely

∆ := B ∗L∼=L B = 〈B,B | t = [a, t
−1
at], t = [a, t−1at]〉.

Notice that ∆ is torsion-free, being an amalgamated product of two torsion-
free groups, and it is generated by a, a and t. Let Γ be the subgroup of ∆N

generated by the diagonal elements (a, a, . . .), (a, a, . . .), (t, t, . . .) together
with the element (1, a, a2, . . .). Thus Γ is a four-generated subgroup of ∆N

containing the diagonal. We call Γ Meier’s finitely generated group.

Theorem 6.11 ([55, Proposition 7]). Meier’s finitely generated group Γ
satisfies Γ ∼= Γ× Γ.

Remark 6.12. The projection ∆N → ∆ onto the first coordinate restricts
to an epimorphism ψ : Γ → ∆, because Γ contains the diagonal of ∆N.
Hence, by Example 6.6.2, if ∆ has large second bounded cohomology then
so does Γ. Thus, in this case, Γ satisfies the hypotheses of Theorem 6.7.

The previous remark shows that we reduced the problem of computing
the second bounded cohomology of Meier’s finitely generated group Γ to
the one of computing H2

b(∆;R). Recall from Example 6.6.1 that an amalga-
mented free product G∗CH has large second bounded cohomology provided
|C\G/C| ≥ 3 and C 6= H. We will spend the last part of this section by
proving that T satisfies the previous condition.

Before proving that |L\B/L| has the desired cardinality, it is useful to
recall the proof that B is non-Hopfian [5]: This amounts in constructing a
non-injective self-epimorphism ϕ. The desired ϕ : B → B is defined on the
standard generators of B by ϕ(a) = a2, ϕ(t) = t. Since the image of ϕ con-
tains both the generators a = ϕ([t, a−1]) and t = ϕ(t), the homomorphism ϕ
is surjective. On the other hand, ϕ is non-injective because ϕ([a, t−1at]) = 1,
and this element is easily seen to be non-trivial using Britton’s Lemma [68,
Theorem 11.81].

We are now ready to show that the cardinality |L\B/L| is infinite, by
using the previous homomorphism ϕ.

Lemma 6.13. Let ϕ : B → B be the non-injective self-epimorphism defined
above. Then, there exists a strictly nested sequence

L < ϕ−1(L) < ϕ−2(L) < · · · .

In particular |L\B/L| =∞.

Proof. Since [a, t−1at] ∈ ker(ϕ), we know that

ϕ(L) = 〈ϕ(t), ϕ([a, t−1at])〉 = 〈t〉.

In particular L is strictly contained in the group ϕ−1(L). Applying ϕ−1

repeatedly to both sides we obtain the desired sequence.
Now let x ∈ ϕ−1(L) \L. Then the double cosets L and LxL are distinct

and contained in ϕ−1(L). We repeat this argument inductively on the se-
quence, and obtain that ϕ−k(L) contains at least (k + 1) distinct double
cosets of L. Thus |L\B/L| =∞. �
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The previous discussion leads to the following:

Proposition 6.14. Meier’s finitely generated group Γ (Definition 6.10) has
large second bounded cohomology.

Proof. By Remark 6.12, we know that if ∆ has large second bounded coho-
mology, then so does Γ. On the other hand, Lemma 6.13 and Example 6.6.1
immediately imply that ∆ has large second bounded cohomology. �

6.3. Proof of Theorem 6.1. We now have all the tools for giving a short
proof of Theorem 6.1:

Proof of Theorem 6.1. Let Γ be Meier’s finitely generated group, which is
four-generated and torsion-free. We proved in Proposition 6.14 that Γ has
large second bounded cohomology and so it satisfies the hypothesis of The-
orem 6.7.

Let Λ be the fundamental group of an oriented closed connected hyper-
bolic 3-manifold. We can choose Λ to be 2-generated by proceeding as fol-
lows. Start with the figure-eight knot complement M , whose fundamental
group is 2-generated [17, Example VI.4.3]. Then perform a suitable Dehn
Filling on M to obtain an oriented closed connected hyperbolic 3-mani-
fold N [70, Chapter 4]. The fundamental group Λ of N is obtained from the
one of M by adding relations. In particular it is still 2-generated.

The thesis now follows by taking Γ×Λ, which is a torsion-free 6-generated
group, and applying Theorem 6.7. �

Scholium 6.15 (On finitely presented examples). The criterion in Theo-
rem 6.7 does not seem to help to construct finitely presented groups with
large bounded cohomology. Indeed, as remarked by Hirshon in 1994: “The
question whether or not there exists a finitely presented group which is iso-
morphic to a proper direct factor of itself is an unsolved problem which has
been around for a long time” [39].

The most promising constructions in this direction are given by finitely
presented groups that allow epimorphisms onto their direct square. These
were first constructed by Baumslag and Miller [4]. Further examples were
given by Hirshon and Meier [40], see also [39] for a list of striking properties
of these groups.

The group H constructed by Baumslag and Miller [4] surjects onto the
group ∆ appearing in Definition 6.10. Since ∆ has large second bounded co-
homology (Lemma 6.13 and Example 6.6.1), we then have dimR H2

b(H;R) ≥
|R|. However, the description of the full bounded cohomology of H is
strongly related to a better understanding of Lex groups (Section 3.2). In-
deed, since H surjects onto Hd, we can produce quotients of H with large
bounded cohomology in every given even degree, but we cannot obtain any
information about the bounded cohomology of H itself, if we do not know
whether direct powers of H are Lex.

In Section 7, we give an ad-hoc example of a finitely presented group with
large bounded cohomology.

Scholium 6.16 (On the bounded cohomology of the free group). The con-
nection between finitely generated groups with large bounded cohomology
and Lex groups goes even further. Indeed, if Γ is an n-generated group
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with large bounded cohomology, and Γ is moreover Lex, then the free group
Fn has large bounded cohomology. In particular, if the group from The-
orem 6.1 is Lex, then F6 has large bounded cohomology. As mentioned
in Example 6.6.4, it is known that non-abelian free groups have large sec-
ond and third bounded cohomology. However, it is not known whether the
bounded cohomology of non-abelian free groups vanish or not in degrees 4
and above [11, Question 18.3].

Note that proving that F6 has large bounded cohomology would have
many strong consequences. Indeed, every acylindrically hyperbolic group
admits a hyperbolically embedded subgroup of the form Fn ×K, where K
is finite, for all n ≥ 1 [18, Theorems 6.8 and 6.14]. It then follows that if
some non-abelian free group had large bounded cohomology, then the same
would be true of all acylindrically hyperbolic groups [24, Theorem 1.1] .

7. Finitely presented groups with large bounded cohomology

In Section 6, we gave a general recipe for producing finitely generated
groups with large bounded cohomology. As remarked in Scholium 6.15, this
does not allow to construct finitely presented examples, given the current
limited list of examples of groups isomorphic to their own direct factors.

In this section, we produce finitely presented (in fact, type F∞) groups
with large bounded cohomology, by using an ad-hoc construction, and build-
ing on previous work.

The main player is Thompson’s group T :

Definition 7.1. The Thompson group T is the group of orientation-preser-
ving piecewise linear homeomorphisms f of the circle R/Z with the following
properties:

(1) f has finitely many breakpoints, all of which lie in Z[1/2]/Z;
(2) Away from the breakpoints, the slope of f is a power of 2;
(3) f preserves Z[1/2]/Z.

The group T and its siblings F and V were introduced by Richard Thomp-
son in 1965; they are some of the most important groups in geometric and
dynamical group theory. We refer the reader to the literature [16] for a
detailed discussion.

The group T is finitely presented, and even of type F∞. The integral
cohomology of T has been computed [28], and this result has interesting
consequences for its bounded cohomology, as was first noted by Burger and
Monod:

Proposition 7.2 (Ghys–Sergiescu [28], Burger–Monod [13]). For each even
integer n ≥ 2, we have Hn

b (T ;R) 6∼= 0.

This result is obtained by noticing that every cup power of the Euler class
of T is bounded, and using the fact that these cup powers are non-zero in
ordinary cohomology [28].

Theorem 7.3. Let T be Thompson’s group, and let Λ be the fundamental
group of an oriented closed connected hyperbolic 3-manifold. Then T × Λ
has large bounded cohomology.

Moreover, T × Λ is finitely presented, in fact type F∞.
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Proof. By Proposition 7.2, we have Hn
b (T ;R) 6∼= 0 for every even inte-

ger n ≥ 2. Using that Λ has large second and third bounded cohomology,

and b`
1

3 (Λ) > 0, we conclude in the same way as in the proof of Theorem 6.7
(see also Remark 6.8) �

8. Non-computability

In the following, we prove Theorem 8 and Theorem 9, i.e., we show that
many decision problems concerning bounded cohomology are not algorith-
mically decidable:

Theorem 8.1 (Non-computability of bounded cohomology). Let d ∈ N≥2

and let D ∈ N. Then all of the following algorithmic problems are undecid-
able: Given a finite presentation 〈S |R〉, decide whether

(1) Hd
b(〈S |R〉 ;R) ∼= 0 or not;

(2) dimR Hd
b(〈S |R〉 ;R) ≤ D or not;

(3) Hd
b(〈S |R〉 ;R) is large (Definition 6.4) or not;

(4) H`1

d (〈S |R〉 ;R) ∼= 0 or not;

(5) b`
1

d (〈S |R〉) > 0 or not;
(6) 〈S |R〉 is boundedly acyclic or not;
(7) cdb 〈S |R〉 ≤ D or not.
(8) hdb 〈S |R〉 ≤ D or not.

Basic terminology and properties of bounded (co)homological dimension
are recorded in Appendix A.

Corollary 8.2 (Non-computability of bounded cohomology for spaces). Let
d ∈ N≥2, and let D ∈ N. Then all of the following algorithmic problems are
undecidable: Given a finite simplicial complex X, decide whether

(1) Hd
b(X;R) ∼= 0 or not;

(2) dimR Hd
b(X;R) ≤ D or not;

(3) Hd
b(X;R) is large or not;

(4) H`1

d (X;R) ∼= 0 or not;
(5) X is boundedly acyclic or not;

Here, finite simplicial complexes X are given as the finite set V of their
vertices together with the finite subsets of V that constitute simplices of X.
For the definition of bounded cohomology and `1-homology of spaces we
refer to the literature [33][22, Chapters 5 and 6].

8.1. Proof of Theorem 8.1, parts (7), (8). We use the Adian–Rabin
Theorem. For the sake of completeness, we recall the basics; we refer to
Rotman’s book [68, Chapter 12] for further details and history.

Definition 8.3 (Markov property). A subclass P of the class of all finitely
presentable groups is a Markov property if the following properties all hold:

• The class P is closed under taking isomorphisms.
• Positive witness. The class P is non-empty.
• Negative witness. There exists a finitely presentable group that is

not isomorphic to a subgroup of an element of P .
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Theorem 8.4 (Adian–Rabin [68, Theorem 12.32]). Let P be a Markov
class of finitely presentable groups. Then the following algorithmic problem
is undecidable:

Given a finite presentation 〈S |R〉, decide whether 〈S |R〉 lies in P
or not.

Lemma 8.5. Let D ∈ N.

(1) The class of all finitely presentable groups Γ with cdb Γ ≤ D is a
Markov property.

(2) The class of all finitely presentable groups Γ with hdb Γ ≤ D is a
Markov property.

Proof. Clearly, these classes of groups are closed under isomorphisms.
Positive witness. The trivial group is a positive witness.
Negative witness. In view of the hyperbolic examples in Example A.3,

there exists a finitely presentable group Λ with hdb Λ > D and cdb Λ >
D. By the monotonicity of bounded (co)homological dimension (Propo-
sition A.5), it follows that Λ is not isomorphic to subgroups of groups Γ
with hdb Γ ≤ D or cdb Γ ≤ D. Hence, these groups provide the desired
negative witnesses. �

Proof of Theorem 8.1.(7), (8). The claims follow by applying the Adian–
Rabin Theorem (Theorem 8.4) to the Markov class of finitely presentable
groups Γ with cdb Γ ≤ D or hdb Γ ≤ D, respectively (Lemma 8.5). �

Remark 8.6 ((non-)Markov properties).

• Amenability of finitely presentable groups is a Markov property: The
trivial group is a positive witness; the free group of rank 2 is a
negative witness.
• However, bounded acyclicity of finitely presentable groups is not

a Markov property: In view of Corollary 5.2, there do not exist
negative witnesses.
• Not being boundedly acyclic is not a Markov property of finitely

presentable groups. Assume by contradiction that there exists a
negative witness Γ. Then Γ is isomorphic to a subgroup of Γ × F2

and Γ× F2 is not boundedly acyclic by Proposition 2.6.
• Similarly, (not) having large bounded cohomology is not a Markov

property. One can obtain this via the same reasoning as before,
using the group from Theorem 7 instead of the free group.

In view of Remark 8.6, the Adian–Rabin Theorem (Theorem 8.4) cannot
be applied directly to establish the remaining parts of Theorem 8.1.

8.2. Proof of Theorem 8.1, parts (1)–(6). We use the standard tech-
nique of turning the word problem into group presentations.

Construction 8.7. By the Novikov–Boone–Britton Theorem [68, Theo-
rem 12.8], there exists a finitely presented group Λ with unsolvable word
problem; let 〈S |R〉 be a finite presentation of Λ with symmetric generating
set S. By the proof of the Adian–Rabin Theorem [68, Lemma 12.31], there
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exists an algorithm

words over S → finite presentations

w 7→ 〈Sw |Rw〉

with the following property: For all words w over S, we have

w represents the neutral element of Λ⇐⇒ 〈Sw |Rw〉 ∼= 1.

For a word w over S, we write Λw := 〈Sw |Rw〉.
In addition, this construction can be refined as follows: We can take Λ to

be torsion-free [56, Theorem 12 on p. 88] and we can assume that there is
an algorithm

words over S → words over Sw

w 7→ w

with the following property [68, (proof of) Lemma 12.31]: If w does not
represent the neutral element in Λ, then w has infinite order in Λw.

Via the groups Λw, we can reduce the algorithmic problems in Theo-
rem 8.1.(1)—(6) to the word problem in Λ. As a preliminary stage, we take
the free product with Z (this will be sufficient for the degrees 2 and 3, as
well as for the claim on bounded acyclicity):

Construction 8.8. In the situation of Construction 8.7, for words w over S,
we consider

Γw := 〈Sw, t |Rw〉 ∼= Λw ∗ Z,
where t 6∈ S is a new generator. By construction, we have:

• If w represents the neutral element of Λ, then

Γw
∼= Λw ∗ Z ∼= 1 ∗ Z ∼= Z.

In particular, Γw is amenable.
• If w does not represent the neutral element of Λ, then Λw 6∼= 1 and

so Γw is a non-elementary free product, i.e., a free product A ∗ B,
where A and B are non-trivial and we do not have A ∼= Z/2 ∼= B.
In particular, Γw is an acylindrically hyperbolic group [57, Corol-
lary 2.2].

Therefore, in bounded cohomology, we obtain:

• If w represents the neutral element of Λ, then Γw is amenable and
so it is boundedly acyclic; in particular, Γw also has trivial reduced
and unreduced `1-homology [54, Corollary 2.4].
• If w does not represent the neutral element of Λ, then H2

b(Γw;R)

and H3
b(Γw;R) are large (Example 6.6). Moreover, b`

1

2 (Γ) = |R|
(Proposition 2.6).

For the higher degree case of Theorem 8.1, we use the witness construction
of Weinberger [71, Chapter 2.6].

Construction 8.9. In the situation of Construction 8.7, we consider the fol-
lowing witness groups: Let Γ = 〈S′ |R′〉 be a torsion-free finitely presented
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group, where S′ = {s′1, . . . , s′k} and where all elements of S′ are non-trivial
in Γ. For words w over S, we define

W (Γ,Λ, w) := Γ ∗Z Λw ∗Z Λw ∗Z · · · ∗Z Λw,

where the k-fold push-out group is given by the glueings of Γ and Λw over
the maps s′j ←[ 1 7→ w for j ∈ {1, . . . , k}. In other words:

W (Γ,Λ, w) =
〈
Γ; (Λw)j : j = 1, . . . , k

∣∣ s′j = w ∈ (Λw)j : j = 1, . . . , k
〉
.

The whole construction is algorithmic in the sense that we can also algorith-
mically give finite presentations of W (Γ,Λ, w). By construction, we have:

• If w represents the neutral element of Λ, then W (Γ,Λ, w) ∼= 1, be-
cause all generators of Γ are killed and Λw

∼= 1.
• If w does not represent the neutral element of Λ, then the con-

struction of W (Γ,Λ, w) is a proper iterated k-fold amalgamated free
product, because s′j and w have infinite order in Γ and Λw, respec-
tively. Moreover, the amalgamation is performed over the amenable
group Z. In particular, for d ∈ N≥2, we have (Lemma 8.10): If

Hd
b(Γ;R) is large, then also Hd

b(W (Γ,Λ, w);R) is large. Finally,

b`
1

d (W (Γ,Λ, w)) ≥ b`
1

d (Γ).

Lemma 8.10. Let Γ and Λ be countable groups, let Γ ∗A Λ be an amalga-
mated free product over a common amenable subgroup A, and let d ∈ N>0.

(1) If Hd
b(Γ;R) is large, then so is Hd

b(Γ ∗A Λ;R).

(2) We have b`
1

d (Γ ∗A Λ) ≥ b`
1

d (Γ).

Proof. Let i : Γ ↪→ Γ ∗A Λ denote the canonical inclusion. Then, by [10,
Theorem 1], there exists an isometric embedding Θ: Hd

b(Γ;R) → Hd
b(Γ ∗A

Λ;R) with

Hd
b(i) ◦Θ = idHd

b (Γ;R) .

This immediately gives the first part.

For the second part, it suffices to show that the map H
`1

d (i) : H
`1

d (Γ;R)→
H

`1

d (Γ ∗A Λ;R) is injective: Let α ∈ H
`1

d (Γ;R) with α 6= 0. Then, by duality,
there exists a ϕ ∈ Hd

b(Γ;R) with 〈ϕ, α〉 6= 0 [54]. Therefore, we obtain〈
Θ(ϕ),H

`1

d (i)(α)
〉

=
〈
Hd

b(i) ◦Θ(ϕ), α
〉

= 〈ϕ, α〉 6= 0.

In particular, H
`1

d (i)(α) 6= 0 in H
`1

d (Γ ∗A Λ;R). �

Proof of Theorem 8.1.(1)—(6). We consider w 7→ Γw as in Construction 8.8.
In degrees 2 and 3 and for the case of bounded acyclicity, we have: If any

of the problems (1)–(6) were decidable, then the computations in Construc-
tion 8.8 show that also the word problem for Λ would be decidable. This
contradicts the choice of Λ.

For the higher degrees, we proceed as follows: Let d ≥ 4. Let Γ be
the fundamental group of an oriented closed connected hyperbolic (d − 2)-
manifold, which is finitely presented and torsion-free. We then consider the
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construction

words over S → finite presentations

w 7→ Πw := W (F2,Λ, w)×W (Γ,Λ, w)

from Construction 8.9 (with the product presentation). Then, we obtain
from the computations in Construction 8.9:

• If w represents the neutral element of Λ, then Πw
∼= 1 is boundedly

acyclic and has trivial reduced and unreduced `1-homology.
• If w does not represent the neutral element of Λ, then Remark 2.7,

Example 2.8, Example 6.6.4 and Lemma 8.10 show that

b`
1

d (Πw) ≥ b`
1

2

(
W (F2,Λ, w)

)
· b`

1

d−2

(
W (Γ,Λ, w)

)
≥ b`

1

2 (F2) · b`
1

d−2(Γ) ≥ |R| · 1.

In particular, Hd
b(Πw;R) is large (Proposition 2.6).

Again, we see: If any of the problems (1)–(5) were decidable in degree d,
then the word problem for Λ would be decidable, which contradicts the
choice of Λ. �

Remark 8.11. The same argument as in the proof of the parts (1)–(6) of
Theorem 8.1 also gives simple proofs of the following:

(1) Let d ∈ N. Then the d-th L2-Betti number b
(2)
d of finitely presentable

groups is not computable.
It should be noted that more sophisticated non-computability re-

sults for L2-Betti numbers are already known [30].
(2) The cost of finitely presentable groups is not computable.

We refer the reader to [53] for the definition of L2-Betti numbers, and to [26]
for the definition of cost. For the proofs, we use the same notation as above.

Ad 1. If d = 0, then computing b
(2)
d amounts to computing the cardinality

of the group in question [53, Theorem 6.54]; however, it is known that
the cardinality of groups is not computable from finite presentations [68,
Corollary 12.33].

We now let d ≥ 1. For words w over S, we consider

∆w := Γw × (F2)×(d−1)

(which admits a finite presentation that can be algorithmically constructed
from 〈Sw |Rw〉). The standard inheritance properties of L2-Betti num-
bers [53, Theorem 6.54] show:

• If w represents the neutral element of Λ, then ∆w is isomorphic

to Z× (F2)×(d−1) and thus b
(2)
d (∆w) = 0.

• If w does not represent the neutral element of Λ, then

b
(2)
1 (Γw) = b

(2)
1 (Λw ∗ Z) = b

(2)
1 (Λw) + 1− b(2)

0 (Λw)

> b
(2)
1 (Λw) + 1− 1 ≥ 0
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and so

b
(2)
d (∆w) = b

(2)
d (Γw × (F2)×(d−1))

≥ b(2)
1 (Γw) · b(2)

d−1

(
(F2)×(d−1)

)
= b

(2)
1 (Γw) · 1

> 0.

Therefore computability of L2-Betti numbers would imply solvability of the
word problem in Λ, which contradicts the choice of Λ.

Ad 2. For words w over S, we again consider the group Γw as above.

• If w represents the neutral element of Λ, then Γw
∼= Z; in particu-

lar, cost Γw = 1 [26, Corollaire III.4].
• If w does not represent the neutral element of Λ, then Λw 6∼= 1.

Because finitely presented groups are countable and have finite cost,
we obtain [26, Théorème VI.7′′]

cost(Γw) = cost(Λw ∗ Z) ≥ cost(Λw) + cost(Z) > 0 + 1.

Therefore computability of cost would imply solvability of the word problem
in Λ, which contradicts the choice of Λ.

8.3. Proof of Corollary 8.2. We deduce Corollary 8.2 from Theorem 8.1
via Gromov’s Mapping Theorem [33, 43, 23]:

Proof of Corollary 8.2. We proceed by contradiction: In view of Theorem 8.1
it suffices to show that if any of the decision problems formulated in Corol-
lary 8.2 were decidable, then the corresponding decision problem for groups
in Theorem 8.1 would be decidable.

There is an algorithm

P : finite presentations→ finite simplicial complexes

with the following property: For all finite presentations 〈S |R〉, the simpli-
cial complex P (〈S |R〉) is connected and

π1

(
P (〈S |R〉)

) ∼= 〈S |R〉 .
For example, one such construction is to take the double barycentric subdi-
vision of the presentation cellular complex of the presentation 〈S |R〉.

By Gromov’s Mapping Theorem [33, 43, 23], we know that

∀d∈N Hd
b

(
P (〈S |R〉);R) ∼= Hd

b

(
〈S |R〉 ;R

)
;

moreover, we have the analogous statement for `1-homology [51, Corol-
lary 5.2]:

∀d∈N H`1

d

(
P (〈S |R〉);R

) ∼= H`1

d

(
〈S |R〉 ;R

)
.

Therefore, any algorithm for the problems formulated in Corollary 8.2 would
lead to a corresponding algorithm for the bounded cohomology of finitely
presented groups. This contradicts Theorem 8.1 and thus completes the
proof of Corollary 8.2. �
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Appendix A. Bounded (co)homological dimension

We introduce dimension notions of groups in the context of bounded co-
homology and `1-homology following previous works by Johnson [45, 46] and
Monod [59, Definition 3.1]. In contrast with the notion [52]

bcd Γ := sup
{
n ∈ N

∣∣ Hn
b (Γ;R) 6∼= 0

}
∈ N ∪ {∞}

these dimensions mimic the usual (co)homological dimension and thus take
twisted coefficients into account.

Definition A.1 (bounded (co)homological dimension). Let Γ be a group.

• The bounded cohomological dimension of Γ is defined as

cdb Γ := sup
{
n ∈ N

∣∣ ∃V ∈BanΓ
Hn

b (Γ;V ) 6∼= 0
}
∈ N ∪ {∞}.

• The bounded homological dimension of Γ is defined as

hdb Γ := sup
{
n ∈ N

∣∣ ∃V ∈BanΓ
H`1

n (Γ;V ) 6∼= 0
}
∈ N ∪ {∞}.

Remark A.2. Let Γ be a group. By duality [54, Corollary 2.4.2][51, Corol-
lary 5.3], we have

hdb Γ ≤ cdb Γ.

More precisely: Let n ∈ N and let V be a Banach Γ-module with Hk
b (Γ;V ′) ∼=

0 for all k ∈ N>n. Then H`1

k (Γ;V ) ∼= 0 for all k ∈ N>n [51, Corollary 5.3][50,
Remark 3.7].

Example A.3.

• Let Γ be a group. Then cdb Γ = 0 if and only if Γ is finite [22,
Theorem 3.12].
• Let Γ be a group. Then hdb Γ = 0 if and only if Γ is amenable [51,

Corollary 5.5].
• In particular, hdb Z = 0 < cdb Z.
• If Γ is a non-amenable group, then cdb Γ ≥ 3. This can be derived

from the fact that Γ admits F2 as a random subgroup [59, Theo-
rem 5.4, Proposition 5.8].
• Let M be an oriented closed connected hyperbolic n-manifold and

let Γ := π1(M). Then Γ is finitely presentable and b`
1

n (Γ) ≥ 1 as
well as Hn

b (Γ;R) 6∼= 0 (Example 2.8, Proposition 2.6). Thus,

hdb Γ ≥ n and cdb Γ ≥ n.
Such examples exist in all dimensions at least 2.
• If Γ is a group with bcd Γ =∞, then cdb Γ =∞. In particular, this

applies to the groups from Section 6.

However, as of now no example seems to be known of a group of finite
non-trivial bounded (co)homological dimension.

Proposition A.4 (cohomological dimension as projective dimension). Let
Γ be a group. Then cdb Γ coincides with the relatively projective dimension
of Γ

projdimb Γ := inf
{
n ∈ N

∣∣ R admits a strong relatively projective

Γ-resolution of length ≤ n
}
∈ N ∪ {∞}.
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Proof. We argue as in the case of classical cohomological dimension:
We have cdb Γ ≤ projdimb Γ, because for all Banach Γ-modules V and

all strong relatively projective Γ-resolutions C∗ → R of R, we have [51,
Theorem 3.7]

H∗b(Γ;V ) ∼= H∗
(
B(C∗, V )Γ

)
.

Conversely, we have projdimb Γ ≤ cdb Γ: If C∗ → R is a strong relatively
projective Γ-resolution of R and if n ∈ N satisfies for all Banach Γ-modules V
that

Hn+1
b (Γ;V ) ∼= 0,

then the same argument as in the classical case shows that ker ∂n is a rel-
atively projective Γ-module. Therefore, C∗ can be truncated at degree n.
This shows that projdimb Γ ≤ n. �

Proposition A.5 (monotonicity of bounded (co)homological dimension).
Let Γ be a group and let Λ ≤ Γ be a subgroup. Then

hdb Λ ≤ hdb Γ and cdb Λ ≤ cdb Γ.

Proof. This is the usual Shapiro argument: Let V be a Banach Λ-module
and let n ∈ N. In bounded cohomology, we have [58, Proposition 10.1.3]

Hn
b (Λ;V ) ∼= Hn

b

(
Γ;B(`1Γ, V )Λ

)
.

In `1-homology: There is a natural isomorphism

C`1

∗ (Γ)⊗Γ (`1Γ⊗Λ V ) ∼= resΓ
Λ C`1

∗ (Γ)⊗Λ V

of Banach chain complexes; moreover, resΓ
Λ C`1
∗ (Γ) is a strong relatively pro-

jective Λ-resolution of R. Using the description of `1-homology via projective
resolutions [51, Theorem 3.7], we thus obtain a natural isomorphism

H`1

n (Λ;V ) ∼= H`1

n (Γ; `1Γ⊗Λ V ). �
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b (−;R) de cohomologie bornée réelle.
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