
02 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Collaborative Reinforcement Learning for Multi-Service Internet of Vehicles / Shinde, Swapnil Sadashiv;
Tarchi, Daniele. - In: IEEE INTERNET OF THINGS JOURNAL. - ISSN 2327-4662. - ELETTRONICO. - 10:3(2023),
pp. 9916276.2589-9916276.2602. [10.1109/JIOT.2022.3213993]

Published Version:

Collaborative Reinforcement Learning for Multi-Service Internet of Vehicles

Published:
DOI: http://doi.org/10.1109/JIOT.2022.3213993

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/896001 since: 2023-03-24

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/JIOT.2022.3213993
https://hdl.handle.net/11585/896001

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

S. S. Shinde and D. Tarchi, "Collaborative Reinforcement Learning for Multi-Service
Internet of Vehicles," in IEEE Internet of Things Journal, vol. 10, no. 3, pp. 2589-2602,
1 Feb.1, 2023.

The final published version is available online at:

https://doi.org/10.1109/JIOT.2022.3213993

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://doi.org/10.1109/JIOT.2022.3213993

Collaborative Reinforcement Learning for
Multi-Service Internet of Vehicles

Swapnil Sadashiv Shinde, Student Member, IEEE, and Daniele Tarchi, Senior Member, IEEE

Abstract—Internet of Vehicles (IoV) is a recently introduced
paradigm aiming at extending the Internet of Things (IoT)
toward the vehicular scenario in order to cope with its specific
requirements. Nowadays, there are several types of vehicles,
with different characteristics, requested services, and delivered
data types. In order to efficiently manage such heterogeneity,
Edge Computing facilities are often deployed in the urban
environment, usually co-located with the Roadside Units (RSUs),
for creating what is referenced as Vehicular Edge Computing
(VEC). In this paper, we consider a joint network selection and
computation offloading optimization problem in multi-service
VEC environments, aiming at minimizing the overall latency and
the consumed energy in an IoV scenario. Two novel collaborative
Q-learning based approaches are proposed, where Vehicle-to-
Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communica-
tion paradigms are exploited, respectively. In the first approach,
we define a collaborative Q-learning method in which, through
V2I communications, several vehicles participate in the training
process of a centralized Q-agent. In the second approach, by
exploiting the V2V communications, each vehicle is made aware
of the surrounding environment and the potential offloading
neighbors, leading to better decisions in terms of network
selection and offloading. In addition to the tabular method,
an advanced deep learning-based approach is also used for
the action value estimation, allowing to handle more complex
vehicular scenarios. Simulation results show that the proposed
approaches improve the network performance in terms of latency
and consumed energy with respect to some benchmark solutions.

Index Terms—Internet of Vehicles, Computation Offloading,
Network Selection, Reinforcement Learning.

I. INTRODUCTION

W ITH the increasing advancements of the Internet of
Things (IoT) and evolved wireless technologies, nu-

merous new applications and services have emerged in vehic-
ular networks in recent times. This has brought to the Internet
of Vehicle (IoV) paradigm, where each node composing the
urban mobility environment can be seen as a source of data,
similarly to the traditional Things [1]. In recent times, smart
vehicles with advanced features have been added to vehic-
ular networks. Different types of vehicles are characterized
by several innovative applications, like autonomous driving,
image-aided navigation, road safety, and augmented reality
(AR), having the potential to improve the performance of
transportation systems [2]. Despite their increased on-board

The authors are with the Department of Electrical, Electronic and Informa-
tion Engineering “Guglielmo Marconi”, University of Bologna, Italy, email:
{swapnil.shinde2,daniele.tarchi}@unibo.it

Copyright (c) 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

computational capabilities, vehicles are not able to provide the
massive amount of computation resources requested by new
applications. Therefore, offloading computation-intensive tasks
to cloud facilities has became a necessity [3]. However, cloud
facilities are located far away from the end-users, introducing
a high end-to-end delay.

Multiaccess Edge Computing (MEC) is considered a viable
option by enabling processing facilities closer to the end-users,
attracting lots of attention from academia and industries [4].
In wireless networking scenarios, MEC has enabled latency-
critical and data-intensive applications by allowing mobile
devices to offload portions of their computation loads to
the edge servers in the proximity [3]. Vehicular Edge Com-
puting (VEC) is a recently introduced paradigm aiming at
integrating the MEC potentialities in vehicular scenarios by
deploying several edge servers co-located with the Roadside
Units (RSUs) [5]. Similarly to MEC, in VEC environments
computation tasks can be executed locally, at the vehicle, or
offloaded to the nearby RSUs, acting as edge servers, allowing
for improved Quality of Service (QoS) in terms of latency and
consumed energy [6]. Due to the dynamic nature of vehicular
networks, offloading a large amount of data to the RSUs
without considering the vehicular mobility could seriously
degrade the QoS. Indeed, with high mobility, each vehicle
has a limited amount of time available for data offloading and
collecting the results from the RSUs. If the vehicle passes
through the RSU coverage without completing the offloading
operation, it might end up paying higher latency costs due to,
e.g., handover and service migration [7]. Moreover, each VEC
server can offer a limited number of services to the nearby
vehicular nodes (VNs), hence, selecting the proper edge server
for offloading can avoid network congestion. Therefore, a
proper selection of the RSU and the computation offloading
amount in a VEC-empowered IoV environment is an important
problem to be considered.

Recently, many new and exciting Machine Learning (ML)
techniques have been introduced to solve challenging research
problems in vehicular networks [2], [8]. Among others, Rein-
forcement Learning (RL) is a proper candidate for solving the
VEC network selection and computation offloading problem,
allowing to learn at run-time from the dynamic environ-
ment [9]. In addition, several new communication paradigms,
including Vehicle to Vehicle (V2V), Vehicle to Infrastructures
(V2I), and Vehicle to Pedestrians (V2P), have been introduced
in vehicular networks [10]. Exploiting these communication
paradigms for understanding the local environment in ve-
hicular networks could lead to better solutions for network
selection and computation offloading problems. As a matter of

fact, the possibility of exchanging information among different
IoV nodes have been recently exploited in several studies to
propose high-end solutions for complex vehicular problems.
Some examples are computation offloading [11], collaborative
computing [12] and data sharing [13].

The scenario under consideration is a multi-service multi-
user VEC-enabled IoV network composed of several VNs
and RSUs and one Macro Base Station (MBS) able to cover
the whole area. Since VNs have limited computation and
communication resources, they aim at exploiting the nearby
RSUs/MBS for offloading c omputational t asks a ssuming that
they can act as VEC nodes. In general, each vehicle can be
covered by several RSUs, while each RSU can serve multiple
VNs. Moreover, each RSU is able to provide a limited number
of services. Therefore, finding a p roper V N-RSU p air can
improve the performance of a resource-constrained vehicular
network. If a VN cannot find a s uitable R SU n ode, i t can
select MBS as a possible option for data offloading. However,
in such a case, VNs might need to pay additional costs in
terms of latency and energy requirements due to long-distance
communication. At the same time, offloading a n optimal
amount of data to the selected RSU/MBS can further increase
the energy and latency performance.

A. Literature Review
The forthcoming intelligent IoV wonderland will generate

tones of computation data, and VEC can be a viable solu-
tion for providing the computation services to the resource-
constrained vehicular nodes [14]. However, for having the
benefits of VEC resources over multi-user IoV networks,
selecting a proper edge server and offloading amount is an
important problem. In the past, several authors have tried to
solve the computation offloading problem by either finding
a proper edge node or the amount to be offloaded. In [15],
authors have proposed the adaptive task offloading strategy
in the MEC-based vehicular networks environment with a
pre-allocation algorithm for vehicle tasks. Such approach,
however, can lead to limited performance since offloading the
incorrect amount towards an ideal edge server, or the correct
amount towards the wrong edge node, can not guarantee
optimal performance. In [16], the authors focus on an energy-
efficient approach for computation offloading in VEC net-
works. Two heuristic approaches are proposed for solving the
problem under different configurations. In [17], authors have
studied a reliable computation offloading and task allocation
problem over integrated fixed and mobile edge computing
enabled vehicular users through the adaptation of software to
define networking technology. In [18], the authors proposed
a multi-armed bandit approach for optimally selecting the
network to be used for computation offloading. In this case,
both online and offline approaches are considered. In [7] the
authors propose a energy-constrained approach for managing
in-vehicle device offloading operations. The problem is solved
through a consensus based approach. In [19], the authors pro-
pose a framework for implementing a joint federated learning
and computation offloading operation where a High Altitude
Platform is used as central node. The problem is formulated
as an utility function and solved through a genetic algorithm.

Various works have highlighted the importance of using
ML for solving the computation offloading related problems.
In [20], a multi-agent DRL-based approach is developed to
solve the computation offloading problem over the fog com-
puting enabled industrial IoT system. However, the offloading
performance is only measured in terms of energy efficiency,
while the latency performance is neglected. In addition, tasks
can either be computed locally or at the access point (i.e.,
binary offloading strategy). In [21], authors have proposed a
multi-agent RL-based computation offloading strategy for the
vehicular scenario. The latency performance of the offload-
ing process is optimized with binary computation offloading
strategy. Different from others, a two-stage meta learning-
based ML model selection algorithm is proposed in [22], for
minimizing the edge node resource consumption cost from a
consumer’s point of view. Also, in some cases, authors have
focused on either the latency or energy performance of a
computation offloading system. In [23], the authors have con-
sidered a task offloading problem in the vehicular scenario in
which VNs can learn each other offloading delay performance.
An adaptive learning-based task offloading strategy based on
the multi-arm bandit theory is proposed to reduce the average
offloading delay. In [24], the authors have considered an RL-
based strategy and have used the Markov decision process-
based model to solve it. However, they have only focused
on the latency performance of a system. In another case, [25]
proposed an energy-efficient workload offloading scheme over
VNs. In [26], the authors propose a fast-heuristic method for
solving the vehicle to RSU mapping in an energy limited
scenario.

The importance of utilizing vehicular data for solving ve-
hicular problems is highlighted by several authors. In [27],
authors have studied the IoV data collection, transmission,
and diffusion problem for vehicular traffic-related information.
In particular, a novel architecture is proposed for the IoV
aided local traffic information collection, a sink node selection
scheme for the information flow, and an optimal traffic infor-
mation transmission model. In another case, [28], the authors
integrate the cooperative vehicular sensing capabilities in the
smart city paradigm. Optimal data source selection algorithm
and a novel RL-based information sharing strategy are studied
with possible applications, challenges, and future directions.

In order to have a more comprehensive view of the different
computational offloading strategies analyzed in this Section,
we report in Table I a comparison based upon goals, target
variables, offloading approaches, service models, mobility
scenarios, and solutions methods. It also highlights the lack
of solutions for the joint network selection and computation
offloading problem over the multi-service vehicular scenario
as the one proposed here.

B. Paper Contribution

Differently from other papers, we aim at jointly optimizing
the RSU selection and the computation offloading to minimize
the network-wide latency and energy consumption. To this
end, the problem is modeled as a cost function and solved
through an RL approach. Differently from other RL-based

TABLE I
LITERATURE REVIEW COMPARISON

Reference Goal Target Offloading
Approach Service Model Mobility Solution Method

[3] Offloading decision and com-
putation resource allocation

Utility (based on task pro-
cessing delay, computation re-
source cost, additional nor-
malization factor) maximiza-
tion with delay constraint

Binary Single service Vehicular Mobility
with varying speed

Two step optimization, Of-
floading decision - Game the-
ory, resource allocation - La-
grange multiplier method

[7] Offloading and resource allo-
cation decisions

Energy consumption with de-
lay constraint Partial

Multiple tasks
(generated by user
equipment’s inside
vehicle)

Vehicular mobility
with varying speed

Iterative optimization with Al-
ternating Direction Method
of Multipliers (ADMM) and
nonlinear fractional program-
ming

[9] Offloading and resource allo-
cation decisions

Users Quality of Experience
(QoE) Binary Single service Vehicular mobility

data

Offloading task scheduling -
matching theory, resource al-
location -double DQN

[15] Joint network selection and
task offloading Overall latency minimization Multiple

task units Single service Vehicular mobility
with varying speed

Adaptive task offloading strat-
egy

[16] Offloading strategy and re-
source allocation

System cost (communication
and computation Cost with la-
tency constraint)

Partial Single service Vehicular mobility
model

Mobility aware (for inde-
pendent servers) and loca-
tion based (for cooperative
servers) offloading strategy

[17]
Offloading strategy (partial
offloading, task allocation,
and task reprocessing)

Reliability (based on task pro-
cessing latency and applica-
tion latency constraint)

Partial Single service Vehicular mobility
model

Fault-tolerant particle swarm
optimization algorithm

[18]
Offloading node selection
(network and base station
selection)

Latency cost Partial Single service Vehicular mobility
model

Multi-Armed Bandit (MAB)
theory based On-line and Off-
policy learning algorithms

[19] Offloading strategy with FL
performance Joint latency and energy cost Partial Single service Vehicular mobility

model
Clustered and distributed op-
timization

[20]
Offloading strategy (Fog Ac-
cess Point (FAP) selection and
request forwarding)

Energy cost Binary Single service Fixed devices DRL based FAP selection

[21] Offloading node selection Latency cost Binary Single service Vehicular mobility
model

Multiagent DRL based node
selection

[23] Offloading node selection Latency cost Partial Single service Vehicular mobility
model

Adaptive learning-based task
offloading algorithm based on
MAB

[24] Time dependent offloading
node selection Latency cost Partial Single service Vehicular mobility

model
Time aware MDP-based task
offloading algorithm

[25] Energy-efficient workload of-
floading Energy cost Partial Multiple

applications
Vehicular mobility
model

ADMM-based workload of-
floading algorithm

[29] Mobility aware partial of-
floading

Outage probability and la-
tency cost Partial Single service Vehicular mobility

model
D2D communication assisted
partial offloading strategy

[30] Joint computation load bal-
ancing And offloading

QoS-based utility function
(based on latency cost) Partial Single service Vehicular mobility

model

Joint node selection, compu-
tation resource and Offloading
(JSCO) algorithm

[31] Joint offloading and resource
allocation System utility cost Binary Single service Vehicular mobility

model Q learning and DRL

solutions in VEC scenarios [9], we propose here a new
collaborative approach. By gaining from different vehicular
communication paradigms, i.e., V2V and V2I, allowing in-
formation exchange among nodes [10], we aim at a better
understanding of the local environment to be used for the
development of two RL solutions.

In the first approach, a V2I collaborative Q-learning method
is considered, in which VNs participate in the training process
of centralized Q-agents. In the second approach, each VN
is made aware of the nearby environment, and the potential
offloading neighbors through the V2V links, leading to better
decisions. A more advanced deep learning-based approach
is also considered to estimate the action value functions
for both the Q learning approaches allowing the possible
extension towards high dimensional scenarios. During the
learning phase, several scenarios are considered based on the
VNs local environment. In the end, the numerical results show
that the proposed solutions provide better latency and energy
performance for end-users with respect to other benchmark
methods.

The remaining parts of this paper are structured as follows.
Section II introduces the system model and defines the op-
timization problem to be solved. Next, in Section III, the
proposed solution methods are described, including two Q-
learning based solutions, two Deep Q-Network based solutions
and one Heuristic solution. In Section IV the numerical
results obtained through computer simulations are provided
and analyzed. Finally, in Section V the conclusions are drawn.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The IoV scenario under consideration is composed of a
set V = {V N1, . . . , V Nm, . . . , V NM} of M VNs, and
a set R = {RSU1, . . . , RSUn, . . . , RSUN} of N RSUs,
creating the urban vehicular service. In addition, one MBS
able to cover the whole area is supposed. Both RSUs and
MBS act as edge nodes providing EC services to the VNs,
enabling computation-intensive applications and services at
the edge. The IoV system is modeled in a time-discrete
manner, and the network parameters are constant over each

time interval τ , where τi identifies t he i th t ime i nterval, i.e.,
τi = {∀t|t ∈ [iτ, (i + 1)τ]}.

Each VN is equipped with communication, computing, and
storage elements, where it is supposed that it can communicate
with a maximum bandwidth bm and can process with a maxi-
mum computational capability ηm. In addition, by focusing on
the ith time interval, it is supposed to have a battery capacity
Ec

m and a battery level Em(τi). The mth VN is supposed to
be located in the position {xm(τi), ym(τi)}, while it moves at
a speed v⃗m(τi) along the road paths, where:

v⃗m(τi) =
(xm(τi), ym(τi))− (xm(τi−1), ym(τi−1))

τ
, i ≥ 1.

Each RSU can be identified through a set of parameters,
where the nth RSU, located at the position {xR

n , y
R
n }, can

provide communication with a maximum bandwidth Bn, and
can process with a maximum computational capability Hn.
Similarly, the MBS can be identified through its position
{xM , yM}, maximum bandwidth BM , and maximum com-
putational capability HM .

We consider that RSUs and MBS compose a multi-service
network able to provide multiple services to the IoV envi-
ronment. By assuming that S = {S1, . . . , Ss, . . . , SS} is the
set of all the possible services that can be provided, due to
the limited available resources, each RSU can provide only
a subset of services. Thus, for the RSUn we can identify
Sn ⊆ S as the set of services provided by it. Since the MBS
has more resources, it is supposed to offer the whole service
set S. Finally, the nth RSU is supposed to have a limited
coverage range dn, whose value depends on the communi-
cation technology and radio-propagation environment, and it
is supposed to provide VEC services to the vehicles within
the coverage area. Similarly, for the MBS, the coverage range
dM stands. Each V Nm ∈ V is supposed to be active in each
time interval with a probability pa within which it generates a
computation task request ρm(τi) identified through the tuple
⟨Dρm

, Dr
ρm

,Ωρm
, Tρm

, Sρm
⟩ corresponding to a task with size

Dρm
Byte, expected to give in output a result with size Dr

ρm

Byte, requesting Ωρm
CPU execution cycles, with a maximum

execution latency Tρm and requesting service Sρm .

A. RSU Selection

We define a binary VN-RSU assignment matrix A(τi) =
{am,n(τi)}M×N ∈ {0, 1} with size M×N , where am,n(τi) =
1 if V Nm is assigned to RSUn in the interval τi, and∑N

n=1

∑M
m=1 am,n(τi) = M, imposing that each VN is able to

offload data to only one RSU1. Moreove, am,n(τi) = 1 ⇐⇒
Sρm

∈ Sn that is to say the assignment can occur only if the
requested service has been deployed on the nth RSU.

We assume to perform partial offloading, that is to say, each
task generated by the VNs can be split, and a portion remotely
processed while the remaining is processed locally [29]; the
portion offloaded by V Nm at τi is identified as αρm(τi) ∈
[0, 1]. Here, αρm(τi) = 0 corresponds to the complete local

1Given the complex nature of the considered problem, especially over a
dynamically changing vehicular environment, we have assumed that each
vehicle can select only one edge node for offloading its data.

Fig. 1. The multi-service IoV system architecture.

processing of the task, while αρm(τi) = 1 to the complete
offloading of the task to the selected VEC node. During
the partial offloading process, the task processing operations,
performed locally by VNs and remotely at the RSU-based edge
servers, are supposed to be executed in parallel to reduce the
overall processing time [30]. Each RSU is supposed to have a
limited amount of computation and communication resources;
hence, it can only serve a limited number of users. Therefore:

Mn(τi)∑
m=1

αρm(τi) · Ωρm ≤ HR
n · τ ∀i (1a)

Mn(τi)∑
m=1

bm(αρm(τi), Dρm) ≤ BR
n ∀RSUn ∈ R, i (1b)

where, Mn(τi) =
∑M

m=1 am,n(τi) is the number of vehicles
assigned to the RSU n in the ith interval. While (1a) models
an upper bound on the processing capacity of the RSU, (1b)
introduces a transmission capacity upper bound for the VNs
connected to any RSU. Here, bm(αρm

(τi), Dρm
) corresponds

to the communication resources available for the transmission
of vehicular tasks depending upon its task size and the offload-
ing parameter. It is worth to be noticed that the capacity of
each link depends on the specific communication technology
and it is out of the scope of this paper.

In Fig. 1, a possible IoV scenario is depicted, where
different VNs request different services, and are covered by
RSUs hosting different service types. In addition, VNs are
supposed to be in the coverage area of the MBS.

B. Task Processing
The processing time and energy needed for computing a

task depend on the offloading policy and the selected node
processing characteristics. The generic expression for the time
and energy spent for the ρmth task computation on any device
is given by [32]:

T ρm
cl

=
Ωρm

olfl
(2a)

Eρm
cl

= kl
Ωρm

ol
f2
l (2b)

where ol and fl are the number of Floating-point Operation
Per Second (FLOPS) per CPU-cycle and CPU-frequency,
respectively, whether l is a generic index identifying one of
the possible processing nodes among VNs (m), RSUs (n) and
MBS. In (2b), kl is a constant coefficient representing the chip
architecture of the generic lth device.

Since we assume to perform a partial computation offload-
ing, each VN transmits a portion of its task to the assigned
RSU and receives back the result. In general, the transmission
time and energy between V Nm and RSUn for task ρm is
given by:

T ρm

tx,mn =
Dρm

rmn
(3a)

Eρm

tx,mn = T ρm

tx,mnPtm (3b)

where rmn is data-rate of the link between the two nodes,
while Ptx,m is the transmission power of V Nm. Similarly,
the reception time and energy to receive back the processing
result having size Dr

ρm
from RSUn by V Nm are, respectively:

T ρm
rx,nm =

Dr
ρm

rmn
(4a)

Eρm
rx,nm = T ρm

rx,nmPrx,m (4b)

where Prx,m is the power spent for receiving at the RSUm

side. A symmetric channel is considered between V Nm and
RSUn. The expression for the channel transmission rate is
based on the Shannon capacity formula and can be written as:

rmn = bm log2

(
1 +

Ptm
L(dmn)N0

)
where Ptx,m is the transmission power of a device m, L(dmn)
is the path loss at a distance dmn, and N0 = NT bm is the
thermal noise power.

1) Task Offloading Process: If V Nm is assigned to RSUn,
then the time and energy required to offload the task to the
selected RSU and to get back the result in the ith interval is:

T off
m,n(αρm

(τi)) = αρm
(τi)

(
T ρm

tx,mn + T ρm
cn + T ρm

rx,nm

)
(5a)

Eoff
m,n(αρm

(τi)) = αρm
(τi)

(
Eρm

tx,mn + Eρm
rx,nm

)
(5b)

where T ρm

tx,mn, T ρm
cn , and T ρm

rx,mn are, respectively, the trans-
mission time, computation time on nth RSU, and the receiving
time for the task ρm generated by V Nm during offloading
phase, and Eρm

tx,mn and Eρm
rx,mn are, respectively, the energy

consumed during the task transmission and result collection
phases on device. Since RSU nodes are supposed to be
connected to the electrical grid, we do not consider their
energy consumption in the energy analysis.

2) Local Computation: The amount of time and energy
required for the local computation in the ith interval is:

T loc
m (αρm(τi)) = (1− αρm(τi))T

ρm
cm (6a)

Eloc
m (αρm

(τi)) = (1− αρm
(τi))E

ρm
cm (6b)

where T ρm
cm and Eρm

cm are the time and energy spent for the
whole task ρm local processing, while αρm

(τi) is the portion
of the task locally processed at the time interval τi.

3) Partial Offloading Computation: The delay and the
energy consumed during the task processing phases, when
partial offloading is performed in the ith interval, can be
written as:

T ρm
m (αρm(τi)) = max

{
T off
m,n(αρm(τi)), T

loc
m (αρm(τi))

}
Eρm

m (αρm
(τi)) = Eoff

m,n(αρm
(τi)) + Eloc

m (αρm
(τi)).

Since the local computation and offloading processes are
executed in parallel, the total task processing latency is the
maximum of the two.

C. Vehicle Mobility and Sojourn Time

The VN mobility poses some constraints to the computation
offloading decisions. Due to the VNs mobility, each offloading
operation should be completed by the VN sojourn time,
corresponding to the amount of time it remains under the
coverage of the selected RSU [29], otherwise the system may
be affected by additional latency due to, e.g., vehicle handover,
service migration, additional signaling for managing vehicles
and services mobility [7]. The remaining distance in which
the mth VN remains in the coverage of nth RSU is:

Dm,n(τi) =

√
d2n − (yn − ym(τi))

2 ± (xn − xm(τi)) (7)

where {xm(τi), ym(τi)} and {xn, yn} are, respectively, the
position of the mth VN and the nth RSU at time interval τi
and Rn is the coverage radius of the nth RSU. Hence, the
sojourn time for the mth VN can be written as:

T soj
m,n(τi) =

Dm,n(τi)

|v⃗m(τi)|
∀i (8)

Each vehicle should finish the offloading process and receive
the results back within the sojourn time, hence:

T off
m,n(αρm

(τi)) ≤ T soj
m,n(τi) ∀i (9)

D. Problem Formulation

The main aim of this work is to optimize the network-
wide performance of the VEC-enabled IoV network. We
aim to optimize the performance in terms of overall latency
and energy consumed during the offloading process towards
edge servers by selecting proper RSU nodes and offloading
amounts. For this, we formulate the joint latency and energy
minimization problem as:

P1 :

min
A,A

{
N∑

n=1

M∑
m=1

[γ1T
ρm
m (αρm(τi)) + γ2E

ρm
m (αρm(τi))]

}
∀i

(10)

s.t.

C1 :
N∑

n=1

M∑
m=1

am,n(τi) = M (11)

C2 : am,n(τi) = 1 ⇐⇒ Sρm
∈ Sn ∀i (12)

C3 : Eqs. (1a) and (1b) (13)
C4 : T ρm

m (αρm
(τi)) ≤ Tρm

∀V Nm ∈ V, ∀i (14)

C5 : Eq. (9) (15)
C6 : Eρm

m (αρm
(τi)) ≤ Eρm

cm (16)
C7 : 0 ≤ γ1, γ2 ≤ 1; γ1 + γ2 = 1 (17)

where A = {αρm
}M is the computation offloading matrix,

and γ1, γ2 are two weighting coefficients for balancing latency
and energy consumption. C1 stands that each VN can select
at most one RSU for the computation offloading. According
to C2, the selected edge node must be able to provide the
service requested by the VNs. C3 sets the bounds in terms
of processing capacity and resource blocks requested by VNs
towards edge nodes, while C4 puts a limit on the maximum
processing time as one of the task requirements. According to
C5, for avoiding handover phenomena and related latency,
each VN should complete the offloading process before it
passes through the selected RSUs coverage. According to C6,
the total energy required for the task processing during the
partial computation offloading process should be bounded by
the energy needed to process the complete task locally. C7
stands that the two weighting coefficients (γ1, γ2) should be
between 0 and 1 with their sum equal to 1.

III. Q-LEARNING BASED JOINT NETWORK SELECTION
AND COMPUTATION OFFLOADING

The decision on the EN to be selected for computation
offloading and the amount of data to be offloaded can depend
upon several factors, such as VNs position and speed, nearby
VNs, the available number of RSUs for offloading, availability
of the requested service, etc. If a VN is under the coverage of
multiple ENs, the proper EN can be selected by sequentially
testing ENs one after another. Also, VNs can make sequential
decisions for finding a proper amount of data to be offloaded
towards the EN. Every decision taken by VNs can alter the
surrounding environment’s state, and can be mapped with a
reward (i.e, an increase or decrease in the task processing
time and energy). Therefore, finding the proper EN and the
corresponding data to be offloaded in the dynamic vehicular
environment can be considered a sequential decision-making
problem that can effectively be solved through the RL ap-
proach.

RL and multi-agent RL (MARL)-based methods have found
applications in vehicular scenarios. For avoiding the unbear-
able training costs and for adequate training performance,
various RL/MARL training architectures are considered in
the past. A centralized MARL training process having an
exponentially scalable set of actions and observation spaces, is
often neglected in highly complicated vehicular environments.
In the case of a fully decentralized approach, an independent
set of agents tries to optimize a common reward function over
its local environment. Issues like spurious rewards, mainly due
to partial observability, prevent their use in the considered
problem. Due to the involvement of high-speed VNs and a
dynamically changing environment, a large set of training
agents are required for solving highly complex problems
such as the one considered here. This scales up the issues
of exponential scalability and spurious rewards in these two
traditional approaches.

In recent times, some other MARL architectures have been
proposed, mainly for solving the previous challenges. One
such example is [33], where the authors have proposed a value-
decomposition network-based cooperative MARL architecture.
A deep neural network-based back-propagation approach is
used to decompose a common value function into a set
of agent-based value functions. However, the complexity of
the considered decomposition network, the limited use of
state information during training, and applicability towards a
reduced class of centralized value functions are bottlenecks.
Also in [34], another value function-based approach is con-
sidered by estimating a joint action-value function from a
set of local observation-based action individual agents values
through neural networks. The issues of complexity, scalability,
etc., prevent the use of this MARL-based method for solving
the given problem.

With the availability of novel communication technologies
such as V2V, V2I, etc, VNs can share important environmental
parameters. Such information can be integrated into the train-
ing process of a collaborative RL strategy to solve the given
vehicular problem effectively and with a reduced complexity
with respect to a MARL approach. Therefore, below, we have
proposed efficient vehicular communication-based cooperative
RL strategies for solving the problem at hand. In RL, at
any given time τ , an intelligent agent in a particular state
St(τ) interacts with the dynamic environment En, through
the selected action ak(τ), and, in return, receives observations
in terms of a state change St∗(τ) and rewards R. The agent
tries to maximize the future reward value over consecutive
discrete time steps by taking the actions from the current state
in the environment based on the received observations [35].
Therefore, state-space, action-space, and the reward function
are the main elements of the RL process.

In the considered RL-based framework, multiple agents
collaboratively perform the training operations for finding the
optimal policy aimed at minimizing the joint latency and
energy cost with reliable network selection and computation
offloading operations. We have considered a centralized train-
ing architecture assisted by vehicular communication data for
improving the training performance. MBS, as a centralized
entity, can perform the training process for individual training
scenarios (i.e., RL agents) for finding the optimal policies.
It collects the information from VNs and uses it during
the learning process of the RL agents by implementing a
collaborative learning process. More description about the
learning scenarios is provided below in subsections III-A1 and
III-A2.

The State-space, Action-space, and Reward function can be
identified as follows.

1) State-Space (ST): In a multi-service multi-user vehic-
ular environment the available resources for the computation
offloading process are changing continuously over time and
are function of the offloading and network selection decisions
taken by vehicles. Therefore, we have defined a state-space
composed of a discrete set of states as a function of resources
available for computation offloading. The state-space is a dis-
crete set of states identifying the RSUs to be selected and their
resources available for the computation offloading. Since each

V Nm can exploit a different number of RSUs for offloading,
we define Rm = {RSUn|Dm,n(τi) > 0 ∧ S ρm ∈ Sn, ∀R} as
the set of RSUs available for the mth VN for the offload-
ing operation; we consider a multi-dimensional state-space
representation where the νth state-space corresponds to the
scenario with ν available RSUs. For each scenario the related
state-space is function of sojourn time, required latency, VN
resources, resources of the available RSUs; thus, each state
Stν at time τi is defined as:

Stν(τi) = f(αρm(τi), T
soj
m,n(τi), Bn, Hn,

Dρm
, Dr

ρm
,Ωρm

, Tρm
, Sρm

).

We suppose to limit the multi-dimensional state space to N̄
scenarios, hence, ν = 1, . . . , N̄ .

2) Action-Space (AS): The action space defines all the
possible actions available during the learning process of an
RL-agent. We consider to have N̄ agents collecting infor-
mation for each possible scenario, composed by a different
number of available RSUs. At each iteration, each agent ex-
plores the available RSUs, by properly setting a binary vector
Rν(τi) = {0, 1}ν mapping the RSUs selection among the ν
available in the given scenario. At the same time, the offloaded
amount is selected, by either increasing, decreasing, or keeping
the same amount as the previous iteration. Thus, for the τith
instance, we have αρm

(τi) ∈ {αρm
(τi − 1), αρm

(τi − 1)± Λ}
where Λ is a step increase or decrease of the offloading
amount. The generic action akν for the νth scenario at time τi
can be defined as akν(τi) = {Rν(τi), αρm

(τi)} where R(τi)
is a binary vector with length ν, where 1 in the nth position
corresponds to the selected RSU.

3) Reward Function (R): The reward function (R) is
defined as the joint objective function of time and energy
consumed for the complete task processing (10). In addition,
three penalty terms are also considered modeling when the
agent fails to satisfy the latency and energy constraints, as
defined in (14), (9) and (16). Thus, the expression for the
reward function is given by:

R(Stν(τi), akν(τi)) =

γ1T
ρm
m (αρm

(τi)) + γ2E
ρm
m (αρm

(τi))

+ Υ1 ·max(0, C1(Stν(τi), akν(τi)))

+ Υ2 ·max(0, C2(Stν(τi), akν(τi)))

+ Υ3 ·max(0, C3(Stν(τi), akν(τi))) (18)

where Υ1, Υ2 and Υ3 are the weighting coefficients for the
penalty values, and:

C1(Stν(τi), akν(τi)) = T ρm
m (αρm

(τi))− Tρm
(19a)

C2(Stν(τi), akν(τi)) = T off
m,n(αρm

(τi))− T soj
m,n(τi) (19b)

C3(Stν(τi), akν(τi)) = Eρm
m (αρm

(τi))− Eρm
cm . (19c)

(19a) is the additional penalty value when VN fails to perform
the task processing operation within the maximum execution
latency bound, (19b) is the additional penalty when VNs
fails to satisfy the sojourn time bounds during the offloading
process, and (19c) is the additional cost when VN fails to
follow the energy constraint in (16).

A. Collaborative Q-Learning Solutions for Joint Network Se-
lection and Offloading

Q-learning is one of the most-known techniques used to
solve RL-based problems [31]. In Q-learning, each state-action
pair (St, ak) has a Q value, defined as Q(St, ak), which
provides the expected future reward for an agent from state
St if he decides to take action a. Each agent receives the
input values as set of environment state (ST) including the
possible terminal state Stopt, reward function R and action
set (AS). Other input parameter includes the learning rate
γlr ∈ {0, 1}, discount factor ∆ ∈ {0, 1}, and a number of
learning episodes E. In every episode, the agent selects the
initial state Stin, then it takes a random action ak over the
environment, receives a reward related to that action and a
new state value. The widely known Epsilon-Greedy algorithm
(EGA) is used for selecting the future action [35]. In EGA,
each Q-agent picks the action based upon the Exploration vs
Exploitation dilemma, with the exploration probability e. For
every iteration, the Q-values (Q(Stt, akt)) for the state-action
pair (Stt, akt) are updated based upon the temporal difference
expression defined as:

Qnew(Sttν , ak
t
ν)← Q(Sttν , ak

t
ν) + γlr

(
RSttν ,ak

t
ν
+

∆
(
maxA

{
Q(Stt+1

ν , akt+1
ν)

}
−Q(Sttν , ak

t
ν)
))

(20)

Two novel Q-learning based solutions for the joint selection
of network and computation offloading problem are considered
here. In the first method, a V2I collaborative Q-learning-based
solution is considered, in which several randomly distributed
VNs participate in the training process of a Q-agent. In the
beginning, a centralized server collects data from VNs by
exploiting the V2I communication links. Next, vehicles are
classified based upon the local environment scenarios. In
the end, every group trains the Q-agent based on its local
environment. In the other approach, each VN explores the
V2V communication links for collecting information about the
nearby VNs. This allows to make a better decisions in terms
of network selection and computation offloading.

1) V2I Assisted Collaborative Q-Learning (V2I-AC): In the
V2I collaborative approach, multiple randomly located VNs
participates to the training process towards a centralized set
of agents through the V2I links. Since the cardinality of Rm

depends on V Nm and RSUs positions as well the deployed
services, we define multiple training scenarios, each one
characterized by the number of available RSUs, i.e., |Rm|. The
scenario vector SVrsu includes all possible available RSUs for
computation offloading, i.e., SVrsu = {2, · · · , RSUvmax}.
Here, RSUvmax is the maximum number of RSU nodes avail-
able for computation offloading. In the Q-learning process, we
generate N̄ Q-tables where, Qν(ST ,AS) is the table of the
νth scenario.

By referring to the pseudocode in Algorithm 1, in the V2I
collaborative Q-learning approach, the VNs are first classified
based on their scenario (lines 1-3). For each V Nm, the
cardinality of available RSUs are evaluated, i.e., |Rm|. In
order to limit the number of possible scenarios to N̄ , the mth
VN is managed by the νth agent, where ν = min{|Rm|, N̄}.
Through this, we can classify all VNs into different groups,

Algorithm 1 V2I Assisted Collaborative Q-Learning (V2I-
AC)
Input: Set of VNs V , N̄ , e, γlr,∆,ST ,AS, R, I
Output: {Q(ST ,AS)}

1: for all VMm ∈ V do
2: Find Rm and set ν = min{|Rm|, N̄}, m̄ν ← m̄ν + 1
3: end for
4: for all ν = 1, . . . , N̄ do
5: for all V Nm such that |Rm| = min(ν, N̄) do
6: Select a random initial state St0ν ∈ ST ∧ St0ν ̸= S̄tν
7: Stν ← St0ν , it = 0
8: while Sttν ̸= S̄tν ||it = I do
9: it = it+ 1

10: Select action akν ∈ AS with probability e
11: Determine next state (Stt+1

ν) and reward received
12: Use Eq. (20) to find the TD and update Q table.
13: Stν ← Stt+1

ν

14: end while
15: end for
16: return Qν(ST ,AS)
17: end for

with νth scenario having m̄ν VNs for the collaborative training
process, with m̄ν = {|V Nm| : |Rm| = min(ν, N̄), ∀V}.
After the VNs classification, the training process for each
scenario is performed (lines 4-16). The number of training
episodes for each scenario is equal to the number of VNs in
that particular scenario group, i.e., m̄ν . In each episode, the
agent selects a non-optimal random initial state St0ν , then it
takes a random action akν over the environment, receives a
reward and a new state value. For every iteration, the Q-values
(Q(Sttν , ak

t
ν)) for the state-action pair (Sttν , ak

t
ν) are updated

following the the Temporal Difference (TD) expression (20).
Once the final state S̄tν or it = I has been reached, with
I being a maximum number of iterations, the agent starts
the new episode of learning. This process is repeated till a
predefined optimal state is reached. In the end, we receive a
Q-table associated with that particular scenario (QSVrsu

).
In the V2I collaborative Q-learning method, we aim to find

the joint solution for the network selection and computation
offloading problem. The solution is composed of a network
selection vector Rν , depending on the scenario in which any
given VN are classified, and the offloading amount αρm

. In
case none of the surrounding RSUs have the service requested
by V Nm, i.e., Rm = ∅, V Nm can offload the data towards
the MBS, which contains all the services requested by VNs.

2) V2V Assisted Collaborative Q-Learning (V2V-AC): In
this approach, we suppose that the VNs exploit V2V com-
munication links for acquiring knowledge of the potential
competing VNs around them before offloading for the training
phase. Since the VNs offloading strategy is unknown by each
VN we assume that a predefined VN-RSU selection method
where each competing VN selects the nearest RSU node for
complete task offloading is assumed for resource allocation
purposes. Both communication and computation resources of
RSU nodes are equally shared among the assigned VNs.
Similarly to the V2I approach, we consider different agents
acting on different scenarios, where, in this case, we extend
also to the number of nearby VNs. Different learning scenarios
are considered based upon the number of available RSUs for

offloading and the nearby VNs. Therefore, while the number
of available RSUs is determined in the same way, we extend
the considered scenarios up to N̄ ·M̄ where M̄ is the maximum
number of nearby VNs to be considered.

By defining Vm = {RSUm′ |dm,m′(τi) ≤ dV 2V ,∀R} as the
set of VNs within a certain dV 2V coverage distance, we can
set as µ = min{|Vm|, M̄} as the scenario identifying all the
vehicles with µ surrounding VNs to be exploited. Given this,
the (ν, µ)th agent will exploit as training nodes all the VNs
having ν available RSUs and µ competing VNs.

The number of available RSUs could be in the range
of 2 to RSUvmax. Similarly, the number of VNs around
each test VN is ranged between 0 to V Nvmax. Thus, the
two scenario vectors are SVrsu = [2, · · · , RSUvmax] and
SVvn = [0, · · · , V Nvmax]. Therefore, each SV (i, j) =
{SVrsu(i),SVvn(j)} represents the training scenario consid-
ered.

Algorithm 2 V2V Assisted Collaborative Q-Learning (V2V-
AC)
Input: Set of VNs V , M̄, N̄ , e, γlr,∆,ST .AS, R, I
Output: {Q(ST ,AS)}

1: for all V Nm ∈ V do
2: Find Rm and Vm
3: Set ν = min{|Rm|, N̄} and µ = min{|Vm|, M̄}
4: m̄(ν,µ) ← m̄(ν,µ) + 1
5: end for
6: for all ν = 1, . . . , N̄ do
7: for all µ = 1, . . . , M̄ do
8: Follow steps from 5 to 14 of Algorithm 1
9: return Q(ν,µ)(ST ,AS)

10: end for
11: end for

The Algorithm 2 describes the steps used during the training
phase of each scenario. In lines 1-5, each VN scenario is
determined, by estimating the number of available RSUs for
data offloading Rm and the number of VNs around it (Vm).
Based on their training scenario, each VN will be classified
into different groups. At the end of the training sessions, each
scenario will have a separate Q-table. Similar to the previous
approach, the solution is composed of network selection vector
Rν and the offloading amount αρm . In case any of the
surrounding RSUs have the requested service by the V Nm,
i.e., Rm = ∅, V Nm can offload the data towards the MBS,
which contains all the services requested by VNs.

B. Deep Learning Based Solutions

The proposed collaborative learning-based methods use Q-
learning with Q-table as a baseline solution method. Such
techniques are widely used for solving RL problems with
simple settings, however, they are not targeted with problems
with the curse of high dimensionality, i.e., larger state or
action spaces. In such scenarios, more advanced techniques
are suitable. For the case of vehicular networks, this is often
the case. Therefore a deep learning-based approach is also
discussed, where a Deep Q Network (DQN) is used for
approximating the Q-function, i.e., the action value function.
In this case, the DQN can replace the Q-learning process (lines

Fig. 2. DQN Architecture.

5-14 in Algorithm 1) for both V2I-AC and V2V-AC methods
when estimating the Q-values.

As shown in Fig. 2, the considered DQN is based on
the presence of both primary and target networks both with
Ld layers with nl (l ∈ Ld) neurons for estimating the Q-
values. Considering an approach similar to [36], the primary
network is used for estimating the real/primary Q-value while
the target Q-values are estimated through the target network.
The learning agent utilizes the backpropagation and gradient
descent processes with Mean Square Error (MSE) based loss
function for reducing the gap between the primary and the
target Q-values. For the scenario ν, the loss function is defined
as,

L(w, ν) = RSttν ,ak
t
ν
+∆maxA

{
Q(Stt+1

ν , akt+1
ν ;w

′

ν)
}

−Q(Sttν , ak
t
ν ;wν) (21)

The primary Q-value, given as Q(Sttν , ak
t
ν ;wν), is a result

of primary network with parameters wν , while the target Q-
value RSttν ,ak

t
ν
+ ∆maxA

{
Q(Stt+1

ν , akt+1
ν ;w

′

ν)
}

is based

upon the results of the target network with parameters w
′

ν .
After collecting the Q-values, the EGA is used for selecting
the future action. The agent’s learning experiences are stored in
the forms of tuple (Sttν , ak

t
ν , RSttν ,ak

t
ν
, Stt+1

ν) constituted by
current state, action, reward received and the next state in the
replay memory of size rb and used during the training process.
Randomly sampled experiences forming a batches of size b
helps to improve the training performance. The V2I-AC and
V2V-AC techniques built by using the DQN-based approaches
are named V2I-DAC and V2V-DAC in the following parts.

C. Limited Search-space based Heuristic Approach

With the involvement of a huge number of VTs, the
problem in (10) is highly complex to be solve through the
traditional heuristic approaches mainly due to large solution
space SP . For comparison purposes, a two-step limited search
space-based heuristic is also considered, able to reduce the
computation complexity through design parameters bounding
the size of the overall search space. Algorithm 3, provides
the step-by-step process to be implemented. In the first step
(lines 1-13), all VTs are assigned to the available edge nodes
based on the requested services and the distance measures.

The ratio between the sojourn time distance and the distance
between VT and edge node, i.e., Dm,n(τi)

dm,n(τi)
, allows selecting the

edge node with the smallest communication cost and highest
sojourn time (line 11). Thus, each VT greedily selects the edge
node best suited for their operations without considering the
presence of other competing users.

Next, a solution space SPn

(
A

′′
(n),Λhu

)
is formed at

the nth RSU node based upon the set of VTs requesting the
services (A

′′
(n)) and step parameter Λhu. Each solution point

contains a vector of offloading parameters given as,

Â(n)(1×A′′ (n)) =
{
αρ1

(τi), · · · , αρ
A

′′
(n)

(τi)
}

The step value taken by the offloading parameter (i.e., Λhu)
is considered as a design parameter limiting the size of search
space. Thus, the overall solution space of the nth RSU node
is based upon the total number of VTs requesting the services
and the design parameter Λhu. Next for each solution point, the
objective function in (10) is analyzed along with the constraint
set for finding the best possible solution (lines 17-25).

Algorithm 3 Limited Search-space based Heuristic Approach
(LS-HA)
Input: Set of VNs V , R, {Rm},Λhu

Output: {A,A}
1: function FIND(A

′
, A

′′
})

2: for all RSUn = 1, . . . , R do
3: for all VMm ∈ V do
4: A

′
(m,n) = 1 ⇐⇒ RSUn ∈ Rm

5: end for
6: A

′′
(n) =

∑M
m=1(A

′
(m,n))

7: end for
8: end function
9: function ASSIGN(A = {a(m,n)}})

10: for all VMm ∈ V do
11: am,n(τi) = 1 ⇐⇒ Dm,n(τi)

dm,n(τi)
= maxn′∈Rm

{
D

m,n′ (τi)
d
m,n′ (τi)

}
12: end for
13: end function
14: function OFFLOAD(A = {αρm}A

′′
(n), ∀n)

15: for all RSUn = 1, . . . , R do
16: Create SPn(A

′′
(n),Λhu) = {Â(n)

(1×A
′′

(n))
} with all possible

solution points to be searched in the reduced-size solution space.
17: Ch = ∞
18: for all Â(n) ∈ SP do
19: Use (10) to evaluate cost C(Â(n),A).
20: Determine all constraint functions values.
21: if (C(Â(n),A) ≤ Ch and all constraints are satisfied) then

22: Ch = C(Â(n),A) and {αρm}A
′′

(n) = Â(n)
23: end if
24: end for
25: end for
26: end function
27: return {A,A}

IV. NUMERICAL RESULTS

The performance evaluation of the proposed solutions has
been carried out through a Python-based simulator, using
ML-related libraries such as NumPy, Pandas, Matplotlib. The
scenario contains a multi-service vehicular network composed
of one MBS, and several randomly distributed RSUs and
VNs. The main parameters used in computer simulations
are in Table II. We have considered a maximum of 350
RSUs, distributed in the coverage area, and a variable number
of VNs from 100 to 1800. Each RSU provides a random
number of services |S| between 1 and 6. We consider that

TABLE II
SIMULATION PARAMETERS

BS Coverage (dM
n) 500m

RSU Coverage (dn) 10m-40m
Task Size (Dρm) 3MB
Task Results (Dr

ρm
) (Dρm/5) MB

Required Task Latency (Tρ) 2 s
VN Computation Cap. (ηm) 14 GFLOPS
RSU Computation Cap. (Hn) 25 GFLOPS
Task Proc. Requirements Ωρm 1250 FLOPS per bit
RSU Bandwidth (Bn) 35MHz

VN Speed (v⃗m(τi)) 6m s−1-18m s−1

No. of Services (S) 6
VN power (Ptm, Prm) (1.6W, 1.4W)

VNs are not always active, while, at each time instant, they
request a random service with a probability equal to 0.1,
while with probability 0.9 they are inactive. The two weighting
coefficients (γ1, γ2) in (10) have been set to 0.5.

In the Q-learning simulation, we have generated different
scenarios, based on the available number of RSUs and the
nearby competing VNs during offloading cases. In the training
phase of each Q-agent, we have used 500 randomly distributed
VNs in the MBS coverage area, considered our operational
area. The maximum number of RSUs that can be exploited
by each VN is N̄ = 4, while the maximum number of nearby
VNs that can be exploited for the V2V approach is M̄ = 15.
In the reward function, Υ1 = 1.5, Υ2 = 0.8, and Υ3 = 0.8 are
used. The weighting coefficients determine the influence of the
constraint failure penalty terms compared with the other parts
(i.e., joint latency and energy costs) in the reward signal. Their
values are set for generating a uniform reward signal without
any bias toward cost or penalty terms. Failure of service time
latency constraint can be catastrophic, resulting in service
failure. However, the failure of the other two constraints (i.e.,
sojourn time and energy constraints) can lead to additional
costs without ensuring the service failure. Given that different
constraints can have different influences, the values are set
accordingly. For example, given the importance of service
time constraint, Υ1 has a higher value than the other two
coefficients (i.e., Υ2 and Υ3). These values are set empirically
and can be optimized for having more precise results in the
future. The learning rate (γlr), discount factor (∆), and the
epsilon value (e) for the epsilon greedy algorithm part of the Q
learning simulation are 0.99, 0.7, and 0.5, respectively, while
Λ is equal to 0.01 and I = 104 is used. The primary and target
neural networks have Ld = 5 fully connected layers with
ReLU and linear activation functions (i.e., discrete actions).
Other learning parameters include batch size b = 32 samples,
and, a replay buffer of rb = 50000 samples. For the heuristic
approach λhu = 0.2 is considered.

In the following, the performance of the proposed ap-
proaches has been compared with a complete offloading
procedure and with a local processing approach. Since utility
minimization/maximization-based node selection strategies are
often considered for computation offloading purposes [24],
[30], in the following two benchmark methods are also con-
sidered, based on the communication distance between edge
nodes and vehicles, and the available sojourn time. In addition
a Single Agent approach has been considered for comparison.

• Minimum Distance Based Offloading (MDBO) In
this method, each VN offloads its task to the nearest
RSU [24], hence:

am,n(τi) = 1⇐⇒ n = argmin
n′∈Rm

{dm,n′(τi)}, ∀m

Though MDBO reduces the communication latency of
the offloading process, it cannot guarantee optimal per-
formance in terms of overall latency and energy consump-
tion.

• Maximum Sojourn Time Based Offloading (MSTBO)
We have considered a utility maximization-based bench-
mark with the sojourn time as the utility function while
selecting the edge node [30]. In this method, VN selects
the RSU node with maximum sojourn time for offloading
it’s data, hence:

am,n(τi) = 1⇐⇒ n = argmax
n′∈Rm

{T soj
m,n′(τi)} ∀m

In this method, VNs can reduce the overall handover
requirements; however, RSU selection process does not
consider the nearby VNs and corresponding RSU re-
source demands, and, as a result, optimal performance
cannot be guaranteed.

• Single Agent Based Q Learning Approaches (Q-
SA and Q-DSA) To compare the performance of the
proposed Q-learning based methods, we have also con-
sidered a single agent-based Q-learning approach. Both
traditional tabular Q-learning (Q-SA) and DQN-learning
(Q-DSA) based methods are considered. In this case,
a single RL agent without considering the surrounding
environment parameters attempts to find the optimal pol-
icy for the network selection and computation offloading
operations jointly. Since the agent is unaware of the total
number of edge nodes able to provide the requested
service, it uses the static network selection policy by
selecting the nearest edge node. Also, the offloading
process is performed without knowing the surrounding
competing VNs.

Table III shows the computation complexity of the con-
sidered Q-learning based solutions. By following the analysis
considered in [37], where the computational complexity for
some basic Q-learning based algorithms is given, we extended
the analysis to the proposed methods, where the computational
complexity of proposed V2V and V2I-based approaches can
be based on the total number of vehicular scenarios considered.
For the V2I-AC approach, the complexity evaluation include
the minimum number of edge node scenarios considered, i.e.,
N̄ , in addition to the state space ST , action space AS and the
maximum number of iterations during each learning round I.
In addition to this, in the V2V-AC approach, the complexity
also depends upon the nearby VN scenarios, i.e., M̄ , and
thus requires a higher number of computations compared with
the V2I-AC approach. For the DQN-based approaches, the
computation complexity is function of the number of layers
(Ld), the number of neurons nl, with l ∈ Ld, computation
requirements for parameter updates, batch size, number of
training episodes I, total number of steps considered while
updating the target DQN model weights Ī [38], [39]. For

TABLE III
COMPLEXITY ANALYSIS

Solution Approach Computational Complexity
Q-SA O(ST · AS · I) [37]
V2I-AC O(N̄ · ST · AS · I)
V2V-AC O(N̄ · M̄ · ST · AS · I)
Q-DSA O(I · b · (n0nl +

∑Ld−1

l=1 nlnl+1)/Ī)
V2I-DAC O(N̄ · I · b · (n0nl +

∑Ld−1

l=1 nlnl+1)/Ī)
V2V-DAC O(N̄ · M̄ · I · b · (n0nl +

∑Ld−1

l=1 nlnl+1)/Ī)

the Q-DSA, V2I-DAC and V2V-DAC approaches, the com-
putation complexity expressions are given in Table III, where
n0 = |ST | represents the state space dimension.

1) Joint Latency and Energy Cost for task processing: In
Fig. 3, we present the average cost in terms of latency and
energy requirements for VNs task processing. It is possible
to notice that the proposed Q-learning-based approaches have
reduced costs compared with the other benchmark methods
including LS-HU. Both MDBO and MSTBO approaches per-
form the computation offloading operation without considering
the surrounding environment parameters and the resource
limitations of the edge servers. By selecting the nearest RSU,
MDBO can reduce communication latency and energy costs.
Though the MDBO approach can keep overall cost under
control mainly due to the selection of the nearest edge node
(i.e., reduced communication cost), as shown in Figs. 4 and
5, it suffers from a large number of failures due to the
improper node selection and offloading. Additionally, with
a growing number of VNs, MDBO performance weakens
compared to the Q-learning based approaches. On the other
hand, though the MSTBO approach selects the edge node with
the highest sojourn time, the overall cost is higher mainly
due to the reduced flexibility of the overall partial offloading
process. Single agent-based Q-learning approaches (i.e., Q-SA
and Q-DSA) without a proper knowledge of the VNs local
environment also have a limited performance with growing
VN density.

With better knowledge of the surrounding environment,
Q-learning based approaches can jointly select the proper
edge node and the amount to be offloaded. Though the V2I-
AC approach is able to adapt the Q-learning policies (and
perform better compared with benchmark methods) according
to the varying number of edge nodes, without having the
proper knowledge of the surrounding competing VTs, its
performance is slightly worse compared with the V2V-AC
approach. By considering both the number of edge nodes
and the surrounding competing VNs information, the V2V-
AC approach is able to perform the computation offloading
operation with superior performance. In particular, for the case
of 1400 VNs, a 30.3% performance gain in terms of reduced
cost can be observed for the V2V-AC approach compared with
the MSTBO method. The DQN approaches, especially V2V-
DAC, allows to achieve a performance gain and is able to
handle more complex scenarios. Therefore, in the considered
multi-service based vehicular scenario, the proposed schemes
can serve VNs with innovative services having better latency
and energy performance; it is in particular important to stress
that the collaborative approach by itself is able to increase

200 400 600 800 1000 1200 1400 1600 1800
Total VNs

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Av
g.

 L
at

en
cy

 a
nd

 E
ne

rg
y

Co
st

V2V-AC
V2I-AC
V2V-DAC
V2I-DAC
Q-DSA
Q-SA
HU
MDBO
MSTBO
Local Proc.

Fig. 3. Average Joint Latency and Energy Cost for variable number of VNs.

the performance, even when implemented with a tabular Q-
learning approach.

2) RSU handover required during computation offloading:
In a VEC environment, each VN should perform the offload-
ing process before it crosses through the coverage range of
the RSU node. The offloading process is composed by the
computation data offloading towards the RSU server and the
reception back of the results. In case a VN is not able to
finish the offloading process before going out the coverage
of the selected RSU an additional cost in terms of handover
latency should be considered.

In Fig. 4, the amount of handover requests is considered,
mapping the amount of times each VN is not able to complete
an offloading request by the sojourn time. It is possible
to notice that they increase with the increased number of
VNs in the service area, and that the performance with
respect to the benchmark is better. Though both MDBO and
MSTBO approaches select the edge nodes to maximize the
particular utility (performance in terms of communication
latency/available sojourn time), they fail to adapt according
to the varying VNs demands. Without properly distributing
the VNs requests and improper offloading amounts they fail
to adapt the sojourn time bounds of RSU nodes resulting in
higher failures. The LS-HU approach with a more flexible
node selection and the offloading process can have a better
performance compared to the other benchmark approaches.
On the other hand, by properly utilizing the parameters of
the surrounding environment through V2I and V2V, proposed
Q learning-based approaches are able to reduce the overall
number of failures. It is also possible to see that the Q-
SA approach has a higher number of failures compared with
both V2I-AC and V2V-AC approaches highlighting the impor-
tance of the proposed vehicular communication-based learning
framework. Moreover, it is clear the advantage of the V2V
approaches with respect to the V2I information sharing, while
the DQN solutions allows to slightly increase the performance
with respect to the tabular Q-learning approaches.

3) Number of VNs failing to satisfy the service time
constraint: Each VN should complete the task processing
operation within a requested service latency bound failure
which can reduce the QoS. In Fig. 5, we present the average

200 400 600 800 1000 1200 1400 1600 1800
Total VNs

0

10

20

30

40

50

60

So
jo

ur
n

Ti
m

e
Fa

ilu
re

s (
Av

g)

V2V-AC
V2I-AC
V2V-DAC
V2I-DAC
Q-DSA
Q-SA
HU
MDBO
MSTBO

Fig. 4. Average Number of RSUs Handover Requests for variable number of
VNs.

200 400 600 800 1000 1200 1400 1600 1800
Total VNs

0

20

40

60

80

100

Se
rv

ice
 T

im
e

Fa
ilu

re
s (

Av
g)

V2V-AC
V2I-AC
V2V-DAC
V2I-DAC
Q-DSA
Q-SA
HU
MDBO
MSTBO

Fig. 5. Average number of Service Time Failures for variable number of
VNs.

number of VNs failing to satisfy the service latency bound.
Both MDBO and MSTBO approaches are failing to per-
form the task processing within the service time requirement.
This shows that performing computation offloading operation
without considering the surrounding environment results in
higher failures. On the other hand, the proposed Q-learning-
based approaches, especially the V2V-AC method, exploiting
various environmental parameters, are able to select the proper
edge node and amount to be offloaded jointly, resulting in
superior performance compared with the other benchmark
schemes. The DQN approaches allows to slightly increase the
performance with respect to the tabular Q-learning approaches.
Additionally, the proposed VNs scenario-based Q-learning
approaches outperform the traditional single agent based ap-
proaches i.e., Q-SA and Q-DSA, in terms of a number of
failures. Thus, the proposed Q-learning and DQN approaches
can be useful for enabling latency-critical services over VNs.

4) Task Completion Latency: Total task completion latency
is a function of computation offloading and the local de-
vice computation times. Here, we compare the average task
completion latency of different schemes when changing the
vehicles density in the service area. Fig. Fig:LC provides the
average task computation latency required by each solution

200 400 600 800 1000 1200 1400 1600 1800
Total VNs

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Av
g.

 L
at

en
cy

 C
os

t (
Se

c)

V2V-AC
V2I-AC
V2V-DAC
V2I-DAC
Q-SA
Q-DSA
HU
MDBO
MSTBO
Local Proc.
Req. Latency

Fig. 6. Average Task Completion Latency for variable number of VNs.

method. In a given service area, the total latency required
for processing the tasks with Q-learning approaches is much
smaller than the benchmarks. Both Q-learning and DQN
approaches are able to select proper edge nodes and the
amount of data to be offloaded towards them that results in a
better performance in terms of overall latency requirements.
By analyzing the vehicular environment data through the V2V
and V2I technologies, the Q-learning and DQN approaches
are able to reduce the overall task processing latency. The
traditional single agent-based approaches, i.e., Q-SA and Q-
DSA, require higher latency costs, mainly due to the improper
node selections and offloading process. On the other hand,
the latency performance of the benchmark methods increases
rapidly, which can be disastrous for latency-critical services.
Though the MDBO approach is using the nearest edge node
for offloading its data, without properly assessing the resource
availability, the number of edge nodes, and the competing
VNs, it fails to adapt to the increasing VNs demands. Sim-
ilarly, the MSTBO approach also fails to adapt its network
selection and computation offloading policies according to the
vehicular users’ demands resulting in higher latency costs. The
LS-HU approach can reduce the latency cost by selecting the
nodes with proper distance measures and offloading adequate
data compare to the other benchmark methods. This result
shows the high potential of proposed schemes for enabling
latency-critical applications and services.

5) Average Energy Consumption: Fig. 7 shows the average
amount of energy consumed by VNs for the complete task
processing. The total energy consumed includes the energy
required for the local device computation, transmission, and
reception of tasks towards and from RSUs. It has to be
noticed that the total energy required for locally processing the
vehicular tasks is relatively higher than the offloading process
energy. Therefore, with a complete offloading process, the
benchmark methods have relatively better energy performance
compared with the proposed Q-learning and DQN approaches.
On the other hand, Q-learning methods require higher energy
mainly because of the local processing energy part, where the
DQN approaches consume slightly more than the tabular Q-
learning approach. However, the overall performance in terms
of joint latency and energy requirements (as shown in Fig.

200 400 600 800 1000 1200 1400 1600 1800
Total VNs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Av
g.

 E
ne

rg
y

Co
st

 (J
)

V2V-AC
V2I-AC
V2V-DAC
V2I-DAC
Q-DSA
Q-SA
HU
MDBO
MSTBO
Local Proc.

Fig. 7. Average Energy Consumption for Task Completion for variable
number of VNs.

TABLE IV
AVERAGE PERCENTAGE OF DATA OFFLOADING.

VNs 100 200 400 600 800 1000 1200 1400 1600 1800

V2I-AC .79 .80 .82 .64 .65 .57 .58 .59 .60 .60
V2V-AC .80 .78 .77 .60 .59 .50 .48 .47 .45 .45
V2I-DAC .79 .80 .80 .62 .66 .58 .59 .57 .56 .56
V2V-DAC .82 .75 .75 .58 .54 .50 .49 .45 .43 .42

3), considering also the handover and latency failures is much
better than the benchmarks.

6) Average Computation Offloading: We analyze then the
impact of nearby VNs on the computation offloading amount.
In Table IV, the average percentage of data offloaded by VNs
towards RSUs is shown. Since the available resources at each
RSU are limited, if the number of vehicles increases, the V2V
assisted collaborative Q-learning approach offloads the lowest
amount of data towards RSU servers for avoiding handovers.
On the other hand, the V2I approach does not take into account
the other VNs, and, as a result, a higher offloading percentage
and more handover requests are set.

7) Training Iterations in Terms of Service Failures: For
analyzing the training performance of the proposed Q learning-
based solutions in Fig. 8, we show the number of VNs failing
to perform the task processing in a limited time. For a given set
of VNs with reduced training iterations, Q-learning approaches
have a higher number of failures, however, with increasing
training iterations Q-learning approaches, especially the V2V-
AC approach outperforms the other solutions. It has to be
clarified that DQN-based training iterations can last for longer
time compared to the tabular approach, despite a reduced
number of overall iterations is generally needed. Hence, a
comparison with the tabular method is not fair, preventing their
representation in figure.

V. CONCLUSION

In this paper, we have considered a joint RSU selection
and computation offloading problem in a multi-service multi-
user vehicular network. We have modeled it as a RL-based
problem and solved it by using Q-learning methods. Two col-
laborative learning-based approaches where the Q-agents learn

60 80 100 120 140 160 180 200
Q Iterations

30

40

50

60

70

80

90

Se
rv

ice
 T

im
e

Fa
ilu

re
s [

Av
g]

V2V-AC
Q-SA
V2I-AC
MDBO
MSTBO

Fig. 8. Q-Learning Training Performance in Terms of a Service Time Failures
for variable number of iterations.

the optimal policy exploiting the V2I and V2V communication
paradigms are considered. Along with the traditional tabular
method, a DQN approach is also considered for estimating the
Q values, allowing to handle more complex learning scenar-
ios. Compared with other benchmark methods, the proposed
schemes provide better network-wide performance in terms
of latency and consumed energy. Thus, proposed schemes can
have a great potential for enabling latency-critical applications
and services over VNs. This work highlights the importance of
enabling collaborative RL strategies, exploiting vehicular com-
munication modes, for solving the joint network selection and
the offloading problem over a multi-service vehicular network;
this is also strengthen by the fact that the collaboration among
vehicular nodes has an impact on the performance higher than
the implementation of DQN with respect to the tabular Q-
learning.

As a future direction, the offloading process costs can
further be reduced by allowing VNs to select more than
one edge node for computation offloading. However, such an
approach can add extra dimensions of complexity, and more
rigorous solution methods. It can also be interesting to use
a multi-task learning-based approach (i.e. multi task RL/FL)
with additional vehicular service parameters. By considering
the distributed nature of the VNs and corresponding data,
other decentralized learning methods such as FL can also be
a potential solution method.

REFERENCES

[1] B. Ji, X. Zhang, S. Mumtaz, C. Han, C. Li, H. Wen, and D. Wang, “Sur-
vey on the Internet of Vehicles: Network architectures and applications,”
IEEE Commun. Std. Mag., vol. 4, no. 1, pp. 34–41, Mar. 2020.

[2] M. N. Ahangar, Q. Z. Ahmed, F. A. Khan, and M. Hafeez, “A survey
of autonomous vehicles: Enabling communication technologies and
challenges,” Sensors, vol. 21, no. 3, pp. 1–33, 2021, Art. No.706.

[3] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading
and resource allocation for cloud assisted mobile edge computing in
vehicular networks,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7944–
7956, Aug. 2019.

[4] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing—a key technology towards 5G,” ETSI, White Paper 11,
Sep. 2015. [Online]. Available: https://www.etsi.org/images/files/
ETSIWhitePapers/etsi wp11 mec a key technology towards 5g.pdf

[5] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular
edge computing and networking: A survey,” Mobile Networks and
Applications, vol. 26, no. 3, pp. 1145–1168, 2021.

[6] A. B. De Souza, P. A. Rego, T. Carneiro, J. D. C. Rodrigues, P. P.
Rebouças Filho, J. N. De Souza, V. Chamola, V. H. C. De Albuquerque,
and B. Sikdar, “Computation offloading for vehicular environments: A
survey,” IEEE Access, vol. 8, pp. 198 214–198 243, 2020.

[7] Z. Zhou, P. Liu, Z. Chang, C. Xu, and Y. Zhang, “Energy-efficient
workload offloading and power control in vehicular edge computing,”
in 2018 IEEE Wireless Communications and Networking Conference
Workshops (WCNCW), Barcelona, Spain, Apr. 2018, pp. 191–196.

[8] L. Liang, H. Ye, and G. Y. Li, “Toward intelligent vehicular networks:
A machine learning framework,” IEEE Internet Things J., vol. 6, no. 1,
pp. 124–135, Feb. 2019.

[9] Z. Ning, P. Dong, X. Wang, J. J. Rodrigues, and F. Xia, “Deep reinforce-
ment learning for vehicular edge computing: An intelligent offloading
system,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 10, no. 6, pp. 1–24, Dec. 2019, art. no. 60.

[10] H. Zhou, W. Xu, J. Chen, and W. Wang, “Evolutionary V2X technologies
toward the internet of vehicles: Challenges and opportunities,” Proc.
IEEE, vol. 108, no. 2, pp. 308–323, Feb. 2020.

[11] C. Chen, L. Chen, L. Liu, S. He, X. Yuan, D. Lan, and Z. Chen, “Delay-
optimized v2v-based computation offloading in urban vehicular edge
computing and networks,” IEEE Access, vol. 8, pp. 18 863–18 873, 2020.

[12] Q. Luo, C. Li, T. H. Luan, and W. Shi, “Collaborative data scheduling
for vehicular edge computing via deep reinforcement learning,” IEEE
Internet Things J., vol. 7, no. 10, pp. 9637–9650, 2020.

[13] J. Cui, F. Ouyang, Z. Ying, L. Wei, and H. Zhong, “Secure and efficient
data sharing among vehicles based on consortium blockchain,” IEEE
Trans. Intell. Transp. Syst., vol. 23, no. 7, pp. 8857–8867, 2022.

[14] J. Zhang and K. B. Letaief, “Mobile edge intelligence and computing
for the Internet of Vehicles,” Proc. IEEE, vol. 108, no. 2, pp. 246–261,
Feb. 2020.

[15] L. Tang, B. Tang, L. Zhang, F. Guo, and H. He, “Joint optimization
of network selection and task offloading for vehicular edge computing,”
Journal of Cloud Computing, vol. 10, pp. 1–13, 2021, art. no. 23.

[16] C. Yang, Y. Liu, X. Chen, W. Zhong, and S. Xie, “Efficient mobility-
aware task offloading for vehicular edge computing networks,” IEEE
Access, vol. 7, pp. 26 652–26 664, 2019.

[17] X. Hou, Z. Ren, J. Wang, W. Cheng, Y. Ren, K.-C. Chen, and H. Zhang,
“Reliable computation offloading for edge-computing-enabled software-
defined iov,” IEEE Internet Things J., vol. 7, no. 8, pp. 7097–7111,
2020.

[18] A. Bozorgchenani, S. Maghsudi, D. Tarchi, and E. Hossain, “Computa-
tion offloading in heterogeneous vehicular edge networks: On-line and
off-policy bandit solutions,” IEEE Trans. Mobile Comput., 2021, early
access, doi: 10.1109/TMC.2021.3082927.

[19] S. S. Shinde, A. Bozorgchenani, D. Tarchi, and Q. Ni, “On the design
of federated learning in latency and energy constrained computation of-
floading operations in vehicular edge computing systems,” IEEE Trans.
Veh. Technol., 2021, early access, doi: 10.1109/TVT.2021.3135332.

[20] Y. Ren, Y. Sun, and M. Peng, “Deep reinforcement learning based
computation offloading in fog enabled industrial internet of things,”
IEEE Transactions on Industrial Informatics, vol. 17, no. 7, pp. 4978–
4987, 2021.

[21] X. Zhu, Y. Luo, A. Liu, M. Z. A. Bhuiyan, and S. Zhang, “Multiagent
deep reinforcement learning for vehicular computation offloading in
IoT,” IEEE Internet of Things Journal, vol. 8, no. 12, pp. 9763–9773,
2021.

[22] D. Chen, Y.-C. Liu, B. Kim, J. Xie, C. S. Hong, and Z. Han, “Edge
computing resources reservation in vehicular networks: A meta-learning
approach,” IEEE Transactions on Vehicular Technology, vol. 69, no. 5,
pp. 5634–5646, 2020.

[23] Y. Sun, X. Guo, J. Song, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Adaptive
learning-based task offloading for vehicular edge computing systems,”
IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3061–3074, 2019.

[24] X. Zhang, J. Zhang, Z. Liu, Q. Cui, X. Tao, and S. Wang, “MDP-based
task offloading for vehicular edge computing under certain and uncertain
transition probabilities,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 3, pp. 3296–3309, 2020.

[25] Z. Zhou, J. Feng, Z. Chang, and X. Shen, “Energy-efficient edge
computing service provisioning for vehicular networks: A consensus
ADMM approach,” IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 5087–
5099, 2019.

[26] L. Cesarano, A. Croce, L. D. C. Martins, D. Tarchi, and A. A. Juan,
“A real-time energy-saving mechanism in internet of vehicles systems,”
IEEE Access, vol. 9, pp. 157 842–157 858, 2021.

[27] J. Wang, C. Jiang, Z. Han, Y. Ren, and L. Hanzo, “Internet of vehicles:
Sensing-aided transportation information collection and diffusion,” IEEE
Trans. Veh. Technol., vol. 67, no. 5, pp. 3813–3825, 2018.

[28] J. Wang, C. Jiang, K. Zhang, T. Q. S. Quek, Y. Ren, and L. Hanzo,
“Vehicular sensing networks in a smart city: Principles, technologies
and applications,” IEEE Wireless Commun., vol. 25, no. 1, pp. 122–132,
2018.

[29] A. Bozorgchenani, D. Tarchi, and G. E. Corazza, “Mobile edge comput-
ing partial offloading techniques for mobile urban scenarios,” in 2018
IEEE Global Communications Conference (GLOBECOM), Abu Dhabi,
United Arab Emirates, Dec. 2018.

[30] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint load balancing and
offloading in vehicular edge computing and networks,” IEEE Internet of
Things Journal, vol. 6, no. 3, pp. 4377–4387, 2018.

[31] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning
for offloading and resource allocation in vehicle edge computing and
networks,” IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 11 158–11 168,
Nov. 2019.

[32] X. Mo and J. Xu, “Energy-efficient federated edge learning with joint
communication and computation design,” Journal of Communications
and Information Networks, vol. 6, no. 2, pp. 110–124, Jun. 2021.

[33] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls et al.,
“Value-decomposition networks for cooperative multi-agent learning,”
arXiv:1706.05296, 2017, doi:10.48550/arXiv.1706.05296.

[34] T. Rashid, M. Samvelyan, C. Schroeder de Witt, G. Farquhar, J. N.
Foerster, and S. Whiteson, “Monotonic value function factorisation for
deep multi-agent reinforcement learning,” Journal of Machine Learning
Research, vol. 21, pp. 1–51, 2020, art. no. 178.

[35] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,
2nd ed. Cambridge, MA, USA: MIT press, 2018.

[36] H. Guo, J. Liu, J. Ren, and Y. Zhang, “Intelligent task offloading in
vehicular edge computing networks,” IEEE Wireless Communications,
vol. 27, no. 4, pp. 126–132, 2020.

[37] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan, “Is q-learning
provably efficient?” Advances in neural information processing systems,
vol. 31, 2018.

[38] H. Yang, Z. Xiong, J. Zhao, D. Niyato, L. Xiao, and Q. Wu, “Deep
reinforcement learning-based intelligent reflecting surface for secure
wireless communications,” IEEE Transactions on Wireless Communi-
cations, vol. 20, no. 1, pp. 375–388, 2021.

[39] Z. Ning, P. Dong, X. Wang, L. Guo, J. J. P. C. Rodrigues, X. Kong,
J. Huang, and R. Y. K. Kwok, “Deep reinforcement learning for
intelligent internet of vehicles: An energy-efficient computational of-
floading scheme,” IEEE Transactions on Cognitive Communications and
Networking, vol. 5, no. 4, pp. 1060–1072, 2019.

Swapnil Sadashiv Shinde (Student Member, IEEE)
is a Ph.D. student at the University of Bologna, Italy.
He received the the MS degree in Telecommunica-
tion Engineering from the University of Bologna,
Italy, in 2020. From 2015 to 2017, he worked as
a Project Engineer in the Indian Institute of Tech-
nology, Kanpur, India. His main focus is on the
Connected Vehicles for Beyond 5G Scenarios.

Daniele Tarchi (Senior Member, IEEE) is an Asso-
ciate Professor at the University of Bologna, Italy.
He holds a Ph.D. degree in Informatics and Telecom-
munications Engineering from the University of Flo-
rence, Florence, Italy, in 2004. He is the author of
more than 130 published articles in international
journals and conference proceedings. His research
interests are mainly on Wireless Communications
and Networks, Satellite Communications and Net-
works, Edge Computing, Fog Computing, Smart
Cities, and Optimization Techniques. Prof. Tarchi is

an IEEE Senior Member since 2012.

	collaborative reinforcement copertina
	Collaborative_Reinforcement_Learning_for_Multi-Service_Internet_of_Vehicles

