

ARCHIVIO ISTITUZIONALE DELLA RICERCA

Alma Mater Studiorum Università di Bologna Archivio istituzionale della ricerca

Hydrogenation of carbon dioxide (CO 2) to fuels in microreactors: a review of set-ups and value-added chemicals production

This is the final peer-reviewed author's accepted manuscript (postprint) of the following publication:

Published Version:

Hydrogenation of carbon dioxide (CO 2) to fuels in microreactors: a review of set-ups and value-added chemicals production / Sanaa Hafeez; Eleana Harkou; Sultan M. Al-Salem; Maria A. Goula; Nikolaos Dimitratos; Nikolaos D. Charisiou; Alberto Villa; Atul Bansode; Gary Leeke; George Manos; Achilleas Constantinou. - In: REACTION CHEMISTRY & ENGINEERING. - ISSN 2058-9883. - ELETTRONICO. - 7:(2022), pp. 795-812. [10.1039/d1re00479d]

This version is available at: https://hdl.handle.net/11585/895439 since: 2023-05-08

Published:

DOI: http://doi.org/10.1039/d1re00479d

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/). When citing, please refer to the published version. This is the final peer-reviewed accepted manuscript of:

Sanaa Hafeez, Eleana Harkou, Sultan M. Al-Salem, Maria A. Goula, Nikolaos Dimitratos, Nikolaos D. Charisiou, Alberto Villa, Atul Bansode, Gary Leeke, George Manos and Achilleas Constantinou, Hydrogenation of carbon dioxide (CO2) to fuels in microreactors: a review of set-ups and value added chemicals production, React. Chem. Eng., 2022, 7, 795–812.

The final published version is available online at: https://doi.org/10.1039/D1RE00479D

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

https://www.elsevier.com/about/policies/copyright/permissions

This item was downloaded from IRIS Università di Bologna (<u>https://cris.unibo.it/</u>)

When citing, please refer to the published version.

6 Hydrogenation of Carbon Dioxide (CO₂) to Fuels in Microreactors: 7 A Review of Set-ups and Value-Added Chemicals Production

1 2 Received 00th January 20xx,

- Accepted 00th January 20xx
- 3 DOI: 10.1039/x0xx00000x
- 4
- 5

Sanaa Hafeez,^a Eleana Harkou, ^b Sultan M Al-Salem, ^c Maria A. Goula, ^d Nikolaos Dimitratos, ^e 8 9 Nikolaos D. Charisiou, ^d Alberto Villa, ^f Atul Bansode, ^g Gary Leeke ^h, George Manos, ^a and Achilleas 10 Constantinou *b

11 Climate change, greenhouse effect and fossil fuel extraction have gained a growing interest in research and industrial circles 12 to provide alternative chemicals and fuel synthesis technologies. Carbon dioxide (CO₂) hydrogenation to value-added 13 chemicals using hydrogen (H₂) from renewable power (solar, wind) offers a unique solution. From this aspect this review 14 describes the various products, namely methane (C1), methanol, ethanol, dimethyl ether (DME) and hydrocarbons (HCs) 15 originating via CO₂ hydrogenation reaction. In addition, conventional reactor units for the CO₂ hydrogenation process are 16 explained, as well as different types of microreactors with key pathways to determine catalyst activity and selectivity of the

17 value-added chemicals. Finally, limitations between conventional units and microreactors and future directions for CO_2

18 hydrogenation are detailed and discussed. The benefits of such set-ups in providing platforms that could be utilized in the

- . . .

19 future for major scale-up and industrial operation are also emphasized.

44 -

			44	Pt;	Platinum
20	Nomen	clature	45	Ru;	Ruthenium
21	CCS	Carbon capture and storage	46	ln;	Indium
22	CCU:	Carbon capture and utilization	47	Pd;	Palladium
23	CSTR.	Continuously stirred tank reactor	48	CeO ₂ ;	Cerium oxide
24	CO_2	Carbon dioxide	49	MnO _{2;}	Manganese oxide
25	СС <i>2,</i> Н₂:	Hydrogen	50	In ₂ O _{3;}	Indium oxide
26	··2, CH₄ (C₁)·	Methane	51	NiO;	Nickel
27	CH₂OH·	Methanol	52	TiO _{2;}	Titanium oxide
28		Ethanol	53		
29	DME.	Dimethyl ether	54	SiO ₂ ;	Silicon dioxide
30	FT.	Eischer-Tronsch	55	Fe ₂ O ₃ ;	Iron oxide
31	RWGS	Reverse water gas reaction	56	K ₂ CO _{3;}	Potassium carbonate
32	Ni [.]	Nickel	57	NiCo;	Catalyst
33	Cu:	Conner	58	ZnO;	Zinc oxide
34	Mo [.]	Molyhdenum	59	Co ₃ O ₄ ;	Cerium oxide
35	(10), (0)	Cobalt	60	ZrO ₂ ;	Zirconium oxide
36	Li.	Lithium	61	PdZn;	Catalyst
37	Na:	Sodium	62	SBA-15;	mesoporous silica catalyst
38	κ·	Potassium	63	ZrO _{2;}	Zircounium Dioxide
39	Mn·	Manganese	64	γ-Al2O _{3;}	gamma-alumina
40	Fe.	Iron	65	Ρ;	Pressure (bar)
41	Ce:	Cerium	66	Т;	Temperature (°C)
42	Rh.	Bhodium	67	H ₂ O;	Water
43	Ir:	Iridium	68	s;	Second
10	,		69	h;	Hour
			70	К;	Kelvin
	(Departmen	t of Chamical Engineering, University College London, London WCL	<u> </u>	mL;	Milliliter
	7JE, UK.			m;	Meter
	 ^b Department of Chemical Engineering, Cyprus University of Technology, 57 Corner of Athinon and Anexartisias, 3036 Limassol, Cyprus. Correspondence a.konstantinou@cut.ac.cy ^c Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat 13109, Kuwait. ^d Laboratory of Alternative Fuels and Environmental Catalysis (LAFEC), Department of Chemical Engineering, University of Western Macedonia, GR-50100, Greece. ^e Dipartimento di Chimica Industriale e dei Materiali, ALMA MATER STUDIORUM 			μm;	micro-meter
				mm;	millimeter
				cm³;	Cubic centimeter
				min;	Minute
				DBT;	dibenzytoluene
				NPs;	Nanoparticles

Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy. f. Dipartimento di Chimica, Università degli Studi di Milano, via Golgi, 20133 Milan,

Italv. ^{g.} Catalysis Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands.

^{h.} School of Chemical Engineering, University of Birmingham, B15 2TT, UK

Gigatons

80 Introduction

124 Excessive extraction and utilization of fossil fuels combined with 81 continuous greenhouse gas (GHGs) emissions have led_{126}^{110} 82 83 increasing carbon dioxide (CO₂) concentration in the atmosphere 1. Recently, 33 Gt/year of CO2 emissions were 84 recorded, which contributes to a rapid increase in atmospheria 85 carbon levels from 280 ppm to 410 ppm 2 when compared with 86 preindustrial era. As a result of such conventional processes 87 which utilise fossil fuels, the atmospheric CO_2 concentration is 88 further predicted (Fig. 1) to increase to 570 ppm before the \overline{and} 89 of the century 3 if no CO_2 mitigation actions are taken. $\bar{T_{\rm MO}}$ 90 technologies: carbon capture and storage (CCS) and carbon 91 capture and utilization (CCU) play a significant role in reducing 92 CO_2 emissions ⁴. Generating value added products through \overline{CQ}_{27} 93 hydrogenation utilising renewable hydrogen (H₂), produced \bar{h}_{X} 94 water electrolysis 5, has proven to be a major challenge in ordege95 96 to seek alternative fuel synthesis routes ⁶.

97Figure 1. Schematic showing the amount of CO_2 in the atmosphere (purple ine)98has increased along with human emissions (blue line) since the start of the99Industrial Revolution in 1750 7.156

100

CCS is expected to play a vital role in limiting the $GI\overline{H}\overline{9}$ 101 emissions, as well as climate change attenuation in the future? 102 Specifically, it is considered an attractive alternative for the 103 decarbonisation of emissions from industries and can also 161 104 merged with low carbon or carbon neutral bioenergy 162 105 106 produce negative emissions ¹. Whereas CCU attempts both the 107 reduction of CO_2 emissions in the atmosphere and $\frac{1}{2}he^{2}$ 108 substitution of conventional raw materials in distinct types 8₱ 109 industrial processes through CO₂ hydrogenation. This method focuses on using carbon free viable technologies 8. Renewable 110 H_2 is generated through water electrolysis by apply h_2° 111 electricity from renewable sources such as solar and wind 149 112 170 113 is widely used for the CO₂ hydrogenation processes ⁹. 171 114 115 There are several carbon utilisation methods. CO_2 can be $u_{2}^{\frac{1}{2}}$ as a feedstock for the production of fuels and chemicals. $\frac{1}{2}$ 116 main products derived from CO₂ are formic acid, urea, 117 methanol, salicylic acid and cyclic carbonates. CO2 if ofters 118 119 converted into fuels or chemicals through biochemicals electrochemical, photochemical, thermo-catalytic, and hybrid 120 methods. Industrial carbon emissions can be efficiently used $\frac{1}{48}$ 121 122 mineralisation processes to produce a range of products. #/2

reaction is thermodynamically favourable, and a range of feedstocks (e.g., alkaline solid wastes and natural silicate ores) can be applied for the mineralisation processes. The mineralisation process can be divided into four main categories: direct and indirect carbonation, carbonation curing and electrochemical mineralisation ¹⁰.

Potential of both conventional reactor units and microreactors in CO₂ hydrogenation has been demonstrated to obtain the chemical fuels. Conventional units such as continuously stirred tank reactors, fixed-bed reactors, fluidised-bed reactors (FBRs), packed-bed reactors and slurry reactors, have broadly been operational at industrial scale for the synthesis of value chemical fuels such as methane, methanol, ethanol, DME and higher hydrocarbons ¹¹, due to low cost and high heat and mass transfer ¹². Regardless of their applications, conventional units represent a high pressure drop, complex hydrodynamics and modelling ^{11, 13}.

The CO₂ hydrogenation process into hydrocarbons can be classified as two groups. This is the methanation reaction and the production of hydrocarbons through the Fischer-Tropsch (FT) process ¹⁴. Consequently, CO₂ can be hydrogenated to methane (CH₄), methanol (CH₃OH), ethanol (C₂H₅OH), lower olefins, dimethyl ether (DME) and higher hydrocarbons ^{15, 16}. A scheme of the main products of CO₂ hydrogenation can be seen in Fig.2. The production of olefins, i.e., ethylene and propylene, from the hydrogenation of CO₂ is a significant route. These olefins are the two most widely produced petrochemicals in the world. The worldwide ethylene and propylene consumption was nearly 150 million and 100 million metric tons, respectively. The demand for these chemicals signifies their imperative use in the chemical process industries as feedstocks and other materials, to produce solvents, plastics, polymers and cosmetics. Moreover, olefins can be further upgraded into longchain hydrocarbons for use as fuels, rendering them as a high potential for using up to 23% of carbon emissions ¹⁷. Generation of these chemical fuels was initially based on conventional reactor processes. However, many studies now are focused on the production of these fuels using microreactors, due to their potential in accelerating the generation of these value-added fuels 18.

Great efforts have recently been accomplished to prepare microreactors with the aim of producing chemical fuels through CO₂ hydrogenation ¹⁹. Microreactors such as continuous flow microreactors ^{20, 21}, micro packed-bed reactors ^{22, 23}, membrane ^{24, 25}, and microplasma reactors can be used to enhance various unit operations and reactions in micro space. Moreover, microreactors exhibit pivotal advancements in chemical engineering, leading to excellent output yield of chemical fuels ²⁶. Microreactors present high heat and mass transfer for highly exothermic reactions, while the dimensions of the microreactors components promote the enhancement of construction and operation. ^{19, 27} Finally, the microscale volume capacity of microreactors have also provided efficient progress of continuous flow reactions since they considerably decrease

1

1

1

; ___]

242

243

180 the quantity of materials required to improve react2dr4 181 conditions ²⁸. These reactors were used to synthesise chem²245

182 fuels for energy demand.

Figure 2. Schematic representation of carbon dioxide hydrogenation to value-added chemical fuels. 231 183 184 added chemical fuels. 232 185

This review will provide a succinct illustration of the different 186 routes performed to produce synthetic gases through $\widetilde{c\theta_2^4}$ 187 hydrogenation according to the challenges faced $^{2}B_{V}$ 188 conventional units and microreactors. The contribution 236 189 conventional units during CO2 hydrogenation process will then 190 be described. In addition, microreactors used to produce 191 synthetic gases will be explained. Finally, limitations between 192 conventional units and microreactors as well as $future^{40}$ 193 241 194 directions will be highlighted and discussed.

CO₂ Hydrogenation to Value Added Chemicals4 195 245 Synthesis Routes 196 246

Hydrogen can be produced using various processes, Fig. 3 shows 197 a brief overview of the many ways hydrogen can be obtained 198 199 Hydrogen required to react with CO2 is conventionally produged from the steam reforming of non-renewable hydrocarbe 200 201 feedstocks, and this been the preferred industrial method for 202 several decades. 251

203

Typically, the steam reforming process occurs via two reactions? 204 (1) the steam reforming of the hydrocarbons, and (2) the water 205 206 gas shift (WGS) reaction ²⁹.

207
$$C_n H_m + n H_2 O \to n CO + \left(n + \frac{m}{2}\right) H_2$$
 (1)254
255

256 for n = 1, $\Delta H^0_{298 K} = +206.2 \text{ kJ/mol}$ 208 257

209 $CO + H_2O \rightarrow CO_2 + H_2$ (2258

210
$$\Delta H^0_{298 K} = -41.2 \text{ kJ/mol}$$
 259 260

211

261 Another conventional method for hydrogen production 262212 autothermal reforming. This process is like the previously 213

described steam reforming; however, a proportion of the fuel reacts with oxygen to produce the thermal energy required in the reforming reaction which is an endothermic process. The generalised reaction for the autothermal reforming can be expressed as ³⁰:

$$C_n H_m O_p + x O_2 + (2n - 2x - p) H_2 O \to n C O_2 + \left(\frac{m}{2} + 2n - 2x - p\right) H_2$$
(3)

The value of x is related to the composition of the hydrocarbon. The gasification of coal is another significant reaction for the industrial production of hydrogen. The reaction products consist of syngas (CO and H₂), and the CO can be further upgraded to H2 and CO₂ via the WGS reaction. The primary reaction can be given by ³¹:

$$C_n H_m(coal) + nH_2 0 \to nCO + \left(n + \frac{m}{2}\right) H_2 \tag{4}$$

Nonetheless, the coal gasification reaction is highly endothermic and requires reaction temperatures of 1273 K to acquire the desired product yield. On the other hand, the WGS reaction is exothermic and so lower reaction temperatures for the CO conversion are needed ³¹. Typically, the coal gasification reaction is performed in a reactor with a temperature of 1273 K. The syngas product is then fed to another reactor which has a temperature below 673 K for the conversion of CO ³².

The other approach is to produce the hydrogen from renewable energy sources. The electrolysis of water is one of the wellestablished methods to produce hydrogen as it utilises renewable and generates solely pure oxygen as a by-product. Furthermore, the electrolysis process is envisioned to use power from sustainable energy sources, such as wind, solar and biomass. However, currently, only 4% of the total hydrogen produced is coming from the electrolysis of water. This is mainly due to the economic issues ³³. The various electrolytes systems for the electrolysis of water can be represented by alkaline water electrolysis (AWE), proton exchange membranes (PEM), alkaline anion exchange membranes (AEMs), and solid oxide water electrolysis (SOE). The water electrolysis process can be represented by the following ³⁴:

Anode: $H_2 O \rightarrow \frac{1}{2}O_2 + 2H^+ + 2e^-$ (5)

Cathode:
$$2H^+ + 2e^- \rightarrow H_2$$
 (6)

Overall:
$$H_2 0 \rightarrow H_2 + \frac{1}{2}O_2$$
 (7)

The photocatalytic splitting of water with TiO₂ powders is the most basic configuration of the process, which is comprised of a sole type of semiconductor particles in continuous contact with water. Once excited by an incident photon with a greater energy than the bandgap of the semiconductor, an electron in the valence band can be pushed to the conduction band and generates a hole. Subsequently, the hole and electron separate specially and diffuse to the surface of the semiconductor to take part in the hydrogen evolution reaction and oxygen evolution reaction 35.

Figure 3. Overview of hydrogen production routes.

214

215 The hydrogenation process aids the reduction of atmosph249 216 CO_2 while producing fuels and value-added chemicals ³⁶. **25**0 217 hydrogenation to value added chemical fuels is considere25a 218 beneficial process, provided that renewable H_2 is supplied ${}^{3}2$ 219 H_2 is a major utility that is typically produced from conventio 2 fa B220 petroleum reforming and could has major environme254 221 implications. Remarkable advancements have be2e5n5 222 accomplished in the synthesis of CH_4 (C_1), methanol ($CH_3 O_2 D_3 G_3$ 223 higher, ethanol (C_2H_6O) , dimethyl ether (DME) and hydrocarbons (HCs) directly from CO2 hydrogenation. Mixty 224 225 of CO_2/H_2 is required for the conversion into value added 226 chemical fuels through the Fischer-Tropsch process and is often 227 utilised widely in industry. Finally, synthesis of alcohols is more 228 demanding than hydrocarbons by reason of accurate control of C-C coupling ³⁹. The resulting products of CO₂ hydrogenation, 229 230 such as hydrocarbons and methanol, are excellent alternative 231 fuels for internal combustion engine with ease in storage and 232 transportation. This alleviates many of the challenges 233 associated with the use of fossil fuels ³⁶. Table 1 provides a 234 summary of the main catalysts which are applied for the 260 235 hydrogenation of CO₂ into fuels and chemicals. 236 261 237 There are some issues which exist for the conversion of CO_2 in 62238 value-added chemicals. Although the noble metal catalysts have 239 a good performance, they are highly costly, and lack264

240 availability limits their wide scale applications for 265 241 hydrogenation of CO₂ to methane and ethanol. An alternation 242 to this would be other metal catalysts, such as Ni; howe 243 these catalysts are highly susceptible to deactivation due268 244 sintering and carbon poisoning ⁴⁰. A similar issue exists with the Cu/ZnO/Al₂O₃ catalyst used for the hydrogenation of $CO_2^2 to^2$ 245 methanol. A problem faced with this catalyst is the by 246 247 selectivity towards methanol caused by the reverse water gas

shift (RWGS) reaction. Furthermore, the catalyst activity declines rapidly due to the water product, which leads to the sintering of the Cu component during the reaction ⁴¹. The typical catalysts used for ethanol synthesis can suffer from the effects of high temperature, which promote the RWGS pathway and aids the production of undesirable CO ⁴². Similarly, a prominent issue with the conversion of CO₂ to higher hydrocarbons is the high selectivity towards methane and light saturated hydrocarbons ⁴³.

Table 1. Summary of catalysts applied for the conversion of CO_2 into value-added chemicals.

nd
72
5, 77

CO₂ to Methane

Methane (C₁) is regarded a principal constituent of natural gases and can be successfully utilised in industry, energy and transportation sectors ^{44, 45}. The production of methane through CO₂ hydrogenation is the most sustainable and convenient pathway to store significant quantities of energy generated from renewable sources ⁴⁶⁻⁵⁴. CO₂ hydrogenation to C₁ reaction, initially revealed by the French chemist Paul Sabatier ^{1, 55}, can be represented as ^{56, 57}:

$$CO_2 + 4H_2 \rightleftharpoons CH_4 + 2H_2O \tag{5}$$

 $\Delta H_{298K} = -165 \text{ kJ mol}^{-1}$

271 CO₂ to Methanol

272 Methanol is reported as one of the dominant chemical Babb 273 materials in the chemical and petrochemical industry throad 274 which methyl methacrylate, dimethyl carbon 3t28 275 chloromethane, acetic acid, formaldehyde, methylamide 9 276 dimethyl terephthalate and methyl tertiary butyl ether 330 277 generated ⁶. Methanol synthesis through CO₂ hydrogenated 278 has attracted tremendous interest as noble and oxide2 279 supported metals have been regarded promising catalyst 333 280 controlling both the activity and selectivity of methanol 60, 8334 281 Direct methanol (CH₃OH) generation through 605 282 hydrogenation is represented as ^{92, 93}: 336

283
$$CO_2 + 3H_2 \rightleftharpoons CH_3OH + H_2O$$
 (6)
337

284 $\Delta H_{298K} = -41.1 \text{ kJ mol}^{-1}$ 338

285

339 Remarkable progress has been made in CO2 hydrogenation 286 methanol and specifically in developing Cu and In-based 287 catalysts. ⁹⁴. It is reported that over a Cu-ZnO-Al₂O₃ catalyst 2^{2} 288 high CH₃OH selectivity up to 98.2% can be accomplished unsdep 289 conditions of P = 36 MPa and T = 220-300 °C 95 and a In₂O₃/Z₃Q₄ 290 291 catalyst CH₃OH selectivity can be up to 99.8% under conditions 292 of P = 5 MPa and T = 300 °C 96 . The remarkable selectivity 345conversion are due to the exceedingly high-pressure conditions 293 294 used for the study. Considering the catalytic kinetics for 295 methanol synthesis, development of highly effective no 347296 metal-based catalysts in terms of selectivity and stabilit 348 297 demanded ⁹⁷. Hartadi et al. ⁹⁸ reported that over an Au-ba349 298 catalyst supported by TiO₂, ZrO₂, ZnO and Al₂O₃, high CH₃350 299 selectivity up to 82% 97 is accomplished under conditions of 351 5 bar and T = 220-240 °C. Malik et al. 99 have concluded t35₽ 300 301 over PdZn/CeO₂ and Ca-doped PdZn/CeO₂ catalysts, high CH₃333 302 selectivity of up to 100% is achieved under conditions of P =3504 303 bar and T = 220 °C. 355 304 356

305 Lee et al. 49 performed a techno-economic analysis for 357 306 hydrogenation of CO₂, and methane, to methanol. 358 307 processes were developed to investigate the production 359 308 methanol from landfill gas. The first was a stand-alone process 309 (L2M-SA), and the second process had a hydrogen supply (L2001 310 HS). The results from the techno-economic analysis showed 311 that the L2M-HS process has poorer economics, as opposed 63 312 the stand-alone process, due to the excessive cost of 364 313 hydrogen supply. Furthermore, the unit production cost (UB65 314 of the L2M-HS process was found to be around 12% higher tBab 315 the L2M-SA process. Nonetheless, the methanol produced fr367 316 the L2M-HS process can be economically viable with the acB68 317 methanol market if cheaper hydrogen supply routes 369 318 available, e.g., using hydrogen which has been produces as a 370319 product from industry. The study concluded that the UPGp1 320 methanol is approximately 392-440 \$/tonne, which 372 321 competitive with other conventional methanol production 322 processes. Furthermore, the lower environmental emissigna 323 with the current process make it an environmentally clars 324 approach. 376

325 CO₂ to Ethanol

The conversion of CO₂ hydrogenation to high alcohols remains an exceptional challenge due to the understanding of parallel and successive reactions. Noble metals such as Au, Pt and Pd are reported as catalysts for direct production of ethanol from CO₂ hydrogenation with high selectivity up to 88.1% over a Pt/CO_3O_4 catalyst under conditions of P = 8 MPa and T = 220 °C. Recent studies have shown that non-noble and metal-based catalysts are investigated to provide highly efficient liquid phase ethanol from CO₂ hydrogenation ^{39, 69, 71, 100-106}. Direct CO₂ hydrogenation to ethanol is represented below ¹⁰⁷:

$$2CO_2 + 6H_2 \rightleftharpoons C_2O_5OH + 3H_2O$$

$$\Delta H_{298K} = -86.7 \text{ kJ mol}^{-1}$$
(7)

CO₂ to DME

DME is regarded as a significant chemical intermediate for the generation of various chemicals such as diethyl sulphate, methyl acetate, light olefines, and gasoline ¹⁰⁸. The hydrogenation of CO₂ to DME has attracted great interest with several heterogeneous catalysts 74, 75, 77, 78, 109-112. Direct CO2 hydrogenation to DME is shown below:

$$CO_2 + 6H_2 \rightleftharpoons CH_3OCH_3 + 3H_2O \tag{8}$$

$$\Delta H = -122.2 \text{ kJ mol}^{-1}$$

Cu-ZnO-Al₂O₃ catalysts and a mesoporous HZSM-5 zeolite are used in DME synthesis, providing great resistance and improving the mass transfer process during the reactions ¹¹³. Alvarez et al. ¹¹⁴ reported that direct CO₂ hydrogenation to DME requires a bifunctional catalyst in order to perform methanol synthesis and methanol dehydration. Utilisation of γ -Al₂O₃ and H-ZMS-5 catalysts ¹¹⁵ is investigated for direct conversion of synthetic gas (syngas) to DME. Methanol synthesis can be a physical mixture containing a methanol synthesis catalyst and a solid catalyst which are mixed, and the function of the reactions are divided. Methanol dehydration is considered an integrated mixture where the catalytically active products of the reactions are located to the nearest position so as to ease DME synthesis. ¹¹⁴. Tokay et al. ¹¹⁶ investigated that over an $Al_{@}SBA-15$ and mesoporous AlSi₃ catalyst, high DME selectivity of up to 100% is achieved under condition of T = 300-400 °C and a space time of 0.0027 sg/cm^3 .

Michailos et al. ¹¹⁷ investigated the production of DME from the captured CO₂ hydrogenation within the context of power-toliquid context. The calculations were based upon a plant which generates approximately 740 tonnes/day of DME. The results from the economic analysis revealed that net production cost of DME was 2112 €/tonne, and the minimum DME selling price (MDSP) was 2193 €/tonne. The latter value is 5 times greater than the average gate price of conventional diesel in 2016. This high cost is mainly related to electricity price, due to the electrolysis unit, as opposed to the parameters related to the CO2 capture and conversion plants. A subsidised or free of charge electricity supply will make the DME price more 377 competitive; although, this will be unlikely due to the378 establishment of other technological options.

379

380 CO₂ to Higher Hydrocarbons

Higher hydrocarbons, such as light olefins and particularly
ethylene and propylene generation, has gained great interest in
the petrochemical industry ¹¹⁸. Direct CO₂ hydrogenation to
higher hydrocarbons is described as the combination of
conversion CO₂ through the FT process and reverse water gas
shift (RWGS) reaction.

387

388 The typical catalysts applied for the process are Fe-based due to 389 their ability to catalyse both reactions. They can be utilised in 390 bulk form or as supported iron oxides. In order to diminish the 391 selectivity towards methane, the catalysts are doped with oxides of Cu, K, Mn, and/or Ce ¹¹⁹. The most encouraging 392 393 catalysts for this process are K promoted Fe/Al₂O₃ catalysts with 394 K contents of up to 0.5 mol-K mol⁻¹ of Fe. Nonetheless, these 395 catalysts experience low efficiencies for the hydrogenation of 396 CO2. This remains a major challenge for the production of higher 397 hydrocarbons ¹²⁰. Recent studies have proven that CO₂ 398 hydrogenation to value added chemical fuels can be realised by 399 using the main catalysts for CO₂ hydrogenation with zeolites ¹⁹. 400

 $403 \quad 2CO_2 + 7H_2 \rightleftharpoons C_2H_6 + 4H_2O \tag{9}$

404 $\Delta H_{298K} = -132.1 \text{ kJ mol}^{-1}$

 $405 \quad 3CO_2 + 10H_2 \rightleftharpoons C_3H_8 + 6H_2O \tag{10}$

406 $\Delta H_{298K} = -125 \text{ kJ mol}^{-1}$

407 Conventional Reactors in CO₂ Hydrogenation

408 The most used conventional reactors for the hydrogenation of CO2 are continuously stirred tank reactors (CSTRs), fluidised 409 bed reactors (FBRs) and fixed bed reactors. Fig. 4 shows a 410 411 schematic of these conventional reactors. 430 412 431 413 Continuously Stirred Tank Reactor (CSTR) 432 CSTRs are considered as the most conventional reactors in 483 414 415 field of CO_2 hydrogenation. One of the operational issues $\sqrt{124}$ 416 CSTRs is complex non-linear behaviour. These characteristi25 417 depict the requirement of a complex control system design. ##6 418 results obtained from this non-linear analysis are significant it allows the determination of difficult operating points, in order 419 420 to remove them. As an example, it may be useful to operate 421 around an unstable operating point, which can result 440 422 observation of higher product yields ¹²¹. Nonetheless, CSTRs tan provide wide operating range, as they can operate under steady 423 state with continuous flow of both reactants and products 443 424 425 Fig. 5 shows a schematic of the CSTR process of the hydrogenation of CO₂ to produce methane. Chiavassa et al.445 426 employed a Berty-type CSTR reactor for methanol synthesis446 427 447

Figure 4. Schematic representation of the conventional reactors used commonly for the hydrogenation of CO2. (a) CSTR; (b) FBR; and (c) Fixed bed reactor.

through CO_2/H_2 over Ga_2O_3 -Pd/SiO₂ catalysts. The results showed that under conditions of P = 1-4 MPa and T = 508-523 K, CO₂ conversion to CH₃OH was up to 70% and selectivity of CH₃OH up to 50-55% was achieved.

Dorner et al. ¹²⁴ used a CSTR for C₁ and C₂-C₅ higher hydrocarbons synthesis, using Mn/Fe and K/Mn/Fe catalysts. Hydrogenation of CO₂ was accomplished under conditions of P = 13.6 atm, T = 563 K and gas hourly space velocity (GHSV) of 0.015 L/g s. The results showed that over Mn/Fe and K/Mn/Fe catalysts, CO₂ conversion to methane was up to 34.4% and 41.4% and selectivity was up to 42% and 29.4%, respectively. In addition, for higher hydrocarbons synthesis, the results showed that over Mn/Fe and K/Mn/Fe catalysts, CO₂ conversion to C₂-C₅ higher hydrocarbons was up to 41.4% and 37.7%, and the selectivity reached 62.4% and 55.3%, respectively.

Figure 5. Flow sheet of the connected processes for CO₂ hydrogenation to methane using a CSTR.

428

454

429 Lefebvre et al. ¹²⁵ used a CSTR reactor to identify the study 4666 430 the three-phase CO_2 methanation reaction, applying 467 431 commercial Ni/SiO₂ catalyst, suspended in the liquid phate8 432 Feed gases were heated in a preferred temperature betw 469 433 220 °C and 320 °C and mixed in a tempered feed tank. 470 434 results showed that under conditions of P = 1 atm and T = 2401435 320 °C, CO₂ conversion to methane could not increase 472 436 further for an agitator speed above ca. 1000 L/min and 473 437 474 selectivity during the process was up to 95%. 475 438

439 Kirchbacher et al. ¹²⁶ also used a CSTR reactor to produce **4**H6 440 441 by water electrolysis. For methane synthesis through 408 442 hydrogenation, two main processes were achieved. Initiall 4,79 443 high H_2/CO_2 ratio was applied to prevent thermal effects of **480** 444 spherical catalyst Meth 134°, which provides a high 481 445 conversion to CH4 that is approximately 80%. Methanatel? 446 process was conducted at three pressure levels of 6, 10, 14 488 447 and a GHSV of 3.000, 4.000, 5.000 and 6.000 h-1 un484 448 conditions of T = 395-425 °C. Secondly, under semi485 449 conditions biogas and synthetic H₂ were employed to gener486 450 methane. The feed gas composition was investigated by 487 451 pressure levels of 6, 8, 10, 12 and 14 bar. However, GHSV 488 452 limited to 4.000 h⁻¹. Methane productivity reached a leve489 453 85% v/v under condition of P = 14 bar. 490

455 García-Trenco et al. 127 used a CSTR reactor to gener492 456 methanol through CO₂ hydrogenation, applying bimetallic Pd 93 457 nanoparticles as catalysts. The results showed that Pc494 458 catalysts reduced methanol activity up to 50%, whereas 495 459 catalyst including Pd/In intermetallic nanoparticles (N496) 460 exhibited high CH₃OH rate up to 70% and high CH₃OH selecti 461 up to 90%. Furthermore, the optimum PdIn-based cata 462 displayed an improvement in stability- the methanol production 463 rate decreased by 20% after 120 h run, compared with 30% for 464 the Cu/ZnO/Al₂O₃ catalyst (after 25 h).

A further study performed by García-Trenco et al. 128 investigated the hydrogenation of CO_2 to methanol using colloidal Pd₂Ga-based catalysts in a CSTR reactor. The colloidal Pd₂Ga-based catalysts shown 2-fold higher intrinsic activity than commercial Cu-ZnO-Al₂O₃ (60.3 and 37.2 \times 10⁻⁹ mol_{MeOH} m⁻² s⁻ ¹) and 4-fold higher on a Cu or Pd molar basis (3330 and 910 μ mol mmol_{Pd or Cu}⁻¹ h⁻¹) in liquid phase at a reaction pressure of 50 bar. The results showed a good correlation between the intrinsic activity and the content of Ga₂O₃ surrounding the Pd₂Ga nanoparticles (XPS), indicating that methanol is produced via a bifunctional mechanism concerning both phases. A steady decrease in methanol selectivity (60 to 40%) was observed when temperature was raised (190-240 °C) whilst an optimum methanol production rate was observed at 210 °C. Nonetheless, when compared to the conventional Cu-ZnO-Al₂O₃, which suffered from around a 50% loss of activity over 25 h time on stream, the Pd₂Ga-based catalysts sustained activity over this time frame.

In industry, it is common to utilise multifunctional metallic copper and zinc oxide catalyst on alumina (CZA). Huš et al. ¹²⁹ investigated experimentally, and via multiscale modelling, of commercial-like catalyst (Zn₃O₃/Cu) and three other Cu/metal oxide combinations (Cr₃O₃/Cu, Fe₃O₃/Cu, and Mg₃O₃/Cu), synthesised by co-precipitation. The results showed that the formate species pathway (HCOO \rightarrow H₂COO \rightarrow H₂COO \rightarrow H₂COO \rightarrow H₂COO \rightarrow H₂COO \rightarrow H₂COO \rightarrow H₃CO) dominates on the studied Cu-based catalysts. Although, Zn₃O₃/Cu exhibited the highest conversion and a moderate CH₃OH product selectivity, the former was smaller for Mg₃O₃/Cu. Furthermore, Cr₃O₃/Cu was ideal in terms of yield, but with exceptionally low CH₃OH productivity, whereas Fe₃O₃/Cu functioned poorly overall.

499 Fluidised Bed Reactors (FBRs)

FBRs can be used for multiphase reactions due to the higher 500 501 reactants. Furthermore, FBRs are regarded as excellent in terms 502 •4¢ 503 of CO₂ hydrogenation to value chemical fuels, conversion syngas, selectivity and economic feasibility ⁴. Kim et al. ¹³⁰ u 504 505 a FBR for direct hydrocarbon synthesis through 506 hydrogenation over K-promoted iron catalysts. A bench-se 507 fluidised bed (inner diameter of 0.024 m and length of 0.6 508 was applied for hydrocarbons synthesis. The results show that under conditions of pressure between 1 and 2.5 MPa a 509 510 temperature of 300 °C, CO2 conversion to olefins was up 54 511 46.8%, and olefins selectivity up to 89.3% was accomplished 555 512 Nam et al. ¹³¹ used a bench-scale bubbling fluidised bed reactor 513

514 (shown in Fig. 6) for CO₂ hydrogenation to methane by applying łŜģ 515 a Ni-based catalyst. Ni as a fluidising component and act catalytic constituent was selected for use into a bubbling 516 517 fluidised bed reactor for CO₂ hydrogenation to methane. 518 bubbling fluidised reactor (diameter of 0.14 m and height c m) was encircled by an electrical heater. The results showed 519 520 that a high CO_2 conversion to CH_4 up to 98% and CH_4 purity to 81.6% was achieved, under conditions of temperature 564521 between 280°C and 300°C and heat transfer (h_o) of 115 W/ \underline{n}_{2}^{55} 522 566 523

ຈົຊ7 524 Jia et al. ¹³² employed a fluidised bed reactor for direct $\frac{1}{2}$ 525 hydrogenation to methane, applied a Ni-Co based cata supported on TiO₂-coated SiO₂ spheres. A bench-scale fluidised 526 bed reactor was utilised for CO_2 methanation, consisted of a 527 528 quartz tube which was positioned in a tubular electric furna (inner diameter of 22 mm and length of 1 m). The results 529 530 showed that under conditions of ambient pressure ,74 ,74 531 temperature of 260 °C for over 120 h, CO2 conversion ନ୍ଦୁ 576 532 methane was up to 52%, and CH₄ selectivity up to 97% 533 achieved.

Figure 6. Bench scale fluidised bed reactor (left) and schematic diagram (right) ¹³¹
 (copyright permission obtained from Elsevier).

536

537 Fixed Bed Reactors

Fixed bed reactors are the most common type of reactor,
consisting of solid catalysts particles which are loaded and
packed in the bed ¹³³. In fixed bed reactors, gas, and liquid flow
below the catalyst bed from the top of the reactor to the

bottom, without stirring. Furthermore, CO_2 and H_2 are in direct contact with the catalyst particles ¹³⁴. One of the major points in fixed bed reactors is the temperature control in exothermic reactions. The desired minimal CO_2 conversion can reach 90%. Finally, the reaction time varies with the catalyst due to the generation of H_2O and the reaction rates ¹³⁵.

Ducamp et al. ¹³⁶ used a cylindrical annular fixed bed reactor (inner diameter of 20 mm, outer diameter of 50 mm and length of 34 mm) to produce methane, by applying a commercial catalyst made of a Ni active phase scattered on alumina trilobe extrudates, and to analyse CO_2 and C_2H_6 . The results showed that under reaction conditions of pressure from 0.4 to 0.8 MPa and a temperature between 200 °C and 275 °C, CO_2 conversion to CH₄ was up to 85% and 89%, respectively.

Jaffar et al. ¹³⁷ used a fixed bed reactor containing a gas preheater to generate methane using a 10% wt. Ni-Al₂O₃ catalyst. The results showed that under condition of temperature 360 °C methane yield up to 57.6% and methane selectivity up to 98% was achieved. Kiewidt et al. ¹³⁸ used a fixed bed reactor to produce methane. A 5% wt Ru-based catalyst supported by ZrO₂ loaded directly in the reactor with diluted catalyst powder. The results showed that under reaction conditions of pressure 10 bar and temperature 300 °C, methane yield up to 90% was generated.

Castellani et al. ¹³⁹ used a stainless mono tubular fixed bed reactor CO₂ methanation. The results showed that under reaction conditions of pressure from 2 to 20 bar and temperature between 250 °C and 400 °C, methane conversion of 31.36%, methane content up to 97.24% and CO₂ conversion up to 99.6% was achieved. Willauer et al. ¹³⁴ employed a fixed bed reactor (shown in Fig. 7) (stainless steel tube) for direct synthesis of hydrocarbons through CO₂ hydrogenation, using a γ -Al₂O₃ supported modified iron-based catalysts. The results showed that under conditions of P = 265 psig and T = 300 °C, CO₂ conversion of C₂-C₅ hydrocarbons was up to 41.4% and selectivity was up to 62.4%.

587

catalyst shows excellent stability in the continuous hydrogenation process with a trickle-bed reactor over 30 days of operation, reaching a maximum turnover number of 524 000 devoid of any significant deactivation.

Bibi et al. ¹⁴⁴ studied the hydrogenation of CO₂ using magnetic nanoparticles in a fixed bed reactor. The results showed that high activity and selectivity were obtained at 493 K, when $MnFe_2O_4$ was calcined at 513 K (0.5 °C/min) for 4 h and reduced at 553 K for 2 h, while in the case of Bi-MnFe₂O₄, calcination was performed at 753 K (0.5 °C/min) for 6 h and reduced at 553 K for 2 h. It was concluded that a finger-projected fixed-bed reactor in combination with magnetic nanoparticles is a highly promising alternative for industrial conversion of CO₂ to MeOH to alleviate the effects of greenhouse gases.

8 Microreactors for CO₂ Hydrogenation

Microreactors have been widely used to generate synthetic gases and liquid fuels from direct CO₂ hydrogenation, supported by reverse water gas shift reaction and Fischer-Tropsch (FT) process, in order to produce methane, methanol, ethanol, DME and hvdrocarbons. The desirable characteristics of microreactors in the field of energy technology has attracted great attention in recent years. The benefits of microreactors, such as enhanced mass and heat transfer, shorter residence time and lower pressure drops, make microreactors an interesting option for gas conversion processes in which conversion and selectivity are closely linked to the mass and heat transfer properties of the reactor and catalyst ¹⁴⁵. In this section, the hydrogenation of CO₂ in packed bed and membrane microreactors, as well as microwave and microplasma reactors. Fig. 8 shows a schematic representation of the membrane and microplasma reactors.

Figure 8. Schematic representation of (a) membrane microreactor; and (b) microwave reactor set-up.

 585
 Figure 7. Flow sheet for CO₂ hydrogenation using a fixed bed reactor ¹³⁴ (copyright bed)

 586
 permission obtained from Elsevier).

 641

642 Pastor-Pérez et al. ¹⁴⁰ used a fixed bed reactor for direct $\tilde{643}$ 588 hydrogenation to methane and applied Ni/CeO₂-ZrO₂ catalysts 589 promoted with Mn and Co. CO_2 methanation process was590 conducted in a vertical continuous fixed bed quartz reacted 591 (inner diameter of 10mm), using 250 mg of the catalyst. 592 results showed that under conditions of T = 400 °C, 648593 conversion to CH_4 up to 70% and CH_4 selectivity up to 99% ψ_{44} 594 achieved. Furthermore, Bradley et al. ¹⁴¹ employed a fixed bed 595 reactor to identify the role of the catalyst environment on βQ_{a} 596 hydrogenation by applying a Macrolite® supported iron-baged 597 catalysts. The results showed that under conditions of T = 289_3 598 320 °C, CO₂ conversion to methane and C₂-C₅ higher C_{2} 599 600 hydrocarbons up to 22-36%, CH₄ selectivity up to 26% and C₂-C₅ 601 higher hydrocarbons selectivity up to 60-69% were achieved. 602

603 Zhang et al. 142 investigated the selective hydrogenation of 604 CO2 and CO into olefins over sodium- and zinc-promoted iron 605 carbide catalysts in a fixed bed reactor. The results showed that 606 the selectivity of C2-C12 olefins reached 78%, and the space-607 time yield of olefins attained as high as 3.4 g $g_{\text{cat}}{}^{-1}h^{-1}$ in 608 CO₂ hydrogenation. Furthermore, the intrinsic formation rate 609 of C₂-C₁₂ olefins in CO hydrogenation was approximately twice higher when compared to that in CO₂ hydrogenation. The 610 611 hydrogenation of CO₂ to olefins proceeds via CO intermediate 612 over the developed catalyst.

613

614 Park et al. ¹⁴³ studied the CO₂ hydrogenation to formic acid over heterogenised ruthenium catalysts using a fixed bed reactor 615 616 with separation units. The results showed that the Ru/bpyTN-617 30-CTF catalyst prepared using the bpyTN-30-CTF support 618 exhibits adequate catalytic activity for commercialisation. 619 Under the continuous process, the catalyst displays 620 considerable catalytic performance with the highest 621 productivity of 669.0 g_{form.} g_{cat}⁻¹ d⁻¹ with CO₂ conversion of 622 44.8% for a superficial gas velocity of 72 cm s⁻¹. In addition, 656

657 Packed Bed Microreactors

In packed bed microreactors, the heterogeneous catalys $\underline{793}$ 658 packed in a specific form into a microchannel. A packed bed 659 microreactor provides easy loading and replacement of the 660 catalyst ¹⁴⁶. Farsi et al. ¹⁴⁷ employed a microstructured packed 661 bed reactor (shown in Fig. 9) with internal cross-flow cooling 662 channel to investigate the kinetics of CO_2 hydrogenation $\frac{700}{100}$ 663 664 methane by applying a 17% wt Ni₃Fe/γAl₂O₃. The shorter b <u>Q</u>9 665 length offered shorter contact time and prevented high pressure drops. The results showed that the catalyst operated 666 for over 120 min and under reaction conditions of 2 to 18 bar 667 12 12 668 and 300 °C-450 °C, CO2 conversion to CH4 up to 92% 13 669 methane selectivity up to 99% was achieved. Kreitz et al used a microstructured fixed bed reactor to produce methane, 670 consisting of a 2 mm square channel. Spherical catalyst participes 671 of 0.4 mm diameter were used to control the pressure drop $\frac{716}{and}$ 672 catalyst inventory. The results showed that under reaction 673 conditions of pressure 8 bar and temperature 280 °C, a high CO₂ conversion of 97.8 % was accomplished 674 675 conversion of 97.8 % was accomplished.

676 Figure 9. Micro-structured packed-bed reactor ¹⁴⁷ (copyright permission obta**733** 677 from Elsevier). 734

678 679 Ве

679Belimov et al. ¹⁴⁹ used a microstructured packed bed reactor680methanation process of CO/CO₂ mixtures by applying 337681commercial Ni-based catalyst to enhance the process. 798682results showed that after 2h of the reaction and ung 39683conditions of 200 °C to 900 °C, CO₂ conversion up to 95% 3740684CH₄ selectivity up to 97% was achieved.741685742

The hydrogenation of CO_2 to methanol has often been on φ_{ab} 686 the most effective and economical methods of reducing the 924 687 emissions. Jiang et al. 150 studied the catalytic hydrogenation af 688 689 CO2 to methanol over Pd/In2O3/SBA-15 catalysts in a package bed microreactor. It was found that the Pd/In₂O₃/SBA7157 690 catalysts exhibited superior catalytic activity with 83.7448 691 692 methanol selectivity and 12.6% CO2 conversion, corresponding to a STY of 1.1×10^{-2} mol·h⁻¹·g_{cat}⁻¹ under reaction condition**996** 693 260 °C, 5 MPa and 15,000 cm³ h⁻¹· g_{cat} ⁻¹. Moreover, the authpgg694 695 found no apparent deactivation of the catalyst during the 12 p_{J2} 696 on stream, which implies a promising industrial application 697 the CO₂ hydrogenation for methanol synthesis. 754 698 755 699 Fang et al. ¹⁵¹ developed a hybrid catalyst/adsorbent consisting

700 of Cu-ZnO-ZrO₂ supported on hydrotalcite (named CZZ@伊好)

and performed the hydrogenation studies in a packed bed microreactor. The experimental results obtained using the packed bed microreactor demonstrated a methanol selectivity of 83.4% and a S_{MeOH}/S_{CO} ratio of 5 in products. A control experiment was performed by substituting the hydrotalcite in the previous catalyst, with quartz. It was revealed that significantly lower conversions at low pressures were observed for the quartz catalyst, thus depicting the desirable effect of the hydrotalcite support. Although the Cu-ZnO-ZrO₂ content in both catalysts was similar, the Cu surface area of the guartz catalyst was 22.7 m² $g_{catalyst}^{-1}$, as opposed to 48.2 m² $g_{catalyst}^{-1}$ for the hydrotalcite catalyst. As a result, developed hydrotalcite catalyst could achieve the same methanol productivity as the control catalyst at 2.45 MPa which is a lower reaction pressure. This lower pressure corresponds to approximately 61.3% savings in energy consumption for compression.

Koh et al. ¹⁵² investigated the structure-activity relationships of transition metal (Cr, Mn, Fe, Co, Ni) promoted copper-catalyst in direct CO₂ hydrogenation to methanol. The catalytic tests were performed in a continuous flow packed bed microreactor under kinetic controlled conditions. The results showed that at a reaction temperature of 180°C, under reaction pressure of 4.0 MPa, WHSV of 60 L/gcat.h, and H₂:CO₂ mole ratio of 3:1, the catalyst presented the highest methanol yield of 10.4%. The CO₂ conversion achieved was 10.5% and the methanol selectivity was 98.6%.

Koh et al. ¹⁵³ synthesised a series copper-catalysts, Cu-ZnO-MnO (CZM), supported on morphologically distinct siliceous porous carriers (SBA-15, MCF, KIT-6) for the direct CO₂ hydrogenation to methanol. The catalytic tests were performed in a packed bed microreactor. The results showed that the KIT-6 supported catalyst (CZM/KIT-6) offered the most superior performance, this is due to the morphology of KIT-6 deterred mesopore plugging, favouring the formation of small copper crystallites. Furthermore, CZM/KIT-6 retained the greatest resistance to copper crystallite growth and loss of copper surface area during reaction due to the pore-confining effect of the porous carrier and the larger inter-crystallites spacing among copper crystallites. These advantageous catalytic properties provided the highest CO₂ conversion (8.2%) and highest methanol production rate (105.3 mol/kg_{cat.}h) at low reaction temperature (180 °C). The methanol selectivity attained was ≥99% in all the experiments.

Liang et al. ¹⁴⁵ investigated the hydrogenation of CO₂ to methanol using a Cu-Zn/Al foam monolithic catalyst in a packed bed microreactor. The reaction conditions used were 3 MPa and 250 °C at a high WHSV of 20,000 mL g_{cat}⁻¹ h⁻¹. The results showed that the monolith catalyst generated a high methanol yield of 7.81 g g_{Cu}⁻¹ h⁻¹ and a 9.9% CO₂ conversion with a methanol selectivity of 82.7%. In addition, the porous aluminium pore substrate demonstrated a superior heat conductivity, and the monolithic catalyst does not change the nature of the reaction and maintains a uniform temperature distribution preventing hot spot formation.

700 The hydrogenation of CO_2 into methanol is an exother R^2 701 reaction and according to thermodynamics high pressure 738 702 lower temperature is beneficial to achieve high conversion 739 703 CO₂ into methanol. Typical CO₂ hydrogenation pressures are**740** 704 to 10 MPa. Bansode et al. 95 exploited the advantages of high 705 pressure for this reaction by performing the reactions up to730 MPa in a microreactor to obtain almost complete conversion of 743 706 707 CO_2 into methanol. Moreover, they also investigated the oxidation state of Cu in active catalyst under pressure of 20 MPa 708 709 in a specially designed capillary microreactor. It was found that the Cu always remained in metallic state under the employed 710 711 conditions of pressure and temperature ¹⁵⁴. In addition, the 712 performance of such capillary microreactor was also elucidated and compared with conventional reactor system. As it can^7b^9 713 seen in Fig. 10, almost identical catalytic activity was achie $\sqrt{29}$ 714 in both reactors, detailing the advantage of capillary 715 716 microreactor to use in situ/operando techniques whiel 753 717 normally not possible with conventional systems.

Figure 10. Catalytic performance in terms of CO₂ conversion and selectivity to CO and methanol (MeOH) in CO₂ hydrogenation using the capillary reactor and conventional microreactor ¹⁵⁴ (copyright permission obtained from AIP).
 721

Tidona et al. ¹⁵⁵ employed even higher pressures of 95 MPa in 769 722 723 stainless steel microreactor. The study shown that the 724 compression of CO₂ and H₂ accounts only for 26% of the total 725 energy consumption whereas the main cost was associated 726 with the hydrogen. This increase in pressure enhanced 7/78 727 space time yield by 15 times compared to literature reports774 728 775 729 Although packed bed microreactors have proved valuable 766 730 the hydrogenation of CO_2 , these reactors can suffer from h_{gh} pressure drops when using small catalyst pellets. Furthermdree, 731 the use of solid catalyst particles can lead to plugging or fow reg 732 of the microchannels, leading to the obstruction of the 733 734

734 continuous flow. To mitigate these effects, catalytically active 782735 metals can be used to cover the inside walls of the microreactor

rice as a be been be used to cover the inside wans of the inneroted 783
 or can be placed on poles in the reactor channels, as seen in slup 784

flow microreactors and coated wall microreactors ¹⁸. Furthermore, additional separation units are required to remove the desired product. Membrane microreactors offer a promising alternative due to the combination of reaction and separation zones into a single unit ^{156, 157}.

Membrane Microreactors

A membrane microreactor combines the benefits of the microreactor and the membrane reactor, this leads to better intensified processes. The membrane microreactor is able to operate under milder reaction conditions because of higher mass and heat transfer and requires lower catalyst quantities when compared to other conventional reactors ¹⁵⁸. Koybasi et al. ¹⁵⁹ investigated the hydrogenation of CO₂ to DME in a membrane microreactor (Fig. 11). The reactor is comprised of identical permeate and catalyst coated reaction channels, separated by an α -Al₂O₃ supported water-selective sodalite (SOD) membrane layer. The results showed that implementing the SOD membrane layer enhanced the CO₂ conversion from 7.2% to 12.4% and increased the DME yield from 12.7% to 15.3%. The reaction conditions used to achieve this were a pressure of 50 bar, temperature 523 K, a CO_2/CO_X ratio of 0.5 and a H_2/CO_X ratio of 2. Furthermore, increasing the temperature and pressure was found to enhance the production of DME. The performance of the membrane was heavily influenced by a CO_2/CO_x ratio in the range of 0.2–0.7. Lower ratios of 0.2 promoted the undesirable production of CO₂ due to the reverse reaction. Increasing the inlet velocity of the syngas to the permeate channel promotes the membrane steam efflux and enhances the CO₂ conversion and DME yield.

Figure 11. Schematic representation of membrane microreactor used for the hydrogenation of CO_2 ¹⁵⁹ (copyright permission obtained from Elsevier).

Wang et al. ¹⁶⁰ studied the hydrogenation of CO₂ to methanol using ZnO/t-ZrO₂ (ZrO₂ tetragonal phase) composite oxides in a membrane separation microreactor. The reaction conditions were a temperature of 320 °C, pressure 3 MPa, GHSV = 12,000 ml g⁻¹ h⁻¹ and a H₂/CO₂ ratio of 3:1. It was found that different catalyst preparation techniques substantially altered the phase structure properties of the Zn/Zr hybrid interfaces and the CO₂ hydrogenation to methanol reaction. The microreaction synthesis technique had superior technical advantages due to the unique properties of the microchannels, such as an enhanced mixing efficiency and improved mass and heat transfer. The results showed that the solid solution produced from the microreaction demonstrated a superior catalyst

862

Journal Name

785performance, temperature stability and catalyst regenerated 1786perform. This was because of a highly constant solid soluted 2787structure, and rich oxygen vacancy defects. It was found that 3788the CO2 conversion, CH3OH selectivity, and methanol spated 4789time yield were 9.2 %, 93.1 %, and 0.35 g_{MeOH} h⁻¹gc 445790respectively.

791 847 792 Despite the advantages membrane microreactors have offeeed 793 for the hydrogenation of CO₂, there are limitations which e^{-849} 794 for this technology. For example, any alterations in the surface 795 chemical and physical properties can influence the performa 854. 796 of the system which directly affects the surface tens 852 797 adsorption and electro-osmosis features substantial 5/3 798 Moreover, small particles in the fluid zone can cause blockin 854 799 the microchannels in the reactor ¹⁶¹. Microplasma reactor 5 800 have become increasingly attractive due to their reduced po 856 801 requirements, portability, and diminished power requireme 802 Furthermore, microplasmas provide a solution to the catal 858 803 issues observed with the previously mentioned microreac 804 162. 860

805

836

837

838

806 Microwave and Microplasma Reactors

807 The application of microwave technology in chemical processes
808 is regarded well established in organic synthesis and materials
809 processing. Microwave reactors can be efficient in 606
810 hydrogenation to value-added chemical fuels, using
811 heterogeneous catalysts. Reactor design plays a major role both
812 in modelling and fabrication in microwave technology ¹⁶³.

813 868 814 de la Fuente et al. 164 employed a non-equilibrium microwa plasma reactor for the reduction of CO_2 with H_2 . CO_2 815 816 hydrogenation was investigated in a non-thermal microw 870 817 discharge. A soli-state microwave generator with power of 270818 W was applied to enhance the microwave energy to the plassal 819 reactor. Plasma performed under pressure 7 to 200 mbar, waid 820 most of the reactants operated at pressure between 20 and 374821 mbar. The results showed high CO_2 conversion to value-ad 875822 chemical fuels up to 82%. Innovative microwave technol 87%823 could be performed in order to define both conversion $\vartheta d d$ 824 selectivity for reactants and products under efficient contros **78** 825 879 temperature and pressure conditions ¹⁶⁵. 880 826 827 Chen et al. ¹⁶⁶ studied the CO₂ hydrogenation in a microw **8%** 828 plasma reactor. The pulsed microwave plasma generated 829 discharge took place in a quartz tube. An oil coolant is pas 830 between the inner and outer tube. The results showed that **88**4 831 CO₂ conversion is significantly enhanced when the Ar plasses 832 activated NiO/TiO₂ catalyst has an NiO content is approxima 833 10 wt.%. Furthermore, the total CO_2 conversion fell from 2897834 to 14% for the pure CO_2 dissociation for a H_2 : CO_2 mixture rates 835 of 1:9. This was due to the presence of hydrogen lowering 889

temperature of the electrons and diminishing the vibration $\partial \Theta$

effects of CO_2 . The hydrogenation of CO_2 , which occurred 891

non-equilibrium microwave plasma reactor, reached a total 802

Wang et al. ¹⁶⁷ performed the decomposition of pure CO₂ into CO and O₂ in a segmented electrode dielectric barrier discharge (DBD) microplasma reactor at ambient pressure. The results showed that a relatively higher CO₂ conversion and energy efficiency could be obtained at the propitious condition of longer interval between adjacent electrodes and smaller barrier thickness, and the highest CO₂ conversion and corresponding energy efficiencies are 16.9% and 3.6%, respectively, at the condition of an applied voltage of 18 kV and 1 mm barrier thickness. Furthermore, longer electrode intervals can lead to an increase in plasma density, as well as an enhanced fringe effect. Nonetheless, a smaller barrier thickness results in a smaller corresponding gas breakdown voltage, thus allowing more electrical power to be used for gas excitation. Therefore, more energetic electrons were generated and more collisions between the electrons and CO₂ molecules occurred. These factors are the main reasons for the enhanced CO2 decomposition process.

Despite the promising applications of microplasma technology, there are some challenges which need to be overcome. Currently, the research is novel and limited. The technology suffers with issues in regard to system efficiencies, device lifetime and plasma consistencies. These plasma microreactors have experienced irregularities in plasma volume, power requirements, plasma stability, and plasma size and volume ¹⁶².

Limitations Between Conventional Units and Microreactors

Over the past decades, great progress has been made in conventional and microreactor technology, especially on the generation of value chemical fuels through CO_2 hydrogenation. One major question now rises whether microreactors can either complete with or replace conventional units in production procedures. To respond to this question, limitations between conventional units and microreactors will be described ¹⁶⁸. Table 2 provides a summary of the performance of both conventional reactors and microreactors.

A continuously stirred tank reactor performs in a dynamic state, which has some difficulties to control. This condition occurs when the values of the variables in a procedure are changing over time ¹⁶⁹. In fluidised bed reactors, due to high mechanical load resulting from fluidisation, attrition procedures occur in relation to the catalyst and the wall of the reactor. Consequently, the catalyst deactivates. Another major limitation can be the incomplete conversion caused by bubbling. A fluidised bed reactor is restricted by external gas velocity in the reactor, however, not too low to assure minimum fluidization, and not too high in order to prevent catalyst elutriation ¹⁷⁰⁻¹⁷².

Table 2. Summary of the adv	antages and disadvantages of	microreactors and	l conventional reactors.
-----------------------------	------------------------------	-------------------	--------------------------

	Microreactors	Conventional Reactors
Mass and heat transfer	Often exhibit higher mass and heat transfer due to their characteristically smaller size.	Can sometimes suffer from mass and heat transfer resistances due to their larger size.
Pressure drops	Pressure drops are minimal in microreactor systems.	Higher pressure drops in larger packed bed reactors.
Production output	The numbering up of microreactors to increase their productivity to replace industrial reactors is currently limited.	The larger size of these reactors enables a larger production output for many chemical processes.
Environmentally friendly	The reaction conditions for some chemical processes in microreactors are milder (i.e., lower temperatures and pressures), making the processes more sustainable.	The reaction conditions for the same processer are significantly higher, leading to a higher use of energy from fossil fuels.
Cost	Microreactors can sometimes be associated with high fabrication costs, and the numbering up of these devices can be expensive.	Conventional reactors are well established, so the construction of these units is cheaper.
Residence time	The small size of the microchannels significantly reduces the residence time, achieving high conversions with shorter times.	Some conventional reactors suffer from substantially longer residence times.

841 Fixed bed reactors are subject to high pressure drops6 842 Moreover, these reactors tend to be more complex, while $t8\overline{e}7$ 843 exhibit higher costs ¹⁷³. Multiple fixed-bed reactors in paralles 844 are demanded for larger plants. Preventing high pressure in 879 845 reactor tube, large-scale catalyst particles are required 0 846 resulting in lower effectiveness factors (lower catalyst acti88) 847 per unit mass, resulting from difficulties of reactants to sca 882 848 in the core of the catalyst particle). Another major limita 849 fixed-bed reactors face is lower heat transfer from the cata 850 bed and the variation of temperature into the tubes. This fa&85 851 results in a) difficulty in controlling the product composition 886 852 hot spots in the catalyst bed that may be led to both cata887853 sintering and reactor instability, and c) lower conversions of 888 854 40% to prevent high temperatures (in that case unreacted f 855 890 can be recycled) ¹⁷⁴. 856 891

857 Microreaction technology is considered a field that has gai 858 significant attention due to its great performance in operation 859 processes compared to conventional units. Microreactors o894 860 efficient manipulation of reactions, great response time, 861 accurate control of environmental conditions, reduced 862 consumption of both reagents and catalysts and also provide the opportunity of an integrated instrumentation, an in-bogs 863 864 optimisation and automation methods ¹⁷⁵. Howeger microreactors exhibit major limitations, occurred gbg 865 imperfections of microreaction technology during chemigging 866 867 processes. Highly fabrication cost, incompatibility over sough 868 and high economics of scaling up has led to inadequate 869 industrial acceptance. Moreover, microreactors perform with 870 shorter residence times, requiring the achievement of byg 871 reactions. Fast reactions demand highly active catalysts, which 872 should be stable in the microreactor. Consequently, 873 microreactors cannot be applied as a replacement for classical 874 processes yet 176.

The comparison between conventional units and microreactors shows that higher heat and mass transfer can be accomplished by using a microreactor instead of a conventional unit, which exhibits lower bed hydrodynamics and temperature control. This characteristic is the main advantage for high exothermic reactions due to the great need of the reaction heat removal at a point where it is generated, resulting in a determined temperature profile over the reaction pathway. In addition, mixing can also be enhanced over a microreactor because of the reduced diffusion of mixing time to milliseconds ²⁷. Moreover, automated micro platforms have been reported in enabling design of experiments for optimization of operations conditions and reaction kinetics definition ¹⁷⁷. Microreactors system consisted of in-line and feedback control has been applied for the precision of operating conditions that can enhance a function for a reaction. It is significant to note that differences between microreactors and conventional units pose great challenges which require alternative prospects in order to be resolved ¹⁷⁵.

Future Perspectives in CO₂ Hydrogenation

The hydrogenation of CO₂ is considered a sustainable procedure and a promising alternative for CO₂ utilisation. However, CO₂ is regarded chemically stable and thermodynamically unfavourable. High reaction heat, different types of reactors design and sensitive catalysts, indicates CO₂ hydrogenation to value-added chemical fuels (methane, methanol, ethanol, DME and higher hydrocarbons) a challenging procedure for further research and development. 876 For methane generation, catalysts containing noble metals \$929877 as Ru, Rd, Rh and Ir supported by TiO₂, SiO₂, Al₂O₃ exhibit has a second by TiO₂. 878 CH₄ selectivity up to 100%, as regarded the most active metaB1 879 Ni-based catalysts such as Ni/Ce0,72Zr0,28O2 178 and Ni/MCM932 880 ¹⁷⁹ represent high CH₄ selectivity up to 99% and 99% 881 respectively. One of the crucial problems in Ni-based catal 882 is considered the deactivation of the catalyst at 935 883 temperatures due the interaction of metal particles with CO 9366 884 formation of nickel subcarbonyls⁴. Consequently, this prob 885 highlights the need for process optimisation in this field. 938 886 939

887 For methanol production, catalysts consisting of Cu represe 888 major role in improving methanol synthesis throgen 889 hydrogenation of CO₂, with the most active catalyst compon@42 890 supported by ZnO, ZrO₂, CeO₂, Al₂O₃ and SiO₂ $^{180, 181}$ 943 891 Cu/ZnO/Al₂O₃ catalyst exhibits high CH₃OH selectivity up to 9844 892 ¹⁸². However, the bifunctional catalyst system poses magab 893 challenges for the application of a Cu/ZnO-based catalyst. C946894 considered a thermally unstable component and the size of 947 895 crystallites can be increased at high temperatures, resultin 948 896 the loss of the active surface and Cu sintering ⁷³. Furtherm **9**49 897 Cu-based catalysts can be poisoned, and a lower lifetime n950898 be occurred ¹⁸³. Consequently, this challenge should empha **954**. 899 the need for further research, as well as catalyst regenerati $\Theta 52$ 900 953

901 For ethanol synthesis, noble metal-based catalysts such as 954 902 and Pd supported by TiO₂, CeO₂, SiO₂ and zeolite exhibit h) 903 C_2O_5OH selectivity. A Pd/CeO₂ catalyst shows high C_2O_5DH selectivity up to 99.2% 102. However, Mo-based and Co-ba957 904 905 catalysts represent lower C₂O₅OH selectivity up to 10% 958 906 Consequently, much research is demanded to enhance 959 907 performance of these catalysts in terms of C_2O_5OH selectivis 60908 961

909 For DME synthesis, a Cu/ZnO/Al₂O₃ catalyst shows a DME 910 selectivity of up to 55% 77. However, direct synthesis of DME 911 through hydrogenation of CO₂ poses great challenges, 912 highlighting the need for long-terms perspectives including one design of multifunctional catalyst for the interaction between 913 914 methanol synthesis and methanol dehydration, enhancemget 915 of catalytic activity so as to develop an efficient products extension of the catalyst lifetime and finally the resistance of 916 917 in oxidation and sintering ¹⁸⁵. 968

918

919 For higher hydrocarbons synthesis, Fe-based bimetaltic catalysts supported by monometallic catalysts such as Co, Nigoq 920 and Pd exhibit highly HC selectivity up to 100% 186. Fe-sigra 921 922 catalysts has shown lower activity with selectivity mainly to @#2 923 as the addition of the promoters can increase lower olefing selectivity up to 40%. Consequently, a more detaident 924 understanding of both kinetics and mass transfer limitation 925 926 this procedure is demanded so as to optimize the catalysts 927 performance 187. 978 928 979 Much effort has also been dedicated to identifying the most efficient and appropriate reactor for CO_2 hydrogenation process, by comparing experimental data of different reactor types including conventional units and microreactors. The most influential factor on CO_2 hydrogenation to value-added chemical fuels is considered the reactor configuration, as different catalyst types and operating conditions are regarded most significant on product conversion and selectivity.

A fixed-bed reactor can be fabricated in either annular, or spherical configuration. A spherical fixed-bed reactor can be regarded as a promising alternative design compared to spherical fixed bed reactor performing under low pressure drops ^{11, 188, 189}. Another attractive alternative to enhance CO_2 hydrogenation is utilising a fluidised bed reactor, as opposed to a fixed-bed reactor. Fluidised bed reactors exhibit high heat ability and specific temperature control. Furthermore, fluidised bed reactors are regarded particularly attractive due to their potential of high exothermic reactions performing ⁶.

One of the most promising alternatives for CO_2 hydrogenation to value-added chemical products is using microreactors. The necessity of microreactor technology and process performing over the last decade has proven major, especially in accelerating catalyst activity. Consequently, conventional types of reactors can be replaced by efficient and flexible micro-scale reactors.

Microwave reactors are regarded as a promising alternative for CO_2 hydrogenation to value-added chemical fuels ¹⁶⁴. However, a deeper understanding of microwave-assisted catalytic reactions is required to overcome complexities, limited availabilities on dielectric properties of the catalysts and major difficulties in temperature measurements ¹⁹⁰.

Conclusions

This review has investigated the hydrogenation of CO₂ to fuels in a range of reactors. The utilisation of CO₂ to several fuels and value-added chemical provides an attractive alternative to fossil fuels consumption. CO2 hydrogenation to value-added chemicals and fuels is considered a promising alternative to reduce greenhouse effect. The contribution of conventional units has gained great interest due to their potential to generate methane, methanol, ethanol, DME and hydrocarbons in industrial scale. Many of the value-added chemicals produced from this process can be utilised as gas and liquid fuels for transportation, as well as important feedstocks for several other chemical industries. Although the CO₂ hydrogenation process has been investigated thoroughly in conventional reactors, such as CSTRs and FBRs, microreactors offer the opportunity to enhance the current process. Microreactors can offer higher mass and heat transfer, shorter residence times and higher CO₂ conversions. Packed bed microreactors have been used for the production of hydrocarbons and methanol

969

Journal Name

981	from CC	D ₂ . A higher intensified process can be achieved	10 B /3	
982	combinii	ng the benefits of a membrane with the advantag $\frac{1}{2}$	034	
983	properti	es of a microreactor. The membrane microreactor	. <mark>03</mark> 5 1	10
984	perform	the hydrogenation reaction under milder condit		
985	because	of higher mass and heat transfer and requires lo	03/	
986	catalyst	quantities when compared to other convention	.038 1 วินาสม	1
987	macrosc	onic reactors. Microwave and microplasma reac	1039	
088	offor a	more nevel appreach to the traditional read	.040	
000		The novel approach to the traditional read	.044.91 1	12
989	aiscusse	a in this study. These microreactors can operate	10412	
990	significal	ntly milder reaction conditions, as well as higher	.0043 1	13
991	conversi	ons. Future research can be directed tow	9944	
992	investiga	ating the hydrogenation of CO_2 for the production	.0/45 1	.4
993	variety o	of fuels and chemicals. In addition, other microrea	ette	_
994	configur	ations could be explored to understand and enh	nde 1	.5
995	the hete	erogeneous chemical reaction. This further resea	048 arch	
996	could m	ake the replacement of conventional reactors	with	_
997	microrea	actors viable in the future. Lastly, further rese	.050 1 axeb	-6
998	should i	nvestigate the scalability of these microreactor	051 Sofo	
990	nroduce	fuels on an industrial scale	052	_
555	produce		.053 1	./
		1	.054	
1000	Conflic	ts of interest	055 1	-8
1000	conne		050	
1001	There ar	e no conflicts to declare.	.US/ .OE0 1	
		1	050 1	.9
		1 1	059	• •
1002	Acknow	wledgements 1	061	20
1002	Thora or	L no polynowiodzments to declare 1	062 2) 1
1002	inere ar	e no acknowledgments to declare.	002 2	: T
		1	005	
1004	Poforo	ncos 1	.003 .064 .065 a	17
1004	Refere	nces 1	.063 .064 .065 2	22
1004 1005	Refere	ر 1 nces 1 M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bas	.063 .064 .065 2 .066	22
1004 1005 1006	Refere	nces 1 M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bor S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hack	.063 .064 .065 2 .066 .067 .067	22
1004 1005 1006 1007	Refere	nces 1 M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bo S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hack P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Kreve	.063 .064 .065 2 .066 .067 .068 2 .068 2	22 !3
1004 1005 1006 1007 1008	Refere	nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bo S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hack P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Krevo C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Peti	063 064 065 2 066 067 068 2 069 070 2	22 23 23
1004 1005 1006 1007 1008 1009	Refere	nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bog S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hacker P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Krever C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Peti Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scot	063 064 065 2 066 067 068 2 069 070 2	22 23 23
1004 1005 1006 1007 1008 1009 1010	Refere	nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bos S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hacke P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Krevo C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Peti Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scot Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox an	063 064 065 2 066 067 068 2 069 070 2 070 2	22 23 23
1004 1005 1006 1007 1008 1009 1010 1011	Refere	nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bos S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hacke P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Krevo C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Peti Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scot Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox an Mac Dowell, <i>Energy & Environmental Science</i> , 2018	063 064 065 2 066 067 068 2 069 070 2 070 2 071 071 072 073 2	22 23 24 25
1004 1005 1006 1007 1008 1009 1010 1011 1012	Refere	nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bos S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hacke P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Krevo C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Peti Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scot Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox and Mac Dowell, <i>Energy & Environmental Science</i> , 2018 1062-1176.	064 065 2 066 067 068 2 069 070 2 070 2 071 072 073 2 073 2 074	22 23 24 25
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013	Refere 1. 2.	nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bos S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hacke P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Kreve C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Peti Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scot Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox an Mac Dowell, <i>Energy & Environmental Science</i> , 2018 1062-1176. D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wa	064 065 2 066 067 2 068 2 069 2 070 2 070 2 071 2 073 2 074 2 074 2 075 2	22 23 24 25 26
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014	Refere 1. 2.	nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bo S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hacke P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Kreve C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Peti Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scot Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox and Mac Dowell, <i>Energy & Environmental Science</i> , 2018 1062-1176. D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wa and R. Gorini, <i>Energy Strategy Reviews</i> , 2019, 24 , 38-5 V. Viaoding and L. Maulijin, <i>Energy & Environ</i>	0.064 0.065 2 0.066 0.067 0.070 2 0.071 0.073 2 0.074 0.074 0.075 2 0.074 0.075 2 0.076 2	22 23 24 25 26
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015	Refere 1. 2. 3.	nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bo S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hacke P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Kreve C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Peti Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scot Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox an Mac Dowell, <i>Energy & Environmental Science</i> , 2018 1062-1176. D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wa and R. Gorini, <i>Energy Strategy Reviews</i> , 2019, 24 , 38-5 X. Xiaoding and J. Moulijn, <i>Energy & Fuels</i> , 1996, 10 , 2025	$ \begin{array}{c} 0.063 \\ 0.064 \\ 0.065 \\ 0.066 \\ 0.070 \\ 0.070 \\ 0.074 \\ 0.074 \\ 0.075 \\ 0.074 \\ 0.074 \\ 0.075 \\ 0.074 \\ 0.075 \\ 0.074 \\ 0.075 \\ 0.074 \\ 0.075 \\ 0.074 \\ 0.075 \\ 0.074 \\ 0.075 \\ 0.074 \\ 0.075 \\ 0.077 \\ 0.070 $	22 23 24 25 26
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016	Refere 1. 2. 3.	nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bos S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hacke P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Kreve C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Peti Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scot Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox an Mac Dowell, <i>Energy & Environmental Science</i> , 2018 1062-1176. D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wa and R. Gorini, <i>Energy Strategy Reviews</i> , 2019, 24 , 38- X. Xiaoding and J. Moulijn, <i>Energy & Fuels</i> , 1996, 10 , 325.	0.064 0.065 2 0.066 0.067 0.070 2 0.071 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.075 2 0.074 0.074 0.075 2 0.074 0.074 0.075 2 0.074 0.075 2 0.074 0.077 2 0.074 0.077 2 0.074 0.077 2 0.077 2 0.074 2 0.077 2 0.077 2 0.077 2 0.074 2 0.077 2 0.0777 2 0.077 2	22 23 24 25 26 27 28
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017	Refere 1. 2. 3. 4.	nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bo S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hacke P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Kreve C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Peti Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scot Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox and Mac Dowell, <i>Energy & Environmental Science</i> , 2018 1062-1176. D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wa and R. Gorini, <i>Energy Strategy Reviews</i> , 2019, 24 , 38- X. Xiaoding and J. Moulijn, <i>Energy & Fuels</i> , 1996, 10 , 325. W. Wang, S. Wang, X. Ma and J. Gong, <i>Chem Soc Rev</i> , 2	$ \begin{array}{c} 0.063 \\ 0.065 \\ 0.065 \\ 0.067 \\ 0.069 \\ 0.070 \\ 0.070 \\ 0.073 \\ 0.074 \\ 0.077 \\ 0.078 \\ 0.079 \\ 0.$	22 23 24 25 26 27 28
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018	Refere 1. 2. 3. 4.	nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bos S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hacke P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Kreve C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Peti Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scot Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox and Mac Dowell, <i>Energy & Environmental Science</i> , 2018 1062-1176. D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wa and R. Gorini, <i>Energy Strategy Reviews</i> , 2019, 24 , 38-5 X. Xiaoding and J. Moulijn, <i>Energy & Fuels</i> , 1996, 10 , 325. W. Wang, S. Wang, X. Ma and J. Gong, <i>Chem Soc Rev</i> , 40 , 3703-3727.	$0.063 \\ 0.065 \\ 0.065 \\ 0.065 \\ 0.066 \\ 0.069 \\ 0.070 \\ 0.070 \\ 0.074 \\ 0.074 \\ 0.074 \\ 0.074 \\ 0.074 \\ 0.074 \\ 0.074 \\ 0.074 \\ 0.074 \\ 0.074 \\ 0.074 \\ 0.074 \\ 0.074 \\ 0.070 \\ 0.070 \\ 0.00$	22 23 24 25 26 27 28 29
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019	Refere 1. 2. 3. 4. 5.	nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bos S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hacke P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Kreve C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Peti Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scot Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox and Mac Dowell, <i>Energy & Environmental Science</i> , 2018 1062-1176. D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wa and R. Gorini, <i>Energy Strategy Reviews</i> , 2019, 24 , 38-5 X. Xiaoding and J. Moulijn, <i>Energy & Fuels</i> , 1996, 10 , 325. W. Wang, S. Wang, X. Ma and J. Gong, <i>Chem Soc Rev</i> , 2 40 , 3703-3727. H. Nieminen, A. Laari and T. Koiranen, <i>Processes</i> , 2019	$0.063 \\ 0.065 \\ 0.065 \\ 0.065 \\ 0.067 \\ 0.069 \\ 0.070 \\ 0.073 \\ 0.074 \\ 0.000 \\ 0.00$	22 23 24 25 26 27 28 29
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020	Refere 1. 2. 3. 4. 5. 6.	 nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bos S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hacke P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Kreve C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Peti Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scot Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox an Mac Dowell, <i>Energy & Environmental Science</i>, 2018 1062-1176. D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wa and R. Gorini, <i>Energy Strategy Reviews</i>, 2019, 24, 38-5 X. Xiaoding and J. Moulijn, <i>Energy & Fuels</i>, 1996, 10, 325. W. Wang, S. Wang, X. Ma and J. Gong, <i>Chem Soc Rev</i>, 2 40, 3703-3727. H. Nieminen, A. Laari and T. Koiranen, <i>Processes</i>, 2019 S. Saeidi, S. Najari, V. Hessel, K. Wilson, F. J. Ke 	0.063 0.064 0.065 0.065 0.067 0.069 0.70 0.70 0.73 0.74 0.74 0.75 0.74 0.75 0.74 0.75 0.77 0.78 0.79 0.78 0.79 0.80 0.80 0.81 0.82	22 23 24 25 26 27 28 29 30
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021	Refere 1. 2. 3. 4. 5. 6.	 nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bos S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hacke P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Kreve C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Peti Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scot Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox an Mac Dowell, <i>Energy & Environmental Science</i>, 2018 1062-1176. D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wa and R. Gorini, <i>Energy Strategy Reviews</i>, 2019, 24, 38-5 X. Xiaoding and J. Moulijn, <i>Energy & Fuels</i>, 1996, 10, 325. W. Wang, S. Wang, X. Ma and J. Gong, <i>Chem Soc Rev</i>, 240, 3703-3727. H. Nieminen, A. Laari and T. Koiranen, <i>Processes</i>, 2019 S. Saeidi, S. Najari, V. Hessel, K. Wilson, F. J. Ke Concepción, S. L. Suib and A. E. Rodrigues, <i>Progres</i> 	0.064 0.065 2 0.065 2 0.067 2 0.069 2 0.70 2 0.71 2 0.74 2 0.74 2 0.75 3 0.75 3 0	22 23 24 25 26 27 28 29 30 31
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022	Refere 1. 2. 3. 4. 5. 6.	 nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bos S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hacke P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Kreve C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Peti Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scot Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox an Mac Dowell, <i>Energy & Environmental Science</i>, 2018 1062-1176. D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wa and R. Gorini, <i>Energy Strategy Reviews</i>, 2019, 24, 38-5 X. Xiaoding and J. Moulijn, <i>Energy & Fuels</i>, 1996, 10, 325. W. Wang, S. Wang, X. Ma and J. Gong, <i>Chem Soc Rev</i>, 240, 3703-3727. H. Nieminen, A. Laari and T. Koiranen, <i>Processes</i>, 2019 S. Saeidi, S. Najari, V. Hessel, K. Wilson, F. J. Ke Concepción, S. L. Suib and A. E. Rodrigues, <i>Progres</i> <i>Energy and Combustion Science</i>, 2021, 85. P. Lindeav, Climato Change, Atmospheric Carbon Diagonal Actional A	0.063 0.064 0.065 0.065 0.067 0.069 0.70 0.70 0.74 0.74 0.74 0.75 0.74 0.75 0.74 0.75 0.78 0.79 0.78 0.82 0.84 0.84	222 23 24 25 26 27 28 29 30 31
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023	Refere 1. 2. 3. 4. 5. 6. 7.	 nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bos S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hacke P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Kreve C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Peti Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scot Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox an Mac Dowell, <i>Energy & Environmental Science</i>, 2018 1062-1176. D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wa and R. Gorini, <i>Energy Strategy Reviews</i>, 2019, 24, 38-5 X. Xiaoding and J. Moulijn, <i>Energy & Fuels</i>, 1996, 10, 325. W. Wang, S. Wang, X. Ma and J. Gong, <i>Chem Soc Rev</i>, 240, 3703-3727. H. Nieminen, A. Laari and T. Koiranen, <i>Processes</i>, 2019 S. Saeidi, S. Najari, V. Hessel, K. Wilson, F. J. Ke Concepción, S. L. Suib and A. E. Rodrigues, <i>Progree</i> <i>Energy and Combustion Science</i>, 2021, 85. R. Lindsey, Climate Change: Atmospheric Carbon Dio 	0.063 0.064 0.065 0.065 0.067 0.069 0.70 0.70 0.74 0.74 0.74 0.74 0.75 0.74 0.75 0.76 0.76 0.76 0.773 0.74 0.773 0.74 0.773 0.74 0.74 0.74 0.74 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.75 0.74 0.74 0.74 0.74 0.74 0.75 0.74 0.7	222 23 24 25 26 27 28 28 29 30 31
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	Refere 1. 2. 3. 4. 5. 6. 7.	 nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bos S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hacke P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Kreve C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Peti Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scot Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox an Mac Dowell, <i>Energy & Environmental Science</i>, 2018 1062-1176. D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wa and R. Gorini, <i>Energy Strategy Reviews</i>, 2019, 24, 38-5 X. Xiaoding and J. Moulijn, <i>Energy & Fuels</i>, 1996, 10, 325. W. Wang, S. Wang, X. Ma and J. Gong, <i>Chem Soc Rev</i>, 240, 3703-3727. H. Nieminen, A. Laari and T. Koiranen, <i>Processes</i>, 2019 S. Saeidi, S. Najari, V. Hessel, K. Wilson, F. J. Ke Concepción, S. L. Suib and A. E. Rodrigues, <i>Progree</i> <i>Energy and Combustion Science</i>, 2021, 85. R. Lindsey, Climate Change: Atmospheric Carbon Diophttps://www.climate.gov/news-features/understandig 	0.063 0.064 0.065 0.065 0.067 0.068 0.070 0.070 0.073 0.074 0.073 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.080 0.082 0.084 0.085 0	222 23 24 25 26 27 28 29 10 31
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	Refere 1. 2. 3. 4. 5. 6. 7.	 nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bos S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hacke P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Kreve C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Peti Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scot Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox an Mac Dowell, <i>Energy & Environmental Science</i>, 2018 1062-1176. D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wa and R. Gorini, <i>Energy Strategy Reviews</i>, 2019, 24, 38-5 X. Xiaoding and J. Moulijn, <i>Energy & Fuels</i>, 1996, 10, 325. W. Wang, S. Wang, X. Ma and J. Gong, <i>Chem Soc Rev</i>, 240, 3703-3727. H. Nieminen, A. Laari and T. Koiranen, <i>Processes</i>, 2019 S. Saeidi, S. Najari, V. Hessel, K. Wilson, F. J. Ke Concepción, S. L. Suib and A. E. Rodrigues, <i>Progree</i> <i>Energy and Combustion Science</i>, 2021, 85. R. Lindsey, Climate Change: Atmospheric Carbon Dion https://www.climate.gov/news-features/understandig climate/climate-change-atmospheric-carbon-dioxide 	0.063 0.064 0.065 0.065 0.067 0.068 0.070 0.070 0.073 0.074 0.073 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.075 0.075 0.075 0.075 0.076 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.078 0.080 0	222 23 24 25 26 27 28 29 30 31 31 32 33
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027	Refere 1. 2. 3. 4. 5. 6. 7.	 nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bas S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hacke P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Kreve C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Peti Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scot Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox an Mac Dowell, <i>Energy & Environmental Science</i>, 2018 1062-1176. D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wa and R. Gorini, <i>Energy Strategy Reviews</i>, 2019, 24, 38-5 X. Xiaoding and J. Moulijn, <i>Energy & Fuels</i>, 1996, 10, 325. W. Wang, S. Wang, X. Ma and J. Gong, <i>Chem Soc Rev</i>, 240, 3703-3727. H. Nieminen, A. Laari and T. Koiranen, <i>Processes</i>, 2019 S. Saeidi, S. Najari, V. Hessel, K. Wilson, F. J. Ke Concepción, S. L. Suib and A. E. Rodrigues, <i>Progree</i> <i>Energy and Combustion Science</i>, 2021, 85. R. Lindsey, Climate Change: Atmospheric Carbon Dion https://www.climate.gov/news-features/understandid climate/climate-change-atmospheric-carbon-dioxide 2020. F. M. Baena-Moreno, M. Bodríguez-Galán, F. Verse 	0.063 0.065 0.065 0.067 0.067 0.069 0.070 0.070 0.073 0.074 0.073 0.074 0.073 0.074 0.073 0.074 0.073 0.074 0.073 0.074 0.073 0.074 0.073 0.074 0.073 0.074 0.073 0.074 0.073 0.074 0.073 0.074 0.073 0.074 0.074 0.073 0.074 0.074 0.074 0.074 0.074 0.075 0.074 0.074 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.074 0.075 0.078 0.080 0.080 0.084 0.084 0.0886 0.0886 0.0888	222 23 24 25 26 27 28 29 30 31 32 33
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028	Refere 1. 2. 3. 4. 5. 6. 7. 8.	 nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bos S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hacke P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Kreve C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Peti Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scot Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox an Mac Dowell, <i>Energy & Environmental Science</i>, 2018 1062-1176. D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wa and R. Gorini, <i>Energy Strategy Reviews</i>, 2019, 24, 38-5 X. Xiaoding and J. Moulijn, <i>Energy & Fuels</i>, 1996, 10, 325. W. Wang, S. Wang, X. Ma and J. Gong, <i>Chem Soc Rev</i>, 240, 3703-3727. H. Nieminen, A. Laari and T. Koiranen, <i>Processes</i>, 2019 S. Saeidi, S. Najari, V. Hessel, K. Wilson, F. J. Ke Concepción, S. L. Suib and A. E. Rodrigues, <i>Progret Energy and Combustion Science</i>, 2021, 85. R. Lindsey, Climate Change: Atmospheric Carbon Dio https://www.climate.gov/news-features/understandic climate/climate-change-atmospheric-carbon-dioxide 2020. F. M. Baena-Moreno, M. Rodríguez-Galán, F. Veg Alonso-Fariñas, I., F. Vilches Arenas and B. Navar 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	222 23 24 25 26 27 28 29 30 31 32 33 34
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029	Refere 1. 2. 3. 4. 5. 6. 7. 8.	 nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bas S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hacke P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Kreve C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Pett Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scot Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox an Mac Dowell, <i>Energy & Environmental Science</i>, 2018 1062-1176. D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wa and R. Gorini, <i>Energy Strategy Reviews</i>, 2019, 24, 38-5 X. Xiaoding and J. Moulijn, <i>Energy & Fuels</i>, 1996, 10, 325. W. Wang, S. Wang, X. Ma and J. Gong, <i>Chem Soc Rev</i>, 240, 3703-3727. H. Nieminen, A. Laari and T. Koiranen, <i>Processes</i>, 2019 S. Saeidi, S. Najari, V. Hessel, K. Wilson, F. J. Ke Concepción, S. L. Suib and A. E. Rodrigues, <i>Progret Energy and Combustion Science</i>, 2021, 85. R. Lindsey, Climate Change: Atmospheric Carbon Dio https://www.climate.gov/news-features/understandic climate/climate-change-atmospheric-carbon-dioxide 2020. F. M. Baena-Moreno, M. Rodríguez-Galán, F. Veg Alonso-Fariñas, L. F. Vilches Arenas and B. Navag <i>Energy Sources Part A: Recovery Utilization</i> 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	222 23 24 25 26 27 28 29 30 31 32 33 34
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030	Refere 1. 2. 3. 4. 5. 6. 7. 8.	 nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bas S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hacke P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Kreve C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Peti Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scot Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox an Mac Dowell, <i>Energy & Environmental Science</i>, 2018 1062-1176. D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wa and R. Gorini, <i>Energy Strategy Reviews</i>, 2019, 24, 38-5 X. Xiaoding and J. Moulijn, <i>Energy & Fuels</i>, 1996, 10, 325. W. Wang, S. Wang, X. Ma and J. Gong, <i>Chem Soc Rev</i>, 2 40, 3703-3727. H. Nieminen, A. Laari and T. Koiranen, <i>Processes</i>, 2019 S. Saeidi, S. Najari, V. Hessel, K. Wilson, F. J. Ke Concepción, S. L. Suib and A. E. Rodrigues, <i>Progree Energy and Combustion Science</i>, 2021, 85. R. Lindsey, Climate Change: Atmospheric Carbon Dio https://www.climate.gov/news-features/understandig climate/climate-change-atmospheric-carbon-dioxide/ 2020. F. M. Baena-Moreno, M. Rodríguez-Galán, F. Veg Alonso-Fariñas, L. F. Vilches Arenas and B. Navag <i>Energy Sources, Part A: Recovery, Utilization</i>, <i>Environmental Effects</i> 2018 41 1403-1433 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	222 23 24 25 26 27 28 29 30 31 32 33 34 34
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031	Refere 1. 2. 3. 4. 5. 6. 7. 8.	 nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bas S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hacke P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Kreve C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Peti Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scot Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox an Mac Dowell, <i>Energy & Environmental Science</i>, 2018 1062-1176. D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wa and R. Gorini, <i>Energy Strategy Reviews</i>, 2019, 24, 38-5 X. Xiaoding and J. Moulijn, <i>Energy & Fuels</i>, 1996, 10, 325. W. Wang, S. Wang, X. Ma and J. Gong, <i>Chem Soc Rev</i>, 240, 3703-3727. H. Nieminen, A. Laari and T. Koiranen, <i>Processes</i>, 2019 S. Saeidi, S. Najari, V. Hessel, K. Wilson, F. J. Ke Concepción, S. L. Suib and A. E. Rodrigues, <i>Progree Energy and Combustion Science</i>, 2021, 85. R. Lindsey, Climate Change: Atmospheric Carbon Dio https://www.climate.gov/news-features/understandi climate/climate-change-atmospheric-carbon-dioxidel 2020. F. M. Baena-Moreno, M. Rodríguez-Galán, F. Veg Alonso-Fariñas, L. F. Vilches Arenas and B. Navag <i>Energy Sources, Part A: Recovery, Utilization</i>, <i>Environmental Effects</i>, 2018, 41, 1403-1433. D. Carrales-Alvarado. A. Doneil, J. Fernández-Morales 	0.064 0.065 0.065 0.065 0.067 0.067 0.70 0.72 0.73 0.74 0.75 0.74 0.75 0.77 0.78 0.77 0.78 0.77 0.78 0.77 0.78 0.77 0.78 0.77 0.78 0.77 0.78 0.77 0.78 0.77 0.78 0.77 0.78 0.79 0.78 0.883 0.884 0.994 0.9	222 23 24 25 26 29 29 30 31 32 32 31 32 32 31 32 32 32 30 31 32 32 32 32 32 32 32 32 32 32 32 32 32
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032	Refere 1. 2. 3. 4. 5. 6. 7. 8. 9.	 nces M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Bas S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hacke P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Kreve C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Peti Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scot Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox an Mac Dowell, <i>Energy & Environmental Science</i>, 2018 1062-1176. D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wa and R. Gorini, <i>Energy Strategy Reviews</i>, 2019, 24, 38-5 X. Xiaoding and J. Moulijn, <i>Energy & Fuels</i>, 1996, 10, 325. W. Wang, S. Wang, X. Ma and J. Gong, <i>Chem Soc Rev</i>, 40, 3703-3727. H. Nieminen, A. Laari and T. Koiranen, <i>Processes</i>, 2019 S. Saeidi, S. Najari, V. Hessel, K. Wilson, F. J. Ke Concepción, S. L. Suib and A. E. Rodrigues, <i>Progre Energy and Combustion Science</i>, 2021, 85. R. Lindsey, Climate Change: Atmospheric Carbon Dio https://www.climate.gov/news-features/understand climate/climate-change-atmospheric-carbon-dioxide 2020. F. M. Baena-Moreno, M. Rodríguez-Galán, F. Veg Alonso-Fariñas, L. F. Vilches Arenas and B. Navag <i>Energy Sources, Part A: Recovery, Utilization, Environmental Effects</i>, 2018, 41, 1403-1433. D. Carrales-Alvarado, A. Dongil, J. Fernández-Morales Fernández-García, A. Guerrero-Ruiz and I. Rodrig 	0.063 0.064 0.065 0.065 0.067 0.067 0.72 0.74 0.72 0.74 0.72 0.74 0.75 0.76 0.76 0.76 0.76 0.77 0.78 0.77 0.78 0.78 0.79 0.78 0.78 0.79 0.78 0.78 0.79 0.78 0.888 0.884 0.888 0.889 0.990 0.92 0.923 0.923 0.923 0.923 0.923 0.924 0.923 0.923 0.924 0.925	222 23 24 25 26 27 28 29 30 31 32 32 31 32 32 31 32 32 31 32 32 31 32 32 32 32 32 32 32 32 32 32 32 32 32

ARTICLE

Ramos, Catalysis Science & Technology, 2020, 10, 6790-6799.

- Z. Zhang, S.-Y. Pan, H. Li, J. Cai, A. G. Olabi, E. J. Anthony and V. Manovic, *Renewable and sustainable energy reviews*, 2020, **125**, 109799.
- L. D. Iranshahi, A. Golrokh, E. Pourazadi, S. Saeidi and F. Gallucci, Chemical Engineering and Processing Process Intensification, 2018, 132, 16-24.
- G. Zsembinszki, A. Solé, C. Barreneche, C. Prieto, A. Fernández and L. Cabeza, *Energies*, 2018, 11.
- A. Solé, I. Martorell and L. F. Cabeza, *Renewable and Sustainable Energy Reviews*, 2015, 47, 386-398.
- W. K. Fan and M. Tahir, *Chemical Engineering Journal*, 2022, **427**, 131617.
- M. Ronda-Lloret, Y. Wang, P. Oulego, G. Rothenberg, X. Tu and N. R. Shiju, ACS Sustain Chem Eng, 2020, 8, 17397-17407.
- S. B. Jo, J. H. Woo, J. H. Lee, T. Y. Kim, H. I. Kang, S. C. Lee and J. C. Kim, *Sustainable Energy & Fuels*, 2020, 4, 4679-4687.
- Z. Ma and M. D. Porosoff, ACS Catalysis, 2019, **9**, 2639-2656.
- S. Hafeez, G. Manos, S. M. Al-Salem, E. Aristodemou and A. Constantinou, *Reaction Chemistry & Engineering*, 2018, 3, 414-432.
- X. Yao, Y. Zhang, L. Du, J. Liu and J. Yao, Renewable and Sustainable Energy Reviews, 2015, 47, 519-539.
- S. Hafeez, E. Aristodemou, G. Manos, S. M. Al-Salem and A. Constantinou, *RSC Advances*, 2020, **10**, 41680-41692.
- L. G. Wu, E. Cao, P. Ellis, A. Constantinou, S. Kuhn and A. Gavriilidis, *Chemical Engineering Science*, 2019, **201**, 386-396.
- . S. Hafeez, E. Aristodemou, G. Manos, S. Al-Salem and A. Constantinou, *Reaction Chemistry & Engineering*, 2020, **5**, 1083-1092.
- S. Hafeez, F. Sanchez, S. M. Al-Salem, A. Villa, G. Manos, N. Dimitratos and A. Constantinou, *Catalysts*, 2021, **11**, 341.
- G. Wu, E. Cao, P. Ellis, A. Constantinou, S. Kuhn and A. Gavriilidis, *Chemical Engineering Journal*, 2019, 377, 120086.
- A. Constantinou, G. Wu, B. Venezia, P. Ellis, S. Kuhn and A. Gavriilidis, *Topics in Catalysis*, 2019, **62**, 1126-1131.
- A. A. Bojang and H.-S. Wu, *Processes*, 2020, **8**, 891.
- T. Illg, P. Lob and V. Hessel, *Bioorg Med Chem*, 2010, **18**, 3707-3719.
- A. Tanimu, S. Jaenicke and K. Alhooshani, *Chemical Engineering Journal*, 2017, **327**, 792-821.
- D. L. Trimm, *Catalysis Today*, 1997, **37**, 233-238.
- J. Dufour, D. P. Serrano, J. L. Gálvez, J. Moreno and A. González, *Energy & Fuels*, 2011, **25**, 2194-2202.
- S. Lin, M. Harada, Y. Suzuki and H. Hatano, *Fuel*, 2002, **81**, 2079-2085.
- A. Bisio and S. Boots, *Encyclopedia of energy technology and the environment*, Wiley, 1995.
- S. S. Kumar and V. Himabindu, Materials Science for Energy Technologies, 2019, 2, 442-454.
- J. Chi and H. Yu, Chinese Journal of Catalysis, 2018, **39**, 390-394.
- G. Liu, Y. Sheng, J. W. Ager, M. Kraft and R. Xu, *EnergyChem*, 2019, **1**, 100014.
- S. Saeidi, N. A. S. Amin and M. R. Rahimpour, *Journal of CO2 utilization*, 2014, **5**, 66-81.

1095 37.	H. L. Huynh, W. M. Tucho, X. Yu and Z. Yu, Journal 55	61.	C. Wang, E. Guan, L. Wang, X. Chu, Z. Wu, J. Zhang, Z. Yang,
1096	Cleaner Production, 2020, 264, 1156		Y. Jiang, J. Zhang and X. Meng, <i>Journal of the American</i>
1007 20	A Sarayanan D Santhil Kumar D V N VA1E7		Chamical Cogisty 2010 141 8482 8488
1097 38.	A. Saravanan, P. Senthii kumar, DV. N. VQ,1.57		Chemical Society, 2019, 141 , 8482-8488.
1098	Jeevanantham, V. Bhuvaneswari, V. Anantha Narayanan 37,58	62.	X. Chen, X. Su, H. Duan, B. Liang, Y. Huang and T. Zhang,
1099	R. Yaashikaa, S. Swetha and B. Reshma, Chelnic 509		Catalysis today, 2017, 281 , 312-318.
1100	Engineering Science 2021 236 116515 1160	63	E Hu X Chen 7 Tu 7-H Lu G Eeng and R Zhang
1100		03.	
1101 39.	P. Gao, L. Zhang, S. Li, Z. Zhou and Y. Sun, ACS Cent Boil		Industrial & Engineering Chemistry Research, 2021, 60,
1102	2020. 6 . 1657-1670. 1162		12235-12243.
1103 40	G Zhou H Liu V Ving S Vu H Vio and K Viong Joluter	64	H Lin S Vu G Zhou G Huang S Huang and K Viong
1105 40.	G. Zhou, H. Liu, T. Aling, S. Au, H. Ale and K. Along, Journal	04.	Th. Liu, S. Au, G. Zhou, G. Huang, S. Huang and K. Along,
1104	of CO2 Utilization, 2018, 26 , 221-229. 1164		Chemical Engineering Journal, 2018, 351 , 65-73.
1105 41.	J. Wang, G. Li, Z. Li, C. Tang, Z. Feng, H. An, H. Liu, T. Li l 165	65.	S. Kattel, P. J. Ramírez, J. G. Chen, J. A. Rodriguez and P. Liu,
1106	$\begin{array}{c} \text{C} \text{ is } \text{ clance advances } 2017 \textbf{2} \text{o} 1701200 \end{array} \qquad 1166$		Science 2017 2EE 1206 1200
1100	C. LI, Science advances, 2017, 3 , e1701290.		<i>Science</i> , 2017, 355 , 1296-1299.
110/ 42.	Jn. ZHENG, A. Kang, Jm. WANG, L. Jing and L. Yulaton/	66.	K. Chen, H. Fang, S. Wu, X. Liu, J. Zheng, S. Zhou, X. Duan,
1108	Journal of Fuel Chemistry and Technology, 2019, 47,16968		Y. Zhuang, S. C. E. Tsang and Y. Yuan, Applied Catalysis B:
1100	700 1160		Environmental 2010 2F1 110 120
1109	/08. 1109		Environmental, 2019, 251 , 119-129.
1110 43.	C. G. Visconti, M. Martinelli, L. Falbo, A. Infantes-Moli ha ,70	67.	KI. Tominaga, Y. Sasaki, M. Saito, K. Hagihara and T.
1111	Lietti P Forzatti G Jaquaniello E Palo B Picutti a ha71		Watanabe Journal of molecular catalysis 1994 89 51-55
1112	Brigneli Annlied Catalysis B: Environmental 2017 1400	69	7 Ha O Oian I Ma O Mang II 7hay I Song 7 Liyand
1112	Brigholi, Applied Catalysis B: Environmental, 2017, 12002	68.	Z. He, Q. Qian, J. Ma, Q. Meng, H. Zhou, J. Song, Z. Liu and
1113	530-542. 1173		B. Han, Angewandte Chemie International Edition, 2016,
1114 44	S Rönsch I Schneider S Matthischke M Schlüte i 1 774		55 737-741
1115	Gite Lafahura D. Dekhahuran and C. Deiahu Fuel 147	60	C Zhang X Lin Z Chan H Mang and X Constants
1115	Gotz, J. Lefebvre, P. Prabhakaran and S. Bajohr, Fuel, 20165	69.	S. Zhang, X. Liu, Z. Shao, H. Wang and Y. Sun, Journal of
1116	166 , 276-296. 1176		Catalysis, 2020, 382 , 86-96.
1117 /15	S Biswas A B Kulkarni S Giddey and S Bhattach	70	M. R. Gogate and R. I. Davis Catalysis Communications
1117 45.	5. Diswas, A. F. Kulkanni, S. Olducy and S. Dilattacharyay	70.	W. N. Obgate and N. J. Davis, cuturysis communications,
1118	Frontiers in Energy Research, 2020, 8, 229. 1178		2010, 11 , 901-906.
1119 46.	H. Cao, W. Wang, T. Cui, H. Wang, G. Zhu and X.1Re79	71.	L. Ding, T. Shi, J. Gu, Y. Cui, Z. Zhang, C. Yang, T. Chen, M.
1120	Energies 2020 12 2225 1180		Lin D Wang and N Vuo Cham 2020 ϵ 2672 2690
1120	Ellergies, 2020, 13 , 2255. 1100		LIII, P. Wally allu N. Xue, Chem, 2020, 0 , 2075-2009.
1121 47.	T. Franken, J. Terreni, A. Borgschulte and A. Heel, Journal	72.	X. Wang, P. J. Ramírez, W. Liao, J. A. Rodriguez and P. Liu,
1122	of Catalysis, 2020, 382 , 385-394, 1182		Journal of the American Chemical Society, 2021, 143 .
1102 40	E M Keen and M Tabin Journal of Environmentan		
1125 48.	F. W. Keen and W. Tanir, Journal of Environmentation		13103-13112.
1124	Chemical Engineering, 2021, 105460. 1184	73.	S. Ren, W. R. Shoemaker, X. Wang, Z. Shang, N. Klinghoffer,
1125 49	Liee S Kim Y T Kim G Kwak and L Kim Energy 10785		S Li M Yu X He T A White and X Liang Fuel 2019 239
1100	110C		
1120	199, 11/43/. 1180		1125-1133.
1127 50.	S. Renda, A. Ricca and V. Palma, <i>Applied Energy</i> , 2020,121897	74.	S. Ren, X. Fan, Z. Shang, W. R. Shoemaker, L. Ma, T. Wu, S.
1128	115767 1188		Li N B Klinghoffer M Yu and X Liang Journal of CO2
1120 -1			
1129 51.	I. S Pieta, A. Lewalska-Graczyk, P. Kowalik, K. Antohiak9		Utilization, 2020, 36 , 82-95.
1130	Jurak, M. Krysa, A. Sroka-Bartnicka, A. Gajek, W. Liso 🗤 🗐	75.	Q. Sheng, RP. Ye, W. Gong, X. Shi, B. Xu, M. Argyle, H.
1131	D Mrdenovic and P Pieta Catalysts 2021 11 433 1191		Adidharma and M. Fan Journal of Environmental Sciences
1100 -0			
1132 52.	H. P. Shivaraju, K. M. Aniikumar, S. R. Yashas, R. Haribii, 382		2020, 92 , 106-117.
1133	Shahmoradi, A. Maleki and G. McKay, <i>Biofuels, Biopro1</i>	76.	D. F. Carvalho, G. C. Almeida, R. S. Monteiro and C. J. Mota,
113/	and Riorafining 2021 15 190 201 110		Energy & Eucle 2020 21 7260 7271
1134	unu biorejinning, 2021, 13 , 183-201. 11 54		Lifergy & Tueis, 2020, 34 , 7203-7274.
1135 53.	G. Varvoutis, M. Lykaki, S. Stefa, E. Papista, 91985	//.	H. Ham, N. T. Xuan, H. S. Jung, J. Kim, HS. Roh and J. W.
1136	Carabineiro, G. E. Marnellos and M. Konsolakis, Catal 96		Bae, Catalysis Today, 2021, 369 , 112-122,
1127	Communications 2020 142 106026 1107	70	C. Bonura, C. Cannilla, L. Erustori, E. Catizzona, S. Todara
1137	Communications, 2020, 142 , 100050. 1197	70.	G. Bollura, C. Callillia, L. Flustell, E. Catizzolle, S. Touaro,
1138 54.	J. Zhang, Y. Yang, J. Liu and B. Xiong, Applied Sulfible		M. Migliori, G. Giordano and F. Frusteri, <i>Catalysis Today</i> ,
1139	Science, 2021, 558 , 149866, 1199		2020. 345 . 175-182.
11/0 гг	C V Miguel M A Serie A Mondes and L M Madada	70	C Benura M Miglieri I Fructori C Cannilla E Catizzona
1140 55.	C. V. IVIguel, IVI. A. Soria, A. IVIendes and L. IVI. IVIadellar	79.	G. Bonura, M. Migliori, L. Frusteri, C. Cannilla, E. Catizzone,
1141	Journal of Natural Gas Science and Engineering, 2019,2021		G. Giordano and F. Frusteri, Journal of CO2 Utilization,
1142	1-8 1202		2018 24 398-406
11/2 50	D L Lunda and E L Kaster and Ener Cham Drassa1802	00	V Vy B Zhai V Dana I Via V Liv C Mana and D Ma
1145 56.	P. J. Lunde and F. L. Kester, Ind. Eng. Chem. Processizes	80.	Y. XU, P. Zhai, Y. Deng, J. Xie, X. Liu, S. Wang and D. Ma,
1144	<i>Dev.</i> , 1974, 13 , 27-33. 1204		Angewandte Chemie, 2020, 132 , 21920-21928.
1145 57	D. Schlereth and O. Hinrichsen Chemical Engine 20105	81.	K. Y. Kim, H. Lee, W. Y. Noh, J. Shin, S. J. Han, S. K. Kim, K.
1146	Descent and Design 2014 02 702 712	<u> </u>	
1140	kesearch and Design, 2014, 92 , 702-712. 1206		An and J. S. Lee, ALS Catalysis, 2020, 10 , 8660-8671.
1147 58.	J. Cored, A. García-Ortiz, S. Iborra, M. J. Climent, L. Li 120.7	82.	T. Witoon, V. Lapkeatseree, T. Numpilai, C. K. Cheng and J.
1148	H Chuang T-S Chan C Escudero P Concención alans		Limtrakul Chemical Engineering Journal 2022
1140			424200
1149	Corma, Journal of the American Chemical Society, 202199		131389.
1150	141 , 19304-19311. 1210	83.	S. Kattel, P. Liu and J. G. Chen, J Am Chem Soc, 2017. 139.
1151 50	P Donganure S Bagchi S Mavadevi and P N 1211		9739-9754
1153 33.	A L L C L L 2020 ACC MORE AND A L	~ ~	
1122	<i>iviolecular Catalysis</i> , 2020, 482 , 110/00. 1212	84.	S. Dang, B. Qin, Y. Yang, H. Wang, J. Cai, Y. Han, S. Li, P. Gao
1153 60.	J. Wang, K. Sun, X. Jia and Cj. Liu, Catalysis Today. 102113		and Y. Sun, Science advances, 2020, 6, eaaz2060.
1154	365 3/1-3/7 171	85	E liang S Wang B Liu I Liu I Wang V Yiao V Yuand V
1134		05.	
	1215		IIII. ACS Catalysis, 2020, 10 , 11493-11509.

J. Name., 2013, 00, 1-3 | 16

1216 1217	86.	X. Jiang, X. Nie, Y. Gong, C. M. Moran, J. Wang, J. Zhl2,748 Chang, X. Guo, K. S. Walton and C. Song, Journal 259	111.	T. T. N. Vu, A. Desg A: General, 2021, 6
1218 1219	87	Catalysis, 2020, 383 , 283-296. 1280	112.	L. Yao, X. Shen, Y. 34 8635-8643
1220	07.	Utilization. 2020. 42 . 101313. 1282	113.	G. Bonura. M. Co
1221	88.	J. Song, S. Liu, C. Yang, G. Wang, H. Tian, Zi, Zhao, R1283		Spadaro, F. Arena
1222		and J. Gong, Applied Catalysis B: Environmental, 202012634		228 , 51-57.
1223		118367. 1285	114.	A. Alvarez, A. Bans
1224	89.	J. Wang, G. Zhang, J. Zhu, X. Zhang, F. Ding, A. Zhang, X1086		Wezendonk, M. M
1225		and C. Song, ACS Catalysis, 2021, 11 , 1406-1423. 1287		Rev, 2017, 117 , 980
1226	90.	C. Yang, C. Pei, R. Luo, S. Liu, Y. Wang, Z. Wang, ZJ. 2288	115.	H. Bahruji, R. D. A
1227		and J. Gong, Journal of the American Chemical Soli289		Bowker and G. J.
1228		2020, 142 , 19523-19531. 1290		Chemistry Research
1229	91.	J. Yu, M. Yang, J. Zhang, Q. Ge, A. Zimina, T. Pruessma h2,91	116.	K. C. Tokay, T. Do
1230		Zheng, JD. Grunwaldt and J. Sun, ACS Catalysis, 2020,2992		Journal, 2012, 184 ,
1231		14694-14706. 1293	117.	S. Michailos, S. Mo
1232	92.	K. M. Vanden Bussche and G. F. Froment, Journ 294		Energy Conversion
1233		Catalysis, 1996, 161 , 1-10. 1295	118.	A. Nakhaei Pour an
1234	93.	W. Schakel, G. Oreggioni, B. Singh, A. Strømman a 1296		Chemistry, 2017, 2
1235		Ramírez, Journal of CO2 Utilization, 2016, 16, 138-14 1297	119.	M. Albrecht, U. Ro
1236	94.	N. Rui, Z. Wang, K. Sun, J. Ye, Q. Ge and Cj. Liu, Appli 98		Baabe and E. V
1237		Catalysis B: Environmental, 2017, 218 , 488-497. 1299		Environmental, 201
1238	95.	A. Bansode and A. Urakawa, Journal of Catalysis, 2014,13090	120.	R. Satthawong, N.
1239		66-70. 1301		Journal of CO2 Util
1240	96.	O. Martin, A. J. Martín, C. Mondelli, S. Mitchell, 130 2	121.	A. E. Gamboa-Torr
1241		Segawa, R. Hauert, C. Drouilly, D. Curulla-Ferré a 1603		Engineering Journa
1242		Pérez-Ramírez, Angewandte Chemie International Edited	122.	L. Özkan, M. V.
1243		2016, 55 , 6261-6265. 1305		Engineering Science
1244	97.	J. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang and T. Z 1 at Q6	123.	D. L. Chiavassa, J.
1245		Chem Soc Rev, 2020, 49 , 1385-1413. 1307		Baltanás, Catalysis
1246	98.	Y. Hartadi, D. Widmann and R. J. Behm, ChemSusCha08	124.	R. W. Dorner, D. R.
1247		2015, 8 , 456-465. 1309		Applied Catalysis A
1248	99.	A. S. Malik, S. F. Zaman, A. A. Al-Zahrani, M. A. Dao 1310	125.	J. Lefebvre, N. Trud
1249		Driss and L. A. Petrov, Applied Catalysis A: General, 10518		151-159.
1250		560 , 42-53. 1312	126.	F. Kirchbacher, P.
1251	100.	K. An, S. Zhang, J. Wang, Q. Liu, Z. Zhang and Y. Liu, Joludian		Harasek, Energy, 20
1252		of Energy Chemistry, 2021, 56 , 486-495. 1314	127.	A. García-Trenco, A
1253	101.	A. Goryachev, A. Pustovarenko, G. Shterk, N. S. Alhaji (1246)		P. Shaffer and C
1254		Jamal, M. Albuali, L. van Koppen, I. S. Khan, A. Russkik h a dd		Environmental, 202
1255		A. Ramirez, <i>ChemCatChem</i> , 2021, 13 , 3324. 131 7	128.	A. s. Garcia-Trenco
1256	102.	Y. Lou, F. Jiang, W. Zhu, L. Wang, T. Yao, S. Wang, B. Yango		S. Shaffer and C. K.
1257		B. Yang, Y. Zhu and X. Liu, Applied Catalysis By	400	1196.
1258	4.00	Environmental, 2021, 291 . 1320	129.	M. Hus, D. Kopac
1259	103.	P. Riani, G. Garbarino, T. Cavattoni and G. Busca, Catadyzes		Dasireddy and B. L
1260	104	10day, 2021, 365 , 122-131. 1522	120	2017, 7 , 5900-5913
1201	104.	and V. Huang, Journal of the American Chemical Solition	130.	JS. KIIII, S. Lee,
1262		2020 142 10001 10005	121	L Nam I L Kim I
1205	105	2020, 142 , 19001-19005. 1525	131.	
1265	105.	12 2222 1377		and H - I Ryu Ener
1265	106	S Zhang Z Wu X Liu Z Shao I Xia I Zhong H MARA	132	C lia V Dai V Van
1267	100.	and V Sun Annlied Catalysis R: Environmental 2021 1909	152.	of Hydrogen Energy
1268		120207 1330	133	A Pietschak I M
1269	107	X He International Journal of Oil Gas and 1890	155.	International Jour
1270	107.	Engineering 2017 5 145-152		148 119099
1271	108	F Catizzone G Bonura M Migliori F Frusteri and 833	134	H D Willauer R
1272	100.	Giordano, <i>Molecules</i> , 2017, 23 , 31. 1334	10 /.	Hardy and F W W
1273	109	X. Fan, S. Ren, B. Jin, S. Li, M. Yu and X. Liang. Ching 55		3-4 . 56-64
1274		Journal of Chemical Engineering, 2020 38, 106-113, 1336	135.	M. Iglesias Gonzál
1275	110.	X. Fang, H. Jia, B. Zhang, Y. Li, Y. Wang, Y. Song, T. D 13R7		Technoloav. 2016
1276		L. Liu, Journal of Environmental Chemical Engine argine	136.	J. Ducamp, A. Ben
1277		2021, 9 , 105299. 1339		Journal of Chemica

- .. T. T. N. Vu, A. Desgagnés and M. C. Iliuta, *Applied Catalysis* A: General, 2021, **617**, 118119.
- L. Yao, X. Shen, Y. Pan and Z. Peng, *Energy & Fuels*, 2020, 34, 8635-8643.
- G. Bonura, M. Cordaro, C. Cannilla, A. Mezzapica, L. Spadaro, F. Arena and F. Frusteri, *Catalysis Today*, 2014, 228, 51-57.
- A. Alvarez, A. Bansode, A. Urakawa, A. V. Bavykina, T. A. Wezendonk, M. Makkee, J. Gascon and F. Kapteijn, *Chem Rev*, 2017, **117**, 9804-9838.
- H. Bahruji, R. D. Armstrong, J. Ruiz Esquius, W. Jones, M. Bowker and G. J. Hutchings, *Industrial & Engineering Chemistry Research*, 2018, 57, 6821-6829.
- K. C. Tokay, T. Dogu and G. Dogu, Chemical Engineering Journal, 2012, 184, 278-285.
- 7. S. Michailos, S. McCord, V. Sick, G. Stokes and P. Styring, Energy Conversion and Management, 2019, **184**, 262-276.
- A. Nakhaei Pour and M. R. Housaindokht, *Journal of Energy* Chemistry, 2017, 26, 359-367.
- M. Albrecht, U. Rodemerck, M. Schneider, M. Bröring, D. Baabe and E. V. Kondratenko, *Applied Catalysis B: Environmental*, 2017, 204, 119-126.
- 20. R. Satthawong, N. Koizumi, C. Song and P. Prasassarakich, Journal of CO2 Utilization, 2013, **3**, 102-106.
- A. E. Gamboa-Torres and A. Flores-Tlacuahuac, Chemical Engineering Journal, 2000, 77, 153-164.
- L. Özkan, M. V. Kothare and C. Georgakis, Chemical Engineering Science, 2003, 58, 1207-1221.
- D. L. Chiavassa, J. Barrandeguy, A. L. Bonivardi and M. A. Baltanás, *Catalysis Today*, 2008, **133-135**, 780-786.
- 4. R. W. Dorner, D. R. Hardy, F. W. Williams and H. D. Willauer, Applied Catalysis A: General, 2010, **373**, 112-121.
- J. Lefebvre, N. Trudel, S. Bajohr and T. Kolb, *Fuel*, 2018, 217, 151-159.
- F. Kirchbacher, P. Biegger, M. Miltner, M. Lehner and M. Harasek, *Energy*, 2018, **146**, 34-46.
- A. García-Trenco, A. Regoutz, E. R. White, D. J. Payne, M. S.
 P. Shaffer and C. K. Williams, *Applied Catalysis B:* Environmental, 2018, 220, 9-18.
- A. s. García-Trenco, E. R. White, A. Regoutz, D. J. Payne, M.
 S. Shaffer and C. K. Williams, ACS Catalysis, 2017, 7, 1186-1196.
- M. Huš, D. Kopač, N. S. Štefančič, D. L. Jurković, V. D. Dasireddy and B. Likozar, *Catalysis Science & Technology*, 2017, 7, 5900-5913.
- J.-S. Kim, S. Lee, S.-B. Lee, M.-J. Choi and K.-W. Lee, Catalysis Today, 2006, 115, 228-234.
- H. Nam, J. H. Kim, H. Kim, M. J. Kim, S.-G. Jeon, G.-T. Jin, Y. Won, B. W. Hwang, S.-Y. Lee, J.-I. Baek, D. Lee, M. W. Seo and H.-J. Ryu, *Energy*, 2021, **214**, 118895.
- C. Jia, Y. Dai, Y. Yang and J. W. Chew, *International Journal* of Hydrogen Energy, 2019, 44, 13443-13455.
- A. Pietschak, J. Maußner, A. G. Dixon and H. Freund, International Journal of Heat and Mass Transfer, 2020, 148, 119099.
- H. D. Willauer, R. Ananth, M. T. Olsen, D. M. Drab, D. R. Hardy and F. W. Williams, *Journal of CO2 Utilization*, 2013, 3-4, 56-64.
 - M. Iglesias González, H. Eilers and G. Schaub, *Energy Technology*, 2016, **4**, 90-103.
 - J. Ducamp, A. Bengaouer and P. Baurens, *The Canadian Journal of Chemical Engineering*, 2017, **95**, 241-252.

Journal Name

1340	137.	M. M. Jaffar, M. A. Nahil and P. T. Williams, E149	163.	P. Priecel and J. A. Lopez-Sanchez, ACS Sustainable
1341		<i>Technology</i> , 2019, 7 , 1900795. 1402		Chemistry & Engineering, 2018, 7 , 3-21.
1342	138.	L. Kiewidt and J. Thöming, Chemical Engineering ScileAde3	164.	J. F. de la Fuente, S. H. Moreno, A. I. Stankiewicz and G. D.
1343		2015, 132 , 59-71. 1404		Stefanidis, International Journal of Hydrogen Energy, 2016,
1344	139.	B. Castellani, A. Gambelli, E. Morini, B. Nastas 1,405		41 , 21067-21077.
1345		Presciutti, M. Filipponi, A. Nicolini and F. Rossi, Enelgies	165.	M. B. Gawande, S. N. Shelke, R. Zboril and R. S. Varma, Acc
1346		2017, 10 , 855. 1407		Chem Res, 2014, 47 , 1338-1348.
1347	140.	L. Pastor-Pérez, V. Patel, E. Le Saché and T. R. Reina, Jolu 408	166.	G. Chen, N. Britun, T. Godfroid, V. Georgieva, R. Snyders
1348		of the Energy Institute, 2020, 93 , 415-424. 1409		and MP. Delplancke-Ogletree, Journal of Physics D:
1349	141.	M. J. Bradley, R. Ananth, H. D. Willauer, J. W. Baldwin,114 120		Applied Physics, 2017, 50 , 084001.
1350		Hardy, F. DiMascio and F. W. Williams, Journal of 1401	167.	B. Wang, X. Wang and H. Su, Plasma Chemistry and Plasma
1351		<i>Utilization</i> , 2017, 17 , 1-9. 1412		Processing, 2020, 40 , 1189-1206.
1352	142.	Z. Zhang, H. Yin, G. Yu, S. He, J. Kang, Z. Liu, K. Cheng 123	168.	E. R. Delsman, B. J. P. F. Laarhoven, M. H. J. M. D. Croon, G.
1353		Zhang and Y. Wang, Journal of Catalysis, 2021, 395,13504		J. Kramer and J. C. Schouten, Chemical Engineering
1354		361. 1415		Research and Design, 2005, 83 , 1063-1075.
1355	143.	K. Park, G. H. Gunasekar, SH. Kim, H. Park, S. Kim, K. 14 tk	169.	N. Abdullah, T. C. Yee, A. Mohamed, M. M. Mustafa, M. H.
1356		KD. Jung and S. Yoon, Green Chemistry, 2020, 22, 16807		Osman and A. B. Mohamad, Indian Journal of Science and
1357		1649. 1418		Technology, 2016, 9, 1-7.
1358	144.	M. Bibi, R. Ullah, M. Sadiq, S. Sadiq, I. Khan, K. Saeed, 144	170.	M. Götz, J. Lefebvre, F. Mörs, A. McDaniel Koch, F. Graf, S.
1359		Zia, Z. Igbal, I. Ullah and Z. Igbal, <i>Catalysts</i> , 2021, 11 , 192 0		Bajohr, R. Reimert and T. Kolb, Renewable Energy, 2016,
1360	145.	Z. Liang, P. Gao, Z. Tang, M. Ly and Y. Sun, Journal of 421		85 . 1371-1390.
1361		Utilization. 2017. 21 . 191-199. 1422	171.	C. H. Bartholomew. Applied Catalysis A: General. 2001.
1362	146.	A. Gavriilidis, A. Constantinou, K. Hellgardt, K. K. Hii 142 3		212 . 17-60.
1363	1.01	Hutchings, G. I. Brett, S. Kuhn and S. P. Marsden, <i>Real</i> 4	172.	M. C. Seemann, T. J. Schildhauer and S. M. A. Biollaz, Ind.
1364		Chemistry & Engineering 2016 1 595-612 1425		Eng Chem Res 2010 49 7034-7038
1365	147	S Farsi W Olbrich P Pfeifer and R Dittmeyer Cheind 2016	173	X Zhang W Qian H Zhang Q Sun and W Ying Chinese
1366	147.	Engineering Journal 2020 388 124233	175.	Journal of Chemical Engineering 2018 26 245-251
1367	1/18	B Kreitz G D Webinger and T Turek Chelder	17/	X Wang and M Economides Journal 2009 DOI:
1368	140.	Engineering Science 2010 105 5/1-552 1/29	1/4.	https://doi.org/10.1016/B078-1-033762-38-8 50014-9
1360	1/0	M Bolimov D Motzgor and B Bfoifor AIChE Journal 19130		11(1ps.//doi.org/10.1010/05/8-1-555/02-58-8.50014-5,
1270	149.	co 120 120	175	SUO.
1271	150	US, 120-125. 1451	175.	in Chamical Engineering 2012 2 228 24E
1272	150.	In Julie, J. Lill, A. Wu, W. Walle, T. Chell and W. Zulang, 1	176	III Chemical Engineering, 2015, 2, 556-545.
1272	1 - 1	Journal of CO2 Ulinzation, 2020, 36 , 33-39. 1435	170.	A. Salic, A. Tusek and B. Zelic, Journal of Applied
1071	151.	A. Hang, Y. Wien, F. Wu, Q. Zhao, K. Singh, P. Xiao, T. Dutaba	177	Biomedicine, 2012, 10, 137-155.
1374		P. A. Webley, International Journal of Hydrogen Energy	1//.	M. M. E. Delville, P. J. Nieuwiand, P. Janssen, K. Koch, J. C.
1375	450	2019, 44, 21913-21925. 1450		W. van Hest and F. P. J. T. Rutjes, <i>Chemical Engineering</i>
1370	152.	M. K. Kon, M. M. Zain and A. R. Monamed, 2019, 21429	470	Journal, 2011, 167 , 556-559.
1377	450		178.	F. Ocampo, B. Louis and AC. Roger, Applied Catalysis A:
1378	153.	M. K. Kon, M. Knavarian, S. P. Chai and A. R. Monaldesog	. = 0	General, 2009, 369 , 90-96.
1379		International Journal of Hydrogen Energy, 2018, 43 , 93840	179.	G. Du, S. Lim, Y. Yang, C. Wang, L. Pfefferle and G. Haller,
1380		9342. 1441		Journal of Catalysis, 2007, 249 , 370-379.
1381	154.	A. Bansode, G. Guilera, V. Cuartero, L. Simonelli, M. 24442	180.	F. Arena, K. Barbera, G. Italiano, G. Bonura, L. Spadaro and
1382		and A. Urakawa, <i>Review of Scientific Instruments</i> , 2014,4853		F. Frusteri, <i>Journal of Catalysis</i> , 2007, 249 , 185-194.
1383		084105. 1444	181.	M. Saito and K. Murata, Catalysis Surveys from Asia, 2004,
1384	155.	B. Tidona, C. Koppold, A. Bansode, A. Urakawa and P. RL444b		8 , 285-294.
1385		Rohr, The Journal of Supercritical Fluids, 2013, 78, 70-1/44.6	182.	M. Behrens, F. Studt, I. Kasatkin, S. Kuhl, M. Havecker, F.
1386	156.	S. Hafeez, S. Al-Salem and A. Constantinou, in <i>Memb</i> 1		Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B. L. Kniep,
1387		for Environmental Applications, Springer, 2020, pp.13838		M. Tovar, R. W. Fischer, J. K. Norskov and R. Schlogl,
1388		411. 1449		Science, 2012, 336 , 893-897.
1389	157.	S. Hafeez, S. Al-Salem, G. Manos and A. Constant 1450	183.	F. Zeng, C. Mebrahtu, X. Xi, L. Liao, J. Ren, J. Xie, H. J. Heeres
1390		<i>Environmental Chemistry Letters</i> , 2020, 18 , 1477-149 0 451		and R. Palkovits, Applied Catalysis B: Environmental, 2021,
1391	158.	X. Tan and K. Li, Journal of Chemical Technolog452		291 , 120073.
1392		Biotechnology, 2013, 88, 1771-1779. 1453	184.	S. Liu, H. Zhou, Q. Song and Z. Ma, Journal of the Taiwan
1393	159.	H. H. Koybasi and A. K. Avci, Catalysis Today, 2022,13854		Institute of Chemical Engineers, 2017, 76 , 18-26.
1394		133-145. 1455	185.	G. Bonura, C. Cannilla, L. Frusteri, A. Mezzapica and F.
1395	160.	X. Wang, Y. Wang, C. Yang, Y. Yi, X. Wang, F. Liu, J. Ca d 456		Frusteri, <i>Catalysis Today</i> , 2017, 281 , 337-344.
1396		H. Pan, Applied Catalysis A: General, 2020, 595, 117507457	186.	R. Satthawong, N. Koizumi, C. Song and P. Prasassarakich,
1397	161.	M. R. Kiani, M. Meshksar, M. A. Makarem and 58		Topics in Catalysis, 2013, 57 , 588-594.
1398		Rahimpour, <i>Topics in Catalysis</i> , 2021, 1-20. 1459	187.	R. E. Owen, D. Mattia, P. Plucinski and M. D. Jones,
1399	162.	P. J. Lindner, S. Y. Hwang and R. Besser, Energy & 1460		Chemphyschem, 2017, 18 , 3211-3218.
1400		2013, 27 , 4432-4440.		

J. Name., 2013, 00, 1-3 | 18

Journal Name

- 1461 188. D. Iranshahi, P. Salimi, Z. Pourmand, S. Saeidi and J. J.
 1462 Klemeš, Chemical Engineering and Processing Process
 1463 Intensification, 2017, 120, 258-267.
 1464 189. S. Najari, S. Saeidi, G. Gróf, F. J. Keil and A. E. Rodrigues,
 1465 Energy Conversion and Management, 2020, 226, 113550.
 1466 190. Y. Deng, X. Bai, V. Abdelsayed, D. Shekhawat, P. D. Muley,
- 1467S. Karpe, C. Mevawala, D. Bhattacharyya, B. Robinson, A.1468Caiola, J. B. Powell, A. P. van Bavel, J. Hu and G. Veser,
- 1469 *Chemical Engineering Journal*, 2021, **420**, 129670.