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Abstract

We analyze patent protection with sequential and complementary innovation.
We argue that in these cases the classic Nordhaus trade-off between innovation
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1 Introduction

In the modern economy, innovative products or processes often involve different

patents, each protecting a separate piece of innovative knowledge. In some cases,

basic discoveries open the way to subsequent improvements and applications, so in-

novation is sequential. In others, the distinct innovative components can be invented

independently of each other, so innovation is complementary. In all of these cases,

however, the aggregate value of the inventions is greater than the sum of their indi-

vidual values. As a consequence, models of isolated, independent innovations are no

longer applicable; technology is more “complex.”

Many scholars have argued that when the technology becomes more complex,1

the social costs of patent protection increase. One reason for this is that the frag-

mentation of intellectual property may create problems of coordination among the

patent holders.2 Furthermore, it has been argued that patents may impede the shar-

ing of intermediate technological knowledge among innovative firms.3 In the light of

these issues, the conventional wisdom is that for complex technologies, patent pro-

tection should be weaker. Without questioning the relevance of these problems, this

paper highlights a countervailing effect, which is of first-order magnitude but seems

to have gone unnoticed so far. This effect implies that, all else equal, sequentiality

and complementarity demand stronger and not weaker patent protection.

The new effect relates to the classic trade-off between innovation and monopoly

deadweight losses. Since Nordhaus (1969), this trade-off has been at the centre of the

analysis of optimal patent design for isolated innovations. The economic literature

on sequential and complementary innovation, on the other hand, has mainly focused

on other issues, such as the externalities across innovations and the division of the

profit among the different innovators. Yet, sequentiality and complementarity may

affect the Nordhaus trade-off and change its optimal resolution. That is precisely the

1An increase in complexity of patented innovations may be due not only to technological changes
but also to institutional reforms. For example, the enaction of the Bayh-Dole Act in 1980, and the
US Supreme Court decision in the Diamond v. Chakrabarty case in the same year, lengthened the
chains of innovations protected by patents and thus increased complexity according to our usage of
the word.

2Such coordination failures may generate transaction costs (Heller and Eisenberg, 1998; Galasso
and Schankerman, 2015), pricing externalities (Lerner and Tirole, 2004), and greater scope for op-
portunistic behaviour (Farrell and Shapiro, 2008).

3 In some models, this effect may be so strong that patent protection can actually stifle tech-
nological progress rather than spurring it (Bessen and Maskin, 2009; Fershtman and Markowich,
2010).
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focus of the present paper.

The effect uncovered here can be intuitively explained as follows. With isolated

innovations, the optimal level of patent protection is an increasing function of the

elasticity of the supply of inventions. This elasticity is the percentage increase in

in the probability of success x associated with a one percent increase in R&D ex-

penditure X, ε =
dx

dX

X

x
. In simple models, the optimal level of protection is, in

fact, directly proportional to the elasticity. Now consider the case of multiple, re-

lated innovations. For example, think of two innovations, 1 and 2, that are strictly

complementary, meaning that the stand-alone value of each is nil but the aggregate

value of both is positive. In this case, research is effectively successful only if both

innovations are achieved, so the relevant probability of success (assuming statistical

independence) is x1 × x2. As a consequence, the relevant elasticity is now the sum

of the individual elasticities, ε1 + ε2. This compound-elasticity effect is the ultimate

reason why the level of patent protection should be higher than in the single inno-

vation case. That is, in a nutshell, the message of this paper. The rest of the paper

formalizes the above argument and extends it in various ways.

The compound-elasticity effect has been overlooked by the vast literature on se-

quential and complementary innovation because, as noted, that literature has almost

invariably focused on issues other than the Nordhaus trade-off. In particular, the lit-

erature on sequential innovation has concentrated on the analysis of forward patent

protection, i.e., the protection granted to the first inventor against the second one.

This literature has either taken as given the level of backward protection, i.e., the

protection against imitators, or conflated the two forms of protection in a single pol-

icy variable.4 Similarly, the literature on complementary innovations has focused on

the division of profit taking the overall level of protection as given.5

The only previous paper that distinctly addresses forward and backward protec-

tion is the classic article by Green and Scotchmer (1995) on sequential innovation.

However, Green and Scotchmer drastically simplify the Nordhaus trade-off assum-

ing that innovations can be achieved with probability one by sinking a fixed R&D

investment. Since patents are distortionary, this implies that the optimal level of

4See, for instance, Scotchmer (1996), Matutes, Regibeau and Rockett (1996), O’Donoghue, Scotch-
mer and Thisse (1997), O’Donoghue (1998), Denicolò (2000), Denicolò and Zanchettin (2002), Hunt
(2004), Hopenhayn, Llobet and Mitchell (2006), Mitchell and Zhang (2015), and Parra (2019).

5See, for instance, Shapiro (2007), Clark and Konrad (2008), Gilbert and Katz (2011), Schmidt
(2014), Choi and Gerlach (2018).
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backward protection is simply the one that allows innovators to just cover their R&D

costs. With two-stage innovation, this principle applies separately to the two inno-

vators. However, Green and Scotchmer further assume that the policymaker cannot

control the division of profit finely. As a result, when both inventors’ costs are

covered, at least one of them will inevitably obtain a positive rent. This wasteful

over-remuneration, which inevitably arises with sequential innovations, implies that

backward protection should be stronger than with isolated innovations.

This paper arrives at the same conclusion as Green and Scotchmer but for different

reasons. To highlight the differences, we abstract from the waste-of-profit effect

assuming that the division of profit can be fine tuned. On the other hand, we posit

a smooth relationship between R&D investment and innovation. This assumption is

necessary for a proper analysis of the Nordhaus trade-off, as Green and Scotchmer

(1995) recognize in their discussion of endogenous R&D investment (p. 31).

The rest of the paper proceeds as follows. In Section 2, we present and analyze our

baseline model of sequential innovation. We parametrize the degree of sequentiality

and provide conditions under which both backward and forward protection should be

strengthened as the degree of sequentiality increases. In Section 3, we show that our

conclusions are robust to several extensions of the baseline model. Section 4 presents

similar results for the case of complementary innovations. Section 5 summarizes and

offers some final remarks. Proofs are collected in the Appendix.

2 Sequential innovation

In this and the following section, we analyze the case of sequential innovation. We

start from the case of two innovations, 1 and 2. (In Section 3, we extend the analysis

to the case of an infinite sequence of innovations.) Innovations are sequential in that

innovation 2 cannot be searched for unless innovation 1 has been achieved.

2.1 Baseline model

In our baseline model, we follow Green and Scotchmer (1995) in assuming that inno-

vators are specialized. That is, certain firms invest only in innovation 1, and others

only in innovation 2.6 This assumption implies that intellectual property is inevitably

fragmented. However, we assume that patent holders can perfectly coordinate their
6This assumption will be relaxed in Section 3.
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behaviour. This allows us to abstract from effects that have already been highlighted

by previous analyses, such as business stealing, transaction costs, Cournot comple-

ments etc.7

2.1.1 R&D technology

We posit an innovation production function

xi = Fi(Xi) (1)

that relates the probability xi that innovation i is achieved to the aggregate R&D

expenditure Xi targeted to that innovation. We assume that the function Fi(Xi)

is smooth, increasing and concave. Concavity means that the returns to R&D are

decreasing at the industry level, for instance because the production of innovative

knowledge requires inputs that are in fixed supply, such as talent, or the set of good

ideas at any given point in time. We also assume that Fi(0) = 0.

When there is competition in research, we further assume that returns to R&D

are constant at the firm level (while being decreasing at the industry level).8 This

implies that each individual firm’s probability of getting the patent, conditional on

the innovation being achieved, is equal to its share in the aggregate R&D investment.

Under these assumptions, the elasticity of the innovation production function,

εi ≡ F ′i (Xi)Xi
xi

, is positive and lower than one.9 In what follows, we shall often refer

to the iso-elastic specification xi = γiX
εi
i , where εi ∈ (0, 1) is constant and γi > 0 is

a parameter. In general, however, the elasticity may be variable. For example, when

the timing of innovation is stochastic and follows a Poisson process with arrival rate

κiXi, where κi > 0 is a parameter, the discounting-adjusted probability of success is

xi = κiXi
κiXi+r

,10 where r is the interest rate. In this case, the elasticity is decreasing in

7These factors should be included in a more complete analysis. At this stage, however, abstracting
from them allows us to better focus on the effect of interest.

8Accordingly to Griliches (1990), at the firm level,

in the major range of the data [...] there is little evidence for diminishing returns, at
least in terms of patents per R&D dollar. That is not surprising, after all. If there
were such diminishing returns, firms could split themselves into divisions or separate
enterprises and escape them. (p. 1167)

One reason why returns to R&D may be constant at the firm level and decreasing at the industry
level is the possibility that two or more firms may independently achieve the same innovation. In
this case, the patent will be granted to one firm only.

9A large empirical literature has tried to estimate this elasticity. Estimates vary considerably
from study to study, however: see Cohen (2010) for an excellent survey.
10 In the Poisson model, the innovation eventually arrives with probability one, and the variable

xi becomes the discount factor corresponding to the time lag to innovation, as in Denicolò (2000).
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Figure 1: The components of the value of the innovations. The left-hand panel depicts the
product market equilibrium when both innovations are available, the right-hand panel the
equilibrium when only the first innovation has been achieved. The decreasing lines are the
demand curves with one or both innovations in place. Marginal production costs are set to
zero.

Xi. In the “buried treasure”model with no memory (Ross, 1983), on the contrary,

the elasticity is increasing.11

2.1.2 Product market

We use a reduced-form model of the product market that is consistent with various

different set-ups. For illustrative purposes, however, it may be useful to consider

the example of Figure 1, where the first innovation creates a new product and the

second innovation improves the product’s quality, and hence shifts the demand curve

upwards.

The left-hand panel represents the market equilibrium when both innovations

have been achieved. With full patent protection, the price is set at the monopoly

level pM2 , as inventors coordinate their behavior at the pricing stage. This yields

11 In this model, there are N alternative R&D projects, only one of which is successful. Each project
has a cost of c, so with no memory (i.e., assuming sampling with replacement) the probability of
success is

xi = 1−
(
1− 1

N

)Xi
c

.

It is then immediate to verify that the elasticity is increasing in Xi. Variants of the buried treasure
model have been analyzed by Fershtman and Rubinstein (1997) and Chatterjee and Evans (2004).
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a flow of monopoly profits that we normalize to r (so that discounted monopoly

profits are normalized to 1). Flow consumer surplus is denoted by rU and the flow

deadweight loss by rD. With no patent protection, on the other hand, price equals

the unit cost, so profits vanish and flow consumer surplus becomes r(1 + U +D).

The right-hand panel shows the case where only the first innovation is available.

Demand is lower, and so are all relevant payoffs. We denote by s the share of the

payoffs due to the second innovation, and by (1 − s) that due to the first. For

simplicity, the parameters D and U are taken to be the same for both innovations.12

Generalizing this example, we assume that with no patent protection, the two

innovations taken together raise social welfare by 1+U+D, this benefit being reaped

entirely by consumers. With full patent protection, in contrast, the social benefit is

only 1+U , asD is lost due monopolistic distortions. Of this payoff, 1 is the innovators’

profit and U is the consumer surplus.13 The first innovation accounts for a fraction

(1− s) of these payoffs.

Parameter s, which represents the share of total payoffs associated with the second

innovation, will be our index of sequentiality. This index ranges between 0 and 1.

When s = 0, all of the value is attached to the first innovation and so we are back to

the case of isolated inventions. When s = 1, on the other hand, the first innovation

has no direct value; it may be thought of as a pure research tool that is valuable only

as it enables the search for the second innovation.14

2.1.3 Patent policy

In fact, the level of patent protection can take on intermediate values between com-

plete protection or no protection at all. In our analysis, we shall treat the level of

protection as a continuous policy variable and denote it by µ. We normalize this

variable in such a way that µ represents the inventors’total discounted profit if both

innovations are achieved. Since the discounted profit with complete patent protection

12 In the linear demand example, for instance, this property holds with D = U = 1
2
. However,

the analysis would readily extend to the case where D1 6= D2 and U1 6= U2, as may happen with
non-linear demand.
13The increase in consumer surplus when the patent is in force, U , is positive for drastic innovations,

as in the example of Figure 1, but vanishes when innovations are non-drastic. (Innovations are non-
drastic when competition from outsiders prevents innovators from charging the monopoly price. In
this case, the innovators must engage in limit pricing and thus the quality-adjusted price falls only
after the patent expires.) More generally, however, U might include positive spillovers enjoyed by
firms other than the innovators.
14Sometimes, s is also referred to as the “option value” of the first innovation, as achieving the

first innovation makes it possible to invest in the second one, which has an extra value of s.

7



is equal to 1, we have µ ∈ [0, 1].15

There are various reasons why patent protection may be incomplete. Most obvi-

ously, the duration of the patent may be finite: for example, patent life is currently

20 years in most countries. Even before the patent expires, however, the breadth of

protection may be limited. For example, the probability that the patent is granted

and enforced, φ, may be lower than 1. Denoting by T the patent life, the expected

discounted profit then is φ
T∫
0

re−rtdt = φ(1− e−rT ) ≡ µ.16

Obviously, the level of patent protection affects also monopoly deadweight losses,

which are φ
T∫
0

rDe−rtdt = µD, and the surplus left to consumers, which is (1 −

µ)(1 +D) +U .17 Assuming that the level of patent protection µ is the same for both

innovations, all of these variables must be scaled down by the factor (1 − s) if only

the first innovation is achieved.

2.1.4 Sequentiality

With sequential innovation, the search for the second innovation can start only if the

first one has been achieved. Accordingly, investment levels are chosen sequentially.

In particular, investment in innovation 2 is made after uncertainty about innovation

1 is resolved, and thus it will be made only if innovation 1 has been successfully

achieved. As a result, innovation 1 is achieved with probability x1 and innovation 2

with probability x1x2.18

Besides determining the total profit obtained by the two innovators, patent policy

15This formalization implies that in the absence of patent protection, inventors make zero profits.
The analysis can be extended to the case where secrecy is an alternative form of protection, as in
Denicolò and Franzoni (2003). As these authors show, the possibility that the innovations may be
kept secret does not change the analysis of optimal patent protection if secrecy entails the same
social costs as patents. While monopoly distortions are likely similar, secrets may arguably stifle
follow-up R&D in comparison with patents, thus creating an additional reason to strengthen patent
protection on sequential innovations. This effect, however, is orthogonal to the compound-elasticity
effect, and thus adding it to the analysis would not change our qualitative results.
16With other interpretations of patent breadth, however, it may be more diffi cult to conflate

breadth and length in a single policy varable. In this case, there arises a non trivial problem of
finding the optimal combination of patent length and breadth: see Gilbert and Shapiro (1990) for a
classic analysis of this issue.
17Expected consumer surplus is

(1− φ)
∞∫
0

r (1 + U +D) e−rtdt+ φ

 T∫
0

rUe−rtdt+

∞∫
T

r (1 + U +D) e−rtdt

 ,
whence the expression in the text follows.
18While some time may pass from the arrival of the first innovation until that of the second, in

what follows, for simplicity, we shall assume that such interim time interval is negligible. We shall
therefore abstract from any payoff obtained in that interval.
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determines also the division of the profit between them. We assume that innovator 1

gets the entire profit from the first innovation, i.e. µ(1− s), plus a fraction λ of the

profit from the second, µs. Innovator 2 gets the remaining share (1− λ). The policy

variable λ ∈ [0, 1] may be interpreted as the level of forward patent protection, i.e.

the protection accorded to the first inventor against the second one.19 In contrast,

µ may be regarded as the level of backward protection, i.e. the protection against

imitators.

2.1.5 R&D competition.

At this point, one can consider two variants of the model. In the first one, there is

monopoly in the search for each innovation. That is, there are two firms, 1 and 2:

firm 1 only can invest in innovation 1, and firm 2 in innovation 2. Firms are risk

neutral and maximize their expected profits:

π1 = x1µ(1− s) + x1x2µλs−X1 (2)

and

π2 = x1 [x2µ(1− λ)s−X2] . (3)

In the second variant, there is competition in R&D. For each innovation, a number

of firms invest and race to innovate and obtain the patent. With constant returns

to R&D at the firm level, the probability that each individual firm gets the patent,

conditional on the innovation being achieved, is given by its share in the aggregate

R&D investment in that innovation. Thus, the expected profits of two generic firms,

investing respectively Z1 in innovation 1 and Z2 in innovation 2 are:

πz1 =
Z1
X1

(x1µ(1− s) + x1x2µλs)− Z1 (2’)

and

πz2 = x1

[
Z2
X2

x2µ(1− λ)s− Z2
]
. (3’)

In particular, we assume free entry in each R&D race. Under free entry, a zero-

profit condition must then hold for each R&D race. Thus, the aggregate R&D in-

vestment levels are determined by the condition that πz1 = πz2 = 0.

19 In practice, patent law affects the division of profit only indirectly, by determining what each
patent holder is entitled to do unilaterally and hence the disagreement point in the bargaining process.
However, taking λ as a continuous variable simplifies the analysis and allows us to abstract from the
diffi culties of fine tuning the division of profit. As noted in the introduction, these diffi culties are
emphasized by Green and Scotchmer (1995).
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Initially, we focus on the free-entry variant of the model. In Section 3, we shall

show that similar results can be obtained when there is monopoly in research.

2.2 Equilibrium

With free-entry in R&D, the zero-profit conditions give:

x1µ(1− s) + x1x2µλs = X1 (4)

and

x2µ(1− λ)s = X2. (5)

These conditions determine the equilibrium aggregate R&D investments, denoted

by X∗i ,
20 and the corresponding probabilities of success, denoted by x∗i . Notice that

since firms invest in innovation 2 only if innovation 1 has been achieved, X2 does not

depend on x1. The equilibrium is then found by proceeding backwards: condition

(5) yields X∗2 and hence x
∗
2, which may then be plugged into (4) to obtain X

∗
1 . The

existence of a positive solution can be guaranteed by the standard Inada conditions

limXi→0 F
′
i (Xi) = ∞. Concavity of Fi(Xi) guarantees uniqueness. To simplify the

exposition, we assume interior solutions: x∗i < 1.

This simple model delivers comparative statics results that are, for the most part,

natural.

Lemma 1 Both X∗1 and X
∗
2 increase with the level of backward patent protection µ.

An increase in forward protection λ decreases investment in the second innovation

and, as long as λ < 1− ε2, increases investment in the first innovation.

Intuitively, an increase in µ raises both innovators’profits and hence both R&D

efforts.21 As for λ, it is evident that stronger forward protection harms the second

innovator. What is perhaps surprising is that it may stifle the first innovation, too.

This happens when λ > 1 − ε2, and the intuition is as follows. If the first inventor

already gets a large share λ of the “common”profit µs, a further increase in λ may

reduce the investment in the second innovation by so much that the first inventor is

actually harmed. Clearly, this result by itself implies that it will never be optimal to
20As usual in models with constant returns at the firm level, the zero-profit conditions pin down

the aggregate activity levels, but individual R&D investments are indeterminate.
21 In addition to this direct effect, the impact of µ on x∗1 involves also an indirect effect. That is,

an increase in µ raises x∗2 and hence the probability that the first innovator gets a share λ of the
second innovation’s profits. Both effects are positive.
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set λ above 1− ε2, as in this region more forward protection would discourage both

innovations.

2.3 Optimal backward protection

Having determined the model’s equilibrium for any given µ and λ, we now turn to the

optimal patent policy. We assume that the policymaker’s objective is to maximize

the expected discounted sum of consumer surplus and profit:

W = [1 + U + (1− µ)D] [(1− s)x∗1 + sx∗1x
∗
2]−X∗1 − x∗1X∗2 . (6)

Under free entry in R&D, this is equivalent to maximizing consumer surplus only, as

expected profits vanish. In this subsection, we take the level of forward protection

λ as given and focus on the optimal choice of backward protection µ. In the next

subsection, we shall optimize with respect to both policy variables, µ and λ.

Proposition 1 For any given level of forward protection λ, the optimal level of back-

ward protection µ∗ is higher when s > 0 than in the single innovation case (s = 0),

provided that the elasticity ε1 is non-increasing in X1. When the elasticities ε1 and

ε2 are constant, µ∗ is a monotonically increasing function of s.

In the proof of the proposition, it is shown that the optimal level of backward

protection is implicitly given by the following condition:22

µ∗(1 +D)

(1− µ∗) (1 +D) + U
=

ε1
1− ε1

+ S(1)
ε2

1− ε2
+ S(λ)

ε1
1− ε1

ε2
1− ε2

, (7)

where

S(λ) ≡ λsx∗2
(1− s) + λsx∗2

. (8)

The variable S(1)may be interpreted as an endogenous index of effective sequentiality.

The index vanishes both when the second innovation has no value (s = 0), and when

the second innovation is never achieved (x∗2 = 0). In both cases, we are effectively

back to the single innovation framework. At the opposite extreme, the index equals

one when the second innovation carries all of the value (s = 1). The variable S(λ) is

similar; it measures effective sequentiality from the viewpoint of the first innovator,

which values the second innovation only as long as its share of profit λ is positive.
22Expression (7) immediately implies that µ∗ > 0. This is intuitive, as social welfare vanishes

when µ = 0 (which in our simple model implies zero R&D investments). If condition (7) delivers a
value of µ greater than 1, the optimal policy is to provide full patent protection (µ∗ = 1).
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Since S(λ) increases with s, the comparative statics results would follow imme-

diately from (7) if the equilibrium R&D investments x∗1 and x
∗
2 were independent of

s. However, they are not: as we increase s, X2 increases and X1 decreases. This

complicates the analysis. The proof of the proposition shows that the sequentiality

index S(λ) is monotonic in s even accounting for the endogeneity of the R&D in-

vestments. However, changes in Xi may also affect the elasticities εi. This is why

additional assumptions may be necessary to sign the comparative statics effects. In

the first part of the proposition, for instance, the condition that ε1 is non-increasing

in X1 guarantees that the effect of the fall in X1 is non negative.23

The intuition behind Proposition 1 may not be immediate. To gain some insight, it

may be useful to consider the marginal social costs and benefits of patent protection.

To this end, assume for simplicity that λ = 0 and U = 0. Given the zero-profit

conditions X1 = x1µ(1− s) and X2 = x2µs, social welfare reduces to:24

W = (1 +D) (1− µ) [(1− s)x∗1 + sx∗1x
∗
2]. (9)

The first factor on the right-had side is independent of µ, so the welfare effects of

patent protection depend on the product of the last two factors. These two factors

capture the two sides of the Nordhaus trade-off: (1− µ) represents the negative effect

of stronger backward protection in terms of greater deadweight losses, whereas factor

[(1− s)x∗1+ sx∗1x
∗
2] captures the positive effect on the level of innovation. (Remember

that both x∗1 and x
∗
2 increase with µ.)

At the optimum, a small increase in µ must cause a percentage fall in the first

factor equal to the percentage increase in the second. Now, a one percent increase

in µ reduces (1− µ) by µ
1−µ percent. This effect is independent of the degree of

sequentiality s. The impact on the level of innovation [(1 − s)x∗1 + sx∗1x
∗
2] is more

complex and can be calculated as follows. To begin with, note that as µ increases

by 1%, if x1 were constant X1 would increase by 1% by the zero-profit condition.

23The condition is suffi cient but not necessary. If ε1 increases with X1, the result is reversed only
if this negative effect dominates the additional terms on the right-hand side of (7). While in general
we cannot rule out this possibility, it should be noted that the extent to which the elasticity may be
increasing is limited by the hypothesis of diminishing returns to R&D. Note also that while most of
the empirical literature specifies the innovation production function as log-linear and hence implicitly
assumes that the elasticity is constant, the few studies that allow for a variable elasticity find that
the elasticity is decreasing (see e.g. Guo and Trivedi, 2002).
24 Intuitively, expression (9) says that social welfare is equal to the expected social surplus obtained

after the patent expires. Before the patent expires, D is lost because of the monopoly distortions,
and profits are “dissipated” in the patent races.
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However, a 1% increase in X1 raises x1 by ε1%, which by the zero-profit condition

raises X1 by a further ε1%. This in turns raises x1 by an extra ε21%, and so on.

Overall, X1 increases by 1 + ε1 + ε21 + ... = 1
1−ε1 percent, and thus x

∗
1 increases

by ε1
1−ε1 percent. By a similar argument, one sees that x

∗
2 increases by

ε2
1−ε2 percent.

However, the product x∗1x
∗
2 increases by

ε1
1−ε1 + ε2

1−ε2 percent.
25 That is, the compound

probability increases proportionally more than each individual probability. This is

the compound-elasticity effect mentioned in the introduction.

To complete the argument, note that the percentage increase in (1− s)x∗1+ sx∗1x
∗
2

is a weighted average of ε1
1−ε1 and

ε1
1−ε1 + ε2

1−ε2 , with the weight of the latter increasing

with s. This means that as s increases, the effect of a one-percent increase in µ on

innovation becomes stronger. Since the negative effect on the deadweight loss is inde-

pendent of s, and the two effects must exactly offset each other at the optimum, the

optimal level of protection must increase when the degree of sequentiality s increases.

Essentially, the above argument shows that the effectiveness of patent protection

increases as the degree of sequentiality increases. However, other factors are also at

work in the baseline model. First, the investment in the first innovation entails a

positive externality on the second one. This intertemporal externality (to use the

jargon of endogenous growth theory) is stronger, the greater is s. Second, increasing

s decreases the ex ante value of the innovations, (1−s)x∗1+sx∗1x
∗
2. This is so because

of sequentiality: for fixed levels of R&D investment, the second innovation occurs

with a lower probability than the first one. This devaluation effect, too, is stronger,

the greater is s. To isolate the compound-elasticity effect, in the next section we shall

analyze variants of the baseline models where these additional effects are muted.

2.4 Optimal forward protection

Before doing that, however, consider the optimal choice of the level of forward pro-

tection λ. Since µ∗ depends on λ via the index of effective sequentiality S(λ), the

endogenization of λ impacts also the optimal level of backward protection. Therefore,

we also re-consider the comparative statics of µ∗.

Proposition 2 When the elasticities ε1 and ε2 are constant, the optimal levels of for-

ward protection λ∗ and backward protection µ∗ are, respectively, weakly and strongly
25When λ > 0, the increase is even bigger because the increase in x2 raises the expected profit from

innovation 1, and hence x1. This additional effect is captured by the last term on the right-hand
side of (7).
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increasing in the degree of sequentiality s (both strictly increasing if λ∗ is positive).

In the proof of the proposition, it is shown that the optimal level of forward patent

protection is implicitly given by the following condition

λ∗ = (1− ε2)
ε1
1−ε1 − [1− S(1)] ε2

1−ε2
ε1
1−ε1 + S(1)ε2

. (10)

Expression (10) immediately implies that λ∗ < 1− ε2, confirming a conjecture made

above. The level of forward protection is positive when

ε1
1− ε1

> [1− S(1)]
ε2

1− ε2
. (11)

When this inequality is reversed, we have a corner solution λ∗ = 0. That is, the

optimal level of forward protection vanishes if the elasticity of the supply of the first

innovation is lower than that of the second one, and effective sequentiality S(1) is

low.

Besides re-affi rming the results of Proposition 1 for the case where λ is endogenous,

Proposition 2 shows that µ and λ are complementary policy tools: both should

increase as the degree of sequentiality s raises. We have already discussed the reasons

why µ should increase with s. As for λ, the intuition is simple. The forward protection

variable λ allows to internalize, at least partially, the positive externality that the

first innovator exerts on the second one. As s increases, this intertemporal externality

gets stronger, and thus we must raise λ to internalize it more.26

3 Robustness

In this section, we analyze several extensions of the baseline model. To begin with,

we consider alternative assumptions on who does the research. We then disentangle

the effects at work in the baseline model, which have been informally discussed above,

by developing models where some of the effects are muted. Finally, we consider the

case of an infinite sequence of innovations.

26When the first innovation production function is less elastic than the second one (ε1 < ε2), we
find a particularly interesting pattern. In this case, when s is close to 0 inequality (11) is reversed
and thus the optimal division of profit entails no forward protection (i.e., λ∗ = 0). As the degree of
sequentiality s increases, it is initially optimal to increase only backward protection µ. However, as
s increases further, the optimal level of forward protection λ becomes positive. At the same time, µ
should continue to increase. In other words, the first policy response to higher sequentiality should
be to increase backward protection only. Forward protection should be used as an additional policy
tool only for suffi ciently high degrees of sequentiality.
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3.1 Who does the research?

In the baseline model, we have assumed that there is free entry in each patent race.

We now relax this assumption.

3.1.1 Specialized research monopolists

Consider the case of specialized research monopolists, where only one firm (firm 1)

can invest in innovation 1, and another firm (firm 2) in innovation 2. The R&D

investment levels are then determined by the first-order conditions:27

F ′1(X1) [µ(1− s) + x2µλs] = 1 (12)

and

F ′2(X2)µ(1− λ)s = 1, (13)

rather than by the zero-profit conditions. Everything else equal, the equilibrium levels

of R&D investment X∗1 and X
∗
2 are lower: monopoly contracts R&D investment, just

as it contracts output. However, with constant elasticities the comparative statics

results are exactly the same as under free entry.28

Using consumer surplus as a welfare criterion,29 the optimality conditions are also

exactly the same as in the baseline model, i.e. (7) and (10). Therefore, Propositions

1 and 2 continue to hold.

However, the effective sequentiality index S(λ) is now lower than in the baseline

model, as equilibrium R&D investments are lower under monopoly than under free

entry. As a result, the impact of an increase in s on µ∗ is less pronounced.

3.1.2 Repeated innovation

Another possible case is when only firm 1 can invest in innovation 1 but firm 1 may

also compete with firm 2 in the search for innovation 2. This allows for the possibility

of repeated innovation by the “technological leader.”

As in the free-entry model, assume that the probability of success in the race for

innovation 2 depends on the aggregate R&D expenditure, and that the probability

that each firm i = 1, 2 gets the patent, conditional on the second innovation being

27Concavity of Fi(Xi) ensures second order conditions.
28With variable elasticities, the terms εi

1−εi
are replaced by εi

1−εi(1−ηi)
, where ηi is the elasticity of

εi with respect to Xi. The sign of the comparative statics effects does not change.
29When profits are included in the social welfare function, formulas are more involved but the

qualitative conclusions do not change.
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discovered, is equal to its share in the total R&D investment in innovation 2, X2iX2
.

The unconditional probability that firm i wins the second patent will therefore be

x2i = X2i
X2
F2(X2).

Under these assumptions, it can be shown that both firms invest in the second

innovation as long as λ < 1− ε2.30 Using consumer surplus as the welfare criterion,

the optimal level of backward protection is now given by:

µ∗(1 +D)

[(1− µ∗) (1 +D) + U ]
=

ε1
1− ε1

+ S(1)
ε2

1− ε2
+ S̃(λ)

ε1
1− ε1

ε2
1− ε2

, (14)

where

S̃(λ) =

[
1
2x
∗
21 (1− ε2 + λ) + λx∗22

]
s

(1− s) +
[
1
2x
∗
21 (1− ε2 + λ) + λx∗22

]
s
. (15)

A glance at the proof of Propositions 1 and 2 reveals that the only property of the

sequentiality index used in the proofs is that it is increasing in s. The Appendix

shows that S̃(λ) does increase with s, so Propositions 1 and 2 continue to hold.

3.2 Disentangling the effects

In Section 2, we have argued that along with the compound-elasticity effect, the

baseline model features also an intertemporal externality effect and a devaluation

effect. In this subsection, we analyze variants of the baseline model where these

additional effects are muted. This allows us to better identify the contribution of the

compound-elasticity effect to making µ∗ increase with s.

3.2.1 Internalizing the intertemporal externality

With sequential innovation, the first inventor exerts a positive dynamic externality

on the second one. As long as λ < 1, this externality is not fully internalized and

thus tends to create underinvestment in R&D —the more so, the greater the degree

of sequentiality s. One may wonder that the impact of s on the optimal level of

backward protection depends on the need to correct for this externality.

To eliminate this possible effect, let us assume that all the research is done by

one firm only, which can invest in both innovations. In this case, all externalities

30As in the free-entry model, setting λ ≥ 1 − ε2 is never optimal. If, nevertheless, inequality
λ ≥ 1−ε2 held, only the first inventor would invest in the race for the second innovation. The model
would then become equivalent to the one considered in subsection 3.2.1 below. Note that in our
model there is no Arrow effect, and thus as soon as λ > 0 firm 1 has a stronger incentive to invest
in the second innovation than firm 2, as the latter must share its profit with the rival.
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among innovators are fully internalized. Furthermore, the division of profit becomes

irrelevant, so the only relevant policy tool is the level of backward protection µ.

With monopoly in research, the innovator’s expected profit is:

π = x1µ(1− s)−X1 + x1 (x2µs−X2) . (16)

The first-order conditions for a maximum are:31

F ′1(X1) [µ(1− s) + x2µs−X2] = 1 (17)

and

F ′2(X2)µs = 1. (18)

It is easy to confirm that the equilibrium R&D investments are still increasing in µ.32

The optimal level of protection is now implicitly given by

µ∗(1 +D)

(1− µ∗) (1 +D) + U
=

ε1
1− ε1

+ S(1)
ε2

1− ε2
+ S(1− ε2)

ε1
1− ε1

ε2
1− ε2

. (19)

The formula is the same as in the baseline model with λ replaced by 1 − ε2, so

Proposition 1 still holds. The optimal level of backward protection, that is to say,

increases with the degree of sequentiality s even if the intertemporal externality effect

is eliminated.

It may be interesting to analyze whether eliminating the intertemporal externality

increases or decreases the magnitude of the impact of s on µ∗. With respect to the

baseline model, there are two opposing effects. On the one hand, λ is replaced by

1 − ε2 in the third term on the right-hand side of (7). Since λ < 1 − ε2, and S(λ)

increases with λ for given x∗2, it follows that removing the intertemporal externality

in itself magnifies the impact of s on µ∗.33 On the other hand, however, x∗2 is greater

with free-entry in R&D, and the effective sequentiality index increases with x∗2. In the

31As before, the second order conditions are easily verified.
32To be precise, the elasticities of the probabilities of success with respect to µ are

dx∗2
dµ

µ

x∗2
=

ε2
1− ε2

,

just as in the baseline model case, and

dx∗1
dµ

µ

x∗1
=

ε1
1− ε1

[1 + S(1)(1− ε2)] .

33The intuitive reason for this is that when the intertemporal externality is fully internalized, a
one percent increase in µ translates into a bigger percentage increase in the level of innovation. In
other words, the key factor when the externality is internalized is not that the R&D investments
increase but that they respond more strongly to an increase in the level of patent protection.
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example pictured in Figure 2 below, this latter effect prevails, and thus the optimal

level of backward protection is lower with a unique research monopolist than in the

baseline model.34

3.2.2 Re-normalizing the value of innovations

In the baseline model, we have parametrized the degree of sequentiality s in such a

way that the ex-post value of the two innovations is constant as s varies. However,

the aggregate ex-ante value, which is proportional to (1−s)x1+sx1x2, decreases with

s, as the second innovation is achieved with a lower probability than the first one.

Thus, when we increase s the expected payoffs (both social and private) decrease.

This may affect the way in which µ∗ changes with s.

To eliminate this devaluation effect, we adjust the payoffs from the innovations

by a factor v that increases with s in such a way that the ex-ante value

V = v [(1− s)x1 + sx1x2] (20)

stays constant. This requires that:35

dv

ds
=

(1− x2) v
(1− s) + sx2

> 0. (21)

In itself, the size of the innovations does not affect our optimality conditions (7)

and (10). Thus, this re-normalization does not change Propositions 1 and 2. However,

there is also an indirect effect: the effective sequentiality index S(λ) increases with

x∗2, and x
∗
2 increases with the size of innovations. As a result, the re-normalization

raises the optimal level of backward protection µ∗ for s > 0. In other words, the

positive effect of s on µ∗ is amplified.

3.2.3 Quantifying the effects

Figure 2 illustrates the effects discussed so far and provides a quantitative assessment

of their magnitude. The figure shows the optimal level of backward protection µ∗ as

a function of the degree of sequentiality s, assuming (when relevant) that forward

protection is set to the optimal level λ∗. Optimal backward protection is lowest with

34With respect to the case of specialized research monopolists, however, µ∗ is definitely higher
with a single monopolist, because R&D investments are higher.
35Since the re-normalization depends on the equilibrium R&D investments, it is specific to each

variant of the model.
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Figure 2: The optimal level of backward protection µ∗ as a function of the degree of sequen-
tiality s. Starting from below, the four curves represent, respectively, the case of specialized
research monopolists (blue), the case of a single monopolist (red dotted), the baseline model
(black), and the case where the value of the innovation is re-normalized (green dashed).
The figure representes the case of iso-elastic production functions with ε1 = ε2 = 1

2 and
γ1 = γ2 = 1.

specialized research monopolists and highest under free entry, when the devaluation

effect is eliminated. In all cases, however, µ∗ increases with s.36

Figure 2 provides also an illustration of the magnitude of the effects uncovered

in this paper. For the example considered, in the baseline model the optimal level

of backward protection increases from µ∗ = 0.529 with s = 0.4 to µ∗ = 0.578 with

s = 0.6. To get a sense of the magnitude of the change, with r = 5% the implied

optimal patent length would increase from around 15 years to 17 years and 3 months.

Comparing the extreme cases s = 0 and s = 1, the optimal patent length would

double, from 14 to 28 years.

3.3 Infinite sequence of innovations

The baseline model considers a sequence of two innovations, as in the pioneering

paper of Green and Scotchmer (1995). In this subsection, we show that our results

extend also to models with an infinite sequence of innovations, as in O’Donoghue,

36The Mathematica file used to produce Figure 2 is available from the authors upon request.
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Scotchmer and Thisse (1997), Hunt (2004).

For reasons of tractability, we assume stationarity, as nearly all models with an

infinite sequence of innovations do. Time t is continuous but is divided into periods of

constant length L. The length of the period represents the time lag between successive

innovations. In each period τ , innovative firms make an aggregate investment Xτ

and obtain innovation τ with probability xτ = F (Xτ ). The innovation production

function is assumed to be time invariant so as to guarantee stationarity. For the same

reason, we assume that the profits generated by the innovations are stationary.

As in the two-stage model, sequentiality means not only that innovation τ + 1

comes after innovation τ but also, and most importantly, that the former is enabled

by the latter. Specifically, we assume that if innovation τ is achieved, then the

innovation process can continue in period τ+1. If, on the other hand, innovation τ is

not achieved in period τ , then the innovative process stops forever. The analysis can

be easily extended to the case where failure in period t stops the innovative process

only with a certain probability. However, as forcefully argued by Bessen and Maskin

(2009), the assumption that this probability is positive is necessary for the model to

be properly sequential.37

We now normalize to r the perpetual flow of profit generated by each innovation

under full patent protection. With patent protection set at level µ, the flow of profit

is then rµ and its present value, as of the beginning of period τ , is µ. In keeping with

the baseline model, we assume that successive innovators do not compete with each

other, so past innovators suffer no profit erosion as new innovations arrive.

In this framework, forward protection can be captured by assuming that innovator

τ is entitled to a share λ of the profits from innovation τ+1. Symmetrically, however,

innovator τ must leave to innovator τ − 1 a share λ of the profits from innovation τ .

Because of a front-loading of profits effect (see Segal and Whinston, 2007), it is easy

to see that the optimal level of forward protection is nil. In what follows, we shall

therefore assume that λ = 0.

In this new framework, where all innovations are of the same size, we parametrize

the degree of sequentiality by the interest rate r: the higher r, the lower the degree

of sequentiality. This makes intuitive sense, as the discount rate determines the value

of future innovations relative to the current one: the more heavily discounted the

37A model where the innovation process would continue even in case of failure would in fact be
equivalent to one with isolated innovations.
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future payoffs, the lower their value relative to the current payoffs.

3.3.1 Equilibrium

With λ = 0, the expected profit from innovation τ is:

πτ = xτµ−Xτ . (22)

Assuming free entry, the equilibrium R&D investment in each period τ , x∗, is then

given by the zero-profit condition πτ = 0, or

F (Xτ )µ = Xτ .
38 (23)

3.3.2 Welfare

Denoting by δ ≡ e−rL the period discount factor, and exploiting the zero-profit

condition, social welfare can be recursively expressed as

W = x∗ [(1− µ)(1 +D) + U ] + x∗δW, (24)

where the sequentiality assumption discussed above is captured by the fact that

the continuation value δW is obtained with probability x∗, i.e., only if the current

inovation is achieved. Rearranging terms, the above expression can be rewritten as

W =
x∗

1− δx∗ [(1− µ)(1 +D) + U ] . (25)

Proceeding as in the two-period model, one finds that the optimal level of back-

ward protection is now implicitly given by condition

µ∗(1 +D)

(1− µ∗) (1 +D) + U
=

ε

1− ε + S̄(r)
ε

1− ε (26)

where

S̄(r) ≡ δx∗

1− δx∗ > 0 (27)

is the index of effective sequentiality for this model. The index is positive, implying

that the optimal level of protection is higher than in the case of isolated innovations.

Furthermore, the index S̄(r) is an increasing function of δ, and hence a decreasing

function of r. This implies that the level of protection increases with the degree of

sequentiality, even in a model with an infinite sequence of innovations.
38From this, one can immediately derive the model’s comparative statics:

dx∗

dµ

µ

x∗
=

ε

1− ε > 0.

Similar results would hold under monopoly in research.
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4 Complementary innovations

In this section, we consider the case where two complementary innovations can be

achieved independently of each other. Accordingly, R&D investments are taken to

be simultaneous rather then sequential.

4.1 Model assumptions

As in the sequential case, we normalize to 1 the aggregate profit from the two inno-

vations under full patent protection, and we still denote by U and D the associated

consumer surplus and deadweight losses. We now assume that a share c of the payoffs

is obtained only if both innovations are achieved. Of the remaining share 1 − c, a

fraction β1 is the stand-alone value of innovation 1 and the complementary fraction

β2 = 1 − β1 that of innovation 2. The parameter c is our measure of the degree of

complementarity. When c = 1, innovations are strictly complementary; when instead

c = 0, innovations are independent.

Unlike the sequential case, innovations can now be fully symmetric. This is so, in

particular, if β1 = β2 = 1
2 and F1(X1) ≡ F2(X2).

Consistently with the case of sequential innovation, we assume that each innovator

gets the full stand-alone profit, i.e., β1(1 − c)µ for innovator 1 and β2(1 − c)µ for

innovator 2. Furthermore, innovator 1 gets a share λ1 of the “common”profit cµ,

and innovator 2 the remaining share λ2 = 1 − λ1. The expected profits from each

innovation therefore are:

πi = µβi(1− c)xi + λiµcxixj −Xi (28)

With free entry in research, these expected profits must vanish.

4.2 Equilibrium and comparative statics

For any given patent policy (µ, λi), the zero-profit conditions π1 = π2 = 0 determine

the level of R&D investments, X∗i , and the equilibrium probabilities of success, x∗i .

The impact of patent policy on the equilibrium R&D investments can be found by

implicit differentiation of the equilibrium conditions (28).

Lemma 2 Both X∗1 and X
∗
2 increase with the level of patent protection µ provided

that

Ω ≡ (1− εi)(1− εj)− εiεjCi
(
λj
βj

)
Cj

(
λi
βi

)
> 0, (29)
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where

Ci

(
λj
βj

)
=

λj
βj
cx∗i

(1− c) +
λj
βj
cx∗i

. (30)

The index of effective complementarity Ci
(
λj
βj

)
is analogous to the indexes of

effective sequentiality encountered in sections 2 and 3. It ranges from 0 when c = 0

to 1 when c = 1. However, differently from c, which is a purely exogenous measure

of complementarity, the variables Ci
(
λj
βj

)
reflect also the equilibrium level of R&D

investments and the division of profit among the innovators.

Condition Ω > 0 may be viewed as a “stability” condition that ensures that

firms do not get trapped in a zero-investment equilibrium in which investment in

innovation i vanishes for fear that innovation j may not be achieved, and vice versa.

The condition is always satisfied if the degree of complementarity is not too high.39

As for the division of profit λi, we have:

Lemma 3 As long as λi is not too large, shifting profit from innovator j to innovator

i increases x∗i and decreases x
∗
j .

When λi is already very large (and thus λj very low), however, a further increase in

λi may stifle both innovations. This effect is similar to the effect of increasing forward

protection with sequential innovation and has the same intuitive explanation.

4.3 Optimal policy

Let us now turn to policy. Again, the policymaker’s objective is to maximize the

expected discounted sum of consumer surplus and profit. Under free entry, expected

profits vanish and thus social welfare equals the expected consumer surplus from the

innovations:

W = [(1− µ)(1 +D) + U ] [β1(1− c)x∗1 + β2(1− c)x∗2 + cx∗1x
∗
2]. (31)

4.3.1 Overall protection

We start from the optimal choice of patent protection µ.

39When condition (29) fails, positive R&D investments may still be obtained if one innovation is
targeted after the other in a pre-specified order, as in Biagi and Denicolò (2014). However, the model
would then effectively become one of sequential innovations.
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Proposition 3 For any given division of profit λi, the optimal level of patent protec-

tion µ∗ is higher when innovation is strictly complementary (c = 1) than in the case

of independent innovations (c = 0). If innovations are symmetric and the elasticities

εi are constant, µ∗ is an increasing function of the degree of complementarity, c.

In the proof of the proposition, it is shown that the optimal level of protection is

implicitly given by the following condition:

µ∗(1 +D)

(1− µ∗) (1 +D) + U
=

2∑
i=1
j 6=i

Ci

{
1− εj

[
1− Cj

(
λi
βi

)]}
(Ci + Cj − CiCj) Ω

εi, (32)

where Ci =
cx∗i

βj(1−c)+cx∗i
≡ Ci

(
1
βj

)
.

As in the sequential case, the positive effect of c on the optimal level of patent

protection is due to the fact that complementarity raises the effective elasticity of

supply of inventions. This can be seen most clearly in the symmetric case. Setting

λi = 1
2 ,
40 condition (32) reduces to:

µ∗(1 +D)

(1− µ∗) (1 +D) + U
=

ε(1 + C)

1− ε(1 + C)
, (33)

where

C ≡ cx∗

(1− c) + cx∗
. (34)

This shows that the effective elasticity is now ε(1 + C) rather than ε —yet another

instance of the compound-elasticity effect. The underlying intuition is similar to that

discussed above for the case of sequential innovation.

The complementarity indexes Ci are increasing functions of c and x∗i . If the

equilibrium R&D investments were independent of c, the comparative statics would

then follow immediately. In fact, however, an increase in c reduces both investments

X∗i , and hence both probabilities x
∗
i . The reason for this is that when c increases,

a greater share of the value of the innovations is obtained with a lower probability.

(This effect is similar to the devaluation effect that arises with sequential innovation.)

The fall in x∗i reduces the indexes of effective complementarity, countering the direct

positive effect of the increase in c. The proposition provides conditions under which

the direct effect prevails.

40Setting λi = 1
2
is indeed optimal in the symmetric case. This is obvious but can also be verified

formally from condition (35) below.
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4.3.2 The division of profit

Finally, we turn to the issue of the division of profit. We have:

Proposition 4 If the elasticities εi are constant, innovator i’s optimal share of the

“common”profit cµ is an increasing function of εi and a decreasing function of βi.

In the proof of the proposition, it is shown that the optimal division of profit is

implicitly given by the following condition:41

λ∗i =
εi − εj + εjCj
εiCi + εjCj

. (35)

Intuitively, λ∗i increases with εi because a higher elasticity means that rewarding

innovator i becomes a more effective means for stimulating innovation. An increase

in βi, on the other hand, reduces the need to reward innovator i with a share of the

“common”profit because the stand-alone reward in itself is higher.

5 Conclusion

In this paper, we have analyzed the compound-elasticity effect that arises when in-

novation is sequential or complementary: in these cases, the effective elasticity of the

supply of inventions is higher than for isolated innovations. A higher elasticity trans-

lates into a higher effectiveness of patent protection in stimulating R&D, and hence

into a higher optimal level of protection. The compound-elasticity effect is robust: it

operates in many different circumstances and does not depend on the specificities of

the model used for the analysis.

In this paper, we have modelled patent policy in a highly stylized way. Accord-

ingly, our analysis does not aim to make specific proposals for policy reforms. Its

aim is, more modestly, to deliver a message of caution. The previous literature has

highlighted various reasons why sequentiality and complementarity may raise the so-

cial costs of patent protection. This has created a conventional wisdom that patent

protection should be weakened as the technology becomes more complex. This paper,

41 It may be interesting to contrast (35) with the rule derived by Shapiro (2007), which is(
λi
λj

)2
=

dx∗i
dλi

λi
x∗i

dx∗j
dλj

λj
x∗j

.

Shapiro’s rule is obtained by maximizing the aggregate expected profit rather than social welfare
and is perhaps more opaque than (35) but has the same general flavour.
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on the other hand, has shown that sequentiality and complementarity systematically

raise the social benefits of patent protection. This countervailing effect is of first-

order magnitude, suggesting more caution in drawing general conclusions about the

impact of technological complexity on the optimal level of patent protection.

To derive more concrete implications for policy, the insights from our analysis

must be incorporated into more highly structured models that account for specific

institutional aspects of the patent system. This is an important task for future re-

search. It would also be interesting to compare the size of the positive effect of greater

technological complexity uncovered in this paper to the negative effects highlighted

in the previous literature. This also would require a more comprehensive model and

is left for future work.

26



References

[1] Arrow, K. J. (1972). Economic welfare and the allocation of resources for inven-

tion, in Readings in industrial economics (pp. 219-236). Palgrave, London.

[2] Bessen, J. and E. Maskin (2009). Sequential innovations, patents, and imitation,

RAND Journal of Economics, 40, 611-635.

[3] Biagi, A., and V. Denicolò (2014). Timing of discovery and the division of profit

with complementary innovations, Journal of Economics & Management Strategy,

23, 89-102.

[4] Chatterjee, K., and R. Evans (2004). Rivals’search for buried treasure: compe-

tition and duplication in R&D. RAND Journal of Economics, 160-183.

[5] Choi, J. P. and H. Gerlach (2018). A model of patent trolls, International Eco-

nomic Review, 59, 2065-2106.

[6] Clark, D. and K. Konrad (2008). Fragmented property rights and incentives for

R&D, Management Science, 54, 969-981.

[7] Cohen, W. M. (2010). Fifty years of empirical studies of innovative activity and

performance, in Handbook of the Economics of Innovation, Vol. 1, Amsterdam,

North-Holland, 129-213.

[8] Denicolò, V. (2000). Two-stage patent races and patent policy, RAND Journal

of Economics, 31, 488-501.

[9] Denicolò, V. (2007). Do patents overcompensate innovators?, Economic Policy,

22, 680-729.

[10] Denicolò, V., and L. A. Franzoni (2003). The contract theory of patents. Inter-

national Review of Law and Economics, 23(4), 365-380.

[11] Denicolò, V. and P. Zanchettin (2002). How should forward patent protection

be provided?, International Journal of Industrial Organization, 20, 801-827.

[12] Green, J. and S. Scotchmer (1995). On the division of profit with sequential

innovation, RAND Journal of Economics, 26, 20-33.

27



[13] Farrell, J. and C. Shapiro (2008). How strong are weak patents?, American

Economic Review, 98, 1347-1369.

[14] Fershtman, C. and A. Rubinstein (1997). A simple model of equilibrium in search

procedures. Journal of Economic Theory, 72(2), 432-441.

[15] Fershtman, C. and S. Markovich (2010). Patents, imitation and licensing in an

asymmetric dynamic R&D race, International Journal of Industrial Organiza-

tion, 28, 113-126.

[16] Galasso, A. and M. Shankerman (2015). Patents and cumulative innovation:

casual evidence from the courts, Quarterly Journal of Economics, 130, 317-369.

[17] Gilbert, R. and M. Katz (2011). Effi cient division of profits from complementary

innovations, International Journal of Industrial Organization, 29, 443-454.

[18] Gilbert, R. and C. Shapiro (1990). Optimal patent breadth and length, RAND

Journal of Economics, 21, 106-112.

[19] Griliches, Z. (1990). Patent statistics as economic indicators: a survey, Journal

of Economic Literature, 28, 1661—707.

[20] Guo, J.Q. and P.K. Trivedi (2002). Flexible parametric models for long-tailed

patent count distributions, Oxford Bulletin of Economics and Statistics, 64, 63—

82.

[21] Heller, M. and R. Eisenberg (1998). Can patents deter innovation? The anti-

commons in biomedical research, Science, 280, 698-701.

[22] Hopenhayn, H., Llobet, G. and M. Mitchell (2006). Rewarding sequential innova-

tors: prizes, patents, and buyouts, Journal of Political Economy, 114, 1041-1068.

[23] Hunt, R. (2004). Patentability, industry structure, and innovation, Journal of

Industrial Economics, 52, 401-425.

[24] Lerner, J. and J. Tirole (2004). Effi cient patent pools, American Economic Re-

view, 94, 691-711.

[25] Matutes, C., Regibeau, P., and K. Rockett (1996). Optimal patent design and

the diffusion of innovations, RAND Journal of Economics, 27, 60-83.

28



[26] Mitchell, M. and Y. Zhang (2015). Shared patent rights and technological

progress, International Economic Review, 56, 95-132.

[27] Nordhaus, W. (1969). Invention, growth and welfare, Cambridge, Mass., MIT

Press.

[28] O’Donoghue, T. (1998). A patentability requirement for sequential innovation,

RAND Journal of Economics, 29, 654-679.

[29] O’Donoghue, T., Scotchmer, S., and J. F. Thisse (1998). Patent breadth, patent

life, and the pace of technological progress. Journal of Economics & Management

Strategy, 7, 1-32.

[30] Parra, A. (2019). Sequential innovation, patent policy, and the dynamics of the

replacement effect, RAND Journal of Economics, 50, 568-590.

[31] Ross, S. M. (1983). Introduction to Stochastic Dynamic Programming, Academic

Press, New York.

[32] Scotchmer, S. (1996). Protecting early innovators: should second-generation

products be patentable? RAND Journal of Economics, 27, 322-331.

[33] Schmidt, K. (2014), Complementary patents and market structure, Journal of

Economics & Management Strategy, 23, 68-88.

[34] Segal, I., and M. Whinston,(2007). Antitrust in innovative industries, American

Economic Review, 97, 1703-1730.

[35] Shapiro, C. (2007), Patent reform: Aligning reward and contribution, Innovation

Policy and the Economy, 8, 111-156.

29



Appendix

Proofs omitted in the text follow.

Proof of Lemma 1. By implicit differentiation of (5) w.r.t µ we obtain:

dx∗2
dµ

µ

x∗2
=

ε2
1− ε2

> 0. (A1)

As for the impact of µ on x∗1, differentiating (4) and (5) we have

dx∗1
dµ

µ

x∗1
=

ε1
1− ε1

+ S(λ)
ε1

1− ε1
ε2

1− ε2
> 0 (A2)

where S(λ) is given by expression (8) in the main text. The two terms on the right-

had side correspond to the direct and indirect effect described in the main text,

respectively.

Turning to the comparative statics with respect to λ, for the second innovation

we have:
dx∗2
dλ

(1− λ)

x∗2
= − ε2

1− ε2
< 0. (A3)

As for the first innovation:

dx∗1
dλ

λ

x∗1
= S(λ)

ε1
1− ε1

1− ε2 − λ
(1− λ) (1− ε2)

(A4)

This is positive if and only if λ < 1− ε2. �

Proof of Proposition 1. To begin with, we derive formula (7) in the main text.

Using the zero-profit conditions (4) and (5), social welfare (6) reduces to:

W = [(1− µ)(1 +D) + U ] [(1− s)x∗1 + sx∗1x
∗
2]. (A5)

As noted, social welfare coincides with expected consumer surplus, as the profits from

the innovations are entirely dissipated in the patent races.

The policymaker then maximizes (A5), keeping in mind that x∗1 and x
∗
2 are given

by (4) and (5). To derive condition (7), we first rewrite (A5) as

W = V (µ)× Ξ(µ, λ), (A6)

where

V (µ) ≡ [1 + U + (1− µ)D]
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depends directly on µ, and

Ξ(µ, λ) ≡ [(1− s)x∗1 + sx∗1x
∗
2]

depends on µ and λ only indirectly, through x∗1 and x
∗
2. Assuming an interior solution,

the first order condition can then be written as:

−dV
dµ

µ

V
=
dΞ

dµ

µ

Ξ
.

To proceed, we calculate:

dV

dµ

µ

V
= − µ∗(1 +D)

(1− µ∗) (1 +D) + U

and
dΞ

dµ

µ

Ξ
=
dx∗1
dµ

µ

x∗1
+ S

dx∗2
dµ

µ

x∗2
.

Using (A1) and (A2), condition (7), i.e.,

µ∗(1 +D)

(1− µ∗) (1 +D) + U
=

ε1
1− ε1

+ S(1)
ε2

1− ε2
+ S(λ)

ε1
1− ε1

ε2
1− ε2

, (7)

follows immediately.

The first part of the proposition follows immediately from (7). To see why, notice

first of all that since the left-hand side of (7) is increasing in µ, the solution µ∗ is an

increasing function of the right-hand side. Next, notice that when s = 0 both S(1)

and S(λ) vanish, and thus (7) reduces to:

µ∗(1 +D)

(1− µ∗)(1 +D) + U
=

ε1
1− ε1

.

When s is positive, on the other hand, two extra terms appear on the right-hand

side of (7), and since they are both positive, they tend to increase µ∗. On the other

hand, however, when s is positive X1 is lower than when s = 0 (this follows from

condition (4)). This is irrelevant if ε1 is constant, but in general the fall in X1 may

affect the elasticity ε1. The condition that ε1 is non-increasing in X1 guarantees that

this additional effect is non negative.

To prove the second part of the proposition, since the left hand side of (7) is

increasing in µ, we just need to prove that the right-hand side is increasing in s.

To this end, it suffi ces to prove that S(λ) is increasing in s for any λ ∈ [0, 1]. We

calculate:
dS(λ)

ds
=
λs(1− s)dx

∗
2

ds + λx∗2

[(1− s) + λsx∗2]
2 .
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By implicit differentiation of (5) we get

dx∗2
ds

s

x∗2
=

ε2
1− ε2

,

and plugging this into the preceding expression we finally have:

dS(λ)

ds
= λ

ε2
1−ε2 (1− s) + 1

[(1− s) + λsx∗2]
2x
∗
2 ≥ 0

where the inequality is strict for λ > 0. �

Proof of Proposition 2. To begin with, we derive formula (10) in the main text.

Proceeding as in the proof of Proposition 1, notice that λ enters (A6) only through

the second term, Ξ(µ, λ). Assuming an interior solution, the first order condition can

be written as:
dΞ

dλ

λ

Ξ
= 0.

We then calculate:

dΞ

dλ

λ

Ξ
=
dx∗1
dλ

λ

x∗1
+ S(1)

dx∗2
dλ

1− λ
x∗2

λ

1− λ.

Using (A3) and (A4), condition (10) of the main text follows easily.

Next, we prove that when λ∗ is positive it is an increasing function of s. When

λ∗ > 0, condition (10) holds and by implicit differentiation we get

∂λ∗

∂S(1)
=

ε22

(1− ε1)
[

ε1
1−ε1 + S(1)ε2

]2 > 0,

which means that λ∗ is an increasing function of the social sequentiality index S(1).

But we already know from the proof of Proposition 1 that S(1) increases with the

degree of sequentiality, s. This implies that when the solution is interior, the optimal

degree of forward protection is a strictly increasing function of s. In turn, this implies

that the solution λ∗ is, overall, weakly increasing in s.

Finally, we show that µ∗ is increasing in s when λ is set at the optimal level λ∗.

When inequality (12) is reversed, the optimal level of forward protection λ∗ is nil

and hence does not depend on s. The result then follows directly from Proposition

1. Consider then the case in which inequality (12) holds and so we have an interior

solution for λ∗. We have just shown that in this case λ∗ increases with s. To proceed,

we must establish how changes in λ affect µ∗. We prove the following result:

Result A.1. If
ε1

1− ε1
< (1− S(1))2

ε2
1− ε2

(A7)
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then the optimal level of backward protection µ∗ decreases with the level of forward

protection λ. If instead inequality (A7) is reversed, then for any 0 < s < 1 there

exists a critical value of λ , λ̂ ∈ (0, 1), implicitly given by

λ̂ = 1− ε2 −
[

(1− s) + λsx∗2
(1− s) + sx∗2

]2 ε2
ε1
1−ε1

, (A8)

such that the optimal level of backward protection µ∗ increases with the level of forward

protection λ for λ < λ̂, while it decreases with λ for λ > λ̂.

Proof of Result A.1. As the left-hand side of (7) increases with µ, dµ
∗

dλ has the same

sign as the derivative of the right-hand side of (7). That is:

dµ∗

dλ
∝ dS(λ)

dλ

ε1
1− ε1

ε2
1− ε2

+
dS

dλ

ε2
1− ε2

,

where the symbol ∝ means “has the same sign as.”Next, notice that

dS(λ)

dλ
=

s(1− s)
[(1− s) + sλx∗2]

2

(
x∗2 + λ

dx∗2
dλ

)
;
dS(1)

dλ
=

s(1− s)
[(1− s) + sλx∗2]

2

dx∗2
dλ

Using the last two expressions and (A3), we then get:

dµ∗

dλ
∝ s(1− s)x∗2

ε2
1− ε2

1

[(1− s) + λsx∗2]
2×

×
{

ε1
1− ε1

(
1− λ

1− λ
ε2

1− ε2

)
− [(1− s) + λsx∗2]

2

[(1− s) + sx∗2]
2

1

(1− λ)

ε2
1− ε2

}
,

which implies that dµ∗

dλ has the same sign as the term inside curly brackets. It is

immediate to verify that this term is decreasing in λ and vanishes when condition

(A8) holds. Furthermore, at λ = 0 the derivative dµ∗

dλ has the same sign as

ε1
1− ε1

− (1− s)2

[(1− s) + sx∗2]
2

ε2
1− ε2

or, equivalently, as
ε1

1− ε1
− [1− S(1)]2

ε2
1− ε2

.

Therefore, if inequality (A7) holds, then the derivative dµ∗

dλ is negative for any λ ≥ 0.

If instead inequality (A6) is reversed, then the derivative is positive for λ < λ̂ and

negative for λ > λ̂. �

Condition (12) is however reversed when inequality (A7) holds. Result A.1 then

leaves us with λ∗ < λ̂ as a suffi cient condition for the proposition to be true. To
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show that the inequality λ∗ ≤ λ̂ indeed holds true, notice that condition (10) can

equivalently be rewritten as[
(1− λ∗)

ε2
− 1

]
ε1

1− ε1
=

(1− s) + λsx∗2
(1− s) + sx∗2

whereas condition (A8) may be rewritten as
(

1− λ̂
)

ε2
− 1

 ε1
1− ε1

=

[
(1− s) + λsx∗2
(1− s) + sx∗2

]2
.

Since
(1− s) + λ∗sx∗2
(1− s) + sx∗2

≤ 1,

it is clear that (1− λ∗) ≥ (1− λ̂) and hence λ∗ ≤ λ̂. This completes the proof of the

proposition. �

Omitted details for subsection 3.1.2. Denoting by x2j ≡ X2j
X2
x2 firm j’s prob-

ability of success in the second patent race, the expected profits of the two firms

are:

π1 = x1 [µ(1− s) + x21µs+ x22µλs−X21]−X1

π2 = x1 [x22µ(1− λ)s−X22] .

Since R&D investments are chosen sequentially, to ensure subgame perfection we

solve the model backwardly. In the second stage, the firms’best response functions

are implicitly defined by the first order conditions:[
F ′2(X2)

X21
(X21+X22)

+ F2(X2)
X22

(X21+X22)
2

]
µs+

[
F ′2(X2)

X22
(X21+X22)

− F2(X2) X22
(X21+X22)

2

]
λµs = 1[

F ′2(X2)
X22

(X21+X22)
+ F2(X2)

X21
(X21+X22)

2

]
µs(1− λ) = 1.

The solution is independent of x1 as firms invest in the second stage only if the

first innovation has been achieved. Thus, the above conditions determine the R&D

investments X21, X22 and X2, and hence the associated probabilities x21, x22 and x2.

In the first stage, X1 and x1 will be determined by the first order condition:42

F ′1(X1)
[
µ(1− s) + X21µs+X22λµs

(X21+X22)
−X21

]
= 1.

42Notice that, whilst x21 > 0 for any admissible value of λ, x∗22 > 0 requires λ < 1 − ε2. Thus,
when forward protecion becomes too strong, firm 2 stops investing in the second innovation and firm
1 enjoys complete monopoly in research.
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With constant elasticities, i.e., xi = γiX
εi
i , the model can be explicitly solved, yield-

ing:43

x∗2 =

[
1

2
(1− λ+ ε2)µs

] ε2
1−ε2

x∗22 =
1− λ− ε2

2 (1− λ) (1− ε2)

[
1

2
(1− λ+ ε2)µs

] ε2
1−ε2

(36)

x∗21 =
(1− λ)− (1− 2λ)ε2

2 (1− λ) (1− ε2)

[
1

2
(1− λ+ ε2)µs

] ε2
1−ε2

(37)

x∗1 = ε
ε1

1−ε1
1

[
µ(1− s) +

1

2
x∗21 (1− ε2 + λ)µs+ x∗22µλs

] ε1
1−ε1

The derivation of (15) follows the same steps as in the proof of Proposition 1. To

show that S̃(λ) increases with s, it suffi ces to prove that x∗22 and x
∗
21 are increasing

in s. This is immediate from (A.8) and (A.9). �

Proof of Lemma 2. By implicit differentiation of the system of the equilibrium

conditions we have:

dx∗i
dµ

µ

x∗i
= εi

1− εj
[
1− Cj

(
λi
βi

)]
(1− εi)(1− εj)− εiεjCi

(
λj
βj

)
Cj

(
λi
βi

) > 0.� (A10)

Proof of Lemma 3. The result follows by implicit differentiation of the system of

the equilibrium conditions, which yields:

dx∗i
dλi

λi
x∗i

=
(1− εj)Cj

(
λi
βi

)
− λi

λj
Ci

(
λj
βj

)
Cj

(
λi
βi

)
εj

(1− εi) (1− εj)− εiεjCi
(
λj
βj

)
Cj

(
λi
βi

) εi. (A10’)

The derivative is positive as long as

λi <
(1− εj)λj
Ci

(
λj
βj

)
εj
.�

Proof of Proposition 3. Proceeding as in the proof of Proposition 1, we first re-

write social welfare (31) as

W = V (µ)× Ξ(µ, λ),

where

V (µ) ≡ [1 + U + (1− µ)D]

43To save on notation, we set γi = 1.
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as before, but now

Ξ(µ, λ) ≡ β1(1− c)x∗1 + β2(1− c)x∗2 + cx∗1x
∗
2.

Assuming an interior solution, the optimal level of backward protection is implic-

itly given by the condition

µ∗(1 +D)

(1− µ∗) (1 +D) + U
=

2∑
i=1
j 6=i

Ci
Ci + Cj − CiCj

dx∗i
dµ

µ

x∗i
.

Plugging (A10) into this expression, one obtains condition (32) in the main text.

To prove the first part of the proposition, note that when c = 0 condition (32)

reduces to
µ∗(1 +D)

(1− µ∗) (1 +D) + U
=

2∑
i=1
j 6=i

βix
∗
i

βix
∗
i + βjx

∗
j

εi
1− εi

. (A11)

The right-hand side is a weighted average of the elasticity terms εi
1−εi for the two

innovations, with weights reflecting their respective stand-alone values.

When c = 1, on the other hand, (32) becomes

µ∗(1 +D)

(1− µ∗) (1 +D) + U
=

2∑
i=1
j 6=i

εi
1− εi − εj

. (A12)

It is immediate to verify that the right-hand side of (A12) is greater than that of

(A11). Since the left-hand side is increasing in µ, it follows that µ∗ is greater when

c = 1.

Turning to the second part of the proposition, note that (33) implies that the sign

of dµ
∗

dc is equal to the sign of
dC
dc . We calculate:

dC

dc
=
x∗ + dx∗

dc c (1− c)
[(1− c) + cx∗]2

.

Thus, the sign of dCdc equals the sign of the numerator:

N(x∗(c), c) = x∗(c) +
dx∗

dc
c (1− c) ≡ N(c). (A13)

The derivative dx∗

dc can be found by implicitly differentiation of the equilirium condi-

tions (28). This yields:

dx∗

dc
= − ε

1− ε(1 + C)

x∗(1− x∗)
(1− c) + cx∗

< 0. (A14)
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To show that N(c) is positive, notice first that it is a continuous and differentiable

funcion of c on its domain [0, 1]. Furthermore, N(0) = x∗(0) and N(1) = x∗(1), which

are strictly positive values as condition (28) guarantees interior equilibria in R&D.

Thus, for N(c) to ever be negative there must exist at least two values of c, say 0

≤ c < c ≤ 1, such that N(c) = N(c) = 0, while dN(c)
dc < 0 and dN(c)

dc > 0. We prove

below that this can never be true. Specifically, we show that at any c such that

N(c) = 0, it must be dN(c)
dc < 0.

To show this, we first differentiate N(c) with respect to c:

dN(c)

dc
= 2(1− c)dx

∗

dc
+ c(1− c)d

2x∗

dc2
, (A15)

and we calculate

d2x∗

dc2
=
−ε
{[

(1− c)(1− 2x∗)− cx∗2
]
dx∗

dc + x∗(1− x∗)2
}

[1− ε(1 + C)] [(1− c) + cx∗]2
+

+
ε2x∗(1− x∗)

[1− ε(1 + C)]2 [(1− c) + cx∗]

dC

dc
. (A16)

We must evaluate the derivative dN(c)
dc at N(c) = 0. First of all, from (A14) we

obtain:

dx∗

dc

∣∣∣∣
N(c)=0

= − x∗

c(1− c) . (A17)

Next, noting that
ε

1− ε(1 + C)

∣∣∣∣
N(c)=0

=
(1− c) + cx∗

c(1− c)(1− x∗)

and that N(c) = 0 implies dC
dc = 0, from (A17) we obtain:

d2x∗

dc2

∣∣∣∣
N(c)=0

=
x∗
[
(1− c)(1− 2x∗)− cx∗2 − c(1− c) (1− x∗)2

]
c2(1− c)2(1− x∗) [(1− c) + cx∗]

(A18)

Finally, using (A17) and (A18), the derivative (A15) becomes:

dN(c)

dc

∣∣∣∣
N(c)=0

= −x
∗ [(1− c) + cx∗]

c (1− c) (1− x∗) < 0.

This implies that N(c) can never be negative for c ∈ [0, 1], completing the proof of

the proposition. �

Proof of Proposition 4. The first-order condition for social welfare maximization

is
dΞ

dλi

λi
Ξ

= 0,
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which may be rewritten as

2∑
i=1
j 6=i

Ci
Ci + Cj − CiCj

dx∗i
dλi

λi
x∗i

= 0,

or

C1
dx∗1
dλ1

λ1
x∗1

= −C2
dx∗2
dλ2

λ2
x∗2
.

Using (A10’), this condition becomes

ε1(1− ε2)− λC1ε1 = ε2(1− ε1)− (1− λ)C2ε2.

From this one easily gets

λ∗i =
εi − εj + εjCj
εiCi + εjCj

. (35)

Now, consider the impact on λ∗i of an increase in the elasticity εi. We have

dλ∗i
dεi

=
(εiCi + εjCj)− Ci (εi − εj + εjCj)

(εiCi + εjCj)
2

=
εjCj (1− C) + εjCi

(εiCi + εjCj)
2 > 0.

Next, consider the impact on λ∗i of an increase in the stand alone value of inno-

vation i, βi. Note that x
∗
i increases with βi, and that an increase in βi reduces βj on

a one-to-one basis. As a result, an increase in βi raises Ci and reduces Cj .

Differentiating (35), we have

dλ∗i
dβi

=
εj
dCj
dβi

(εiCi + εjCj)− (εi − εj + εjCj)
(
εi
dCi
dβi

+ εj
dCj
dβi

)
(εiCi + εjCj)

2 .

Rearranging terms we get

dλ∗i
dβi

= −
λ∗i εi

dCi
dβi
− λ∗jεj

dCj
dβi

(εiCi + εjCj)
< 0,

where the inequality follows from the fact that dCi
dβi

> 0 and dCj
dβi

< 0. �
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