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Abstract. Structural Health Monitoring (SHM) systems are adopted to acquire timely and continuous 

data on the state of civil structures, aerospace vehicles, and industrial machines, which deteriorate due 

to slow processes, such as corrosion and fatigue, and shock events, including natural and handmade 

disasters. The components of SHM systems are exposed themselves to deterioration after their 

installation; thereby, they might provide altered information to decision-makers. To account for this, 

Sensor Validation Tools (SVTs) have been developed to give insight into the actual condition of the 

SHM systems. In the last decade, researchers have exploited the Value of Information (VoI) from 

Bayesian decision theory to quantify the benefit of the information provided by an SHM system, 

implicitly assuming that it is working correctly when interrogated. The benefit of the information 

provided by SVTs on the state of an SHM system has never been investigated. This paper addresses 

this topic and extends the VoI framework to quantify the additional benefit brought by the information 

on the state of the SHM system to the decision problems the SHM is meant to support. Exemplary case 

studies are presented to demonstrate the application of the framework. 

 

Keywords: Value of Information, Bayesian decision theory, Structural Health Monitoring, data quality, 

sensor fault.  

 

1.  Introduction 

Civil structures, as well as aerospace vehicles and industrial machines, deteriorate in time, e.g., due to 

the effect of environmental factors, slow material degradation, and sudden damaging events. Structural 
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Health Monitoring (SHM) systems have been applied in the last few decades to several fields to provide 

timely health-condition evaluation and security warnings by identifying and tracking the evolution over 

time of so-called “damage-sensitive features”. These are parameters representative of the structural 

state, and their variations with respect to an initial reference condition provide an indication of damage. 

In general, synthetic damage indicators are used to quantify the variations of the damage sensitive 

features. They can be defined as functions of such features that might not have an intuitive physical 

interpretation, such as the T2 metric [1] and the Modal Assurance Criterion (MAC) [2]. Depending on 

the approach adopted for damage identification and on the available data, damage can be identified at 

different levels of refinement known as damage detection, damage localization, and damage 

quantification [3]. Damage detection provides a binary outcome related to the presence (or not) of 

damage, whereas localization and quantification also inform about the position of the damage and its 

severity, respectively. Novelty detection approaches with a binary outcome are often used for damage 

detection of civil structures such as bridges [1], historical monuments [4,5], and individual structural 

elements [2].  

Condition monitoring using SHM systems is generally based on the assumption that the data acquired 

from sensors contain reliable information about the health state of the structure. The prediction of 

response and performance of a civil structure must be referred to the entire system and not only to the 

structural elements. For a monitored structure, the system consists of the structure itself and the SHM 

system. In turn, an SHM system typically consists of three subsystems: a sensor apparatus, a data 

transmission module, and a health evaluation section [6]. Very frequently, the harsh environmental 

conditions in which civil and mechanical structures operate generate malfunctions in the sensing 

apparatus, which generally result in anomalies in the measured data [7]. Moreover, inner system 

malfunctions and interferences in the wireless transmissions employed in the most recent sensor 

networks can lead to data loss [8]. Such anomalies pose an important limitation for effective damage 

identification and, in some cases, can cause malfunctioning of the entire monitoring network [9]. 

As a matter of fact, inaccurate or missing data in the structural assessment and life-cycle 

management can lead to significant economic loss [10], as anomalous data may generate false alarms, 

resulting in unnecessary operational interruptions and structural maintenance, and missed detection, 

which may increase the probability of catastrophic accidents [6]. Promptly identifying recordings 

containing anomalous or incomplete data is thus an essential step in developing a successful monitoring 

system. 

Due to the broad palette of disturbing factors, several sensor fault types exist, each of them leading 

to a different effect on collected data. Concerning vibration-based SHM, Kullaa [11] categorized seven 

recurrent sensor fault types: bias, drift, gain, precision degradation, constant recording, constant 

recording with noise, and bottom noise. The first four types have been targeted as “soft” sensor faults 

since it could still be possible to retrieve structural information, while the last three are called “hard” 

sensor faults, for which the data does not carry any useful information. In the scenario where collected 

data is directly processed without assessing its quality, both soft and hard sensor faults may lead to 

severe malfunctioning of the monitoring systems. However, if sensor faults are detected, isolation and 

data reconstruction procedures could be implemented to limit the disservice. 

The importance of Sensor Validation Tools (SVTs) for the assessment of data quality was first 

recognized by Dunia et al. [12] in the field of chemical process monitoring. Friswell and Inman [13] 

studied this aspect a few years later for SHM applications. Since then, several researchers have proposed 

SVTs employing one-class classifiers and multivariate statistical analysis [6]. Specifically, the first 

category studies each sensor individually to understand whether the sensing apparatus is normal or 

faulty [14]. The second category is based on the correlations among the sensors of the network, thus 

identifying sensor faults by comparing the data collected by the different sensors that form the 

monitoring system [6,7,11,12,15–20]. Lately, machine learning has gained particular interest in the fault 

identification field [21–23]. It should be kept in mind that SVTs are inherently imperfect, as working 

sensors can be classified as faulty, and some data anomalies could not be recognized, leading to the 

aforementioned risks. Since SVTs generally have a cost and require a dedicated computational 

apparatus, which may dictate the selection of more expensive hardware to realize the sensor network, 

the real value of providing an SHM system with SVTs should be quantified. 

In addition to the possible malfunctioning of the monitoring network, a remaining issue in SHM 

applications is to convince owners and operators of what its “added-value” is and what its social and 
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economic benefits are. To this aim, the Value of Information (VoI) from Bayesian decision theory 

[24,25] has been the core of several studies oriented to evaluate the long-term economic benefit 

provided by an SHM system before it is adopted. The VoI is defined as the expected reduction in 

management costs associated with the acquisition of new information [26–28]. Application examples 

include emergency management following damaging events [29,30], the optimization of sensor 

deployment [31,32], and the definition of optimal maintenance and data collection strategies [33,34]. 

The interested reader is referred to Reference [35] for a recent state of the art on VoI.  

Information modeling is a critical task in VoI computations [36] since the VoI is evaluated in the so-

called Pre-Posterior analysis framework (as explained better in Section 2), i.e., before observing the 

“real” SHM outcome. Information types are typically classified as perfect information and imperfect 

information [24]. In the case of perfect information, which is an ideal situation, the state of the structure 

is known without any uncertainty. On the other hand, imperfect information reduces the uncertainty on 

the state of the structure but does not eliminate it. Common ways to model information in the VoI 

literature are by means of additive error [26,37] and likelihood functions of the damage-sensitive feature 

[38,39]. Imperfect information can be modeled employing either simplified [28] or sophisticated [40] 

simulation methods. Few authors have studied the effect of data quality on VoI. For instance, Ali et Al. 

[41] investigated the effect of introducing biases and dependences on the VoI. To the authors’ 

knowledge, the VoI relevant to the conditions of the SHM system itself has never been addressed.  

In this paper, the classical VoI framework is extended to include different states of the SHM system 

and quantify the added value of the information provided by an SVT. A key novelty of the proposed 

framework is an original formulation of the likelihood functions of the SHM outcome, in which the 

probability of observing an SHM outcome is not only conditioned on the state of the structure but also 

the state of the SHM system. Specifically, three “faulty” conditions of the SHM system are studied and 

compared to the “properly working” system. The effects of these faulty conditions on the damage 

indicator tracked during the monitoring process are modeled as three phenomena representative of the 

fault type classification identified by Kullaa [11]: missing information (representing “hard” fault types), 

noisy data (i.e., precision degradation), and drift (which is also representative of bias and gain in this 

framework). These effects are considered in a damage detection perspective, i.e., for SHM systems that 

only identify whether damage is present or not. The framework is general and can be applied to damage 

detection problems regardless of the specific damage-sensitive features and damage indicator selected 

for damage identification. As aforementioned, some widely used damage indicators, as well as damage-

sensitive features [42], do not have an intuitive physical interpretation. For instance, the T2 and the 

MAC are only meant to provide - in the most effective way - information about the variation of a damage 

sensitive feature. Nevertheless, damage indicators carry information about the state of the structure and 

are affected by the state of the SHM system, which may alter the SHM outcome and thus impact the 

decision process. 

Uncertainty in the SVT results is also accounted for to show that, in general, the adoption of an SVT 

enhances the overall benefit provided by an SHM system. Different case studies are undertaken to 

demonstrate the extended framework and to explore the effect of different sensor fault conditions on 

the VoI.  

The paper is structured as follows. After the Introduction, Section 2 presents the theoretical 

framework of the VoI for SHM systems, including both the classical Pre-Posterior analysis (Section 

2.1) and its extension to quantify the benefit of SVT-related information (Section 2.2). Section 3 

discusses a numerical case study to study the effect of two common sensor fault conditions (drift and 

noise) on the VoI. Then, in Section 4, a practical demonstration of the framework is shown using the 

data collected during a real experimental campaign, in which the absence of information is considered. 

Both in Sections 3 and 4, several sensitivity analyses that considers different application scenarios are 

carried out. Concluding remarks containing the most relevant findings are lastly reported. 

2.  Theoretical framework 

The VoI is defined in the realm of the Bayesian decision theory, which deals with the rational selection 

of actions in an uncertain environment [24,25]. According to the available information, different types 

of analyses can be carried out, i.e., the Prior analysis, the Posterior analysis, and the Pre-Posterior 

analysis. Henceforth, it is assumed that the source of information is an SHM system: the Prior 

information is carried out without information from the SHM system, using the prior knowledge of the 
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decision-maker; the Posterior analysis is carried out when the information is available; the Pre-Posterior 

analysis is carried out before collecting the new information. The Bayesian decision theory allows to 

handle decisions on actions (e.g., restrict traffic on a bridge or not) and about collecting new information 

(e.g., install an SHM system or not). The latter type of decision is based on the VoI, which is obtained 

by comparing the results of the Prior analysis with the results of the Pre-Posterior analysis. The classical 

Pre-Posterior analysis does not consider different states of an SHM system (e.g., working, or faulty 

sensors) nor the possibility that information about the state of the SHM system is collected. These issues 

are addressed in this section, where the framework of the VoI is first briefly presented in the classical 

form, and then extended to assess the benefit of collecting information about the state of the SHM 

system. 

2.1.  Bayesian decision analysis  

The Bayesian decision theory is rooted in the Bayesian definition of probability [43] and the utility 

theorem [44]. Specifically, a Bayesian probability quantifies a personal belief on a certain state of a 

structure, whereas the utility theorem defines the behavior of a rational decision-maker. The decision 

problem involves a set of states of the structure (which can be in different damage states or in a healthy 

conditions) 𝑠𝑙, 𝑙 = 1, … , 𝐿, a set of actions 𝐴𝑛 , 𝑛 = 1, … , 𝑁, and the utility corresponding to different 

combinations of actions and states, 𝐸[𝑢(𝐴𝑛)|𝑠𝑙], which is a numerical value that expresses the 

desirability of a combination of actions and states of the structure. The decision-maker ranks the actions 

based on their expected utility and then selects the one associated with the maximum utility. To this 

purpose, the decision-maker must define the probability of the states of the structure, 𝑃(𝑠𝑙), according 

to their knowledge. Typically, the prior probabilities are retrieved by means of engineering judgments 

or reliability analyses if probabilistic models of capacity and demand are available, which can also 

include the effect of time and related degradation phenomena [26,30,37,45]. For the sake of clarity, this 

study focuses on a static problem, in which the effects of slow degradation phenomena are not accounted 

for.  

The Prior analysis is carried out employing prior probabilities of the states of the structure, i.e., 

without information from the SHM system. The expected utility of each action is computed as follows: 

 

 𝐸[𝑢(𝐴𝑛)] = ∑ 𝐸[𝑢(𝐴𝑛)|𝑠𝑙]𝑃(𝑠𝑙)

𝐿

𝑙=1

 (1) 

 

The optimal action 𝐴̂ and the corresponding expected utility 𝑢1 are evaluated, respectively, as 

 

 𝐴̂ = arg max
𝑛

𝐸[𝑢(𝐴𝑛)] (2) 

 

and  

 𝑢1 = 𝐸[𝑢(𝐴̂)] = ∑ 𝐸[𝑢(𝐴̂)|𝑠𝑙]𝑃(𝑠𝑙)

𝐿

𝑙=1

 (3) 

When an outcome 𝑜𝑗, with 𝑗 = 1, … , 𝐽, becomes available from the SHM system, it can be used to 

update the prior probabilities of the states of the structure using the well-known Bayes theorem, which 

reads:  

 

 𝑃(𝑠𝑙|𝑜𝑗) =
𝑃(𝑜𝑗|𝑠𝑙)𝑃(𝑠𝑙)

𝑃(𝑜𝑗)
 (4) 

 

where 𝑃(𝑠𝑙|𝑜𝑗) is the posterior, i.e., updated, probability of the state 𝑠𝑙 given the monitoring outcome 

𝑜𝑗; 𝑃(𝑜𝑗|𝑠𝑙) is the likelihood function which expresses the probability of observing the outcome 𝑜𝑗 

when the state of the structure is 𝑠𝑙; and 𝑃(𝑜𝑗) is the total probability of the outcome 𝑜𝑗, which is 

obtained as 
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 𝑃(𝑜𝑗) = ∑ 𝑃(𝑜𝑗|𝑠𝑙)𝑃(𝑠𝑙)

𝐿

𝑙=1

 (5) 

 

The expected utility of the action 𝐴𝑛, given 𝑜𝑗 reads: 

 

 𝐸[𝑢(𝐴𝑛)|𝑜𝑗] = ∑ 𝐸[𝑢(𝐴𝑛)|𝑠𝑙]𝑃(𝑠𝑙|𝑜𝑗)

𝐿

𝑙=1

 (6) 

 

Since the SHM outcome is available, a Posterior analysis can be performed, where the optimal action 

𝐴̆𝑜𝑗
 and the associated expected utility 𝐸[𝑢(𝐴̆𝑜𝑗

)|𝑜𝑗] are respectively computed as:  

 

 𝐴̆𝑜𝑗
= 𝐴̆(𝑜𝑗) = arg max

𝑛
𝐸[𝑢(𝐴𝑛)|𝑜𝑗] (7) 

 

 𝐸 [𝑢 (𝐴̆𝑜𝑗
) |𝑜𝑗] = ∑ 𝐸 [𝑢 (𝐴̆𝑜𝑗

) |𝑠𝑙] 𝑃(𝑠𝑙|𝑜𝑗)

𝐿

𝑙=1

 (8) 

The decision on installing or not an SHM system is based on the results of the Pre-Posterior analysis, 

which is carried out before (i.e., “Pre-”) installing the SHM system whose outcomes will be used – if 

the SHM is installed – to obtain updated (i.e., “Posterior”) probabilities of the states of the structure. 

The expected utility associated with a given SHM system is computed during the Pre-Posterior analysis 

in two steps (in its extensive form, see [24]). First, a Posterior analysis is carried out for each possible 

SHM outcome to obtain the expected utility of the optimal action, 𝐸 [𝑢 (𝐴̆𝑜𝑗
) |𝑜𝑗]. After that, the SHM 

outcome is marginalized out to obtain the expected utility of the informed decision making, 𝑢0, as 

follows: 

 

 𝑢0 = ∑ 𝐸 [𝑢 (𝐴̆𝑜𝑗
) |𝑜𝑗] 𝑃(𝑜𝑗)

𝐽

𝑗=1

 (9) 

 

The VoI is defined as the difference between 𝑢0 (from Eq. 9) and 𝑢1 (from Eq. 3) and represents the 

increase in expected utility associated with a given SHM system:  

 

 

Generally, in engineering applications, the utility is expressed as a negative cost [28]. In this case, 

the VoI can be directly compared with the cost of the SHM system to decide if its installation is cost-

effective. Specifically, if the difference between the VoI and the cost of the SHM system is lower than 

zero, the SHM system should not be installed.  

 

2.2.  Extension of the framework  

In this section, the framework of the VoI from Bayesian analysis is extended to quantify the additional 

benefit provided by an SVT. For this purpose, it is necessary to introduce two additional random 

variables, specifically, the states of the SHM system (which can be in a faulty state or can be working 

properly), 𝑚𝑘, with 𝑘 = 1, … , 𝐾, and the outcomes of the SVT, 𝑐ℎ, with ℎ = 1, … , 𝐻 (normally 𝐻 =
𝐾). The main assumptions made to extend the VoI framework are the following:  

• The observations made using SHM on the state of the structure (𝑜𝑗) depend on the state of both 

the structure (𝑠𝑙) and the SHM system (𝑚𝑘), i.e., 𝑃(𝑜𝑗|𝑠𝑙, 𝑚𝑘); 

• The state of the SHM system does not depend on the state of the structure, i.e., 𝑃(𝑠𝑙 , 𝑚𝑘) =
𝑃(𝑠𝑙)𝑃(𝑚𝑘), where 𝑃(𝑠𝑙, 𝑚𝑘) is the joint probability distribution of 𝑠𝑙 and 𝑚𝑘. This 

 VoI = 𝑢0 − 𝑢1 (10) 
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assumption can be justified by the fact that when damage occurs in the structural elements, 

sensing devices can be properly functioning (if the damage does not involve collapses). 

• The observations on the state of the SHM system (𝑐ℎ) depend on the state of the SHM system 

(𝑚𝑘) and not on the state of the structure, i.e., 𝑃(𝑐ℎ|𝑚𝑘). 

Based on these assumptions, the classical Pre-Posterior analysis is thus extended to account for (i) the 

situation in which only the prior knowledge of the conditions of the SHM system is available and (ii) 

the condition in which the decision-maker is planning to collect information from both the SVT and the 

SHM system.  

 

2.2.1.  Pre-Posterior analysis with Prior Knowledge of the SHM system 

The decision analysis addressed in this section is carried out before the installation of the SHM system, 

accounting for the different states of the SHM system and all the possible SHM outcomes. The 

introduction of multiple states of the SHM system has two main effects on the Pre-Posterior analysis. 

First, the state of the system now comprises both the state of the structure and the state of the SHM 

system. Therefore, a joint probability distribution 𝑃(𝑠𝑙 , 𝑚𝑘) should be employed to represent the prior 

probability of occurrence of the different states. Secondly, the introduction of multiple states of the 

SHM system directly affects the likelihood functions of the SHM outcome, which now are not only 

conditional on the state of the structure, but also the state of the SHM system, i.e., 𝑃(𝑜𝑗|𝑠𝑙 , 𝑚𝑘). In this 

case, the Bayes’ theorem in Eq. 4 becomes:  

 

 𝑃(𝑠𝑙 , 𝑚𝑘|𝑜𝑗) =
𝑃(𝑜𝑗|𝑠𝑙 , 𝑚𝑘)𝑃(𝑠𝑙 , 𝑚𝑘)

𝑃(𝑜𝑗)
 (11) 

 

Since the states of the structure and the SVT are considered independent events, Eq. 11 can be 

reformulated as follows: 

 

 𝑃(𝑠𝑙 , 𝑚𝑘|𝑜𝑗) =
𝑃(𝑜𝑗|𝑠𝑙 , 𝑚𝑘)𝑃(𝑠𝑙)𝑃(𝑚𝑘)

𝑃(𝑜𝑗)
 (12) 

 

The novel formulation of the likelihood function is a key aspect of the proposed framework since it 

makes the result of the SVT have an impact on the choice of the optimal action. In this regard, it is 

important to consider that the new information has value only if it is able to modify the choice of the 

optimal action selected during the prior analysis, with prior knowledge [37,46].  

The expected utility of an action 𝐴𝑛 given the outcome 𝑜𝑗 computed according to Eq. 6 is modified, 

accounting for the multiple states of the SHM system, as follows:  

 

 𝐸[𝑢(𝐴𝑛)|𝑜𝑗] = ∑ ∑ 𝐸[𝑢(𝐴𝑛)|𝑠𝑙]
𝑃(𝑜𝑗|𝑠𝑙 , 𝑚𝑘)𝑃(𝑠𝑙)𝑃(𝑚𝑘)

𝑃(𝑜𝑗)

𝐾

𝑘=1

𝐿

𝑙=1

 (13) 

 

For each SHM outcome, the optimal action 𝐴̆𝑜𝑗
 is the one associated with the maximum expected 

utility 𝐸[𝑢(𝐴̆𝑜𝑗
)|𝑜𝑗], with 

 

 𝐴̆𝑜𝑗
= 𝐴̆(𝑜𝑗) = arg max

𝑛
𝐸[𝑢(𝐴𝑛)|𝑜𝑗] (14) 

   

 𝐸 [𝑢 (𝐴̆𝑜𝑗
) |𝑜𝑗] = ∑ ∑ 𝐸 [𝑢 (𝐴̆𝑜𝑗

) |𝑠𝑙]
𝑃(𝑜𝑗|𝑠𝑙 , 𝑚𝑘)𝑃(𝑠𝑙)𝑃(𝑚𝑘)

𝑃(𝑜𝑗)

𝐾

𝑘=1

𝐿

𝑙=1

 (15) 
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Therefore, the expected utility of the informed decision-making considering multiple states of the 

SHM system reads: 

 

𝑢0,𝑀 = ∑ 𝐸 [𝑢 (𝐴̆𝑜𝑗
) |𝑜𝑗] 𝑃(𝑜𝑗)

𝐽

𝑗=1

 

= ∑ ∑ ∑ 𝐸 [𝑢 (𝐴̆𝑜𝑗
) |𝑠𝑙] 𝑃(𝑜𝑗|𝑠𝑙 , 𝑚𝑘)𝑃(𝑠𝑙)𝑃(𝑚𝑘)

𝐾

𝑘=1

𝐿

𝑙=1

𝐽

𝑗=1

 

(16) 

 

The VoI evaluated accounting for the state of the SHM system, VoIM, is computed as follows: 

 

 

2.2.2.  Pre-Posterior analysis with Pre-Posterior Knowledge of the SHM system 

The decision analysis presented herein is carried out before the installation of the SHM system and the 

related SVT, accounting for the different states of the SHM system and all the possible outcomes of the 

two monitoring systems. The state of the structure is updated based on the outcomes of the SHM system, 

whereas the state of the SHM system is updated based on the outcomes of the SVT. Specifically, the 

Bayes’ theorem is used to update the prior probabilities 𝑃(𝑚𝑘) associated with the states of the SHM 

system, as follows: 

 

 𝑃(𝑚𝑘|𝑐ℎ) =
𝑃(𝑐ℎ|𝑚𝑘)𝑃(𝑚𝑘)

𝑃(𝑐ℎ)
 (18) 

 

where 𝑃(𝑐ℎ|𝑚𝑘) is the probability that the SVT provides the outcome 𝑐ℎ when the true state of the 

SHM system is 𝑚𝑘, and the denominator 𝑃(𝑐ℎ) is defined as: 

 

 𝑃(𝑐ℎ) = ∑ 𝑃(𝑐ℎ|𝑚𝑘)𝑃(𝑚𝑘)

𝐾

𝑘=1

 (19) 

 

Repeated checks of the state of the SHM system using an SVT could be included in the VoI analysis, 

if a more complex decision scenario is considered. This issue can be addressed in different ways, 

according to the method adopted to model the likelihood functions [26,28,37,40]. One possibility 

involves the formulation of the likelihood functions for sets of SVT outcomes [47]. In case of 

independent SVT outcomes, these likelihood functions can be obtained by multiplying the probabilities 

of observing single SVT outcomes for a given state of the structure. When appropriate, dependency 

between monitoring outcomes must be modelled explicitly [47].  

The expected utility of an action 𝐴𝑛 is obtained by substituting the prior probability 𝑃(𝑚𝑘) with its 

posterior counterpart 𝑃(𝑚𝑘|𝑐ℎ) in Eq. 13, thus leading to  

 

𝐸[𝑢(𝐴𝑛)|𝑜𝑗 , 𝑐ℎ] = ∑ ∑ 𝐸[𝑢(𝐴𝑛)|𝑠𝑙]
𝑃(𝑜𝑗|𝑠𝑙 , 𝑚𝑘)𝑃(𝑠𝑙)𝑃(𝑐ℎ|𝑚𝑘)𝑃(𝑚𝑘)

𝑃(𝑜𝑗)𝑃(𝑐ℎ)

𝐾

𝑘=1

𝐿

𝑙=1

 (20) 

 

 VoIM = 𝑢0,𝑀 − 𝑢1 (17) 
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In this case, the optimal action 𝐴̆(𝑜𝑗, 𝑐ℎ), associated with the minimum expected utility 

𝐸[𝑢(𝐴̆𝑜𝑗𝑐ℎ
)|𝑜𝑗, 𝑐ℎ], is  

 

𝐴̆𝑜𝑗𝑐ℎ
= 𝐴̆(𝑜𝑗 , 𝑐ℎ) = arg max

𝑛
𝐸[𝑢(𝐴𝑛)|𝑜𝑗 , 𝑐ℎ] (21) 

  

𝐸 [𝑢 (𝐴̆𝑜𝑗𝑐ℎ
) |𝑜𝑗 , 𝑐ℎ] = ∑ ∑ 𝐸 [𝑢 (𝐴̆𝑜𝑗𝑐ℎ

) |𝑠𝑙]
𝑃(𝑜𝑗|𝑠𝑙 , 𝑚𝑘)𝑃(𝑠𝑙)𝑃(𝑐ℎ|𝑚𝑘)𝑃(𝑚𝑘)

𝑃(𝑜𝑗)𝑃(𝑐ℎ)

𝐾

𝑘=1

𝐿

𝑙=1

 (22) 

 

The expected utility 𝑐0,𝑀2 of the informed decision making is computed as follows: 

 

𝑢0,𝑀2 = ∑ ∑ 𝐸 [𝑢 (𝐴̆𝑜𝑗𝑐ℎ
) |𝑜𝑗 , 𝑐ℎ] 𝑃(𝑜𝑗)𝑃(𝑐ℎ)

𝐽

𝑗=1

𝐻

ℎ=1

 

= ∑ ∑ ∑ ∑ 𝐸 [𝑢 (𝐴̆𝑜𝑗𝑐ℎ
) |𝑠𝑙] 𝑃(𝑜𝑗|𝑠𝑙 , 𝑚𝑘)𝑃(𝑠𝑙)𝑃(𝑐ℎ|𝑚𝑘)𝑃(𝑚𝑘)

𝐾

𝑘=1

𝐿

𝑙=1

𝐽

𝑗=1

𝐻

ℎ=1

 

(23) 

 

Finally, the benefit gained from monitoring both the states of the SHM system and the structure, 

VoIM2, reads: 

 

 VoIM2 = 𝑢0,𝑀2 − 𝑢1 (24) 

 

where the term 𝑢1 is computed according to Eq. 3 and 𝑢0,𝑀2 is computed according to Eq. 23. The 

additional VoI provided by the SVT, ∆VoI, is: 

 

 ∆VoI = VoIM2 − VoIM = 𝑢0,𝑀2 − 𝑢0,𝑀 (25) 

 

The framework proposed in this section allows accounting for the situation in which the decision-maker 

does not know the real condition of the SHM system. This is the actual situation in practice.  The 

framework is general and enables to model and consider simultaneously different types of sensor fault 

conditions (e.g., noise, drift, absence of data) which can affect the SHM outcome. The classic VoI 

theory described in Section 2.1 cannot be applied to account for these phenomena. Instead, this is 

possible through the novelties introduced in Section 2.2. In the following sections, the proposed 

framework is applied to demonstrate its applicability and to investigate the effects of monitoring 

different sensor fault conditions on the VoI. The case studies consist of a numerical case study and a 

real bridge. The effects of drift and noise are addressed in the numerical case study, while the absence 

of SHM data is considered with the real bridge application. This latter case also brings an added value 

related to using faulty sensor data measured during a real monitoring application.  

 

3.  Numerical case study  

The proposed approach is applied in this section to a reference structure to investigate the effects of 

different sensor faulty conditions. For the sake of clarity, a simple decision problem is addressed, as 

follows: the structure can be in two states, 𝑠1 – healthy condition – or 𝑠2 – damaged condition – and the 

decision-maker has to select the optimal action between 𝐴1 – Do nothing, i.e., keep the structure 

functional – and 𝐴2 – shut it down.  

https://doi.org/10.1016/j.strusafe.2022.102280


Published in Structural Safety 

Volume 100, January 2023, Article 102280. https://doi.org/10.1016/j.strusafe.2022.102280  
 

9 

 

Each combination of actions and states of the structure is associated with a utility, as shown in 

Error! Reference source not found.. Specifically, it is assumed that if the structure is functional and 

in the healthy condition, there is no loss and thus the utility is zero; if the structure is functional and in 

the damaged condition it might fail due to external actions, thereby, a negative utility 𝑢𝐹 = −1 is 

associated with this situation; shutting the structure down generates only indirect losses, quantified by 

the negative utility 𝑢𝑆𝐷 = −0.5, which do not depend on the state of the structure. Figure 1 displays the 

results of the Prior analysis, i.e., the expected utility of the two actions (Do nothing and Shut down) 

computed using the prior knowledge. Results are expressed as a function of 𝑃(𝑠2). For values of 𝑃(𝑠2) 

lower than 0.5, keeping the structure operative is the optimal action, i.e., the action associated with the 

maximum expected utility. Instead, for values of 𝑃(𝑠2), higher than 0.5, shutting the structure down is 

preferable. For 𝑃(𝑠2) = 0.5, the two actions have the same expected utility. 

 

Table 1. Utility of different combinations of actions and structural states.  

 𝑠1 = ℎ𝑒𝑎𝑙𝑡ℎ𝑦  𝑠2 = 𝑑𝑎𝑚𝑎𝑔𝑒𝑑 

𝑎1 = 𝐷𝑜 𝑛𝑜𝑡ℎ𝑖𝑛𝑔  0 𝑢𝐹 

𝑎2 = 𝑆ℎ𝑢𝑡 𝑑𝑜𝑤𝑛 𝑢𝑆𝐷 𝑢𝑆𝐷 

 

 

Figure 1. Results of the Prior analysis. 

 

The SHM system (not yet installed) provides a continuous outcome, modeled through Normal 

distributions, 𝑁(𝜇, 𝜎), with mean 𝜇 and standard deviation 𝜎. The parameters of such distributions 

depend on both the state of the structure and the state of the SHM system. The SHM system can be in 

two states, namely the properly working condition 𝑚1 and the faulty condition 𝑚2. In this application, 

the following prior probabilities are assumed: 𝑃(𝑚1) = 𝑃(𝑚2) = 0.5. Two faulty conditions are 

analyzed – separately – in the following sections, namely drift and noise. When the SHM is working 

correctly (state 𝑚1) the distributions of the (unitless) SHM outcomes are 𝑁(1,0.1) and 𝑁(0.7,0.1) for 

the structural states 𝑠1 and 𝑠2, respectively. The Probability Density Functions (PDFs) of these 

distributions are shown in Figure 2(a). An SVT can give insight into the actual state of the SHM system 

by providing two discrete outcomes 𝑐1 and 𝑐2 associated with the properly working and the faulty 

conditions, respectively.  

The drift consists of a shift 𝛿 (either positive or negative) of the mean value of the distributions of 

the SHM outcome, as displayed in Figure 2(b). Instead, the noise is modeled as an increase 𝜀 of the 

standard deviation, see Figure 2(c). It is assumed that the drift and the noise affect equally the 

distributions of the SHM outcome in the healthy and damaged conditions of the structure.  

In the following sections, the effects of drift and noise of the SHM outcomes on the VoI are 

investigated through sensitivity analyses.  
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Figure 2. Likelihood functions in the different states of the SHM system: (a) properly working system; 

(b) SHM outcome affected by drift; (c) SHM outcome affected by noise. 

 

3.1.  Drift  

Two situations are analyzed in this section, namely the situation in which the SVT provides imperfect 

information on the presence of drift in the SHM outcome and the case in which the SVT provides perfect 

information. In both cases, the VoI is expressed as a function of drift magnitude 𝛿 and the prior 

probability of the state of the structure 𝑃(𝑠2). Both variables vary in the interval 0-1.  

Error! Reference source not found. shows the probabilities of observing the SVT outcomes in 

different states of the SHM system (i.e., the likelihood functions of the SVT) in case of imperfect 

information. In the case of perfect information, the probabilities are one on the diagonal and zero 

otherwise.  
 

Table 2. Likelihood of the SVT in case of imperfect information.  

 𝑠1 𝑠2 

𝑐1 0.8 0.2 

𝑐2 0.2 0.8 

 

Figure 3 shows the results of the VoI analysis in case of drift presence and imperfect SVT outcome. 

Specifically, Figure 3(a) displays the VoI associated with monitoring the state of the structure only, 

VoIM. For 𝑃(𝑠2) = 0 and 𝑃(𝑠2) = 1 the VoIM is zero since in these situations, the new information 

does not modify the prior probabilities of the structural states. The VoIM is maximum for 𝑃(𝑠2) = 0.5 

because this is the condition of maximum uncertainty for the decision maker since the two actions have 

the same expected utility, see [29,46]. The VoIM reduces considerably in the proximity of 𝛿 = 0.3. For 

this drift level, the PDF of the SHM outcome 𝑠2 for 𝑚2 (solid red line) overlaps the PDF of the SHM 

outcome 𝑠1 for 𝑚1 (dashed blue line), see Figure 2(b). Therefore, the SHM outcome does not support 

the decision-maker in distinguishing the two cases. Instead, the presence of drift does not affect 
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significantly the VoIM for relatively small or high drift levels. In these situations, the distributions of 

the SHM outcome in 𝑚1 and 𝑚2 (properly working and faulty conditions of the SHM system, 

respectively) are well separated thereby the decision maker is able to distinguish between the healthy 

and the damaged conditions of the structure even when the SHM system is not working correctly. Figure 

3(b) shows the VoI from monitoring both the state of the structure and the SHM system, VoIM2, which 

is generally higher than the corresponding VoIM. This is clear by observing Figure 3(c), which shows 

the additional VoI provided by the SVT. Specifically, the SVT provides a higher additional benefit in 

the proximity of 𝛿 = 0.3, that is when the decision maker is not able to distinguish between the healthy 

and the damaged states of the structure due to the presence of drift in the SHM outcome.  
 

 

Figure 3. Results of the VoI analysis in case of drift presence and imperfect SVT outcome: (a) VoI 

from monitoring the state of the structure; (b) VoI from monitoring both the state of the structure and 

the SHM system; (c) additional VoI provided by the SVT.  
 

Figure 4 describes the results of the VoI analysis in case of drift presence and perfect SVT outcome. 

Figure 4(a) is equal to Figure 3(a) since the VoIM is not affected by the characteristics of the SVT. 

Figure 4(b) demonstrates that decision-making is not influenced by the presence of drift in case the 

decision-maker is informed about its presence. In fact, the drift is a systematic error, which can be 

eliminated when it is known. Figure 4(c) shows that the additional benefit associated with an SVT 

increases with the increasing quality of information.  
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Figure 4. Results of the VoI analysis in case of drift presence and perfect SVT outcome: (a) VoI from 

monitoring the state of the structure; (b) VoI from monitoring both the state of the structure and the 

SHM system; (c) additional VoI provided by the SVT.  
 

3.2.  Noise 

The effect of noise of the SHM outcome on the VoI is analyzed in this section. To better compare the 

results, the conducted VoI analysis is similar to that presented in the previous section, namely: the cases 

of imperfect and perfect SVT outcomes are analyzed; the VoI is expressed as a function of the noise 

magnitude 𝜀, and the prior probability 𝑃(𝑠2) which vary in the interval 0 and 1; the likelihood functions 

of the SVT shown in Error! Reference source not found. are used in the case of imperfect information.  

Figure 5 reports the results of the VoI analysis for imperfect SVT outcome. The VoIM in Figure 5(a) 

is null for 𝑃(𝑠2) = 0 and 𝑃(𝑠2) = 1 and maximum for 𝑃(𝑠2) = 0.5 due to the reasons discussed in the 

previous section, see discussion of Figure 4(a). In general, the VoIM2 in Figure 5(b) is higher than the 

corresponding VoIM in Figure 5(a). The additional VoI provided by the SVT is show in Figure 5(c). It 

slightly decreases for increasing 𝜀 and increases in proximity of 𝑃(𝑠2) = 0.2 and 𝑃(𝑠2) = 0.8. The 

decrease of the VoI for increasing 𝜀 can be explained considering that the PDF of the SHM outcomes 

become flatter and flatter as the noise increase. In turn, values belonging to the tails of the SHM outcome 

distributions, that in the properly working condition were presenting negligible probability density, 

increase it. Thus, the observation of such outcome suggests the decision maker that the SHM system is 

probability in the faulty condition thereby the benefit provided by the SVT decreases.  

The increase of the VoI in proximity of 𝑃(𝑠2) = 0.2 and 𝑃(𝑠2) = 0.8 can be understand by 

analyzing Figure 6 that shows the absolute difference, Δ, between the posterior expected utilities of the 

two actions, Δ = |𝐸[𝑢(𝐴2)|𝑜𝑗] − 𝐸[𝑢(𝐴1)|𝑜𝑗]|, that are computed considering an SHM outcome 𝑜𝑗, 

without SVT information for a fixed level of noise (𝜀 = 0.2). The two actions present very similar 

values of utilities (yellow color) in proximity of 𝑃(𝑠2) = 0.2 and 𝑃(𝑠2) = 0.8, that is exactly were the 

maximum additional VoI is located. Indeed, in this situation, the additional information from the SVT 

provides the maximum benefit in distinguishing the optimal action. This phenomenon is analogous to 

that shown in Figure 4 (a-b) and Figure 5 (a-b), where the VoI is maximum for 𝑃(𝑠2) = 0.5, that is 

when the expected costs of the two action is the same, also in this case  
 

https://doi.org/10.1016/j.strusafe.2022.102280


Published in Structural Safety 

Volume 100, January 2023, Article 102280. https://doi.org/10.1016/j.strusafe.2022.102280  
 

13 

 

 

Figure 5. Results of the VoI analysis in case of noise presence and imperfect SVT outcome: (a) VoI 

from monitoring the state of the structure; (b) VoI from monitoring both the state of the structure and 

the SHM system; (c) additional VoI provided by the SVT.  
 

 

Figure 6. Absolute difference between the posterior expected utilities of the two actions. 

 

 

Figure 7 shows the results of the VoI analysis considering perfect SVT information. The results 

presented in Figure 7(a) do not depend on the SVT outcome, thus they are similar to those shown in 

Figure 5(a). Instead, the VoIM2 in Figure 7(b) and the additional VoI in Figure 7(c) are generally higher 

than the values presented in Figure 5(b) and Figure 5(c), respectively due to the higher performances of 

the SVT. Differently from the drift, the effect of noise cannot be eliminated by the use of a perfect SVT.  
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Figure 7. Results of the VoI analysis in case of noise presence and perfect SVT outcome: (a) VoI 

from monitoring the state of the structure; (b) VoI from monitoring both the state of the structure and 

the SHM system; (c) additional VoI provided by the SVT.  

 
 

4.  Box-girder cable-stayed bridge  

In this section, the proposed approach is applied to a real case study for which monitoring data are 

available consisting of a box-girder cable-stayed bridge located in China. The bridge presents a main 

span of 1088 m, two side spans of 300 m each, and two 306-m-high inverse-Y shaped towers. The 

girder is 41.0 m wide, including two wind fairings, and is supported by 272 cables formed of parallel 

steel-wire strands, deployed with intervals of 16 m at the main span, 12 m at the side spans, and 2 m at 

the towers.  

Since its construction in 2008, an SHM system was installed on the bridge. It includes different 

sensor types, among which accelerometers, strain gauges, a global positioning system (GPS), and 

environmental monitoring devices. In this study, only acceleration data recorded continuously for two 

months (January and February 2012) at a sampling frequency of 20Hz, are employed. The total number 

of accelerometer channels used in this study is 38, including 16 two-channel accelerometers (on the two 

sides of the deck and on top of the towers) and 2 three-channel accelerometers (at the bottom of the 

towers). A scheme of the bridge is reported in Figure 8, together with relevant information about sensor 

deployment. 

 

 
 

Figure 8. Scheme of the bridge and sensor layout, indicating the number of channels (indicated as 

ch.) for each location; dimensions in m. 
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The case study is located toward the sea, in a region with a subtropical monsoon climate, 

characterized by hot and humid summers alternating with cool winters. The presence of sea saltiness, 

together with humidity and highly variable weather, creates a challenging environment both for the 

structure and for the monitoring instrumentation. Weather conditions, together with hardware 

malfunctions and code errors, can generate abnormal datasets that would result in the identification of 

misleading structural parameters if processed through the usual identification algorithms. 

The acceleration dataset collected on the case study was provided for a blind competition along with 

the 1st International Competition for Structural Health Monitoring (IPC-SHM, 2020 [48]). It should be 

noted that the state of the structure was healthy (i.e., no structural damage was identified) throughout 

the considered monitoring period. However, a considerable part of the dataset presents abnormal data. 

Specifically, the competition organizers labeled 1440 consecutive data segments of 1 hour collected by 

the 38 recording channels as “healthy” or “faulty” (relating to the state of the monitoring system), 

considering each channel separately. In general, the data anomalies considered in this paper do not 

strictly affect only accelerations but might be also found in other measurements [49]. 

In a reliable SHM system, the mentioned anomalies should be recognized and removed before 

processing the data to extract significant structural parameters for damage identification. To consider a 

realistic application, an SVT presented in a recent publication is considered: Martakis et al. [50] 

proposed an SVT based on a one-class classifier for data quality validation that classifies segments of 

the structural response data into “normal” or “abnormal”. In the mentioned publication, the authors 

validate the SVT on the described case study. 

The SVT used in [50] consists of a semi-supervised machine learning tool based on a nonlinear 

support vector machine [51] that employs a Gaussian radial basis function kernel [52]. Specifically, 

acceleration response segments having a user-defined length are first transformed into the feature space, 

i.e., they are converted into high-dimensional vectors, where each element represents a different 

characteristic of the signal in the time or frequency domain. A set of vectors obtained for the “normal” 

data configuration is employed to train the SVT, which is then able to detect anomalies (intended as 

outliers from the baseline set). Specifically, in this application, the outliers are defined as the points 

outside a hypersphere that contains 99% of the training dataset in the feature space. In other words, a 

hard threshold is set at the 99th percentile of the training distribution to discern between normal and 

abnormal data. 

In the study conducted by Martakis et al., the data collected in January (31 days) from all the 38 

channels are segmented into 5-minute blocks, yielding 339264 time-series samples. Of these samples, 

162900 (the 48%) were labeled as “healthy” according to the information provided by the organizers of 

the competition and employed to train the SVT. The data from February (29 days) is employed for 

testing the SVT; thereby, it is considered unlabeled. Specifically, the testing data consists of 26448 data 

series of 1 hour each. Upon classification, 99% of the “normal” February data lies within the 99th 

percentile and is therefore considered “normal” in this study, while 1% is classified “abnormal”, 

consistently with the definition of the threshold. Also, 92% of the faulty testing data is correctly 

classified as “abnormal” since the classifier exceeds the 99th percentile of the “normal” February data, 

while 8% of the “abnormal” cases are classified as “normal”. 

The two-month interval described above is here considered representative of a generic monitoring 

period. Therefore, it is used to evaluate all the parameters employed for the calculation of the VoI. 

4.1.  Decision problem  

The decision problem tackled in this demonstration is similar to the one addressed in the previous case 

study and relates to the traffic management of the bridge in the aftermath of a damaging event, such as 

the impact of a ship. Specifically, the decision-maker has to select the optimal action between 𝑎1 – Do 

nothing – and 𝑎2 – Shut down – considering that the bridge is either in the state 𝑠1 – healthy condition 

– or 𝑠2 – damaged condition. The utilities in Table 1 are employed. While a continuous SHM outcome 

was considered in the numerical case study to study the effect of different sensor fault conditions, it is 

assumed herein that decision-maker is planning to install an SHM system for damage detection that is 

able to provide a binary outcome, namely, 𝑜1 and 𝑜2. The outcome 𝑜1 is representative of the healthy 

conditions, whereas the outcome 𝑜2 is representative of the damaged condition.  

It is supposed that the SHM system can be in two states, namely, the healthy state, 𝑚1, and a faulty 

state, 𝑚2. Upon defining a threshold that discerns between the two states, the likelihood of the SHM 
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outcome can be obtained by analyzing the distribution of the damage indicator in the undamaged and 

damaged states. In particular, the probability of threshold exceedance in the damage state can be 

interpreted as probability of detection 𝑃(𝑜2|𝑠2) [53], which depends also on the state of the SHM system 

𝑚𝑘 in this framework. The likelihood of the SHM outcome for the two states of the SHM system 𝑚1 

and 𝑚2 are displayed in Table 3 and Table 4, respectively. When the SHM system is in the healthy 

state, it indicates the correct state of the structure with a probability of 0.9. Instead, when the SHM is 

damaged, it does not provide any information on the state of the structure. This condition can be 

represented by assigning a probability of 0.5 to the occurrence of the SHM outcome in each state (i.e., 

when these conditional probabilities of the SHM outcomes are used, the prior probabilities of the bridge 

state are not modified when the Bayes’ theorem is applied). 

 

Table 3. Likelihood of SHM outcome for 𝑚1.  

 𝑠1 𝑠2 

𝑜1 0.9 0.1 

𝑜2 0.1 0.9 

 

Table 4. Likelihood of SHM outcome for 𝑚2.  

 𝑠1 𝑠2 

𝑜1 0.5 0.5 

𝑜2 0.5 0.5 

 

SVTs are typically based on binary novelty detection methods [6] since data quality can decrease 

due to several factors or their combinations, which are difficult to classify in a finite set of labels. As 

an applicative example, the performance parameters of the SVT described in Section 3.1 [50] are 

considered in this section to calculate the VoI through the presented general framework. Specifically, 

it is assumed that the SVT considered in this study is able to provide two outcomes 𝑐1 and 𝑐2, which 

indicate the properly working and the faulty conditions, respectively. Those values are taken from the 

so-called “confusion matrix” obtained during the testing phase of the SVT presented by Martakis et al. 

[54], see Table 5.  

 

Table 5. Likelihood of the SVT  

 𝑚1 𝑚2 

𝑐1 0.99 0.08 

𝑐2 0.01 0.92 

 

4.2.  Sensitivity analysis  

The prior probabilities of the state of the structure and the SHM system, as well as the utilities of 

different combinations of actions and states of the structure, have not been specified so far. In this 

section, two sensitivity analyses are carried out to demonstrate how the VoI is affected by these 

parameters. Refer to Table 6 for a general overview of the two sensitivity analyses presented hereafter.  

In line with the aim of the paper, the variables relating to SVT are retrieved from [50], i.e., the prior 

probabilities of the state of the SHM system and the likelihood of the SVT (confusion matrix). The 

parameters considered in the sensitivity analysis (i.e., 𝑃(𝑠2), 𝑃(𝑚2), 𝑢𝑆𝐷/𝑢𝐹) vary in the interval 0-1. 

With reference to 𝑃(𝑠2), it is remarked that, in this paper, damage refers to a generic state that deviates 

from a reference (e.g., undamaged) condition. This may correspond to a mild or severe damage state. 

Furthermore, the paper addresses a situation that occurs in the aftermath of a damaging event. While in 

normal conditions, the probability that a civil engineering structure is in a severe damage state is far 

from 1, higher values of 𝑃(𝑠2) could be estimated in the aftermath of a damaging event. Concerning 

the utility ratio, it is not unusual that the indirect consequences related to loss of functionality (in this 

case represented by 𝑢𝐶𝑙𝑜𝑠𝑒𝑆𝐷) of civil structures are comparable or even higher than the associated direct 

costs, as documented in the relevant literature [55]. 
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Table 6. Sensitivity analyses  

Sensitivity 

analysis n. 

Prior probability 

𝑷(𝒔𝟐) 

Prior probability 

𝑷(𝒎𝟐) 
Utilities 

1 
Varying in the range 

0-1 
Fixed as 0.52 

Ratio 𝑢𝑆𝐷/𝑢𝐹  
varying in the range 

0-1 

2 
Varying in the range 

0-1 

Varying in the range 

0-1 

Fixed as: 

𝑢𝐹 = −1 

𝑢𝑆𝐷 = −0.5 

 

 

Sensitivity analysis to prior probabilities of structural states and utility ratio 

The first sensitivity analysis (see Table 6) is carried out to verify the impact on the VoI of the prior 

probabilities of the structural state 𝑃(𝑠2), and of the utility ratio 𝑢𝐶𝑙𝑜𝑠𝑒/𝑢𝑓. The VoI results are 

normalized to the direct losses |𝑢𝐹|.  
Figure 9 shows the results of the Prior analysis, i.e., the optimal action between Do nothing and Shut 

down, for different values of 𝑃(𝑠2) and 𝑢𝐶𝑙𝑜𝑠𝑒/𝑢𝑓. The boundary between the two regions is the line 

bisecting the first quadrant. For a given ratio 𝑢𝐶𝑙𝑜𝑠𝑒/𝑢𝑓, the action Shut down is preferable for relatively 

high values of the probability that the bridge is damaged. Instead, for a given 𝑃(𝑠2), the optimal action 

is Do nothing when the indirect losses are relatively high with respect to the losses associated with 

failure.  

 

 
Figure 9. Optimal action from Prior analysis for varying 𝑃(𝑠2) and 𝑢𝑆𝐷/𝑢𝐹.  

 

The VoI computed considering the SHM information only is shown in Figure 10(a). The highest 

values of the ratio VoIM/|𝑢𝐹| are reached in correspondence of the bisector of the first quadrant, which 

corresponds to the boundaries between the optimal actions in Prior analysis, as shown in Figure 9. The 

absolute maximum of the ratio VoIM/|𝑢𝐹| is attained for 𝑃(𝑠1) = 𝑃(𝑠2) = 0.50, that is when non 

informative prior probabilities are used. Instead, in the blue areas, the information from the SHM system 

does not provide any benefit.  

Figure 10(b) reports the VoI computed considering both the information from SHM system and the 

SVT. The ratio VoIM2/|𝑢𝐹| is maximum in correspondence of the bisector of the first quadrant, reaching 

the same maxima of the ratio VoIM/|𝑢𝐹| displayed in Figure 10(a). Instead, the blue area corresponding 

to null benefit is smaller. This means that, when the information on the state of the SHM system from 

the SVT is available, the information from the SHM system has a stronger impact on the decision-

making process. Figure 10(c) displays the normalized additional benefit provided by the SVT. The 

additional VoI presents an “eye” shape with zero value assumed in the proximity of the bisector of the 

first quadrant.  
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Figure 10. Results of the VoI analysis for varying 𝑃(𝑠2) and ratio 𝑢𝐶𝑙𝑜𝑠𝑒/𝑢𝑓: (a) Ratio 𝑉𝑜𝐼𝑀/|𝑢𝐹| 

(b) Ratio 𝑉𝑜𝐼𝑀2/|𝑢𝐹|; (c) additional VoI provided by the SVT, ∆𝑉𝑜𝐼/|𝑢𝐹|.  

analysis 

To explain the local maxima of additional VoI, the expected utilities of the two management actions 

computed according to Eq. 13, that is considering the prior information on the state of the SHM system 

𝐸[𝑢(𝐴𝑛)|𝑜𝑗], are examined in Figure 11Error! Reference source not found., fixing the following 

values: 𝑢𝑆𝐷/𝑢𝐹 = 0.5, 𝑢𝐹 = −1 and 𝑢𝑆𝐷 = −0.5. In particular, Figure 11Error! Reference source 

not found.(a) and Figure 11Error! Reference source not found.(b) show the expected utilities of the 

two management actions given the outcome 𝑜1 and 𝑜2, respectively. In both plots, the expected utility 

of the action Shut down is constant and equal to -0.5, as in the Prior analysis (since it does not depend 

on the state of the structure). Instead, the expected utilities associated with the action Do nothing 

decrease for the increasing probability that the structure is in the damaged state 𝑠2. The maxima of the 

term ∆VoI are reached when the expected utilities of the two actions are the same for a given SHM 

outcome, that is approximately for 𝑃(𝑠2) = 0.3 and 𝑃(𝑠2) = 0.7. In this situation, the information from 

the SVT on the state of the SHM system provides the highest benefit since the expected utilities of the 

two actions evaluated without the information of the SVT, are similar. In other words, the benefit 

provided by the new information (either on the state of the structure or the SHM system) is maximum 

when the expected utilities of the traffic management actions computed using prior knowledge (either 

on the state of the structure or the SHM system) are the same. The same applies to the other values of 

the ratio 𝑢𝑆𝐷/𝑢𝐹. Similar considerations were made in Section 3.2 to justify the position of the local 

maxima of the additional VoI in Figure 5.  
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Figure 11. Contribution to the 𝑉𝑜𝐼𝑀 of the two SHM outcomes.  

 

Sensitivity analysis to prior probabilities of the states of the structure and SHM system 

The second sensitivity analysis is performed to investigate the joint impact of the prior probabilities of 

the state of the structure and the SHM system. The utilities 𝑢𝑆𝐷 and 𝑢𝐹 are kept constant according to 

Table 6.  

The selection of the optimal action from Prior analysis (shown in Figure 12) does not depend on the 

state of the SHM system 𝑃(𝑚2) since the prior expected benefit only depends on the prior probabilities 

of the structural state 𝑃(𝑠2). The boundary between the optimal actions Do nothing and Shut down is 

found for 𝑃(𝑠2) = 0.50, that is non informative prior probabilities. 

 
Figure 12. Optimal action from Prior analysis for varying 𝑃(𝑠2) and 𝑃(𝑚2). 

The VoIM for varying 𝑃(𝑠2) and 𝑃(𝑚2) is reported in Figure 13(a). Again, the VoIM is maximum at 

the boundary between the optimal actions Do nothing and Shut down. For a given prior probability of 

structural state 𝑠2, the VoIM decreases for increasing prior probability that the SHM system is in the 

faulty state 𝑚2. The absolute maximum (see Figure 13) is observed for 𝑃(𝑠2) = 0.50 and 𝑃(𝑚2) = 0. 

Indeed, when the SHM system is in 𝑚2, it cannot provide any insight on the actual structural conditions, 
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see Section 3.2. Thus, the benefit provided by the SHM information decreases for increasing probability 

𝑃(𝑚2).  

Figure 13(b)Error! Reference source not found. shows the VoIM2 for varying 𝑃(𝑠2) and 𝑃(𝑚2). 

The benefit related to the combined use of the SHM system and the SVT is maximum for 𝑃(𝑠2) = 0.50, 

where VoIM2 = VoIM. In the other regions, the VoIM2 is higher than the VoIM for the same values of 

𝑃(𝑠2) and 𝑃(𝑚2) (excluding the blue regions in Error! Reference source not found.where VoIM2 =
VoIM = 0). In general, the VoIM2 decreases for increasing 𝑃(𝑚2) due to the reduction in the quality of 

the information provided by the SHM system.  

Finally, the additional VoI provided by the SVT, ∆VoI, for varying 𝑃(𝑠2) and 𝑃(𝑚2) is reported in 

Figure 13(c)Error! Reference source not found.Error! Reference source not found.. The ∆VoI 

surface is characterized by a “lung” shape, being equal to zero for 𝑃(𝑠2) = 0.50 and presenting the 

maximum values in two distinct areas on the left and on the right of this probability value. The absolute 

maxima of the term ∆VoI are reached for 𝑃(𝑚1) = 𝑃(𝑚2) = 0.50 thereby for non-informative prior 

probabilities on the state of the SHM system.  

 

 
 

Figure 13. Results of the VoI analysis for varying 𝑃(𝑠2) and 𝑃(𝑚2): (a) VoI computed without the 

information from the SVT, 𝑉𝑜𝐼𝑀; (b) VoI computed with the information from the SVT, 𝑉𝑜𝐼𝑀2; (c) 

Additional VoI provided by the SVT, ∆VoI.  

 

5.  Conclusion 

SHM systems very often provide altered data to decision makers, nevertheless, very few published 

works deal with the modelling of information quality in VoI analysis. This paper intends to contribute 

to fill this gap by proposing an extension of the classical Bayesian decision theory, that enables decision-

makers to quantify the overall benefit – in terms of VoI – of collecting information on both the state of 

a structure by means of SHM and the state of the SHM system itself through an SVT.  

The main novelties of the proposed framework relate to: (i) the modelling of the different states of 

the SHM system, associated with different sensor fault conditions, leading to drift, noise, and absence 

of information in the SHM outcome; (ii) the modelling of data quality through the likelihood functions 

of the SHM outcome; and (iii) the modelling of the SVT outcome, which might be affected by 

uncertainty. The main assumptions made to develop the extended framework are the following: (1) The 

observations on the state of the structure, made using SHM, depend on the state of both the structure 

and the SHM system; (2) The state of the SHM system does not depend on the state of the structure; (3) 

The observations made using the SVT on the state of the SHM system depend only on the state of the 

SHM system.  
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To demonstrate the applicability of the framework, two case studies are proposed with different 

purposes. The first case study is focused on the effect of two common sensor fault conditions, namely 

drift and noise, on the VoI. The second case study relates to an emergency management scenario for a 

box-girder cable-stayed bridge in China for which real data on SHM outcome quality are available. The 

SVT considered in this case study is based on a neural network trained in the reference condition of the 

bridge and the SHM system. The neural network is characterized by a confusion matrix whose 

components coincide with the likelihood of the SVT outcomes in the different states of the SHM system. 

The sensor faut condition considered in this second application relates to the absence of SHM data. For 

both case studies, several sensitivity analyses are carried out to demonstrate how the VoI is affected by 

the parameters involved in its computations. The main findings of the VoI analysis are the following:  

1) The benefit provided by the SHM system, coupled with the SVT, is generally higher than the 

benefit provided by the SHM system alone. 

2) The additional benefit provided by the SVT is maximum when the expected utilities of 

management actions (without the support of the SVT) are the same for a given SHM outcome.  

3) The use of a perfect SVT eliminates the effect of the drift on the SHM outcome, while it can 

only mitigate the effect of noise.  

4) The prior knowledge on the state of the system, i.e., structure and SHM system, represented by 

the prior probabilities of these quantities, the strongly influences the VoI results. 

Future works relate to several aspects of the proposed framework, such as modelling additional 

sensor fault conditions through likelihood functions of the SHM outcome; study of the effect on the 

VoI of considering different sensor fault types simultaneously; release the assumption of independency 

between the states of the structure and the SHM system; study of reliability models to quantify the 

probability of the different states of the SHM system; application of the extended framework to more 

complex/realistic case study addressing, for instance, repeated SVT observations and the effect of slow 

deterioration.  
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