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A REMARK ON KOHN’S THEOREM ON SUMS OF SQUARES OF COMPLEX
VECTOR FIELDS

ALBERTO PARMEGGIANI

Dedicated to Gerardo Mendoza

ABSTRACT. The plan of this paper is to give an alternate proof of Kohn’s subelliptic estimate
for systems of N smooth complex vector fields on an open set of Rn, and to improve it in
extending the result to perturbations by a first-order term. A pseudodifferential generalization
will also be given.

1. INTRODUCTION

Let Ω ⊂ Rn be an open set, and let X1, . . . ,XN be first order homogeneous differential
operators with real coefficients of the form X j = X j(x,D), D j = −i∂ j. Hence the iX j are
smooth real vector fields on Ω. Let

P =
N

∑
j=1

X∗j X j

be the sum-of-squares operator associated with our system of vector fields. Let

LX(x) := SpanR{iX1, . . . , iXN , [iX j1, [iX j2, [. . . , [iX jh−1, iX jh ]] . . .], ], 1≤ jh ≤ N, h≥ 2}(x)
be the real vector space spanned by the given vector fields and their repeated commutators,
all frozen at x ∈Ω.
Recall that P is said to be C∞-hypoelliptic if for every u ∈ D ′(Ω) and for every open V ⊂
Ω, having Pu ∈ C∞(V ) yields u ∈ C∞(V ). (Analytic hypoellipticity is defined similarly by
replacing C∞ with Cω .) Hörmander’s celebrated and fundamental hypoellipticity theorem
(see [9], for instance) states the following.

Theorem 1.1. Suppose that at any given x ∈Ω one has LX(x) = TxΩ. Then P is C∞ hypoel-
liptic.

Subsequently, L. Rothschild and E. Stein [18] made the theorem more precise by prov-
ing that if LX(x) is spanned by repeated commutators of length at most k at all x (the X js
have length 1, a commutator has length 2, and so on) then one has the following subelliptic
estimate: For all compact K ⊂Ω there is a constant cK > 0 such that, with ε = 1/k,

(1.1) cK||u||2ε ≤ Re(Pu,u)+ ||u||20, ∀u ∈C∞
c (K).

Here || · ||s denotes the norm of the Hs Sobolev space, and (·, ·) the L2-scalar product. The
result for polynomials in the operators X j is due to J. Nourrigat and B. Helffer [7], and the
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microlocal generalization to pseudodifferential operators to P. Bolley, J. Camus and J. Nour-
rigat [3].

It is important to observe that the Lie-algebra condition is not necessary: V. S. Fedii gave
in [6] an example of operator (with infinite degeneracy of the coefficients) for which the Lie
algebra is strictly smaller than the tangent space at certain points and yet the operator is C∞-
hypoelliptic, and Y. Morimoto [12] obtained a general theorem for the C∞-hypoellipticity of
that kind of operators. However, in the case of analytic coefficients the Lie algebra condition
is also necessary for the C∞-hypoellipticity, as proved by M. Derridj in [5]. In the case of
analytic coefficients and the Cω -hypoellipticity, the Lie algebra condition is not sufficient
for the analytic hypoellipticity. In fact, the Baouendi-Goulaouic operator gives a counterex-
ample and is the starting point for all the subsequent work related to the so-called Treves’
conjecture regarding Cω -hypoellipticity (see Treves [19] and [20]).

Note that when an inequality such as (1.1) holds with 0 < ε ≤ 1, one also talks about
hypoellipticity with a loss of 2− 2ε derivatives. In general, the operator P of order m > 0
is said to be (C∞-)hypoelliptic with a loss of r ≥ 0 derivatives at a point x0 ∈ Ω if for all
u ∈D ′(Ω) and all s ∈ R

Pu ∈ Hs(x0) =⇒ u ∈ Hs+m−r(x0),

where Hs(x0) denotes the Hs Sobolev space localized at x0 (see [9] or [16]).
J. J. Kohn, motivated by Y. T. Siu’s program to use multipliers for the ∂̄ -Nuemann problem

to get an explicit construction of critical varieties that control the D’Angelo type, considered
a system of N complex first order homogeneous operators Z1(x,D), . . . ,ZN(x,D) with C∞

coefficients in Ω ⊂ Rn (no zeroth-order terms), so that the iZ j are complex vector fields on
Ω, and proved in [10] the following remarkable two theorems for the associated sum-of-
squares operator

(1.2) P =
N

∑
j=1

Z∗j Z j.

Theorem 1.2. Suppose that

(1.3) SpanC{iZ j, [iZ j, iZk]; 1≤ j,k ≤ N}(x) = CTxΩ, ∀x ∈Ω,

where CTxΩ denotes the complexification of TxΩ. Then the following subelliptic estimate
holds: For any given compact K ⊂Ω there is a constant cK > 0 such that

(1.4) cK||u||21/2 ≤ Re(Pu,u)+ ||u||20, ∀u ∈C∞
c (K).

Remark 1.3. It is important to observe that there is a relevant difference between sums of
squares of complex vector fields and sums of squares of real vector fields, in that in the
former case at a characteristic point a subprincipal part (see (2.9) and (2.10) below) is
present, whereas in the latter at a characteristic point a subprincipal part is always absent.
The presence of such a subprincipal part in general spoils the subelliptic estimate.

Note also that Kohn’s result is stronger than the part of Nourrigat’s result in [13] con-
cerned with the (maximal) hypoellipticity of a sum of squares of complex vector fields that is
transversally elliptic with respect to its characteristic set.

Therefore, if for any given x ∈Ω the complex vector space generated by the vectors fields
iZ j and their commutators, evaluated at x, is the complexified tangent space to Ω at x, then
one has the same kind of subelliptic estimate as in the real case (and hence also has the
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C∞-hypoellipticity of P). However, this is no longer true if one has to consider repeated
commutators of length > 2. In fact, Kohn proved the following further result.

Theorem 1.4. For any given k ∈ Z+ there exist complex vector fields Z1, Z2k near 0 ∈ R3

such that Z1, Z2k and their repeated commutators of length k+1 span CT0Ω, and when k≥ 2
the subelliptic estimate (1.4) does not hold anymore. Moreover, the operator P associated
with Z1 and Z2k is hypoelliptic with a loss of k+1 derivatives.

Kohn in fact takes in R3
x1,x2,x3

the following version of the Lewy operator

L̄ =
∂

∂ z̄1
− iz1

∂

∂x3
, z1 = x1 + ix2,

and considers

iZ1 = L̄, iZ2k = z̄k
1L, P = Z∗1Z1 +Z∗2kZ2k =−(LL̄+ L̄|z1|2kL).

At the same time Theorem 1.4 appeared, Parenti and Parmeggiani [14] came out with a
technique, based on the Boutet de Monver-Grigis-Helffer approach to the study of hypoellip-
ticity with a loss of 1 derivative, to study the hypoellipticity with a large loss of derivatives
of classes of transversally elliptic operators. That approach allowed them to give an expla-
nation of E. Stein’s example �(0,q)

b + c, c 6= 0 a complex number, q = 0 or n, where �(0,q)
b

is the Kohn-Laplacian acting on (0,q)-forms on the Heisenberg group Cn×R, which is hy-
poelliptic with a loss of exactly 2 derivatives (and also analytic hypoelliptic), while �(0,q)

b
for q = 0,n, cannot be hypoelliptic. In this respect, Stein’s example is the first one (to my
knowledge) exhibiting such a behavior. I note in passing that this example shows that the
study of hypoelliptic operators which remain hypoelliptic after a perturbation by lower order
terms is interesting and open (see [17] and [16]). However, Stein’s example concerns addi-
tion by a zeroth order term and therefore cannot be represented as a “mere” sum of squares,
whereas Kohn’s example concerns indeed the latter case.

At any rate, a short time after Theorem 1.4 appeared, M. Christ [4] wrote down an example
exhibiting the same behavior of Kohn’s sum of squares, and Parenti and Parmeggiani [15],
wrote down a class of examples generalizing Christ’s one in the perspective of the theory
developed in [14].

Out of curiosity, Parenti and Parmeggiani’s approach in [14] allows to give very simple
examples of hypoelliptic operators that lose derivatives. Let d ≥ 1 be an integer, let µ > 0
and let S = {±(2`+1); ` ∈ Z+}. Let γ ∈ R, and consider the operator in R2

x1,x2

Pγ := (1+ x2d
1 )(D2

x1
+µ

2x2
1D2

x2
)+(γ +µx2d

1 )Dx2−2ix2d−1
1 (Dx1 + iµx1Dx2).

Then, Pγ is C∞-hypoelliptic with a loss of exactly d + 1 derivatives when γ ∈ S. When
γ 6∈ S the operator Pγ is hypoelliptic with a loss of 1 derivative by Boutet de Monvel-Grigis-
Helffer’s result.

I wish also to mention the very interesting paper by Altomani, Hill, Nacinovich and Porter
[1], in which, in the context of distributions of complex vector fields on a real manifold, the
authors prove a subelliptic estimate under certain assumptions, that generalize the essential
pseudoconcavity for CR manifolds, and the Hörmander bracket condition for real vector
fields.

In this paper, I will be concerned with giving a different proof of Kohn’s Theorem 1.2,
improve it to deal also with the stability of the subelliptic estimate under perturbations by
lower order terms, and give an extension to a pseudodifferential setting. My point here is
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to exploit the strong form of A. Melin’s inequality (see [11]) as given by Hörmander in
[9] (Thm. 22.3.3, page 364). So, the main issue will be to use the symplectic geometry
associated with the principal part of P at characteristic points, namely the linearization of
the Hamilton field (i.e. the Hamilton map F) of the principal symbol of P, the subprincipal
symbol ps

1 of P, and their relative sizes.
The main result here is the following theorem, that improves in this case Kohn’s result

(and hence also the transversally elliptic case of Nourrigat’s one) to deal also with first order
perturbations (see also the more detailed statement of Theorem 4.1 below).

Theorem 1.5. Suppose Kohn’s condition (1.3) holds. Then P given in (1.2) satisfies the
subelliptic estimate (1.4). Moreover, (when P is non-elliptic and) denoting by Σ the charac-
teristic set of P, there exist continuous functions Λ± : Σ −→ R (positively homogeneous of
degree 1 in the fibers), explicitly given in terms of the subprincipal symbol and the Poisson
brackets of the real and imaginary parts of the Z j (see (4.20) and (4.21) below), such that if
Q is a first-order classical properly supported pseudodifferential operator whose principal
symbol has real part q1 that satisfies

(1.5) Λ−(ρ)< q1(ρ)< Λ+(ρ), ∀ρ ∈ Σ,

then P+Q keeps satisfying (1.4). In particular, (1.5) holds if

(1.6) |q1(ρ)|< min{−Λ−(ρ),Λ+(ρ)}, ∀ρ ∈ Σ.

So, the result is quite precise, in that the quantity on the right-hand side of inequality (1.6)
is a precise measure of the first-order perturbations Q allowed by Kohn’s condition (1.3) in
order for P+Q still to satisfy the subelliptic estimate (1.4). (See Section 4 for more details
on that.) Note in addition that no smoothness assumption on Σ is required. I will also extend
Theorem 1.5 to the natural pseudodifferential analog (see Theorem 5.2 below).

In the next section, I will recall what is needed about the Melin inequality. Then, I will
study the spectrum of the Hamilton map which gives the fundamental symplectic quantity to
have Melin’s inequality in the strong form, and finally, in the last two sections, prove both
the subelliptic estimate (1.4), the improvement to perturbations of P by lower order terms
and the extension to a pseudodifferential case. The perturbations considered here are indeed
meaningful in the study of complexes of operators associated with structures that are not
necessarily involutive throughout Ω (see [2] for an introduction to involutive structures).

My plan then will be to further develop such an approach for Kohn’s sums of squares
of complex vector fields to study (among other things) unique-continuation phenomena and
propagation of smoothness (following the lines indicated by Hörmander in his study of solv-
ability of operators satisfying condition (P)).

I wish to thank the anonymous referee for the very useful comments and suggestions.

2. THE STRONG MELIN INEQUALITY

The strong form of Melin’s inequality is concerned with the existence of subelliptic esti-
mates of the kind of (1.1). Suppose pm : T ∗Ω \ 0 −→ R is a homogeneous mth-order pseu-
dodifferential symbol, and that pm ≥ 0. Let Σ denote the zero-set of pm in T ∗Ω\0. On Σ the
Hessian of pm is therefore invariantly defined. Using the symplectic form σ = ∑ j dξ j ∧dx j
on T ∗Ω we may hence invariantly define the Hamilton map (or fundamental matrix) F(ρ) of
pm at ρ ∈ Σ by

σ(w,F(ρ)w′) =
1
2
〈Hess(pm)(ρ)w,w′〉, ∀w,w′ ∈ TρT ∗Ω,
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which is then a linear map F(ρ) : TρT ∗Ω −→ TρT ∗Ω. One readily has that F(ρ) is skew-
symmetric with respect to σ , and it turns out that the spectral structure of F(ρ), at any given
ρ ∈ Σ, is the following:

• KerF(ρ)⊂ Ker(F(ρ)2) = Ker(F(ρ)3);
• 0 is the only generalized eigenvalue, and the other eigenvalues (if present) are semisim-

ple, so that (with repetitions according to multiplicity)

Spec(F(ρ)) = {0}∪{±iµ j; µ j > 0, 1≤ j ≤ r} (some r ∈ Z+);

• one has the following σ -orthogonal decomposition

TρT ∗Ω = Ker(F(ρ)2)⊕Range(F(ρ)2).

One defines for any given ρ ∈ Σ the positive trace of F(ρ) by

Tr+F(ρ) = ∑
µ>0

iµ∈Spec(F(ρ))

µ.

The positive trace is a symplectic invariant (positively homogeneous of degree m−1 in the
fibers). Dynamically speaking, the map F(ρ) is the linearization of the bicharacteristic flow
t 7→ exp(tHpm)(ρ) at ρ ∈ Σ, where

Hpm =
n

∑
j=1

(
∂ pm

∂ξ j

∂

∂x j
− ∂ pm

∂x j

∂

∂ξ j

)
is the Hamilton vector field associated with pm.

In [9], Hörmander proved the following strong version of Melin’s inequality.

Theorem 2.1. Let P = P∗ be a (formally self-adjoint) classical properly supported pseudo-
differential operator of order m > 0 on an open set Ω ⊂ Rn. Let p ∼ pm + pm−1 + . . . be its
symbol. Suppose that

pm(x,ξ )≥ 0, ∀(x,ξ ) ∈ T ∗Ω\0,
and that

(2.7) pm(x,ξ ) = 0 =⇒ ps
m−1(x,ξ )+Tr+F(x,ξ )> 0.

Then for any given compact K ⊂Ω there exist cK,CK > 0 such that

(2.8) (Pu,u)≥ cK||u||2(m−1)/2−CK||u||2(m−2)/2, ∀u ∈C∞
c (K).

Here

(2.9) ps
m−1(x,ξ ) = pm−1(x,ξ )+

i
2

n

∑
j=1

∂x j∂ξ j pm(x,ξ )

is the subprincipal symbol of P, which is invariantly defined on the second-order zeros of
the principal symbol (in this case, the whole characteristic set p−1

m (0) ⊂ T ∗Ω \ 0, because
pm ≥ 0, whence its vanishing to 2nd order). In particular, in the case of the operator P given
in (1.2), denoting by Z j(x,ξ ) the symbol of Z j(x,D) and putting d j(x) = ∑

n
k=1 ∂xk∂ξk

Z j(x,ξ )
(a sort of complex-valued divergence of Z j) one computes

(2.10) ps
1(x,ξ ) =−

N

∑
j=1

Im
(

d j(x)Z j(x,ξ )
)
− i

2

N

∑
j=1
{Z̄ j,Z j}(x,ξ ),
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so that at a characteristic point ρ we have ps
1(ρ) =−

i
2

N

∑
j=1
{Z̄ j,Z j}(ρ).

Note that when P is a differential operator of even order (as in the case of operator P in
(1.2)), then, because of the symmetry (x,ξ ) 7→ (x,−ξ ) in Σ and the fact that

Tr+F(x,−ξ ) = Tr+F(x,ξ ), ∀(x,ξ ) ∈ Σ,

one has that condition (2.7) is equivalent to

(2.11) |ps
m−1(ρ)|< Tr+F(ρ), ∀ρ ∈ Σ.

Note also that when m = 2, Melin’s inequality (2.8) is identical to (1.1) with ε = 1/2. Our
aim is to show that indeed Kohn’s condition (1.3) implies (2.7), which in the end gives an
alternative proof of his result along with a precise control of the stability of the subelliptic
estimate under certain lower order perturbations.

In the next section I will reformulate Kohn’s condition and study the spectrum of the
Hamilton map of Kohn’s sum of squares (1.2), showing that Tr+F can be controlled from
below in terms of the absolute value of the subprincipal symbol and the moduli of the Poisson
brackets of the symbols of Z1, . . . ,ZN .

3. SETTING OF THE PROBLEM AND SPECTRUM OF THE HAMILTON MAP F

I write for 1≤ j ≤ N,

Z j(x,ξ ) = 〈ζ j(x),ξ 〉, ζ j = α2 j−1 + iα2 j ∈C∞(Ω;CT Ω),

so that, with
X2 j−1(x,ξ ) = 〈α2 j−1(x),ξ 〉, X2 j(x,ξ ) = 〈α2 j(x),ξ 〉,

I may also write

Z j(x,ξ ) = X2 j−1(x,ξ )+ iX2 j(x,ξ ), (x,ξ ) ∈ T ∗Ω\0.

I will write [w1,w2] for the commutator of two vector fields w1 and w2, and

{ f ,g}=
n

∑
k=1

(
∂ f
∂ξk

∂g
∂xk
− ∂ f

∂xk

∂g
∂ξk

)

for the Poisson bracket of the functions f and g.
Since the principal symbol of P in (1.2) is

p2(x,ξ ) =
N

∑
j=1
|Z j(x,ξ )|2,

we have that the characteristic set Σ of P (we shall be considering the case P nonelliptic, i.e.
Σ 6= /0 since when P is elliptic the estimate and perturbation results are well-known) is given
by

Σ =
N⋂

j=1

{(x,ξ ) ∈ T ∗Ω\0; Z j(x,ξ ) = 0}.

Hence, on defining for x ∈Ω

W (x) = SpanR{α2 j−1(x), α2 j(x); 1≤ j ≤ N},
we have

Σ = {(x,ξ ) ∈ T ∗Ω; 0 6= ξ ∈W (x)⊥}.
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Of course, in (T ∗Ω\0)\Σ we have that P is elliptic, and if π : T ∗Ω −→ Ω is the canonical
projection, we have that π(Σ) = {x ∈Ω; ∃ξ 6= 0 with ξ ∈W (x)⊥}.

In this context, Kohn’s condition (1.3) is written as

(3.12) SpanC{ζ j(x), [ζ j,ζk](x); 1≤ j,k ≤ N}= CTxΩ, ∀x ∈Ω.

Proposition 3.1. Suppose that Kohn’s condition (3.12) holds at x0 ∈ π(Σ). Then for all
0 6= ξ ∈W (x0)

⊥ there exist j,k ∈ {1, . . . ,N} such that {Z j,Zk}(x0,ξ ) 6= 0, that is,

(3.13)

 Re{Z j,Zk}(x0,ξ ) = {X2 j−1,X2k−1}(x0,ξ )−{X2 j,X2k}(x0,ξ ) 6= 0,

or Im{Z j,Zk}(x0,ξ ) = {X2 j−1,X2k}(x0,ξ )+{X2 j,X2k−1}(x0,ξ ) 6= 0.

Proof. Suppose (3.12) holds at x0 ∈ π(Σ). By contradiction, if there is 0 6= ξ ∈W (x0)
⊥

such that {Z j,Zk}(x0,ξ ) = 0 for all j,k ∈ {1, . . . ,N}, then ξ is a real nonzero solution to the
system  〈ζ j(x0),ξ 〉= 0, 1≤ j ≤ N,

〈[ζ j,ζk](x0),ξ 〉= 0, 1≤ j < k ≤ N.

Therefore ξ ∈ Rn \{0} is orthogonal to CTx0Ω = Cn, which is a contradiction. �

Remark 3.2. Since P is microlocally elliptic outside Σ, when the compact K does not in-
tersect π(Σ) one has the Gårding inequality and hence an inequality of the kind (1.1) with
ε = 1. Therefore, assuming (3.12) becomes crucial for obtaining the subelliptic estimate
only when K∩π(Σ) 6= /0 and hence only for any given x ∈ π(Σ).

Furthermore, note that condition (3.13) is only necessary for Kohn’s condition (3.12) to
hold since the nonzero covector ξ is only supposed to be real. This constrasts with the
strong Melin condition (2.7), which is necessary and sufficient for (2.8) to hold (as is seen by
testing the inequality on suitable families of wave-packets). Hence Kohn’s condition is not
necessary for the subelliptic estimate to hold.

As for the subprincipal symbol ps
1 of P at ρ = (x,ξ ) ∈ Σ we have (see (2.10) above)

ps
1(ρ) =−

i
2

N

∑
j=1
{Z̄ j,Z j}(ρ) =

N

∑
j=1
{X2 j−1,X2 j}(ρ).

Now, if H j(ρ) is the Hamilton vector field of X j at ρ ∈ Σ, a computation gives (using the
fact that d f (ρ)w = σ(w,H f (ρ)))

F(ρ)w =
N

∑
j=1

(
σ(w,H2 j−1(ρ))H2 j−1(ρ)+σ(w,H2 j(ρ))H2 j(ρ)

)
, w ∈ TρT ∗Ω.

To lighten notation, I shall at times drop the dependence on ρ ∈ Σ, retaining it when
necessary.

Let, for ρ ∈ Σ,
V =V (ρ) := SpanR{H2 j−1, H2 j; 1≤ j ≤ N}.

Then
Range(F)⊂V
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and F(ρ) : TρT ∗Ω−→V (ρ)⊂ TρT ∗Ω. By considering the obvious C-linear extension of σ

to CTρT ∗Ω, we think of F as mapping CTρT ∗Ω into itself. Let then

T = T (ρ) : C2N 3 z :=

[
z′j
z′′j

]
1≤ j≤N

7−→
N

∑
j=1

(
z′jH2 j−1 + z′′j H2 j

)
∈ CV (ρ),

and

L = L(ρ) : CTρT ∗Ω 3 w 7−→

[
σ(w,H2 j−1)

σ(w,H2 j)

]
1≤ j≤N

∈ C2N .

For short, I will write
[

z′

z′′

]
in place of

[
z′j
z′′j

]
1≤ j≤N

. We have

Fw = (T ◦L)w, ∀w ∈ CTρT ∗Ω.

Since the eigenvectors of F belonging to the nonzero eigenvalues are necessarily lying in
Range(F)⊂ CV , to understand Spec(F)\{0} I will therefore work in CV .

Now, for w = ∑
N
j=1

(
z′jH2 j−1 + z′′j H2 j

)
∈ CV one has

Fw =
N

∑
j=1

(
z′jFH2 j−1 + z′′j FH2 j

)
=

N

∑
j,k=1

(
z′j
(

σ(H2 j−1,H2k−1)H2k−1 +σ(H2 j−1,H2k)H2k

)

+z′′j
(

σ(H2 j,H2k−1)H2k−1 +σ(H2 j,H2k)H2k

))

=
N

∑
k=1

(
N

∑
j=1

(
z′jσ(H2 j−1,H2k−1)+ z′′j σ(H2 j,H2k−1)

))
H2k−1

+
N

∑
k=1

(
N

∑
j=1

(
z′jσ(H2 j−1,H2k)+ z′′j σ(H2 j,H2k)

))
H2k.

It is thus natural to define the 2N×2N real matrix
(3.14)

M = M(ρ) =

[
σ(H2 j−1,H2k−1)1≤ j,k≤N σ(H2 j−1,H2k)1≤ j,k≤N

σ(H2 j,H2k−1)1≤ j,k≤N σ(H2 j,H2k)1≤ j,k≤N

]
=:

[
A1 B

− tB A2

]
,

where A j = − tA j, j = 1,2. Hence M : C2N −→ C2N is a skew-symmetric matrix with real
entries and

M
[

z′

z′′

]
=

 ∑
N
k=1

(
σ(H2 j−1,H2k−1)z′k +σ(H2 j−1,H2k)z′′k

)
1≤ j≤N

∑
N
k=1

(
σ(H2 j,H2k−1)z′k +σ(H2 j,H2k)z′′k

)
1≤ j≤N

 .
Therefore, if w = ∑

N
j=1

(
z′jH2 j−1 + z′′j H2 j

)
, then

(3.15) Fw =
N

∑
k=1

((
−M

[
z′

z′′

])′
k
H2k−1 +

(
−M

[
z′

z′′

])′′
k
H2k

)
.
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Since

LH2 j−1 =

[
σ(H2 j−1,H2k−1)

σ(H2 j−1,H2k)

]
1≤k≤N

, LH2 j =

[
σ(H2 j,H2k−1)

σ(H2 j,H2k)

]
1≤k≤N

,

we also have

(3.16)
[
(LH2 j−1)1≤ j≤N (LH2 j)1≤ j≤N

]
=−M.

Notice therefore that

(3.17) L◦T =−M.

Hence

(3.18) KerT ⊂ KerM.

By interpreting F as a complex linear map, we have the following.

Proposition 3.3. The eigenvalue problem Fw = λw,
λ 6= 0,
0 6= w ∈ Range(F)⊂ CV,

is equivalent to the problem
(M+λ )

[
z′

z′′

]
∈ KerT,

λ 6= 0,

w = ∑
N
j=1(z

′
jH2 j−1 + z′′j H2 j) = T

[
z′

z′′

]
6= 0.

Proof. Since

w ∈ Range(F)⇔∃w′ such that w =
N

∑
j=1

(
σ(w′,H2 j−1)H2 j−1 +σ(w′,H2 j)H2 j

)
,

we have that the eigenvalue equation Fw = λw, with w = ∑
N
j=1(z

′
jH2 j−1 + z′′j H2 j) 6= 0 be-

longing to CV , may be rewritten as
N

∑
j=1

((
(−M−λ )

[
z′

z′′

])′
j
H2 j−1 +

(
(−M−λ )

[
z′

z′′

])′′
j
H2 j

)
= 0,

that is,

(M+λ )

[
z′

z′′

]
∈ KerT,

where T
[

z′

z′′

]
6= 0.

Conversely, if λ 6= 0 and (M+λ )

[
z′

z′′

]
∈ KerT , with T

[
z′

z′′

]
6= 0, then

F ◦T
[

z′

z′′

]
= (T ◦L)◦T

[
z′

z′′

]
= T ◦ (L◦T )

[
z′

z′′

]
=−T ◦M

[
z′

z′′

]
= λT

[
z′

z′′

]
.

This proves the proposition. �
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Recall that, since M is real and skew-symmetric, its spectrum is given by 0 and by ±iµ j,
1 ≤ j ≤ r0 (possibly repeated according to the multiplicity), where the µ j are > 0 and r0 =
rkM/2 (in case r0 = N then 0 is not in the spectrum of M). Using (3.18) and Proposition 3.3
we have the following crucial result about the spectrum of F .

Theorem 3.4. One has
Spec(F)\{0}= Spec(M)\{0},

with the same multiplicities. In particular, λ ∈ Spec(F)\{0} iff −λ ∈ Spec(M)\{0}.

Proof. Let 0 6= w = T
[

z′

z′′

]
, be an eigenvector of F belonging to λ 6= 0. By (3.18) and

Proposition 3.3 we then have, equivalently, that

(M+λ )

[
z′

z′′

]
∈ KerT.

Hence

M(M+λ )

[
z′

z′′

]
= (M+λ )M

[
z′

z′′

]
= 0.

We now have that

(i) either 0 6=−λ ∈ Spec(M), hence (M+λ )

[
z′

z′′

]
= 0,

(ii) or 0 6=−λ 6∈ Spec(M), hence (M+λ )

[
z′

z′′

]
6= 0.

In the former case the nonzero vector
[

z′

z′′

]
is an eigenvector of M belonging to −λ 6= 0.

In the latter case we have

(3.19) 0 6= (M+λ )

[
z′

z′′

]
=: tλ ∈ KerT,

and [
z′

z′′

]
= (M+λ )−1tλ .

Since M commutes with (M+λ )−1 we obtain

M
[

z′

z′′

]
= (M+λ )−1Mtλ = 0,

by (3.18). Therefore from (3.19) we have tλ = λ

[
z′

z′′

]
, λ 6= 0, which finally yields w =

T
[

z′

z′′

]
= 0. Hence w cannot be an eigenvector of F belonging to λ . Since for both F and

M one has that λ is a nonzero eigenvalue iff −λ is a nonzero eigenvalue, this shows that

Spec(F)\{0} ⊂ Spec(M)\{0}.

To show the converse, suppose that 0 6=−λ ∈ Spec(M), and that
[

z′

z′′

]
6= 0 is an eigenvector

of M belonging to −λ . Then it cannot be
[

z′

z′′

]
∈ KerT because by (3.18) we would then
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have (M +λ )

[
z′

z′′

]
= λ

[
z′

z′′

]
= 0 which is impossible. Hence w := T

[
z′

z′′

]
6= 0 is an

eigenvector of F belonging to λ , which shows that

Spec(M)\{0} ⊂ Spec(F)\{0}.

As for the multiplicities, let w1, . . . ,wk be a basis of Ker(F − λ ). Then, by (i) above, we

have that there are z j =

[
z′( j)
z′′( j)

]
, 1 ≤ j ≤ k, such that T z j = w j and (M + λ )z j = 0. I

claim that z1, . . . ,zk are linearly independent. In fact, suppose ∑
k
j=1 α jz j = 0, α j ∈ C. Then

∑
k
j=1 α jT z j = ∑

k
j=1 α jw j = 0, which yields α1 = . . .= αk = 0. Therefore

dimKer(F−λ )≤ dimKer(M+λ ).

If we had a strict inequality, we could find zk+1 ∈ Ker(M +λ ) such that z1, . . . ,zk,zk+1 are
still linearly independent. However, we would have T zk+1 = ∑

k
j=1 β jw j = ∑

k
j=1 β jT z j, for

some β j ∈ C not all zero, whence

zk+1−
k

∑
j=1

β jz j ∈ KerT ⊂ KerM.

Therefore

0 = M
(

zk+1−
k

∑
j=1

β jz j

)
=−λ

(
zk+1−

k

∑
j=1

β jz j

)
⇒ zk+1−

k

∑
j=1

β jz j = 0,

since λ 6= 0, which is a contradiction. This concludes the proof. �

Corollary 3.5. One therefore has

Tr+F = Tr+M.

4. ANOTHER PROOF OF THEOREM 1.2, AND ITS IMPROVEMENT

In this section I give the proof of Theorem 1.5, that I restate in a more detailed version. To
do that, I next introduce the relevant functions involved in its statement.

Recall that we are given the complex operators Z1, . . . ,ZN in n dimensions and are con-
sidering the corresponding sum of squares P as given in (1.2), and that we are denoting
by Σ ⊂ T ∗Ω \ 0 the characteristic set of P. We will always be considering only the case
Σ 6= /0, i.e. P is not elliptic, for otherwise the estimate and the perturbation results are well-
known. Recall also that we write Z j = X2 j−1 + iX2 j. Define the continuous functions on Σ,
κ : Σ−→ [0,+∞) and Λ± : Σ−→ R by

(4.20) κ(ρ) =
(

ps
1(ρ)

2 + max
1≤ j<k≤N

|{Z j,Zk}(ρ)|2
)1/2

, ρ ∈ Σ,

and

(4.21) Λ±(ρ) =−ps
1(ρ)±κ(ρ), ρ ∈ Σ.

It is important to observe that the functions κ and Λ± are positively homogeneous of degree
1 in the fibers and that:



12 ALBERTO PARMEGGIANI

(i) κ(ρ)2 is expressed through Poisson brackets of the X2 j−1, X2 j at ρ ∈ Σ. In fact,

ps
1(ρ) =

N

∑
j=1
{X2 j−1,X2 j}(ρ),

Re{Z j,Zk}(ρ) = {X2 j−1,X2k−1}(ρ)−{X2 j,X2k}(ρ),
Im{Z j,Zk}(ρ) = {X2 j−1,X2k}(ρ)−{X2 j,X2k−1}(ρ);

(ii) The functions Λ± are the solutions of the quadratic equation in λ

(λ + ps
1(ρ))

2 = κ(ρ)2;

(iii) Since κ(ρ) ≥ |ps
1(ρ)| throughout Σ (with strict inequality when Kohn’s condition is

satisfied) we have
Λ−(ρ)≤ 0≤ Λ+(ρ)

(again, with strict inequality when Kohn’s condition is satisfied).
I am now in a position to state and prove the main result of this paper.

Theorem 4.1. Suppose Kohn’s condition (1.3) holds. Then P given in (1.2) satisfies the
subelliptic estimate (1.4). Moreover, if Q is a first order classical properly supported pseu-
dodifferential operator whose principal symbol has real part q1 that satisfies

(4.22) Λ−(ρ)< q1(ρ)< Λ+(ρ), ∀ρ ∈ Σ,

then P+Q keeps satisfying (1.4). In particular, condition (4.22) holds if

(4.23) |q1(ρ)|< min{−Λ−(ρ),Λ+(ρ)}= κ(ρ)−|ps
1(ρ)|, ∀ρ ∈ Σ.

Remark 4.2. Hence, the quantity κ−|ps
1

∣∣
Σ
| appearing on the right-hand side of (4.23) may

be thought of as a precise measure of the allowed “width”, determined by Kohn’s condition
(1.3), of an admissible first-order perturbation Q of P.

Note also that Σ is not supposed to be a smooth manifold.

The proof of Theorem 4.1 follows from the following result.

Theorem 4.3. One always has the estimate

(4.24)
(

Tr+F(ρ)
)2

=
(

Tr+M(ρ)
)2
≥ ps

1(ρ)
2 + max

1≤h<r≤N
|{Zh,Zr}(ρ)|2, ∀ρ ∈ Σ.

Therefore, by Proposition 3.1, Kohn’s condition (1.3) implies

Tr+F(ρ)> |ps
1(ρ)|, ∀ρ ∈ Σ,

whence Melin’s condition (2.7) holds.

Proof of Thm. 4.3. The proof of estimate (4.24) depends on the variational characterization
of the singular values of a given matrix. In the first place I will recall the basic facts that will
be needed in the proof.

Given a complex N×N matrix A, its singular values s1(A) ≥ s2(A) ≥ . . .sN(A) ≥ 0 are
the eigenvalues (repeated according to multiplicity) of A∗A (equivalently AA∗). Denoting by
U(N) the unitary group, one has (see Horn and Johnson [8]) that

N

∑
j=1

s j(A) = max
U∈U(N)

|Tr(AU)|.
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Denote by B(N) the set of N×N contractions, that is the set of the complex matrices C such
that s j(C) ∈ [0,1], 1≤ j ≤ N. One then has (see [8]) that B(N) is compact and that

U(N) = ext(B(N))⊂ B(N),

that is, U(N) is the set of extreme points of B(N) and, moreover, for any given C ∈ B(N)
there exist U1, . . . ,Ur ∈ U(N) such that

C =
r

∑
j=1

α jU j, α j ≥ 0,
r

∑
j=1

α j = 1.

It hence follows, by convexity, that

|Tr(AC)|2 ≤ max
U∈U(N)

|Tr(AU)|2, ∀C ∈ B(N).

Now, in the present case we are considering M = − tM, real 2N× 2N matrix, so that we
readily have that

2Tr+M = max
U∈U(2N)

|Tr(MU)|,

and that for any given contraction C ∈ B(2N),

|Tr(MC)|2 ≤ 4(Tr+M)2.

For simplicity, I will consider

fM : B(2N) 3C 7−→ 1
4
|Tr(MC)|2 ∈ [0,(Tr+M)2].

Now, since U(2N) is compact and arcwise connected, and since M is skew-symmetric and
hence traceless, one has fM(I2N) = 0 (as I2N is a unitary matrix and Tr(MI2N) = 0), whence

fM(U(2N)) = fM(B(2N)) = [0,(Tr+M)2].

So, the point is to understand the values of fM. Remark that, since we consider the nontrivial
case M 6= 0 at each ρ ∈ Σ (by virtue of the Kohn condition and the fact that we consider the
nontrivial case of P nonelliptic), we must have Tr+M > 0.

For that purpose it will be convenient to use the Weyl basis E jk, 1 ≤ j,k ≤ N, of the
N×N complex matrices, whose entries are all 0 except for the jk-th entry, which is 1. I also
consider, for 1≤ h < r ≤ N, the N×N skew-symmetric matrix

Jhr = Ehr−Erh.

Therefore

(4.25) E jkEhr = δkhE jr, J2
hr =−Ehh−Err, Jhr + J∗hr = 0,

with δkh the Kronecker δ .
Next we write down the matrix M introduced in (3.14). It is useful to use the following

blockwise expression of M: for 1≤ j < k ≤ N we put x jk = {X j,Xk}, then

M =

[
A1 B
− tB A2

]
,

where A1, A2, and B are N×N real matrices with

A1 =− tA1 = ∑
1≤ j<k≤N

x2 j−1,2k−1J jk,
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A2 =− tA2 = ∑
1≤ j<k≤N

x2 j,2kJ jk,

and
B = ∑

1≤ j,k≤N
2 j−1<2k

x2 j−1,2kE jk− ∑
1≤ j,k≤N
2 j−1>2k

x2k,2 j−1E jk.

Note that
Tr(B) = ps

1(ρ).

Using (4.25), one computes for j < k, h < r,

J jkJhr = δkhE jr−δkrE jh−δ jhEkr +δ jrEkh⇒ Tr(J jkJhr) = 2δkhδ jr−2δkrδ jh.

It then follows that for 1≤ h < r ≤ N

Tr(A1Jhr) = ∑
1≤ j<k≤N

x2 j−1,2k−1Tr(J jkJhr)

= 2 ∑
1≤ j<k≤N

x2 j−1,2k−1(δhkδ jr−δkrδ jh) =−2x2h−1,2r−1,

and in the same way
Tr(A2Jhr) =−2x2h,2r.

Therefore

(4.26) Tr(A1Jhr)−Tr(A2Jhr) =−2(x2h−1,2r−1− x2h,2r) =−2Re{Zh,Zr}(ρ).

As for B, one has, using
Tr(E jkJhr) = δkhδ jr−δkrδ jk,

that

Tr(BJhr) = ∑
j,k; 2 j−1<2k

x2 j−1,2k(δkhδ jr−δkrδ jh)− ∑
j,k; 2 j−1>2k

x2k,2 j−1(δkhδ jr−δkrδ jh),

whence, with h < r,

Tr(BJhr) =−(x2h−1,2r + x2h,2r−1) =−Im{Zh,Zr}(ρ),

and, using the properties of Tr, also that

Tr(− tBJhr) = Tr(BJhr) =−(x2h−1,2r + x2h,2r−1).

Hence

(4.27) Tr(BJhr)+Tr(− tBJhr) =−2 Im{Zh,Zr}(ρ)

Now, consider the unitary matrix Us :=
[

0 −IN
IN 0

]
∈ U(2N), for which it is readily seen

that fM(Us) = ps
1(ρ)

2. Therefore we obtain a first remarkable relation.

Lemma 4.4. For any given sum-of-squares of complex vector fields operator P as in (1.2)
one always has (in the nonelliptic case, i.e. Σ 6= /0, which is the case we are interested in)

(4.28) |ps
1(ρ)| ≤ Tr+M(ρ) = Tr+F(ρ), ∀ρ ∈ Σ.
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But the above estimate must be strict in view of Kohn’s condition. In fact, suppose that
|ps

1(ρ)| = Tr+M(ρ) for some ρ ∈ Σ (hence |ps
1(ρ)| > 0). Let 1 ≤ h < r ≤ N be such that

|{Zh,Zr}(ρ)| 6= 0. Say that Re{Zh,Zr}(ρ) 6= 0. Then, if one defines

ψ0 : R→ [0,+∞), ψ0(t) = fM(Us exp
(

t
[

0 Jhr
Jhr 0

])
),

then 0 < ps
1(ρ)

2 = ψ0(0) = fM(Us) is a maximum, whence (by (4.26))

ψ
′
0(0) = Tr(B)Tr(M

[
−Jhr 0

0 Jhr

]
) = 2 ps

1(ρ)Re{Zh,Zr}(ρ) = 0,

which is impossible. The same happens in case Im{Zh,Zr}(ρ) 6= 0. One in fact considers

ψ1 : R→ [0,+∞), ψ1(t) = fM(Us exp
(

t
[
−Jhr 0

0 Jhr

])
),

for which (by (4.27))

ψ1(0) = ps
1(ρ)

2 > 0, ψ
′
1(0) = ps

1(ρ)Tr(M
[

0 −Jhr
−Jhr 0

]
) = 2 ps

1(ρ) Im{Zh,Zr}(ρ).

Therefore we obtain a second remarkable relation.

Lemma 4.5. For any given sum-of-squares of complex vector fields operator P as in (1.2)
which satisfies Kohn’s condition one always has (in the nonelliptic case)

(4.29) |ps
1(ρ)|< Tr+M(ρ) = Tr+F(ρ), ∀ρ ∈ Σ.

Therefore Melin’s strong inequality (2.8) (for m = 2) holds, and hence also the subelliptic
estimate (1.4).

To complete the proof of Theorem 4.3, we have to show inequality (4.24). To prove it, for
any given ρ ∈ Σ I consider all the h,r with 1≤ h < r ≤ N such that |{Zh,Zr}(ρ)| 6= 0. Take
an h and r with that property. We construct the following contraction belonging to B(2N).
For t1, t2, t3, t4 ∈ R such that t2

1 + t2
2 = t2

3 + t2
4 = 1 consider the matrix

Chr =Chr(t1, t2; t3, t4) =

[
−t1Jhr t2(t3IN− t4Jhr)

−t2(t3IN + t4Jhr) t1Jhr

]
.

One computes

C∗hrChr =

[
Ehh +Err + t2

2 t2
3 ∑ j 6=h,r E j j 0

0 Ehh +Err + t2
2 t2

3 ∑ j 6=h,r E j j

]
,

so that the singular values of Chr are 1 and t2
2 t2

3 ∈ [0,1], whence Chr ∈ B(2N).

I next compute fM(Chr) and maximize it for t2
1 + t2

2 = 1 = t2
3 + t2

4 . One has

Tr(MChr) = 2t1Re{Zh,Zr}(ρ)−2t2
(

t3 ps
1(ρ)+ t4 Im{Zh,Zr}(ρ)

)
.

Since Chr is a contraction for all t2
1 + t2

2 = 1 = t2
3 + t2

4 we have

fM(Chr)≤ (Tr+M)2,

and hence

(4.30) max
t2
3+t2

4=1
max

t2
1+t2

2=1
fM(Chr) = ps

1(ρ)
2 + |{Zh,Zr}(ρ)|2 ≤ (Tr+M)2.



16 ALBERTO PARMEGGIANI

The equality on the left-hand side of inequality (4.30) is obtained by using the fact that since
Chr is a real matrix then fM is the square of a real-valued linear form. To see (4.30), in the
first place one has

max
t2
1+t2

2=1
fM(Chr) = Re{Zh,Zr}(ρ)2 +

(
t3 ps

1(ρ)+ t4 Im{Zh,Zr}(ρ)
)2

,

and then

max
t2
3+t2

4=1

(
Re{Zh,Zr}(ρ)2 +

(
t3 ps

1(ρ)+ t4 Im{Zh,Zr}(ρ)
)2)

= ps
1(ρ)

2 + |{Zh,Zr}(ρ)|2.

Therefore estimate (4.24) and, in turn, Melin’s condition (2.7) hold and the theorem is
proved. �

Proof of Thm. 4.1. The fact that P satisfies the subelliptic estimate follows from Melin’s
theorem. We need only to show the perturbation part of the result. Recall that, with the
present notation,

κ(ρ) =
(

ps
1(ρ)

2 + max
1≤h<r≤N

|{Zh,Zr}(ρ)|2
)1/2

, ρ ∈ Σ.

The condition for P+Q to satisfy (2.7) at ρ ∈ Σ is that

ps
1(ρ)+q1(ρ)+Tr+F(ρ)> 0,

which, in view of the above computations, is implied by requiring that

(4.31) |ps
1(ρ)+q1(ρ)|< Tr+F(ρ).

Since κ(ρ)≤ Tr+F(ρ), (4.31) holds if

(4.32) |ps
1(ρ)+q1(ρ)|< κ(ρ).

Taking the squares of both sides and recalling the definition of Λ±(ρ), we have that (4.32)
holds iff

Λ−(ρ)< q1(ρ)< Λ+(ρ), ∀ρ ∈ Σ,

which is condition (4.22) in the statement of the theorem.
Finally, since

|ps
1(ρ)|+ |q1(ρ)|< κ(ρ)

(and |ps
1(ρ)| < κ(ρ)) implies (4.32), the last statement also follows, and this concludes the

proof. �

5. A PSEUDODIFFERENTIAL GENERALIZATION

In this final section I generalize Theorem 4.1 to a pseudodifferential setting.

Definition 5.1. Let P1, . . . ,PN ∈ Ψm
cl(Ω;C) be mth-order complex classical properly sup-

ported pseudodifferential operators on an open set Ω⊂Rn. I will denote by Σ⊂ T ∗Ω\0 the
characteristic set (supposed to be nonempty) of the operator P = ∑

N
j=1 P∗j Pj, and by S∗Σ the

set
S∗Σ = {(x,ξ ) ∈ Σ; |ξ |= 1}.

Denoting by p j(x,ξ ) the principal symbol of the operator Pj, 1≤ j≤N, I say that the system
(P1, . . . ,PN) satisfies condition (KΣ) if

(5.33) ∑
1≤ j<k≤N

|{p j, pk}(ρ)|> 0, ∀ρ ∈ S∗Σ.
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Let

κ(ρ) =
(

ps
2m−1(ρ)

2 + max
1≤ j<k≤N

|{p j, p j}(ρ)|2
)1/2

, ρ ∈ Σ.

Notice that κ : Σ−→ [0,+∞) is continuous and positively homogeneous of degree 2m−1 in
the fibers.

Exactly the same proof of Theorem 4.1 above gives the following pseudodifferential gen-
eralization.

Theorem 5.2. Suppose that P1, . . . ,PN ∈Ψm
cl(Ω;C) are properly supported and satisfy condi-

tion (KΣ). Then for P = ∑
N
j=1 P∗j Pj (now a 2mth-order classical pseudodifferential operator)

we have

ps
2m−1(ρ)

2 < ps
2m−1(ρ)

2 + max
1≤ j<k≤N

|{p j, p j}(ρ)|2 ≤
(

Tr+F(ρ)
)2

, ∀ρ ∈ Σ.

Hence P satisfies the following subelliptic estimate: For every compact K ⊂ Ω there exists
cK > 0 such that

(5.34) cK||u||2m−1/2 ≤ Re(Pu,u)+ ||u||2m−1, ∀u ∈C∞
c (K)

(hence (1.4) is a particular case of (5.34) for m = 1). Moreover, if Q is a (2m− 1)st-order
classical properly supported pseudodifferential operator whose principal symbol has real
part q2m−1 that satisfies

(5.35) −κ(ρ)− ps
2m−1(ρ)< q2m−1(ρ)< κ(ρ)− ps

2m−1(ρ), ∀ρ ∈ Σ,

then P+Q keeps satisfying (5.34). In particular, condition (5.35) holds if

(5.36) |q2m−1(ρ)|< κ(ρ)−|ps
2m−1(ρ)|, ∀ρ ∈ Σ.

Once more, note that no smoothness assumption on Σ is required.
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6 pp. Centre de Math., École Polytech., Paris, 1971.

[6] V. S. Fedii. A certain criterion for hypoellipticity. Mat. Sb. (N.S.) 85 (1971), 18–48.
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