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Abstract 

In this work an exhaust gas temperature and a piston damage model 
are coupled, with the aim to develop an innovative, model-based 
strategy for the calibration of the lambda map and to actively control 
the spark advance. In this way, the lambda value needed to reach a 
target exhaust gas temperature evaluated at the turbine inlet is 
determined. In the first part of the paper, some empirical and semi-
physical models for the calculation of the exhaust gas temperature, the 
combustion phase, the maximum in-cylinder pressure and the knock 
intensity are developed and presented. A piston damage model 
previously developed by the authors determines the spark advance to 
reach a target piston erosion for the knock-limited operating 
conditions, increasing the combustion efficiency and lowering the 
temperature of the exhaust gases with respect to the standard spark 
timing map. The exhaust gas temperature model allows to estimate the 
lambda value that returns the maximum temperature at the turbine 
inlet, exploiting the gained combustion efficiency to extend the 
stoichiometric area of the engine operating field. 
In the last part of the work, the lambda map calibrated through the 
proposed algorithm is validated for both the transient and steady-state 
conditions, reproducing a real vehicle maneuver at the engine test 
bench. The results finally demonstrate that a combustion efficiency 
increase equal to 8% can be reached by managing the spark advance 
with a piston damage-based controller and this number can be 
increased up to 16 % applying the recalibrated lambda map, with 
respect to the standard engine calibration. 

Keywords: combustion, knock, efficiency, modelling, control, 
exhaust, temperature, turbine, spark advance, lambda   

Introduction 

During the past years, the increasingly stringent, anti-pollution and 
anti-CO2 regulations forced the manufactures to increase the efficiency 
of internal combustion engines. The main technical solutions exploited 
during the last decade to increase the specific power and the efficiency 
of the Spark Ignition (SI) engines, are both the downsizing and the 
application of the turbocharger. However, these solutions also lead to 
increase the engine knock tendency, especially under high load 
operating conditions. This is due to higher pressure and temperature of 
the mixture inside the combustion chamber with respect to a naturally 
aspirated engine. The commonly adopted strategy to avoid the damage 
of the combustion chamber components induced by knocking events 
is the Spark Advance (SA) and the combustion phase retarding, that 
reduces the combustion efficiency [1] and increases the exhaust gas 
temperature. Typically, it is thus necessary to enrich the mixture to 
reduce such temperature [2] and to avoid damages to the turbine 
impeller [3]. It can be stated that the abnormal combustions and the 
high exhaust gas temperatures represent the main limits to the benefits 
brought by the application of the downsizing and turbocharging 
technologies. 
These phenomena are still an issue for the engine designers and the 
control developers, despite the application of innovative solutions 
thought to reduce their impact in the modern GDI Turbo-Charged (TC) 
engines (such as the low-pressure exhaust gas recirculation [4], the 
port or direct water injection [5] and the pre-chamber systems [6]). 

This is also because the knock intensity thresholds and the criteria 
applied to the SA calibration process are typically the result of the 
manufacturer experience and, in most cases, are defined to avoid the
knocking combustions at all. The highest percentiles (such as the 98th 
or the 99th) or even the cyclic intensity values are controlled to avoid 
the complete exceedance of some sort of experience-driven limit. 
Moreover, such thresholds have remained the same over the years, not 
following the improvements in the materials strength [7]. The updates 
in the alloy mechanical characteristics led to a significant increase of 
the admissible maximum pressure inside the combustion chamber, not 
necessarily followed by a corresponding redefinition of knock 
intensity thresholds. This is certainly due to an increase of the thermal 
and mechanical load on the combustion chamber components, that 
affects the alloy resistance, but also the lack of a robust, quantitative 
relationship between the calculated knock index, and the 
corresponding induced damage. 
As well known, the SA and the target lambda value are the two main 
parameters that have to be optimized in order to maximize the 
combustion efficiency. The development of robust, empirical knock 
intensity and exhaust gas temperature models is based on the 
estimation of other relevant combustion indexes, such as the 
combustion phase and the maximum in-cylinder pressure. Different
approaches can be found in literature to calculate the combustion 
phase, depending on the final application. The most suitable approach 
for the Real-Time (RT) or the control-oriented codes is the analytical 
one [8]. More physical methodologies, based on predictive combustion 
models, are also implemented for Software-in-the-Loop and RT 
simulations [9,10]. More recently, even the machine learning-based
algorithms and the neural networks are implemented for the 
combustion phase estimation [11].  
As mentioned above, together with knock, the exhaust gas temperature 
has a key role in the management of the maximum conversion 
efficiency of the aftertreatment system. Differently from the 
installation at the engine test bench, the thermocouples or other similar 
sensors are not used on the final on-board application for reliability 
and cost reasons. Indeed, the exhaust gas temperature is often
estimated through dedicated models that are implemented in the 
Engine Control Unit (ECU) code [12]. More recently, some machine 
learning-based algorithms have been developed to estimate such
temperature even under dynamic conditions [13, 14].  
The main methodologies for the knock intensity calculation are both 
the 1-D and 0-D modelling and several approaches can be found in 
literature [15-22]. Most of them assume that the mixture within the 
combustion chamber is separated in two different zones, that contain 
the burned and unburned gases [15-19], respectively. The pressure, the 
temperature and the composition of the unburned zone are calculated 
through the chemical kinetics [15, 16] to predict the autoignition event. 
Nevertheless, the algorithms that use the mentioned approaches are not 
suitable for the multicycle simulations [17]. Alternatively, the 
abnormal combustion occurrence is calculated through the integral 
approach proposed by Livengood and Wu in [18]. This method is 
based on the calculation of the ignition delay estimated by a 
multivariable equation expressed via the Arrhenius formula. The 
intensity of the instantaneous event is typically calculated by 
reproducing an index comparable with the experimental Maximum 
Amplitude of Pressure Oscillation (MAPO). A physical approach for 
the estimation of the abnormal combustion intensity considers the 



Page 2 of 18 

instantaneous pressure increase generated by an isochoric combustion 
of the unburned mixture residual fraction [19, 20]. Even if such method 
is compatible with the RT execution [21], it cannot accurately describe 
the cyclic variation of the instantaneous intensity. For this reason, it is 
common estimating the statistical indexes of MAPO for fixed engine 
operating conditions. Indeed, as well known, its probability 
distribution can be accurately described with a Weibull, Gamma, or 
Log-normal Probability Density Function (PDF) [22, 23]. The latter is 
completely identified with only two parameters (the mean value and 
the standard deviation, or two properly chosen percentiles) as for the 
Gaussian PDF, from which it inherits even the main properties. Such 
feature allows to calculate the knock intensity with a pure analytical 
approach [24]. The main parameters needed to describe the MAPO 
log-normal PDF for given engine operating conditions are the 50th and 
the 98th percentiles. Indeed, such values are directly related to the mean 
value and the standard deviation of the statistical distribution. 
In this work, a novel, model-based algorithm to automatically calibrate 
the lambda map is presented. The resulting function is mainly 
composed by a piston damage model and a turbine inlet gas 
temperature model. The first determines the spark advance to reach a 
target piston erosion for the knock-limited operating conditions, 
increasing the combustion efficiency and lowering the temperature of 
the exhaust gases, while the latter allows to exploit the gained 
efficiency to extend the stoichiometric portion of the engine operating 
field.
In the first part of this paper, a reliable and accurate control-oriented 
engine simulator is developed and validated. With such virtual engine 
it is possible to calculate the main combustion indexes, such as the 
Crank Angle that corresponds to the 50 % of the Mass of Fuel Burnt 
(CA50), the maximum in-cylinder pressure (PMAX), the exhaust gas 
temperature at the turbine inlet and the MAPO, which is the index used 
in this work to estimate the knock intensity. A Wiebe-based 
combustion model is calibrated to reproduce the in-cylinder pressure 
trace for each engine operating condition, as described in a previous 
work by the authors [25]. With this model the Temperature at Exhaust 
Valve Opening (TEVO) and the CA50 are calculated. An Artificial 
Neural Network-based (ANN) model is instead developed to calculate 
the knock intensity, for fixed engine operating conditions and PMAX, 
the engine load, speed, lambda, and the intake manifold air 
temperature are used as inputs for such model. A Feedforward Neural 
Network (FNN) is implemented in the algorithm for the knock 
intensity estimation. The maximum in-cylinder pressure is defined 
through an analytical equation, using the engine load and the CA50 as 
independent variables [26]. 
The offline calibration of the lambda map is carried out by evaluating 
the Knock-Limited Spark Advance (KLSA) value for each engine 
operating condition. One of the most common ways to define the 
KLSA is to determine the SA for which the 1% of a certain number of 
cycles is characterized by a MAPO value higher than a given threshold 
[27], usually determined by the experience of the engine manufacturer. 
This criterion is also implemented in the majority of the combustion 
control systems [28], but it is an extremely safe approach thought to 
avoid damages to combustion chamber components at all. In this work, 
a control-oriented piston damage model developed and validated in 
previous works by the authors [29-31] is implemented to convert 
MAPO into a more tangible and concrete intensity index and for 
targeting the admissible damage generated by knocking combustions 
on the piston surface in a certain amount of time (i.e., the target damage 
speed). The calculation of such quantity is based on a threshold 
(empirically calibrated as a function of the modelled piston 
temperature) that distinguish between MAPO values which produce or 
not the piston surface erosion. Such threshold has been defined by 
performing metallurgical analysis on numerous damaged pistons. With 
such approach, it is possible to define the KLSA getting the admissible 
piston surface erosion and increasing the combustion efficiency. 
Through the implementation of all the mentioned models, the KLSA 
and the lambda value that allows to achieve the maximum exhaust gas 

temperature at the turbine inlet can be determined. In this way, the 
overall efficiency of the energy conversion process is increased (the 
specific fuel consumption is decreased) and, at the same time, the 
combustion chamber components, and the turbine impeller integrity is 
preserved.  
In the last part of the paper, the results of the experimental tests carried 
out to validate the proposed calibration procedure are finally presented. 
Both the model-based SA controller coupled with the lambda map 
calibrated with the proposed algorithm are validated reproducing a real 
vehicle maneuver at the engine test bench and thus testing both the 
transient and steady-state conditions. Such tests allow to achieve an 
overall efficiency increase equal to 16%. 

Experimental Setup 

The experimental tests are carried out on a V8, 3.9 liters, GDI, TC 
engine equipped with a piezoelectric sensor for each cylinder and a 
thermocouple is mounted at the turbine inlet of each engine bank. 
Further features of such engine are reported in Table 1. 

Table 1. Engine characteristics. 

Displaced volume 3.9 L (8 cylinder) - turbo 

Stroke 82 mm  

Bore 86.5 mm  

Connecting Rod 143 mm  

Compression ratio 9.45:1 

Number of Valves per Cylinder 4 

The experimental tests are performed covering a wide part of the 
engine operating range, investigating especially the area characterized 
by the highest engine load and speed. Figure 1 shows the engine points 
tested during the experimental campaign. The engine load is defined 
as the volumetric efficiency and all the main variables are normalized 
with respect to the maximum value of each figure for confidentiality 
reasons.  

Figure 1. Engine operating conditions for which experimental tests are carried 
out at different lambda values. 

For each steady-state condition, the SA is changed performing a spark 
sweep. Some tests are repeated with different lambda values, providing 
the experimental data needed to calibrate the influence of the mixture 
quality on the main combustion indexes. The tested steady-state 
conditions (keeping constant the engine speed, load, SA, and lambda)
are about 700. However, such database comes from an engine 
characterization experimental campaign, collected to calibrate the
ECU control strategies. In other words, such kind of combustion data 
have not been logged for this specific modelling activity but are
typically always available. The in-cylinder pressure signals are 
recorded for 200 consecutive cycles with a sampling frequency of 200 
kHz, using the Alma Automotive mASTRO charge amplifier and OBI 
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as indicating system (provided by the same manufacturer). The 
combustion phase, its duration and the PMAX are estimated from the 
low-pass-filtered pressure curves, with a cut-off frequency of 3 kHz. 
MAPO is used as the knock intensity index, and it is determined with 
the Equation 1: 

 (1) 

Where  is the band-pass filtered in-cylinder pressure signal and 
the cut-off frequencies are not disclosed for confidentiality reasons. 
The same value of the recorded cycles (200) has been previously used 
for the development and validation of other models and, for this reason, 
it represents the reference for the evaluation of the combustion and 
knock indexes even in this work. Moreover, the record is typically 
started after the steady-state condition is reached, and, in this way, also 
the measurement of the thermocouples can be considered reliable and 
accurate. The algorithms described in this work are developed for the 
mean cylinder and the mean values of the 98th and the 50th percentiles 
of MAPO (named MAPO98 and MAPO50 in the following sections 
of the paper, respectively) are considered to characterize the knock 
intensity of a certain operating condition. Finally, the exhaust gas 
temperature is measured with a thermocouple installed at the turbine 
inlet of each engine bank and directly exposed to the exhaust gases. 
Even in this case, the thermocouple measurements for the two engine 
banks are averaged. The main features of the mounted thermocouples 
are reported in Table 2. 

Table 2. Thermocouple characteristics. 

Type K 

Diameter 3 mm  

Accuracy ± 2.2 C° 

The device used to log the thermocouple signal is a National 
Instruments Compact-RIO 9024, on which the specific module 9213 is 
installed. The signal is recorded with a sampling frequency of 100 Hz. 
Such frequency is enough to characterize the exhaust gas temperature 
for a given engine point, because the measurements are performed 
under steady-state conditions.   

Combustion Model 

The virtual engine is composed by four models, thought to accurately 
reproduce the combustion phase, the maximum in-cylinder pressure, 
the knock intensity, and the exhaust gas temperature.  
A 0-D combustion model based on the Wiebe equation has been 
previously developed by the authors in [8]. Once the main parameters 

 (that represents the combustion duration) and  (the Wiebe 
exponent) are calibrated, it is possible to simulate with high accuracy 
the average pressure curve in the closed-valve portion of the engine 
cycle (the range -60 - +140 CA° is chosen). Further details about the 
algorithm implemented for the model calibration are described in [8]. 
For the sake of clarity, only the main equations included in such 
algorithm are reported below:  

 (2) 

 (3) 

 (4) 

 (5) 

 
 (6) 

 
 (7) 

 
 (8) 

Where: 
  is the infinitesimal gas temperature variation. Of course,

the initial conditions are needed to properly solve the 
Equation (2). As described in [8], a polynomial function 
with the engine load and speed as independent variables has 
been developed to calculate the in-cylinder pressure value
at the start of the closed-valve portion of the cycle (i.e., -60 
CA°). For a certain mixture mass inside the combustion 
chamber, the pressure value is converted into the 
corresponding temperature with the perfect gas law 

  represents the infinitesimal energy provided by the 
combustion of the stoichiometric mixture ( , 
described through the Wiebe function . The main 
calibratable parameters of such function are  and 
included in the Wiebe Constant (WC). The other parameters 
needed to calculate WC are the Burned End Constant 
(BEC), the Burned Start Constant (BSC) and the Start of 
Combustion (SOC) 

   is the infinitesimal energy loss towards the walls of 
the combustion chamber modelled with the Woschni 
formula 

   is the infinitesimal variation of the volume 
   is the calculated pressure obtained by coupling the 

integral of Equation (2) with the perfect gas law 
   is the specific heat estimated considering the gas within 

the combustion chamber as a mixture of oxygen, nitrogen, 
vaporized fuel, carbon dioxide and water vapor [32]  

   is the trapped mass, which can be modelled with a 
polynomial function with the engine speed and load as 
inputs [8]. The values are calculated from the measured fuel 
consumption and lambda 

The optimization algorithm finds the Wiebe parameters  and  for
each operating condition by setting the SOC equal to the SA and 
minimizing the value of the objective function expressed by the 
Equation (8). In such equation is the experimental in-cylinder 
pressure trace,  is the simulated one and  is the number of 
samples. 

CA50 Model 

A control-oriented CA50 model can be developed with the calibrated 
Wiebe parameters by reversing the following equation: 

  (9) 

Where . In the Equation (9), the acronym BMC 
means Burned Mean Constant. Since the 0-D combustion model is 
calibrated supposing the SOC coincides with the SA, the Equation (9) 
is modified as follows: 

  (10) 
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As described in [8], the trend of the Wiebe parameters D and E is well 
defined with a polynomial function.
The novel contribution of this work is represented by the development 
of the lambda sensitivity for the CA50 model. A FNN-based method 
is applied for accurately including the four different independent 
inputs (i.e., the engine speed, load, SA, and lambda). The FNN is 
characterized by an analytical formulation that makes the calibration 
process particularly fast and the resulting function suitable for the RT 
execution on a development ECU. Moreover, some commercial 
applications for the data analysis provide integrated and user-friendly 
platforms (such as the Matlab Neural-Network fitting tool [33]) for the 
neural network automatic calibration. The structure of the FNN 
consists in a series of layers that are based on the product between a 
matrix (whose dimensions depend on both the number of inputs and 
neurons) and the array of the input variables. The result of such 
algebraic operation is added to a bias array and consequently an 
activation function calculates the output of the layer. The activation 
function is chosen between some standard functions such as the 
hyperbolic tangent sigmoid (tansig), log-sigmoid (logsig), radial basis 
(radbas) and radial basis normalized (radbasn) [33]. Figure 2 shows a 
scheme of a single layer FNN. The activation function of the final 
output layer is always a linear equation independently from the number 
of layers. The dimensions of the Matrix 2 depend on those of the 
Matrix 1 to make it compatible with the second product. This means 
that, for a fixed number of neurons of the first layer, the dimensions of 
the Matrix 2 and the bias 2 are automatically determined.

Figure 2. General scheme of the Feedforward Neural Network. 

The CA50 model is based on two neural networks that use the SA, 
engine load, speed, and lambda as inputs to estimate the Wiebe 
parameters. The whole experimental database is divided into the 
training and the testing dataset, equal to the 75% and the 25% of the 
whole available database, respectively. The scaled conjugate gradient 
backpropagation training algorithm is used in this work for the network 
calibration [34]. The number of layers and the number of neurons for 
each layer are determined by the iterative loop shown in Figure 3. The 
main steps of such algorithm are summarized below:

1. Starting with 1 neuron, the neural networks layout is defined 
once the training algorithm, the number of layers, and the 
percentage of dataset used to train the network are 
determined  

2. The neural networks are trained with the scaled conjugate 
gradient backpropagation algorithm 

3. The trained neural networks calculate both the Wiebe 
parameters (E and D)

4. The CA50 is calculated by reversing the Equation (10)
5. The R-Square (R2) and the Root Mean Square Error 

(RMSE) indexes are calculated between experimental and 
simulated values of CA50 related to the testing dataset

6. The steps from 1 to 5 are repeated increasing the number of 
neurons until the maximum value, arbitrary chosen to reach 
the maximum accuracy of the network

Considering that the number of layers is equal to 1, the general 
structure of the two neural networks used to simulate the Wiebe 
coefficients is that reported in Figure 2. The activation function is the 
tansig, as discussed above.

Figure 3. Iterative loop applied to calculate the value of neurons for the neural 
networks used to simulate the Wiebe function parameters. 

The trends of R2 and RMSE that result from such calibration procedure 
are shown in Figure 4. The number of neurons is chosen as the lowest 
number that guarantees the highest value of the R2 and the lowest for 
the RMSE. The reported data are about the testing dataset.

Figure 4. R2 and RMSE as a function of the number of neurons calculated 
between the simulated and the experimental CA50 for the testing dataset.

Considering the trends shown in Figure 4, it can be stated that using a 
number of neurons higher than 10 the overall accuracy does not 
increase. Moreover, such results demonstrate that a single layer is 
enough to have a reliable and accurate model. In Figure 5 the 
correlation between the experimental and the simulated CA50 values 
for the test dataset is shown. Since the RMSE is lower than 1 °CA, 
such result is a further demonstration of the model accuracy.

Figure 5. Correlation between the experimental and the simulated CA50 for the 
testing set, implementing the two calibrated neural networks for the calculation 
of Wiebe parameters D and E.
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Knock Model 

The Finite Element Method-based (FEM) piston damage model 
developed by the authors [31] allows to calculate the admissible 
damage speed for each engine operating conditions and consequently 
the related KLSA. The knock model is thus used to reproduce the 
intensity of instantaneous events. As introduced above, the log-normal 
PDF can well describe the MAPO statistical distribution [23, 24] for 
fixed operating conditions (engine speed, load, SA and lambda). This 
means that only two parameters are needed to completely define such 
kind of distribution (the mean value and the standard deviation). 
Indeed, the log-normal distribution benefits of the same properties of 
the Gaussian PDF and the mean value and the standard deviation can 
be determined once the 50th and another percentile are known. In this 
work, the 98th percentile is considered, and it is arbitrary chosen. With 
the following equations [25], the mean value and the standard 
deviation of the MAPO PDF are directly calculated from the 
mentioned percentiles: 

 (11) 

 (12) 

Where  is the mean value and  is the standard deviation.  
The MAPO98 can be estimated by modelling these two parameters and 
reversing the Equation (12). The development of the knock model is 
based on two FNNs used to estimate  and , respectively. Based on 
the authors experience, PMAX is strongly related to knock intensity 
[25] and it can be used as one of the main inputs. In Figure 6 and 7 the 
trends of the standard deviation and the mean value are shown as a 
function of PMAX, for some spark sweeps performed at 5000 RPM. 
These tests are executed with the same engine load and with different 
conditions of lambda and intake air temperature, as reported in the 
legend of the two graphs. The lambda values are always between 0.75 
and 1, and this is defined as the range in which even the values of the 
standard lambda map are included. The values reported in Figure 6 are 
the average between all the cylinders: this means that also the knock 
model will be developed for the mean one.  

  
Figure 6. Trends of  as a function of PMAX for different lambda values (left-
hand plot) and for different intake air temperature (right-hand plot). 

As shown in Figure 6, once a certain value of PMAX is reached,  
trend starts to increase rapidly under knock limited operating 
conditions. With this figure it is possible to highlight the importance 
of the lambda and the intake air temperature at the start of the engine 
cycle. The richer the mixture, the higher the PMAX for which the 
curve knee occurs. On the other hand, keeping constant the lambda and 
the engine load, it is possible to underline the effect of the intake air 
temperature on the knock intensity. Indeed, comparing the yellow and 
the violet trends reported in the right-hand graph of Figure 6, it is 
highlighted that the PMAX value that corresponds to the curve knee is 
reduced of 6-7%, while increasing the intake air temperature of 20 °C. 

Figure 7 shows the trend of the mean value . While a different quality 
of the mixture has not a clear effect on the mean value of the MAPO 
PDF, the intake air temperature strongly affects such parameter. The 
higher the temperature, the higher the mean value of the statistical 
distribution. 

 
Figure 7. Trends of  as a function of PMAX for different lambda values (left-
hand plot) and for different intake air temperature (right-hand plot). 

Such observations allow to state that the knock model needs the 
PMAX, lambda, the intake air temperature, the engine load, and speed 
as inputs. Of course, also the fuel quality (RON) influences the engine 
knock tendency [35]. Nevertheless, in this work such variable has not 
been considered, because all the experimental tests are carried out with 
the RON 95 fuel. 
The procedure implemented to calibrate the number of neurons for the 
two neural networks developed to determine both  and  is that shown 
in Figure 4 and described above. Also in this case, a single layer neural 
network is implemented. Hence, the neurons number optimization is 
performed by comparing the experimental and the calculated MAPO98 
for the test dataset. The R2 and RMSE indexes are calculated to 
quantify the model accuracy and the results are reported in Figure 8. 

 
Figure 8. R2 and RMSE between simulated and experimental MAPO98 related 
to the test dataset as a function of the number of neurons. 

This result can be compared with that reported in Figure 4 and it can 
be highlighted that in Figure 8 the green dots are more scattered around 
the dashed line. This aspect can be explained by analyzing the MAPO 
standard deviation exponential trend with respect to PMAX. Indeed, a 
small error of the  model for high PMAX values (i.e., for high 
knocking conditions) can generate not negligible errors on MAPO98 
due to the very steep slope of the  curve after its knee. The weight of 
each NN on the calculation of MAPO98 can be evaluated with the 
following Figure 9, in which the same analysis of Figure 8 is reported 
for  and . 
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Figure 9. R2 and RMSE between simulated and experimental  and  related 
to the test dataset, as a function of the number of neurons. 

The MAPO standard deviation model strongly affects the accuracy of 
the MAPO98 calculation and, therefore, such neural networks are 
more affected by the overfitting phenomenon, as highlighted in red in 
Figure 9.  
It is analyzed the influence of the activation function on the accuracy 
of the proposed model. The iterative loop described above is repeated 
changing the activation functions for the first layer. In Figure 10 the 
fitted R2 trends are reported for all the tested functions. 

  
Figure 10. Fitted R2 trends for the comparison of the experimental and the 
simulated MAPO98 for different activation functions.     

The analysis of Figure 10 demonstrates that the accuracy of the model 
calibrated with the tansig function and with a number of neurons 
between 20 and 30 is the configuration that ensures the highest 
accuracy. Hence, two 25 neurons, single layer FNNs with tansig 
activation function are implemented to estimate both  and . In Figure 
11 the performance of the resulting knock model is shown. The graph 
on the left shows the correlation between the experimental and the 
simulated MAPO98 for the testing dataset. The numerical data are 
reported as percentage values for confidentiality reasons, but the 
RMSE in the title of the left-hand plot is reported as physical unit (bar). 
The right-hand graph shows the experimental and the simulated 
MAPO distributions, referred to the operating condition at 4500 RPM 
and Wide-Open Throttle (WOT) included in the testing set. Such graph 
is zoomed to highlight the x-axis portion in which there is most of the 
recorded cycles, but the correlation reported on the left shows the 
values until the 100%. This is the engine point for which the maximum 
experimental MAPO98 is recorded. 

Figure 11. Correlation between the experimental and the simulated MAPO98 
and log-normal PDFs for the engine point at 4500 RPM WOT. 

PMAX Model 

The maximum in-cylinder pressure is one of the main inputs of the 
knock model discussed above. The method developed by the authors 
in [26] for the PMAX estimation is introduced within the engine 
simulator. As demonstrated in [26], PMAX can be modelled with a 
polynomial equation with the engine load (defined as the trapped air 
mass per cycle, per cylinder) and the CA50 as independent variables. 
This method is robust because it allows to reproduce the PMAX with 
a simple mathematical formulation and a high level of accuracy even 
for experimental setups with Port Water Injection or Low-Pressure 
Exhaust Gas Recirculation systems [26]. In Figure 12 the polynomial 
equation (the surface) and the mean experimental PMAX values (red 
dots) are shown. The accuracy of such approach is further 
demonstrated because the RMSE between the experimental and the 
calculated points is equal to 2.21 bar. The CA50 values reported in
Figure 12 are scaled with respect to the minimum value of the dataset,
for confidential reasons. Thus, the units reported in the left-hand graph 
are . Such method is applied to all the figures that include
CA50. 

 
Figure 12. Polynomial function and experimental PMAX values on the CA50-
load domain (left-hand graph) and the regression analysis of the experimental 
and the calculated PMAX.  

Exhaust Gas Temperature model 

One of the novel contributions of this work with respect to [8] is the 
definition of the exhaust gas temperature sensitivity to the lambda 
value. The 0-D combustion model determines the in-cylinder pressure 
curve including the effect of lambda. This means that it is possible to 
calculate TEVO for the entire engine operating field. In Figure 13 the 
simulated TEVO is reported for three different lambda values on the 
CA50 domain, for 4500 RPM and WOT operating conditions. 
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Figure 13. Trends of the TEVO for some spark sweeps carried out at 4500 RPM 
WOT with different lambda values.

The Figure 13 shows that the TEVO can be modelled with a first-
degree polynomial function with the CA50 as independent variable. 
Moreover, the angular coefficient of such linear function can be fixed 
for different lambda values. The TEVO variation due to different 
lambda value can be accurately described with a first order 
polynomial, once the engine speed, load and CA50 are fixed. In Figure 
14 such trend is shown for three different values of CA50 at 4500 RPM 
and WOT.

Figure 14. TEVO simulated at 4500 RPM WOT for different lambda and CA50
values.

Three different polynomials are developed for three lambda values 
(0.75, the value of the standard map, and 1). All these equations have 
the same analytical formulation shown below:

(13)

(14)

(15)

Where X and Y represent the engine speed and load, respectively. The 
coefficients of the equations (14) and (15) are calibrated by minimizing
the R2 index estimated between the polynomial and the punctual 
values. The polynomial degree is chosen as the lowest value that 
provides a significant increase of the R2 (i.e., 10-2), to have a simple 
formulation and to avoid the overfitting phenomenon. The TEVO is 
thus calculated for the three reference lambda values, for fixed engine 
load, speed and CA50, and the value that corresponds to the current 
lambda is determined by fitting these three temperatures. The resulting 
scheme of such model is shown in Figure 15.

Figure 15. Complete scheme of the TEVO model

The simulated TEVO is then converted into the temperature recorded 
within the exhaust pipes through the polynomial function introduced 
in [8]. Figure 16 shows the difference between the TEVO, and the 
mean experimental exhaust gas temperature measured at the turbine 

Figure 16. Difference between the simulated TEVO and the experimental 

RPM WOT, with rich and stoichiometric mixture.

Such result shows that the difference between the trends related to the 
stochiometric and the rich mixtures is under the 1.5 % and this means 
that such gap can be neglected without introducing a significant 
accuracy loss. Therefore, as shown in Figure 16 n be 
described with a first order polynomial with the CA50 as independent 
variable. The analytical formulation of such corrective function, 
introduced in [8], is still accurate even for this experimental setup. 
Figure 17 shows the block scheme of the mentioned function.

Figure 17. Scheme of the function used to calculate the exhaust gas temperature 
at the turbine inlet.  

The accuracy of the resulting approach for the exhaust gas temperature 
calculation is demonstrated by comparing the calculated and the 
experimental values for the whole available dataset. As shown in 
Figure 18, the R2 and the RMSE between the experimental and the 
simulated values is about 0.97 and 12 C°, respectively. Considering 
that for the standard type K, 3 mm thermocouple the uncertainty on the 
measurement due to the radiation, conduction, and the finite mass of 
the sensor is about 40 °C [36], the accuracy of the proposed model is 
further demonstrated (the calculated RMSE is four times lower than 
such uncertainty). 
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Figure 18. Correlation between the experimental and the simulated exhaust gas 
temperature.

The percentage error between the calculated and the experimental 
values is included within the range 6%, with a standard deviation of 
1.5 %. The Figure 19 shows the histogram and the Gaussian Statistical 
distribution of such data.

Figure 19. Histogram and the Gaussian PDF of the percentage error between 
the experimental and the simulated exhaust gas temperature.      

Target Lambda Map Calibration

A Design of Experiment (DoE) method is applied to calculate the 
values of the target lambda and the SA to maximize the combustion 
efficiency on the entire engine operating field, using the virtual engine
developed above. The KLSA is determined with a FEM-based, piston 
damage model described by the authors in [30]. In this way, the knock 
intensity is evaluated through a concrete and a tangible index, and this 
allows to increase the combustion efficiency. The admissible intensity 
of knocking events is completely redefined and the KLSA is 
determined as the spark timing that ensures the target piston damage 
speed.
Coupling the engine simulator with the piston damage model, the 
algorithm shown in Figure 20 is implemented to calibrate the target 
lambda map. The main steps of the proposed iterative procedure are 
the following:

1. For fixed load, speed and lambda, the CA50 is calculated 
starting from a retarded SA value with respect to the 
mapped one

2. Exploiting the simulated CA50, the correspondent values of 
PMAX and the exhaust gas temperature are calculated.

3. Using a constant value of 35 C° for the intake air 
temperature, the knock model generates cyclic MAPO 
values in accordance with the calculated PDF parameters.

4. Taking as inputs the cyclic MAPO values, PMAX and RPM 
the piston damage model calculates the damage speed that
is compared with the target value.

5. Such iterative algorithm proceeds increasing the SA until 
the simulated damage speed is higher than the target. With 

such method the trend of the exhaust gas temperature is 
obtained as a function of the SA, for fixed values of the 
engine load, speed, and lambda. Figure 20 shows this trend 
for the engine point at 7500 RPM and WOT. The exhaust 
gas temperature value that corresponds to the admissible 
damage speed is highlighted.

6. The procedure described from point 1 to 5 is repeated for 
different values of lambda and in this way the trend of the 
exhaust gas temperature (for the KLSA) is determined as a 
function of lambda, for each engine point. Figure 22 shows 
this curve, and it is superposed to the maximum exhaust gas 
temperature defined by the turbocharger manufacturer. The 
lambda value that corresponds to this maximum 
temperature is defined as the target value for the given 
engine operating condition. Such algorithm reduces the 
specific fuel consumption and guarantees the turbine 
impeller integrity.

Figure 20. Iterative loop applied to identify the KLSA for each engine operating 
conditions.

Figure 21. Trend of the exhaust gas temperature at the turbine inlet calculated 
with the iterative loop shown in Figure 20. For confidentiality reasons, the SA 
values are scaled with respect to the minimum value reported on the x-axis.

Figure 22. Trend of the exhaust gas temperature for the KLSA as a function of 
lambda.
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The described procedure allows to extend the stoichiometric area of 
the engine operating field of 18 %, with respect to the standard lambda 
map. Such value is determined as the ratio between the number of the 
engine points (i.e., the breakpoints of the ECU maps) with a target 
lambda equal to 1 for the recalibrated and the production maps. 

Experimental Validation  

The results of the experimental tests performed with the lambda map 
calibrated with the algorithm presented above are shown in this 
section. Such tests are carried out by managing the SA with the piston 
damage-based, combustion control system described by the authors in 
[30] and [31]. In this way, the SA is controlled to get the target piston 
damage speed under knock-limited operating conditions, even during 
real on-vehicle maneuvers. 
The engine is operated by reproducing a speed and a pedal profile 
recorded during a fixed-gear, vehicle acceleration. In Figure 23 the 
pedal, the speed and the load (always reported as the normalized 
trapped air mass, per cycle, per cylinder) traces of the experimental 
tests are shown. 

  
Figure 23. Pedal, engine speed and load traces of the experimental tests. 

It is important to mention that after a few seconds the vehicle maneuver 
is concluded. Nevertheless, the engine speed and load are kept constant 
for several seconds. This is useful to reach the steady state condition 
of the thermocouple measurement, that is affected by a slow response 
under transient conditions. In this way it is possible to perform a robust 
comparison between the exhaust gas temperature profiles measured on 
different tests, for both the transient and the steady-state conditions. 
Indeed, the traces reported in Figure 23 are repeated for three times. 
The first test is carried out with the stock SA and lambda maps (named 
test 1 in the following graphs) and it represents the reference condition. 
The second test is performed with the SA calculated by the piston 
damage-based controller and the standard lambda map (test 2). The 
third test is carried out with the SA controller, and the lambda map 
optimized with the model-based procedure described above (test 3). In 
Figure 24 the exhaust gas temperature measured at the turbine inlet 
during such tests is shown in the graph on top, while the temperature 
difference between the test 2 and 1, and between the tests 3 and 1 are 
reported in the second graph from top. The two bottom graphs show 
the CA50, and the lambda profiles measured during the experimental 
tests, respectively, and the latter is reported without the y-axis scale for 
confidentiality reasons. 

Figure 24. The measured exhaust gas temperature profiles at the turbine inlet 
(graph on top), the temperature difference between the test 2 and 1, and between 
the test 3 and test 1 (second graph from top), the filtered CA50 (third graph
from top) and lambda, measured under transient conditions. 

Analyzing the first subplot of Figure 24, the red line represents the 
exhaust gas temperature measured at the turbine inlet recorded with 
the standard SA and lambda maps. Operating the engine for reaching 
the target piston damage speed and with the standard lambda map, it is 
possible to increase the combustion efficiency with respect to the 
standard SA map, reducing the exhaust gas temperature of 45 °C 
(Figure 24, second graph from top). Such temperature reduction 
achieved with the same target lambda of the test 1 demonstrates that
the turbine impeller works under its maximum temperature limit. For 
this reason, it is possible to decrease the mixture enrichment, 
reobtaining the maximum exhaust gas temperature (i.e., the reference 
value recorded during the test 1). In other words, the aim is that to have 
the green and the red lines superposed. This objective is achieved
because the maximum difference between the inlet turbine gas 
temperature for the test 1 and 3 is close to 5 C°, under high engine load 
and speed operating conditions (this means that the difference is lower 
than 1% between the two tests). It can be stated that the combustion 
controller actuates a retarded spark advance during the test 3, with 
respect to the test 2. This is because the knock tendency increases by 
reducing the mixture enrichment, and the piston damage-based 
controller can evaluate the SA that allows to keep constant the piston 
erosion speed.  
Finally, it is possible to state that the model-based procedure for the 
lambda map calibration is particularly reliable because the gained 
combustion efficiency is converted into a higher lambda value, 
targeting the maximum exhaust gas temperature (recorded during the
test 1) with high accuracy.  
The overall efficiency increase achieved during the test 2 and 3 with 
respect to the test 1 is finally evaluated. Such analysis is carried out 
considering the specific fuel consumption. Figure 25 shows the 
efficiency increase achieved with the test 2 with respect to the 
reference (test 1). The black dots represent the engine points touched 
during the experimental tests and they are reported on the speed-load 
field.  
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Figure 25. Efficiency increase achieved during the test 2 with respect to the test 
1. The red dots represent the engine points touched during the experimental 
tests.

Figure 26 shows the same analysis of Figure 25 for the test 3. 

 
Figure 26. Efficiency increase achieved during the test 3 with respect to the test 
1. The red dots represent the engine points touched during the experimental 
tests.

The values shown in Figures 25 and 26 can be considered as a 
remarkable result. Indeed, managing the combustion phase with the 
innovative piston damage-based controller, it is possible to increase 
the overall engine efficiency of about 8 %, especially under high 
engine speed and load operating conditions. Indeed, these are the 
engine points for which knock, and the exhaust gas temperatures 
represent the main causes of the efficiency loss. Finally, introducing 
even the lambda map calibrated with the innovative, model-based 
algorithm described in this work, a reduction of about 16 % of the 
specific fuel consumption is achieved. 

Conclusions and Future Works 

In this work, the authors propose a novel methodology to automatically 
calibrate the lambda map, managing the SA with an innovative piston 
damage-based combustion controller [30, 31]. The CA50 and the 
exhaust gas temperature models are improved with respect previous 
works [8] by introducing the sensitivity to the lambda value. A single 
layer FNN is used to calculate the combustion phase receiving the SA, 
engine load, speed, and lambda as inputs. Such modeling approach 
guarantees a high accuracy (0.63 CA° of RMSE on the testing dataset) 
and a low execution time. On the other hand, the introduction of the 
lambda sensitivity in the exhaust gas temperature model is carried out 
maintaining a formulation similar to the one described in [8]. The 
accuracy of the model is analyzed and the Gaussian PDF of the error 
between the experimental and the simulated values is presented. It is 
characterized by a standard deviation of 1.5 % and thus the 95 % of 
the simulated values are calculated with an error included within the 
range of   3 %. The KLSA is calculated with a DoE for each engine 

operating condition. Coupling the function for estimating the exhaust 
gas temperature with the piston damage model [30], the SA value that 
allows to target the admissible piston damage speed is determined. The 
procedure is repeated for different lambda values and the curve of the 
exhaust gas temperatures that corresponds to the KLSA is defined as a 
function of lambda. Finding the interpolation between such curve and 
the maximum temperature of the exhaust gasses (determined by the 
turbine manufacturer), the lambda map is calibrated to minimize the 
specific fuel consumption. 
In the last part of this work such calibrated values are validated through 
experimental tests. A piston damage-based combustion controller is 
applied to manage the SA for targeting the admissible piston damage 
speed. The experimental tests are carried out reproducing at the engine 
test bench a pedal and an engine speed profile recorded during a real, 
fixed-gear, vehicle acceleration. An overall efficiency increase of 
about 7% can be reached due to the innovative management of knock 
intensity (and thus of the SA) with the standard lambda map, while an 
improvement of 16% is achieved by applying the calibrated lambda 
map.   
In this work, the same type of gasoline is used to collect the database 
for both the algorithm development and validation. The discussed 
model-based procedure for the lambda map calibration does not 
consider the fuel RON. As well known, using a different type of 
gasoline, the lambda value needed to reach the same exhaust gas 
temperature changes. This because of a different combustion phase 
reached to target the admissible piston damage speed. For this reason, 
further improvement will be applied to the FNN-based models to 
include the sensitivity to the fuel RON. Moreover, the exhaust gas 
temperature model will be directly introduced within the piston 
damage-based combustion controller, to actively calculate and control 
the target lambda value needed to reduce the specific fuel consumption 
and to prevent the turbine failure. Indeed, the pure analytical 
formulation of this function allows to easily reverse the equations, 
converting it into a control algorithm.  
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Definitions/Abbreviations 

ANN Artificial Neural Network 

ATDC After Top Dead Center 

BTDC Before Top Dead Center 

CA Crank Angle 
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CA50 Crank Angle correspondent 
to 50% of Mass Fuel Burnt 

DoE Design of Experiment 

ECU Engine Control Unit 

FEM Finite Element Method 

FNN Feedforward Neural Network 

GDI Gasoline Direct Injection 

KLSA Knock Limited Spark 
Advance 

MAPO Maximum Amplitude of 
Pressure Oscillation 

PDF Probability Density Function 

R2 R-Square 

RMSE Root Mean Square Error 

RON Research Octane Number 

RT Real Time 

SI Spark Ignition 

SOC  Start of Combustion 

TC Turbo-Charged 

TEVO Temperature at Exhaust 
Valve Opening 

WOT Wide Open Throttle 


