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Abstract: 

In this paper, a time-varying chattering-free observer for electro-hydraulic actuators 

able to provide finite-time estimations of the full state variables as well as uncertainties is 

presented. The key idea is to employ a positive-increasing function associated with the 

observer objectives to improve the convergence time performance. First, the model of an 

electro-hydraulic actuator as a case study for the proposed observer is presented. Then, 

an extended state observer is introduced, and the time-varying gains are provided to 

ensure that without neither any knowledge about the upper bounds of the uncertainties 

nor its derivative, the observation error dynamics is convergent to a neighborhood of zero 

in a finite time. Comparative simulations are presented to analyze the effectiveness of the 

proposed observers. Then, further simulations are performed in the presence of 

measurement noise. It is concluded that the proposed scheme can compete with other 

leading strategies, making it a qualified alternative approach in the observer design with 

noteworthy potential. Finally, the effectiveness of the proposed approach in real-life 

conditions is demonstrated through experimental studies. 

Keywords: Electro hydraulic actuator systems, Extended-state nonlinear observers, 

Time-varying transformation, Uncertainties. 

1. Introduction 
Electro-Hydraulic Actuators (EHAs) 

have been widely used in robots and 

aircrafts due to their advantages in terms 

of reliability, power density and 

maximum force. However, EHAs are 

affected by several uncertainties and 

strong non-linearities, including 

unmodeled dynamics, disturbances, and 

considerable friction, limiting their broad 

applicability [1, 2]. In the presence of 

these non-idealities, exact modeling is 

not feasible. A simple solution in dealing 

with the intrinsic problems and 

limitations of EHAs is to equip the 

system with various sensors. However, 

measuring the full system states is very 

challenging and often impossible in 

practice, due to issues such as cost, 

complexity, space limitations, and 

measurement noise. Therefore, 

estimating the state variables is essential 

in achieving an acceptable dynamic 

performance in EHAs. In practice, an 

alternative approach is to sensorize the 

main output of the system and design an 

observation algorithm to process the 

incomplete information collected by the 

sensors and construct a reliable 

estimation of all state variables [3]. Thus, 

the observer is an authoritative option to 

provide an estimate for state variables 

and subsequently reduce the number of 

sensors [4]. To estimate either 

unmeasured states or uncertainties, 

several approaches have been reported in 

the literature. On the other hand, to 

estimate the unmeasured states and 

uncertainties simultaneously, the 

extended state observers (ESO) have 
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been introduced [5]. In addition, in the 

presence of unknown terms such as 

uncertainties, external disturbances, and 

friction, exact estimation of state 

variables is impossible, and instead, the 

ultimate boundedness concept must be 

considered [6]. 

Many observation approaches 

provide an asymptotic or exponential 

convergence implying the convergence 

of the observation errors to a 

neighborhood of zero over an infinite 

time interval. However, in many 

applications of EHA, such as medical 

robotics and aircraft actuators, high 

steady-state precision performance as 

well as finite-time convergence is of 

paramount importance to meet the 

precision and safety requirements [7]. 

Within the finite-time observer context, 

several strategies have been presented by 

academic and industrial researchers. The 

Sliding Mode Observer (SMO) is one of 

the main methods with widespread 

applications. Two benchmark studies on 

SMOs are reported in [8, 9]. This 

approach has been further developed in 

recent years and several applications can 

be found in [10-13], where the 

performance of the observers is 

investigated through simulation, 

considering different sets of 

measurement noises, parametric 

uncertainties, and model nonlinearities. 

For instance, in [13] this strategy is 

developed for nonlinear systems with 

unknown inputs. In spite of the 

successful deployment of SMO, its 

standard version is affected by some 

restrictions, leading to the potentially 

destructive chattering phenomenon in 

their convergence to a small 

neighborhood of zero [14]. To mitigate 

this drawback, alternative approaches 

have been developed, such as the High-

order Sliding Mode Observer (HSMO) to 

reduce the chattering and the Terminal 

Sliding Mode Observer (TSMO) with 

finite-time convergence properties [15, 

16]. For instance, in [15] the evaluation 

of different robust observation techniques 

including SMO and HSMO compared 

with the Extended Kalman filter method 

is presented. The HSMO technique is 

well-developed with numerous 

applications [17-20]. However, 

successful results in [15-20] were 

inspired by the high-order sliding-mode 

differentiator [21] frequently associated 

with structural limitations of higher-order 

uncanonical systems. 

In spite of the extensive and 

successful development of the SMO 

method, one problem remains: the 

convergence time grows unboundedly if 

the initial conditions tend far from the 

equilibrium point. Thus, it is desirable for 

an observer to guarantee that the 

convergence is achieved in a fixed-time 

interval regardless of initial conditions. 

Fixed-time observers using the concept 

of bi-limit homogeneity were first 

introduced in [22] and then were studied 

in [23-25]. The fixed-time approach is 

more powerful than the finite-time 

approach as it guarantees the 

boundedness of the convergence time 

independent of initial conditions. 

However, in addition to structural 

limitations, the gains of these observers 

are not easily computable. Moreover, 

defining a proper Lyapunov function to 

prove the observer stability is not 

straightforward for high-order systems. 

Hence, within this context, the state 

estimation in a finite time remains a 

challenge, where a straightforward 

observer design to estimate the full state 

of systems, as well as the uncertainties, 

in a finite time is still an open problem. 

In recent years, high-gain and time-

varying observers have been well-

investigated [26-30]. For instance, a 

time-varying observer with an 

exponential convergence is presented in 

[26]. Additionally, a time-varying 

observer is presented in [29] with the 

following shortcomings: (1) Valid 

response only in a finite time interval, 

while in many applications it is important 



to have a valid response for a longer 

duration; (2) Unconsidered internal 

dynamics, while internal dynamics 

should be explicitly considered in the 

proof as it can act as an uncertainty in the 

values of the state variables; (3) Required 

prior knowledge of the uncertainties, 

while it is not often possible to measure 

them in practice. To overcome these 

restrictions, a time-varying observer, 

known as finite-time ESO, is presented in 

[30]. This observer is able to estimate the 

full state of systems as well as the 

uncertainties in finite time. Compared 

with the existing strategies, its main 

advantages are the straightforward design 

and the robustness against uncertainties 

and internal dynamics. However, its main 

limitation is the singularity problem, 

where the proposed time-varying 

transformation grows unboundedly when 

time tends to infinity. In addition, even if 

this observer is a valid scheme to 

estimate uncertainties, it is only 

applicable in single-input single-output 

canonical systems. With this background, 

we conclude that the two approaches of 

HSMO in [15, 17], and high-gain 

extended state observer (HGESO) in [27] 

have better performance for EHA 

systems under parametric uncertainties 

and model nonlinearities, where dead-

zone functions have been considered to 

describe realistic control valves. The 

HSMO was analyzed compared with 

SMO and its high efficiency in the 

estimation of the uncertainties was 

shown [15, 17]. In addition, HGESO was 

analyzed compared with conventional 

observers, and it was shown that it 

estimated the full state and total 

disturbance quite well [27, 28]. 

Consequently, despite several studies and 

with the exception of these two leading 

strategies, the finite-time ESO subject 

still boasts potential for further 

improvement. 

Motivated by the above 

considerations, in this paper a time-

varying observer for EHAs is designed, 

in which, without neither any knowledge 

about the upper bounds of the 

uncertainties nor its derivative, the 

estimation of the full state variables, as 

well as uncertainties, is achieved. The 

key idea is to employ a positive-

increasing function associated with the 

observer objectives to improve the 

convergence time performance. To this 

end, the EHA model based on the proper 

behavior for each state variable is divided 

into three parts. Then, the extended state 

observers are designed for each part, 

independently. To design the ESOs, 

auxiliary variables are introduced based 

on uncertainties. By defining a time-

varying transformation, the time-varying 

gains of each observer are designed by 

using the asymptotic stability methods, 

so that the observation error variables 

tend to the neighborhood of zero without 

any chattering and remain uniformly 

bounded in a finite time. Finally, to 

highlight the efficiency of the proposed 

framework, several comparative 

simulations are reported between the 

proposed finite-time ESO, and the two 

leading strategies of HSMO [15] and 

HGESO [27]. Moreover, the performance 

of the proposed framework in presence of 

measurement noise is validated in 

simulations. Finally, its effectiveness in 

the presence of external load is 

demonstrated in an experimental study. 

Compared with the existing literature, the 

main contributions of this paper are: (1) 

A continuous and chattering-free ESO is 

designed, using which, without neither 

any knowledge about the upper bound of 

uncertainties nor its derivative, it is 

possible to estimate the full state of the 

nonlinear system as well as the 

uncertainties, achieving convergence of 

the observation error to a neighborhood 

of zero. (2) A time-varying conversion is 

introduced such that the state estimation 

is guaranteed with finite-time 

boundedness properties by using the 

asymptotic stability methods in a 

straightforward manner. (3) Time-



varying gains are computed based on 

straightforward algebraic equations, and 

their values are valid in long time 

intervals. 

The remainder of the paper is 

structured as follows. In Section 2, a 

fifth-order model of the EHA is 

illustrated and relevant definitions are 

presented. In Section 3, the time-varying 

ESOs are designed. To characterize the 

finite-time property, a novel change of 

coordinates is adopted, and subsequently, 

time-varying gains are designed, so that 

convergence of the observation errors to 

a neighborhood of zero in a finite time is 

guaranteed. In Sections 4 and 5, 

simulation and experimental results 

demonstrate the effectiveness of the 

designed finite-time ESO for the fifth-

order uncertain EHAs. Finally, 

conclusions and the future plans are 

presented in Section 6. 

2. Preliminaries and System 

Dynamics 

EHAs mostly consist of a double-rod 

hydraulic cylinder and a proportional 

valve [15]. The schematic diagram of a 

generic EHA is reported in Fig. 1. 

 
Fig. 1. Graphical representation of the hydraulic 

actuation system [15]. 

To design the observer, the 

mathematical model (1) of EHA is 

considered [15]; where for convenience 

the time variable   may be omitted. 
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where  ,    and    are the piston 

position, the load pressure, and the spool 

valve displacement signal, respectively. 

According to Fig. 1,          , 
where    and    are the pressures inside 

the two-cylinder chambers. Besides, 

   and    are the flows inside the two-

cylinder chambers.   is the viscous 

friction coefficient,   is the mass of the 

load,   ( ̇) is the friction force,    is the 

piston area,   is the effective Bulk 

modulus,    is the volume of each 

chamber for the piston centered position, 

 (  ) is a gain that depends on the 

geometry of the adopted proportional 

valve,    and     are the supply and the 

tank pressures respectively,     and 

   are the natural frequency and the 

damping ratio of the valve respectively, 

   is the input gain,   is the valve 

command, and     is the spool position 

bias [15]. 

Assumption 1. In this paper, only the 

vector  (   ( ))  [     ]
  as the 

output of the system is measurable and 

available online. 

Assumption 2 [15]. In this paper, it 

is assumed that the viscous friction 

coefficient, the valve natural frequency, 

and the damping coefficient have already 

been identified experimentally. In 

general, these coefficients are not easy to 

measure and obtain, and are often treated 

as uncertainties. 

Now based on (1),  ( )  
[ ( )  ̇( )   ( )   ( )  ̇ ( )]

  is 

considered as the state vector,  ( )    

and  ( )   (   ) are presented as the 

input and output, respectively; thus, the 

hydraulic actuation system (1) can be 

rewritten in the following state space 

form. 
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,    

is the nominal valve constant, and 

  [  ( )    
( )    

( )]  includes 

unmodeled loads, dynamics, and 

parameter uncertainties [17]. The first 

equation in (1) represents the piston rod 

dynamics, including any other model part 

related to it; the second one describes the 

load pressure dynamics, and the third one 

follows the proportional valve dynamics 

[15]. As mentioned in the introduction, in 

this paper the EHA dynamic based on the 

proper behavior for each state variable is 

divided into three subsystems, and 

subsequently, three finite-time ESOs are 

designed, separately. Hence, the state 

vector  ( ) may be separated as   ( )  
[ ( )  ̇( )] ,   ( )    ( ), and 

  ( )  [  ( )  ̇ ( )]
 . Subsequently, 

the state-space (2) can be rewritten as, 
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. It is 

noted that due to the 

uncertainties  ̅ (   ), the exact 

convergence to zero in a finite time is 

impossible, and instead, the ultimate 

boundedness concept is considered. In 

this paper, the following fundamental 

definitions are used: 

Definition 1 ([31]). The system 

 ̇   (     ) is said to be bounded in a 

finite time   with respect to   

where ‖ ‖   , if for an assumed 

positive-definite (PD) matrix function  , 

a PD matrix   , and any positive 

constants  ,  , and  , where      , 

one has        in   [   ] whenever 

  
        . 

Definition 2 ([4, 31]). The system 

 ̇   (     )  is said to be finite-time 

input-to-state stable (FT-ISS) in a finite 

time   with respect to   where ‖ ‖   , 

if the inequality (6) for functions   and   

is guaranteed for any       : 

‖ ‖   (‖  ‖  ̅)   (‖ ‖)               (6) 

where   and   are   -class and  -class 

functions, respectively. Also,  ̅ is a time-

varying function tending to infinity as 

       . It is worth noting that, in the 

absence of the disturbance  , an FT-ISS 



system will be finite-time stable (FTS) 

[18]. 

Remark 1. Consider the change of 

coordinates       in form of    
   , where   is defined as a positive 

incremental function, and diverging 

asymptotically to infinity as       . 

Then, if the variable    remains stable, 

which does not tend to infinity, the 

boundedness of the first coordinate    

as        is guaranteed. 

Remark 2. According to Assumption 

1, although, the output vector 

[     ]
  is measurable and 

available online, however, measuring or 

computing the time derivative of  ,   , 

and    (i.e.  ̇,  ̇ , and  ̇ ) appear as a 

potential challenge to analysis of the 

system. To mitigate this challenge and to 

reduce the number of sensors, an 

alternative approach is measuring the 

outputs  ,   , and    with usual sensors 

and using the observers to construct a 

reliable estimation of  ̇,  ̇ , and  ̇ . 

Besides, since the uncertainties such as 

the external force such as the friction 

force, external disturbance, the dead-zone 

effects, and spool bias have appeared in 

the dynamics of  ̇,  ̇ , and  ̇ , 

respectively, therefore to simultaneously 

estimate the unmeasured states (the 

derivatives of output variables) and 

uncertainties, finite-time ESOs (10)-(12) 

will be designed in the next section. 

3. Finite-Time ESO Design 

In this Section, finite-time ESOs are 

designed for the subsystems (3)-(5), so 

that the estimations of state variables 

track real states in a finite time. The 

uncertainties   (   )   
  ( ̇)

 
   ( ), 

  (   )   ̅ (   ), and   (   )  
   

        
( ) are entered into the 

state vectors as auxiliary variables [7]; 

where the state vectors are updated as 

follow: 
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then, the augmented subsystems (3)-(5) 

are achieved as, 
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where for    ,   and  , the vector    is 
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Assumption 3. In this paper, it is 

assumed  ̇ (   ),  ̇ (   ), and  ̇ (   ) 

are bounded as | ̇ (   )|    , 

| ̇ (   ( ))|    , and  | ̇ (   )|    ; 

where   ,   , and    are non-negative 

constants as upper bounds of the 

amplitude of functions  ̇ (   ),  ̇ (   ), 

and  ̇ (   ), respectively. 

Note that the positive real 

numbers   ,   , and    may be unknown 

and they should just exist. The 

boundedness of these terms will be 

validated by the Simulation results; 

where these conditions are connected to 

the existence and uniqueness of solutions 

of systems (7)-(9) [32]. 

Since the sum of the relative degrees 

of the subsystems is equal to the order of 

the system (          ), therefore 

observability is guaranteed. Now, we are 

in a position to design finite-time ESOs 

for the augmented subsystems (7)-(9). To 

simultaneously estimate the unmeasured 

states and the uncertainties, the following 

finite-time ESOs are proposed: 
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Now according to (10)-(12), by 

defining the observation error   
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dynamics are achieved: 
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]. Now, to 

investigate the finite-time stability of 

error dynamics (13)-(15), the time-

varying gains     should be designed. In 

this regard, Theorem 1 is presented. 

Theorem 1. Consider the observation 

error dynamics (13)-(15). If the scalar 

coefficients     for          and   
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Proof. The present proof is 

constructed based on Remark 1. Consider 

the following primary transformation 
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Then, by choosing the gains 

according to (16)-(23), it is obtained that 

 ̇ ( )       ( )     
   ̇ (   ( )) 

where     and    have already been 

defined. Now, by choosing the scalar 

coefficients     for          and   

 ,  , and  , to make the matrices     

Hurwitz, there exist positive 

constants     , such that, 

‖  ( )‖

  ‖   (    )‖‖  ( )( )‖

 ∫   (    (   ))

 

 

   | ̇ (   ( ))|   

                                                            (33) 

Now, combining the transformations 

(26) and (31) leads to 

  ( )     ̅ (  )   ( )                (34) 

where its inverse is defined as follows, 

  ( )     ̃ ( )   ( ) 

consequently, 

‖  ( )‖    

 
   
 

‖ ̃ ( )‖‖  ( )‖         (35) 

Moreover, based on the 

transformation (34), one has 

‖  ( )( )‖  ‖ ̅ ( )‖‖  ( )( )‖        (36) 

where  ̅ ( ) is the matrix  ̅ ( ) at the 

time    . Then, by substituting (36) 

into (33) and subsequently substituting 

into (35) the result (24) is achieved. As a 



result, since  ̅ ( ) is a positive definite 

matrix for any    , the greatest lower 

bound of  ̅ ( ) (i.e. 

 
   
 

| ̅ ( )|) exists 

and consequently 

 
   
 

| ̃ ( )| is bounded. 

Therefore, according to Remark 1, if the 

right-hand side of the inequality (24) 

(except  ) remains bounded, based on the 

time-varying variable  , it is clear that 

  ( ) will tend to the neighborhood of 

zero and will remain uniformly bounded 

in a finite time. Since | ̇ (   ( ))| has 

been bounded so ∫    (   (  
 

 

 ))    | ̇ (   ( ))|   is bounded. 

Besides,       (    ) ‖ ̅ ( )‖ ‖  ( )‖ 

for small initial conditions would be 

bounded. Therefore, according to the 

definitions 1 and 2, the boundedness of 

the observation errors   ( ) is guaranteed; 

thus, the arguments stated in Theorem 1 

hold. This ruling completes the proof.  

3.2.Implementation Issues 

One concern of the introduced 

scheme is the definition of the time-

varying transformation  , since it can 

tend to infinity when     . Although   

tends to infinity, but     will not 

happen in real-life applications. 

However, to overcome this concern, its 

definition can be modified as, 

  {
   

  
 

  
  
 

    

        

                           (37) 

where for a positive real constant   , the 

constant      is defined as 

   
   
   

   
 ⁄ . The constant    should 

be designed based on a trade-off between 

the observation errors and the 

convergence time. It is worth noting that 

the designed observer provides 

acceptable values for the states in a finite 

time, before any diverging effect. In 

order to adapt the stability proofs to this 

new definition (37), we consider two 

time intervals      
 and      to 

perform the analysis. For the first one, 

the previous proofs are valid. Also, since 

we have already proved that the observed 

states remain within the ball in a finite 

time, and remain bounded at all times, 

therefore this statement will remain valid 

for the second time interval. 

Remark 3. In this paper, the diagonal 

time-varying matrices   ( ),   ( ), and 

  ( ) consist of    s that should be 

designed as (16)-(23) to achieve the 

acceptable convergence time and in line 

with guaranteeing the Hurwitz condition 

for matrices    . The proposed scheme is 

straightforward to design and realize. Its 

construction relies only on choosing the 

constants           (for        ), to 

make the matrices     Hurwitz, and then 

choosing the constants   and   , 

independently, where increasing the 

value of   increases the convergence 

time considerably and vice versa. Also, 

the constant    should be designed based 

on a trade-off between singularity 

problem, the finite-time efficiency and 

the observation errors. To guarantee the 

estimation in a finite time,    is proposed 

as a positive high-value constant, where 

increasing its value significantly 

decreases the convergence time and 

considerably reduces the observation 

errors. 

4. Computer Simulations 

In this Section, to highlight the 

efficiency of the proposed finite-time 

ESO, several comparative simulations 

are reported compared to the two leading 

strategies HSMO [15] and HGESO [27]. 

Then, further simulations are reported to 

validate the performance of the proposed 

framework in the presence of 

measurement noise. The parameters for 

the observers are the same as the EHA's 

parameters, with the explicit values 

provided in [15]. In this Section, without 

loss of generality, the estimation word is 

sometimes used for observation 

purposes. The simulation results are 

achieved under zero-initial conditions for 



all state variables. To understand the 

dead-zone's effects, the results are 

obtained by employing a low-frequency 

sine wave       (  ). The 

performance analysis of the proposed 

finite-time ESO is shown in Fig. 2 for the 

first subsystem. From this plot, the 

following three considerations can be 

drawn: (1) Finite-time convergence is 

achieved. Fig. 2 shows the time 

evolutions of state variables of the first 

subsystem and their estimations, in which 

the proposed scheme has obtained an 

acceptable convergence time compared 

with HSMO and HGESO; (2) The 

proposed finite-time ESO results in the 

proper estimation of the state variables, 

as well as the uncertainties, whose 

observation errors converge to a small 

neighborhood of zero. Thus, the 

proposed approach is an alternative way 

to design the disturbance observers. 

Especially, Fig. 2(c) shows that the 

proposed finite-time ESO achieves 

comparable estimation performance with 

respect to HSMO and HGESO, even in 

the presence of external force such as 

friction force and disturbance that was 

defined as an uncertainty in the EHA; (3) 

Fig. 2 show that the external force and 

subsequently the friction force   ( ̇)  and 

then   (   ) are continuous and 

bounded. Inspired by preliminaries of a 

version of Barbalat-like lemma [33], it 

can be concluded that the continuity of 

  (   ) guarantees the assumed 

condition | ̇ (   )|    ; hence the 

arguments stated in Section 2 hold. The 

performance of the studied approaches in 

terms of the Root Mean Square (RMS) 

values of the observation errors are 

calculated in Table 1. 
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Fig. 2 Real states and estimation results of the first subsystem. 
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Fig. 3. Real states and estimation results of the second subsystem. 

A performance index is defined based 

on the RMS of the observation error 
vector   , as     ‖√

 

  
∫   

      
  

 
‖, 

where      is the simulation time. 
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Table 1 

Comparative results between the first-

subsystem performance indexes. 

Methods 
Quantity of 

performance indexes 

Proposed finite-

time ESO 
   [

         
        
       

] 

HSMO [15]    [
         
        
       

] 

HGESO [27]    [
         
        
       

] 

  

 

It is worth noting that, in order to 

produce a fair analysis, the parameters 

for the proposed comparison with HSMO 

and HGESO are taken directly from [15] 

and [27] with their highest efficiency. 

Table 1 confirms that the proposed ESO 

can compete with HSMO and HGESO 

approaches as leading strategies. 

The second subsystem is affected by 

uncertainties coming from subsystems 1 

and 3. Fig. 3 shows that the proposed 

observer ensures a similar convergence 

time as HSMO and HGESO. The 

proposed finite-time ESO results in the 

appropriate estimation of the state 

variables as well as the uncertainties. In 

particular, Fig. 3(b) shows that the 

proposed scheme achieves great 

estimation performance, even in the 

presence of Dead-Zone effects. It is 

worth noting that, according to Fig. 3, 

there is no significant difference between 

the convergence times, and the obtained 

results are almost similar. By defining 

the RMS performance index    

‖√
 

  
∫   

      
  

 
‖, it can be shown that 

its value for all three methods is    , 

confirming that the proposed ESO can 

compete with HSMO and HGESO 

approaches. 

As noted in Section 2, the third 

subsystem represents the proportional 

valve dynamics, which is one-side-

independent of the other subsystems. 

Finite-time convergence and disturbance 

estimation considerations for this 

subsystem are shown in Fig. 4. 

Especially, Fig. 4(c) shows that 

comparable estimation performance with 

respect to HSMO and HGESO is 

achieved in the presence of unknown 

terms    
        

( ). By defining the 

RMS performance index     

‖√
 

  
∫   

      
  

 
‖   based on the infinity 

norm of the observation error vector   , 

the performance of all three observers is 

evaluated in Table 2. 
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Fig. 4. Real states and estimation results of the third subsystem. 

Table 2 

Comparative results between the third-

subsystem performance indexes. 

Methods 
Quantity of 

performance indexes 

Proposed finite-

time ESO 
   [

        
      

        
] 

HSMO [15]    [
         

      
        

] 

HGESO [27]    [
         

      
        

] 

  

 

We conclude that the finite-time 

convergence is guaranteed without any 

knowledge about the upper bounds of the 

disturbances. Therefore, the proposed 

scheme can compete with the other two 

leading strategies, which makes it a 

qualified alternative approach in the 

observer design with noteworthy 

potential. Besides, Figs. 3(b) and 4(c) 

show that   (   ) and   (   ) are 

continuous and bounded; where their 

continuity guarantees the assumed 

conditions | ̇ (   )|     and 

| ̇ (   )|      
On the other hand, in practice, exact 

measurements as the ones considered in 

the previous simulation are impossible to 

obtain. In real life, sensor data are 

affected by external noise, therefore, the 

effectiveness of the proposed observer 

should be evaluated in the presence of 

unknown measurement noise. Assume 

that the outputs are redefined as  ( )  
[    ( )      ( )      ( )]

 , 

where   ( ) for           are 

unknown band-limited white noises. 

Since the HGESO is basically an 
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approximate differentiator, measurement 

noise and unmodeled high-frequency 

dynamics will put a practical limit on its 

use [32]. In this Section, without loss of 

generality, the simulated performance of 

the presented framework is only 

compared with HSMO approach. The 

performance of the proposed scheme is 

validated in the presence of measurement 

noise. Fig. 5(c) shows that the external 

force is well estimated, even in the 

presence of measurement noise. 

 

                     (a)

                      (b) 

 
                     (c) 

Fig. 5. Real states and estimation results of the first subsystem under measurement noise. 
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                  (a) 

 
                   (b) 

Fig. 6. Real states and estimation results of the second subsystem under measurement noise. 
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                      (b) 

 
                      (c) 

Fig. 7. Real states and estimation results of the third subsystem under measurement noise. 

Fig. 6 shows that the proposed 

framework has an acceptable 

convergence time compared with HSMO. 

Besides, Fig. 6(b) shows that the 

proposed scheme achieves great 

estimation performance, even in the 

presence of Dead-Zone effects as well as 

measurement noise. According to Fig. 7, 

the acceptable performance of the 

proposed scheme is achieved in the 

presence of measurement noise as well as 

uncertainties. Besides, the difference 

between convergence times is quite 

obvious; hence, the efficiency of the 

proposed scheme is confirmed as a 

practical method in the presence of 

measurement noise. 

 

5. Experimental Results 

Experimental results are obtained on 

the EHA test-bed shown in Fig. 8. The 

setup is equipped with sensors providing 

measurements of output variables  ,   , 

and   . Besides, in comparison with the 

data estimated by the observers, these 

practical data are first reconstructed 

through digital filtering. In this paper, to 

validate the effectiveness of the proposed 

finite-time ESO in a real-life scenario, an 

experiment in presence of a load 

connected to the sliding table is 

performed; where markers 1 to 6 

respectively indicate the fixed base, 

sliding table, isolator under test, an 

external load, numerical computer, and 

power supply. In the experimental tests, 

the supply pressure    is less than the one 

used in simulations. The proposed 
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scheme is straightforward to design and 

implement. Its construction relies only on 

the selection of the constants     

 to make 

the matrix     Hurwitz, and then the 

selection of the constants   and   , 

independently. Therefore, without any 

singularity and chattering concerns, the 

proposed observer scheme is useful as a 

practical and alternative approach for 

states and uncertainties observation. 

Figs. 9–11 show the comparative 

experimental results. By considering the 

convergence time and amplitude of 

results, it is seen that the response of 

HGESO is not as strong as the other two 

methods. 

 

 
Fig. 8. The EHA test-bed used during the 

experiments. 
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Fig. 9. Real states and estimation results of the first subsystem (Experimental results). 
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Fig. 10. Real states and estimation results of the second subsystem (Experimental results). 

The similarity between the estimation 

curves in Figs. 9-11 confirms beyond 

doubt that the proposed scheme is 

capable to compete with existing 

approaches to estimate the full state of 

the nonlinear system as well as the 

uncertainties. The proposed observer 

shows better performance compared to 
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HSMO for the estimation of the piston 

velocity and in particular for the spool 

bias. By comparing experimental results 

with the simulated ones (Figs. 2-4), it is 

clear that the performance of the 

proposed observer is preserved in 

experiments. For instance, Fig. 9 shows 

that the performance of the proposed 

observer is appropriate in terms of 

convergence time and estimation errors. 

Also, its performance for estimating the 

uncertainties in the experiments is 

confirmed. 

 
                 (a) 

 
                 (b) 
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Fig. 11. Real states and estimation results of the third subsystem (Experimental results). 

0 5 10
-0.4

-0.2

0

0.2

0.4

Time (Sec)

S
p

o
o
l 

P
o

si
ti

o
n

E
st

im
a

ti
o

n
 E

rr
o

r 
(V

)

 

 

0 5 10
-0.5

0

0.5

Time (Sec)

 

 

0 5 10
-0.5

0

0.5

Time (Sec)

 

 

Proposed Finite-Time ESO HSMO HGESO

0 5 10
-4

-2

0

2

4

S
p

o
o
l 

P
o

si
ti

o
n

 (
V

)

 

 

0 5 10
-4

-2

0

2

4

 

 

0 5 10
-4

-2

0

2

4

 

 

System State

Proposed Finite-Time ESO

System State

HSMO

System State

HGESO

0 5 10
-50

0

50

Time (Sec)

 

 

0 5 10
-0.5

0

0.5

1

1.5

Time (Sec)

S
p

o
ol

 V
el

o
ci

ty

E
st

im
a

ti
o

n
 E

rr
o

r 
(V

/s
)

 

 

0 5 10
-5

0

5

10

Time (Sec)

 

 

Proposed Finite-Time ESO HSMO HGESO

0 5 10
-20

0

20

40

60

 

 

0 5 10
-50

0

50

100

 

 

System State

HSMO

0 5 10
-20

0

20

40

60

S
p

o
ol

 V
el

o
ci

ty
 (

V
/s

)

 

 

System State

Proposed Finite-Time ESO

System State

HGESO

0 5 10
0.014

0.0145

0.015

0.0155

0.016

Time (Sec)

S
p

o
ol

 B
ia

s 
(V

)

 

 

0 5 10
0.014

0.0145

0.015

0.0155

0.016

Time (Sec)

 

 

0 5 10
0.014

0.0145

0.015

0.0155

0.016

Time (Sec)

 

 

Proposed Finite-Time ESO HSMO HGESO



Despite the similarity of the three 

curves in Fig. 10, the better performance 

of the proposed observer compared to the 

other two methods is clearly shown in 

Fig. 11, where significant differences 

between the estimation errors are 

achieved. Finally, by redefining the RMS 

performance index    for the 

experimental results, the performance of 

observers is evaluated in Table 3. This 

table reports that, while HSMO has 

slightly better performance on the piston 

position estimation, it behaves worse 

than the other observers in almost all the 

other cases. The proposed observer RMS 

error is about one fifth of the HSMO one 

in case of the first subsystem, and less 

than one third in case of the third 

subsystem. However, the performance of 

all three observers is similar for load 

pressure estimation. 

Table 3 

Comparative results between the third-

subsystem performance indexes. 

Methods 
Quantity of performance 

indexes 

Proposed finite-
time ESO 

   [
         
        
       

] 

HSMO [15]    [
         
        
       

] 

HGESO [27]    [
         
        
       

] 

  

 

Remark 4. Despite the similarity of 

Figures 2(a,b,c), 5(a,c), 6(b), 9(c), and 

10(a) between the proposed approach and 

the HSMO method, in Figures 3(a) and 

9(a) the convergence rate of the proposed 

approach is a little slower than that of the 

HSMO method. Figures 3(b), 4(a,b,c), 

5(b), 6(a), 7(a,b,c), 9(b), 10(b), and 

11(a,b,c)  confirm beyond doubt that the 

proposed scheme is significantly better 

than existing approaches in the 

estimation of the full state of the 

nonlinear system as well as the 

uncertainties. 

Although this paper does not 

emphasize the absolute superiority of the 

proposed approach compared to other 

methods, based on the results, we 

conclude that the proposed scheme can 

compete with the other leading strategies, 

making it a qualified alternative approach 

in the observer design with noteworthy 

potential. The gains of the proposed 

observer have been computed based on 

some ordinary algebraic equations, which 

can be implemented on usual hardware 

and will not need powerful processors 

compared to neural network based 

approaches [34]. 

6. Conclusions 

This paper presented a novel 

framework to design a finite-time ESO 

for a class of uncertain nonlinear systems 

and the method is validated by 

considering an EHA as the case study. To 

make the observation errors uniformly 

bounded, a novel time-varying and free 

of chattering ESO is designed. To 

achieve finite-time convergence, novel 

conversions are used to transform the 

observation error dynamic to the new 

coordinate. This enables us to select the 

time-varying gains. In this design 

process, without any knowledge about 

the upper bounds of the uncertainties, the 

convergence of the observation errors to 

a small neighborhood around zero is 

achieved at a finite time. Finally, to 

highlight the efficiency of the proposed 

framework, several comparative 

simulations and experimental results are 

reported. In conclusion, all the aims of 

this paper are achieved. To summarize, 

the proposed design of a continuous and 

chattering-free ESO allows estimating 

the full state of the nonlinear system as 

well as the uncertainties without any 

knowledge about the upper bound of 

uncertainties. Moreover the observation 

errors converge to a neighborhood of 

zero, introducing a time-varying 

conversion, so that, finite-time 

boundedness properties of the proposed 

ESO are guaranteed by using the 

asymptotic stability methods in a 



straightforward manner, and computing 

the time-varying gains with reasonable 

amplitudes for experimental studies over 

long-time intervals. For future works, 

further development of the proposed 

finite-time ESO will be carried out in 

order to update the time-varying gains in 

comparison with various techniques such 

as adaptive neural networks and terminal 

sliding mode observers. 
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