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Abstract 
Data-driven building energy modelling techniques have proven to be effective in multiple 
applications. However, the debate around the possibility of generalisation is open. 
Generalisation involves the ability of a machine-learning model to adapt to previously 
unseen data and perform in a satisfactory way. Besides that, while machine-learning 
techniques are extremely powerful, interpretability, i.e. the ability for humans to predict 
how the model output will change in response to a change in input data or algorithmic 
parameters, is essential to attain a "human-in-the-loop" approach and creating feedback 
loops aimed at continuous improvement of efficiency measures in buildings. 
A flexible regression-based approach is developed and tested on a Passive House building 
in this study. The formulation employs dummy (binary) variables as a piecewise 
linearization method, and the rules for creating them are explicitly stated to ensure 
interpretability. Furthermore, the possibility of automating the model selection process 
using statistical indicators is described, including specific indicators used in Measurement 
and Verification (M&V) for the acceptance of calibrated energy models. 
The valuable insights that can be found using data-driven methods are reported and 
discussed, emphasising limitations and constraints, as well as the potential for future 
research focused on systems of (interpretable data-driven) models that can exploit the 
techniques' spatial and temporal scalability. Finally, the physical interpretation of model 
coefficients and the analytical formulations for energy model decomposition can be used 
to supplement the scalability of data-driven techniques and create more sophisticated 
systems of interconnected models. 
 
Keywords: Data-driven energy modelling, Interpretable machine-learning, Regression-
based approaches, Generalisation, Building energy modelling, Measurement and 
Verification, Energy Analytics. 
 
Highlights: 

• Data-driven techniques can be used effectively in building energy modelling. 
• Generalisation and interpretability are crucial to improve their applicability. 
• An interpretable data-driven modelling approach is tested on a Passive House 

building. 
• Rules for modelling workflow automation are presented. 
• Indications for further developments of systems of models are reported. 
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1 Nomenclature 
 

Table 1: Nomenclature 
Variables and parameters 

Symbol  Quantity Unit 
a0,b0,c0 regression coefficients, intercept kW 
a1,b1,c1 regression coefficients, temperature dependence term kW/K 

a2,b2,c2 
regression coefficients, solar radiation dependence 
term 

m2 

Cv(RMSE) coefficient of variation of RMSE - 

Isol 
total solar radiation on horizontal surface (direct and 
diffuse) average hourly value on monthly base 

kW/m2 

MAPE mean absolute percentage error - 
NMBE normalized mean bias error (expressed in percentage) - 

qh energy signature heating kW 
qb energy signature base load kW 
qc energy signature cooling kW 
R2 determination coefficient (expressed in percentage) - 
Xh dummy variable (binary 0-1) heating - 
Xb dummy variable (binary 0-1) base load - 
Xc dummy variable (binary 0-1) cooling - 
θe outdoor air temperature ºC 
εh error term heating kW-kWh 
εb error term base load kW-kWh 
εc error term cooling kW-kWh 
σ standard deviation kWh 

 
 
2 Introduction 
Data-driven building energy modelling approaches, using machine-learning techniques, 
have proven to be effective in multiple applications across building life cycle phases [1], 
from design [2] to operation [3]. Their use for energy performance benchmarking can 
provide highly valuable insights to help reducing energy consumption and related carbon 
emissions, both for newly constructed buildings and for existing or retrofitted ones. 
However, the debate around the possibility of generalisation of data-driven approaches is 
still open [4]. The term generalisation indicates the ability of a machine-learning model 
to adapt to a new dataset (i.e. previously unseen data) and perform reasonably well, 
considering statistical performance indicators. 
In fact, while a large number of energy prediction techniques have been proposed in 
research in the last decades, yet there is still no general consensus on which techniques 
perform better in which specific problems in the energy field (e.g. load prediction, 
measurement and verification procedures, anomaly detection, data-driven predictive 
control, etc.). Furthermore, the presence of a wide range of building construction 
typologies, technologies, and end-uses (e.g., residential or non-residential) in the building 
stock results in a highly heterogeneous set of design and operational conditions. 
In general, multiple “performance gaps” (i.e. differences between expected and measured 
performance) can be present in buildings and adequate analysis frameworks should be set 
up [5]. At the same time, there is a problem of literacy around this topic [6] and the need 
for robust enquiry and repeatable scientific methods when addressing building 
performance [7]. Essentially, “performance gaps” can involve all the phases of the 
building life cycle [8] and building energy performance analysis requires a careful 
consideration of both human and technical factors [9]; the use of standardized 
assumptions in modelling is not sufficient. 
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For this reason, building energy model calibration techniques has been reviewed 
extensively for example by Coakley et al. [10] and, more recently, Chong et al. [11]. In 
the latter paper, the input-ouput analysis process performed for building model calibration 
is discussed in detail, claryfing the difference between variables (i.e. model states that 
evolves during simulation) and parameters (i.e. quantities that describe the property of 
objects in the model). 
Going back to parameters and variables in building energy modelling, the two most 
common input variables found in the systematic review by Chong et al. [11] are outdoor 
air temperature and solar radiation. The most important is outdoor air temperature, as 
evidenced also by the widespread adoption of methods based on temperature response 
functions [12]. 
In this sense, a typical example of generalisation can be the use of a model trained with a 
certain weather dataset and then tested with another weather dataset, to understand the 
impact of weather variability (e.g. normalization of energy demand with respect to 
weather data). This is, for example, the counterfactual approach used in Measurement and 
Verification (M&V) protocols, which would be recalled later. According to this approach 
energy savings are calculated as the difference between the energy used after a certain 
point in time (e.g. an intervention of the building, a change in operation, etc.) and a 
baseline estimate. This type of generalisation has limited impact because the model only 
applies to the specific building, but its value can be derived from the ability to compare 
the (case specific) model parameters to those of buildings with similar characteristics. 
While the use of case studies in building performance research is a common practice, the 
creation of machine learning models trained on datasets that are too small and too case 
specific has questionable value when looked from the point of view of applications at 
large scale in the built environment. What appears more interesting is the potential to 
extend the applicability of models at larger scales (e.g. neighbourhood, cities, building 
stock) and to extract additional insights regarding the performance of building 
technologies and people behaviour. 
Aside from generalisation, the interpretability and explainability of machine learning 
models are also to be considered. We can find definitions in recent standardization 
focused on Artificial Intelligence (AI) software testing [13], but they are concept 
important and “slippery” at the same time [14].  
Interpretability refers to the ability to predict what will be the model output given a change 
in input data or in algorithmic parameters. In other words, human can understand the 
rationale behind model output and the algorithmic logic can be inspected. Further, in some 
cases it is even possible to discern a potential causality in the relationship among variables 
(normally only correlation and not causation can be proved) when more information is 
available. Interpretable models are, for example, linear multivariate regression or 
regression and decision trees, where the impact of regression coefficients (in the case of 
linear regression) or rules (in the case of trees) can be easily understood by humans. 
On the other hand, explainability refers to the extent to which the internal mechanics of a 
machine-learning algorithm can be explained in human terms. High performance machine 
learning models such as neural network and random forests can be explained, but they 
are not generally interpretable and, for this reason, they are frequently indicated with the 
term “black-box”. Therefore, interpretability, while representing a constraint from the 
point of view of the modelling technique selection (in the sense that it reduces the 
potential spectrum of techniques that can be used), can provide advantages in terms of 
simplicity and transparency. These advantages have been discussed in recent research 
[15]. Further, there is a need to open the “black-box” of energy modelling [16] to make it 
easily applicable. 
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Returning to the generalisation issue, large scale data collection and analysis using both 
top-down [17] and bottom-up approaches [18] in an integrated way is crucial to obtain 
robust evidence about building performance at large scale. From this point of view, 
important initiatives have been conducted in recent years such as the Building Data 
Genome Project [19] and the Building Data Genome Project 2 [20] (with energy meter 
data from the ASHRAE Great Energy Predictor III competition).  
In general, the use of crowd-sourced building data [21] is an important element to promote 
advances in building performance research based on open data [22]. However, open-data 
on measured performance are not generally available on a large scale base and large scale 
data collection requires relevant investments. Furthermore, there is a practical 
requirement to integrate various types of data when analysing building performance [23] 
in order to enable effective benchmarking at the level of single technologies, entire 
buildings, and building stock. 
As a result, harmonised and (temporally and spatially) scalable techniques are critical 
when generating estimates that can be used not only for single cases but also for large-
scale analysis. Together, these two features can help overcoming at least partly the 
limitations inherent to the use of small datasets and/or individual case studies previously 
mentioned, by enhancing the comparability and transparency of the modelling approach. 
These aspects are discussed in this research, where a flexible data-driven energy model 
formulation is presented and tested on data from a Passive House residential building case 
study. The model formulation is interpretable and conceived to be used in a general way 
for monthly energy data analysis. Further, it can be extended to other time intervals (daily, 
hourly, sub-hourly) and spatial scales [15], linked to standardized analytical formulations 
[24] and applied across different life cycle phases [3], as shown in previous research. 
The models are trained with different datasets, using electric and thermal energy data 
measured during a building monitoring period of 3 years, and their goodness of fit is 
discussed by means of statistical indicators. Finally, indications of future research 
directions in the broad area of data-driven energy modelling are given in relation to 
research outcomes.  
 
 
3 Background on interpretable data-driven methods 
In this research the use of interpretable techniques and harmonized procedures is the 
starting point. The concept of interpretability was discussed previously in the 
introduction, while the term harmonized indicates procedures that are codified, like the 
ones proposed by Measurement and Verification (M&V) protocols such as ASHRAE 
14:2014 [25], Efficiency Value Organization (EVO) [26], Federal Energy Management 
Program (FEMP) [27], as well as other technical standards reported later in this Section. 
The procedures and techniques proposed in these protocols have been adopted, for 
example, in projects such as the Uniform Methods Project (UMP) [28], aimed at providing 
robust and empirically grounded techniques to benchmark energy efficiency measures 
with a uniform approach, and the Investor Confidence Project (ICP) [29], aimed at de-
risking investment in energy efficiency and increasing trust by private and public investors. 
Further, the applicability of these techniques can be extended to electric load profiles 
analysis and prediction at large scale  [30], with the possibility to analyse Demand Response 
events [31] as well.  
As reported in the introduction, weather variables such as outdoor air temperature and solar 
radiation are essential inputs for model calibration [11] and an example of largely diffuse 
interpretable approach is the variable-based degree-days regression, originally proposed 
by Kissock et al. in the Inverse Modeling Toolkit (IMT) [32], which has been included in 
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ASHRAE 14:2014 [25] and has been evolving steadily with different algorithmic 
formulations for the automatic the selection of the change-point model [33] and explicit 
solution of the three-parameter (heating and base load) linear change-point model [34]. 
The definition of degree-days is itself part of international standardization [35]. For these 
reasons, interpretable machine-learning techniques are compatible with the energy 
performance analysis approach proposed by ISO 50006:2014 [36] and with energy 
signatures model formulation, defined in ISO 16346:2013 [37]. The analysis of model 
outputs can be used as a feedback in a continuous improvement logic, as indicated in ISO 
50001:2018 [38].  
Energy signature is obtained by diving the energy demand with respect to the amount of 
operating hours in the time interval considered in the analysis, i.e. determining an average 
power over it. This data transformation presents some advantages related to the 
approximated physical interpretation of regression coefficient [23] and its scalability for 
building stock analysis [24].  
Additionally, the use of outdoor air temperature and solar radiation as inputs can be found 
in interpretable regression-based approaches such as co-heating test [39] as well. Co-
heating test is based on building zone thermal balance approximation and can be used to 
provide reliable evidence on the actual performance of building fabric [40]. Clearly, the 
uncertainty impact determined by unmonitored energy sources and sinks [41] must be 
considered in order to enable the correct quantification of thermo-physical properties (due 
to the use of energy balance as the underlying principle), within the general problem of 
energy balance decomposition. 
In this respect, it is possible to find examples of building energy balance decomposition 
using regression-based approaches in research studies focused on multi-scale analysis of 
thermo-physical properties of buildings [42], robust energy model calibration [43] and 
energy analytics for building decarbonisation [24]. All these regression-based approaches 
can be complemented by the use of Statistical Process Control (SPC) techniques [44] for 
the graphical identification of performance anomalies [45], coherently with the indications 
of ISO 50006:2014 [46]. 
Essentially, interpretable regression-based methods can be based on general piecewise 
linearization methods [47] and use dummy (binary variables) to handle non-linearities (as 
will be illustrated in Section 4.1 for this research). In this way, they can become highly 
versatile [48] and be used for a variety of purposes, including the dynamic hourly and 
sub-hourly modelling of electric load profiles, as shown by the Time Of Week and 
Temperature (TOWT) model formulation aimed at analysing electric load shapes and 
variability [30], quantifying changes in electricity use in Demand Side Management (DSM) 
events [31] and improve efficiency program outcomes [49]. 
The combination of simple yet powerful interpretable data-driven methods makes it possible 
to envision systems of interconnected models [50] that can act as “digital twins”, sharing 
essential open data and standards [22]. 
A "digital twin" is a digital representation of a process that can overcome the limitations of 
traditional simulation-based engineering approaches (such as those used in building 
performance simulation) by demonstrating how a process performs in real time and under 
real-world conditions.  Interpretability is useful (from the standpoint of the user) because it 
allows the user to easily predict what will happen when the model input is changed. The 
more "transparent" the model is to the user, the more it can encourage a "human-in-the-loop 
approach" that "black-box" (non-interpretable) techniques cannot. 
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4 Methods 
In previous research work conducted on the case study building [51], which will be 
illustrated in more detail in Section 5, it was demonstrated that 2 years of monthly 
monitoring data were required to achieve calibration according to M&V procedures (the 
calibration process was performed incrementally) and that the solar radiation variable 
played an important role in model performance improvement. At that point, separate 
models for heating, cooling and base load were fitted, as in research focused on energy 
model decomposition [43] and calibration via regression [52]. 
Instead, in this research the separate sub-models are combined into a single model (which 
is the sum of the individual sub-models) by introducing additional variables (dummy, 0-
1 binary variables) to the original datasets using rules that are explained in Section 4.1. 
The rules themselves have a physical meaning and are meant to retain the ability to 
connect the two approaches in the future (i.e. piecewise linear regression and analytical 
formulations of building energy balance). In this way, energy balance decomposition and 
identification of thermo-physical properties (depending on the variables monitored) may 
be enabled by a unique integrated workflow. 
The performance of models is tested by fitting them to multiple datasets of measured 
electric and thermal demand in the building. The details of the model formulation and 
calibration criteria are reported in Sections 4.1 and 4.2, respectively; the characteristics 
of the case study and datasets used in this research are then described in Section 5. 
 
 
4.1 Model formulation 
While the main goal of this research is to model the building's energy behaviour using data-
driven techniques, energy signatures (i.e. energy demand divided by the number of operating 
hours in the time interval considered, expressed as an average power) are used in the 
workflow because of their advantages in terms of approximate physical interpretation, as 
discussed previously in Section 3. As a result, measured energy data (data gathering) are 
pre-processed to obtain energy signatures and dummy variables are included (data pre-
processing), then models are trained on energy signatures (model training) and evaluated 
againsts statistical indicators of goodness of fit (model evaluation); finally, data are post-
processed for graphical visualization purpose and both energy and energy signatures are 
plotted in time and with respect to outdoor air temperature (i.e. the fundamental input 
variable). The overall workflow is summarized in Figure 1 and explained hereafter in more 
detail. 
 

Figure 1: Diagram of the modelling workflow 

 
 
The goal of the formulation presented is to obtain a multi-output regression model that can 
then evolve and incorporate other analytical formulations to enable a more in-depth 
(physics-informed) analysis of the model coefficients, following the arguments presented in 
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Section 3 and recalled at the beginning of this Section. To this end, the different individual 
regression models are combined using dummy variables (0-1, binary variables) [47] in order 
to obtain a single model that can be used in a flexible way for all the datasets of monitored 
energy data, reported in Section 5. 
The rules to create dummy variables (and including them as additional variables in the 
datasets) are summarized in Table 2 and illustrated more in detail later in this Section with 
respect to model formulation. 
 

Table 2: Rules for dummy (binary) variables creation 
Rule Description Variables 

1 If the energy demand is greater than 0 for the corresponding sub-model 
(e.g. heating, cooling or base load), then dummy variable is equal to 1. Xh, Xb, Xc 

2 If the outdoor air temperature is lower than balance point temperature 
for heating (i.e. heating base temperature), the dummy variable for 
heating is equal to 1. 

Xh 

3 If the outdoor air temperature is greater than balance point temperature 
for cooling (i.e. cooling base temperature), the dummy variable for 
cooling is equal to 1. 

Xc 

4 All the dummy variables (that partition heating, cooling and base load 
demands) should be coherent with the schedules of operation for 
building services (i.e. months of heating and cooling system 
operation). 

Xh, Xb, Xc 

5 The dummy variables for base load are assumed to be 1 in all the 
months (i.e. electricity and hot water demand are always present). Xb 

 
Because of the sub-metering of energy demand (i.e. the subdivision by type of end-use), the 
information to derive the dummy variables, using the rules reported in Table 2, was available 
in this research, but rules 2 and 3 can be applied even when this subdivision is unknown, 
due to the physical meaning of balance point temperatures for heating and/or cooling (i.e. 
base temperatures [53] for variable-base heating [54] and cooling degree-days [55] 
calculations). Further, rule 4 can be inferred as well due to typical operation strategies of 
buildings. 
In other words, it may not be possible to attribute precisely from the very beginning dummy 
variables (to partition the dataset for the heating, cooling and base load demand) if only total 
electricity demand is present (and sub-metering data are not available); nonetheless, the 
search for the best fitting model can be performed iteratively (as shown in Figure 1 for model 
creation), using ranges of balance point temperatures for heating and cooling (dependent on 
building characteristics [54]) and using contextual information to determine the schedules 
of building operation. After that, the performance of multiple models can be ranked with 
respect to the statistical indicators that are used later to evaluate models’ acceptability 
(thresholds for model calibration, proposed by protocols and standards). Finally, the models’ 
outputs are constrained to be positive (energy metering data are positive quantities) as in 
some cases the output of the regression model can assume a small negative value, using 
change-point models. 
Indeed, the fundamental reason behind the creation of this model formulation is the 
possibility to use a single and flexible model for the analysis of the energy demand at 
different levels in the building (corresponding to the different datasets reported in Section 5) 
in a multi-input/multi-output fashion and then proceed by stepwise regression with 
backward elimination of variables (i.e. reducing the amount of variables) to obtain the final 
model version, i.e. automating the model selection process using rules and statistical 
indicators to rank their goodness of fit. Indeed, the form of the final model can be constrained 
in such a way that an approximated physical interpretation of the model coefficients is 
retained (to enhance transparency and enable further decomposition) [24], coherently with 
the arguments presented in Section 3.  
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As specified before, the regression model formulation used in this research corresponds to 
the extension of the one previously tested in relation to multi-scale analysis of building 
performance [42] and energy analytics that can be used to support the decarbonisation of 
built environment [24].  
The overall model is the sum of three sub-models for heating, base load and cooling, and 
dummy variables are used to exclude the part of the model which are not pertinent (e.g. 
thermal demand in the case of only heating or only cooling component). One dummy 
variable is used for each sub-model, namely Xh for heating, Xb for base load and Xc for 
cooling. Finally, the intercept of the complete model is set to 0 (i.e. regression through 
the origin) and the output constrained to be positive. The dependent variables are the 
energy demand data reported in Section 5 (electric and thermal) and the two independent 
variables are outdoor air temperature θe and total solar radiation on horizontal surface Isol, 
which represent the two most common variables considered in model calibration [11]. 
Tables 3 and 4 report the formulas for Type 1 model (only outdoor air temperature θe as 
input variable) and Type 2 model (outdoor air temperature θe and solar radiation on 
horizontal surface Isol as input variables), respectively.  
 

Table 3: Regression sub-models for heating, cooling and baseline demand analysis, 
combined by means of dummy variables – model Type 1 
Demand Sub-models  
Heating 𝑞𝑞ℎ = 𝑋𝑋ℎ(𝑎𝑎0 + 𝑎𝑎1𝜃𝜃𝑒𝑒) + 𝜀𝜀ℎ (1) 

 𝑞𝑞ℎ = 𝑎𝑎0(𝑋𝑋ℎ) + 𝑎𝑎1(𝑋𝑋ℎ𝜃𝜃𝑒𝑒) + 𝜀𝜀ℎ (2) 
Base load 𝑞𝑞𝑏𝑏 = 𝑋𝑋𝑏𝑏( 𝑏𝑏0 + 𝑏𝑏1𝜃𝜃𝑒𝑒) + 𝜀𝜀𝑏𝑏 (3) 

 𝑞𝑞𝑏𝑏 = 𝑏𝑏0(𝑋𝑋𝑏𝑏) + 𝑏𝑏1(𝑋𝑋𝑏𝑏𝜃𝜃𝑒𝑒) + 𝜀𝜀𝑏𝑏 (4) 
Cooling 𝑞𝑞𝑐𝑐 = 𝑋𝑋𝑐𝑐(𝑐𝑐0 + 𝑐𝑐1𝜃𝜃𝑒𝑒) + 𝜀𝜀𝑐𝑐 (5) 

 𝑞𝑞ℎ = 𝑐𝑐0(𝑋𝑋𝑐𝑐) + 𝑐𝑐1(𝑋𝑋𝑐𝑐𝜃𝜃𝑒𝑒) + 𝜀𝜀𝑐𝑐 (6) 
 

Table 4: Regression sub-models for heating, cooling and baseline demand analysis, 
combined by means of dummy variables – model Type 2 
Demand Sub-models  
Heating 𝑞𝑞ℎ = 𝑋𝑋ℎ(𝑎𝑎0 + 𝑎𝑎1𝜃𝜃𝑒𝑒 + 𝑎𝑎2𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠) + 𝜀𝜀ℎ (7) 

 𝑞𝑞ℎ = 𝑎𝑎0(𝑋𝑋ℎ) + 𝑎𝑎1(𝑋𝑋ℎ𝜃𝜃𝑒𝑒) + 𝑎𝑎2(𝑋𝑋ℎ𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠) + 𝜀𝜀ℎ (8) 
Base load 𝑞𝑞𝑏𝑏 = 𝑋𝑋𝑏𝑏( 𝑏𝑏0 + 𝑏𝑏1𝜃𝜃𝑒𝑒 + 𝑏𝑏2𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠) + 𝜀𝜀𝑏𝑏 (9) 

 𝑞𝑞𝑏𝑏 = 𝑏𝑏0(𝑋𝑋𝑏𝑏) + 𝑏𝑏1(𝑋𝑋𝑏𝑏𝜃𝜃𝑒𝑒) + 𝑏𝑏2(𝑋𝑋𝑏𝑏𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠) + 𝜀𝜀𝑏𝑏 (10) 
Cooling 𝑞𝑞𝑐𝑐 = 𝑋𝑋𝑐𝑐(𝑐𝑐0 + 𝑐𝑐1𝜃𝜃𝑒𝑒 + 𝑐𝑐2𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠) + 𝜀𝜀𝑐𝑐 (11) 

 𝑞𝑞ℎ = 𝑐𝑐0(𝑋𝑋𝑐𝑐) + 𝑐𝑐1(𝑋𝑋𝑐𝑐𝜃𝜃𝑒𝑒) + 𝑐𝑐2(𝑋𝑋𝑐𝑐𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠) + 𝜀𝜀𝑐𝑐 (12) 
 

Model type 1 is the sum of the three sub-models in formulas 2, 4 and 6, while model type 
2 is the sum of the three sub-models in formulas 8, 10 and 12. The formulas 2, 4, 6 and 
8,10, 12 are chosen (instead of 1, 3, 5 and 7, 9, 11 respectively) because they represent 
the regression models created using the dummy variables where the new variables are Xh, 
Xhθe, XhIsol, etc. In other words, the dummy (binary) variables are used to create 
interactions among variables, instead of relying just on the original variables θe and Isol. 
 
4.2 Model calibration criteria 
In this Section the calibration criteria for model acceptability are introduced. Following the 
indications proposed by Measurement and Verification (M&V) protocols at the state-of-
the-art such as ASHRAE 14:2014 [25], Efficiency Value Organization (EVO) IPMVP 
[26], and Federal Energy Management Program (FEMP) [27] (cited previously in Section 
3), the thresholds of acceptability for regression models as calibrated with monthly data and 
hourly data (for the sake of comparison) are reported in Table 5. 
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Table 5: Thresholds of acceptability for M&V models as calibrated with monthly and 
hourly data 

Interval Metric ASHRAE 
Guidelines 14 IPMVP FEMP 

Monthly NMBE ±5 ±20 ±5 
 Cv(RMSE) 15 - 15 
Hourly NMBE ±10 ±5 ±10 
 Cv(RMSE) 30 20 30 

 
The statistical indicators chosen to enable the comparison between measured and predicted 
data (obtained by regression) for the monitoring period are R2 (Coefficient of 
determination), MAPE (Mean Absolute Percentage Error), NMBE (Normalized Mean Bias 
Error  and Cv(RMSE) (Coefficient of Variation of Root Mean Square Error). While the first 
two indicators (R2 and MAPE) are general statistical indicators for the evaluation of 
goodness of fit of models, NMBE and Cv(RMSE) are statistical indicators considered for 
the specific purpose of model calibration and, for this reason, proposed by the M&V 
protocols ASHRAE 14:2014, FEMP and EVO-IPMVP reported above in Table 5. 
Nonetheless, the coefficient of determination R2 (defined in the range of 0-100 percent, or 
0-1), is a suitable indicator as reported in ISO 50006:2014 [36], even though the limitation 
that stems from the fact that R2 is inherently related to the model's slope (i.e. the dependence 
on input variables) have to be acknowledged. Higher slope values will correspond to higher 
R2 values even with the same predicted variable variance. An R2 value greater than 80 % 
indicates a good model fit and 75 % is indicated in IPMVP Guidelines for Assessing 
Uncertainty as a reference value [56]. MAPE is not indicated specifically in model 
calibration procedures but it is included in this research to give an idea of what is the 
percentage of variation (in absolute value) of the error term with respect to the measured 
data.  
Overall, the statistical indicators reported are used to provide thresholds for the 
acceptability of models, but they can be complemented by the visual analysis of modelling 
results, up to the creation of control charts [45], used in Statistical Process Control (SPC) 
[44], as shown at the end of Section 6.1. 
 
5 Case study description 
The case study chosen is a Passive House residential building located in the Province of 
Forlì-Cesena, in the Emilia Romagna Region of Italy. For three years, the case study 
building was monitored and data from energy meters and weather stations were collected. 
The case study building is characterized by highly insulated envelope components built 
in accordance with Passive House standards. Further, the building's technical systems 
include mechanical ventilation with heat recovery (MVHR), a ground-source heat pump 
system (GSHP) for heating, cooling and DHW services, a photovoltaic system for on-site 
electricity generation, and a solar thermal system with storage, to integrate DHW production. 
The number of occupants of the building is 5. Table 6 summarizes the most important 
building data. 
 

Table 6: Building design data assumptions 
Group Type Unit Design  

Geometry Gross volume m³ 1557 
 Net volume m³ 1231 
 Heat loss surface area m² 847 
 Net floor area m² 444 
 Glazed area/total wall area ratio percentage % 22,5 
 Surface/volume ratio 1/m 0,54 

Envelope U value external walls W/(m2K) 0,18 
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 U value roof W/(m2K) 0,17 
 U value transparent components W/(m2K) 0,83 

HVAC and 
DHW 

Ground-source heat pump (GSHP) - Brine/Water 
Heat Pump (B0/W35)* kW 8,4 

 Borehole heat exchanger (2 double U boreholes) m 100 
On-site 
energy 

production 

Building Integrated Photo-Voltaic (BIPV) - 
Polycrystalline silicon kWp 9,2 

 Solar thermal - Glazed flat plate collector m2 4,32 
 Domestic hot water storage m3 0,74 

* EN14511 test condition in heating mode, brine at 0 ºC and water 35 ºC with supply-return temperature 
difference Δt = 10 ºC. 

 
 
Previously, research was conducted on this case study, with the goal of testing the use of 
regression methods to aid in the progressive calibration of a Resistance-Capacitance (RC) 
energy model [51]. The deviations between measured and simulated energy demand were 
used to control the progressive model calibration process with the aid of regression 
models. In that case, models were meant to define a data envelopment of possible 
operational energy performance, approximating simulation output. It was shown how 2 
years of data were necessary to reach calibration and how the design assumption were to 
be revised in order to match model prediction with measured data. 
Unlike previous research on this case study, a novel model formulation is tested in this 
case, which has been presented in Section 4.1. The monitoring period chosen for model 
training and calibration is 3 years and the measured energy demand dataset are reported in 
Table 7. 
 

Table 7: Datasets used in research 
Dataset End-use Interval Monitoring period 
Electric energy Total Monthly 3 years 
 HVAC, DHW Monthly 3 years 
 Appliances and lighting Monthly 3 years 
Thermal energy Heating Monthly 3 years 
 Cooling Monthly 3 years 

 
 
6 Results and discussion 
This study aims the test, as introduced in Section 4.1, a novel formulation of the 
regression-based approach used in previous research. This formulation is proposed with 
the goal of incorporating it into an interpretable data-driven building energy modelling 
workflow that can supplement other state-of-the-art techniques and tools and evolve 
potentially into a system of interconnected models, leveraging the fundamental features 
presented in Section 3. Section 6.1 discusses the results of model training from both a 
visual and numerical standpoint, emphasizing the importance of the "human-in-the-loop" 
approach for machine learning methods. After that, in Section 6.2, the limitations of the 
techniques at this stage are discussed and finally future research possibilities are presented 
in Section 7. 
 
6.1 Model training and calibration 
The data-driven energy modelling process is presented in this Section, beginning with 
regression models fitted to energy signature data, for the various types of energy demands 
considered in this research, namely: 

1. total electricity demand; 
2. electricity demand for HVAC and DHW; 
3. electricity demand for appliances and lighting; 
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4. thermal demand for heating; 
5. thermal demand for cooling. 

 
As introduced in Section 3, energy signature is calculated by dividing the original energy 
data by the amount of operating hours in the interval considered, thereby determining an 
average power value for the interval of analysis (monthly in the case, for 36 months, 3 years). 
Then, measured and predicted energy demand is compared by multiplying the energy 
signature by the number of operating hours in the specific time interval of analysis. 
The comparison is performed both numerically and visually, considering thresholds of 
statistical indicators representing the goodness of fit of models (i.e. indicating practical limits 
for their acceptability), reported in Table 5 in Section 4.2. The regression models developed 
are independent on the specific weather data used, as weather data are the independent 
variables (air temperature and solar radiation in this case, for the reasons described in the 
introduction and in Section 3), while the energy signature (i.e. average power over the 
time interval) is the dependent variable.  
 

  

  
Figure 2: Electricity and thermal demand signature – monthly values, model type 1 on 

the left, model type 2 on the right 
 
In Figure 2 energy signatures of electricity demands (above) and thermal demands 
(below) are represented as a function of outdoor air temperature because it represents the 
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most relevant variable for weather normalization and is frequently used as the only 
variable in regression-based approaches (i.e. temperature response functions [12]), as 
explained in the introduction and Section 3. The results of regression models type 1 
(illustrated in Table 3, Section 4.1) are reported on the left, while the ones of regression 
models type 2 (illustrated in Table 4, Section 4.1) on the right. Model type 1 is clearly a 
simple piecewise linear model (points are on straight lines, with change-points) as a 
function of 1 input variable, outdoor air temperature, while model type 2 points are more 
scattered and able to approximate the measured data even better. 
Furthermore, considering the change-points (i.e. the balance point temperatures for heating 
and cooling respectively) of the piecewise linear model type 1, an alternative visualization 
of the thermal demand for heating and cooling can be provided, using variable-based 
degree-days [35], computed on a monthly base, in Figure 3. This visualization also confirms 
in general the goodness of fit of the models presented. 
 

  
Figure 3: Thermal energy demand – Variable-base degree-days, heating demand on the 

left, cooling demand on the right 
 
The model formulations (obtained as the sum of the sub-models, using dummy variables) 
presented in Table 3 and 4 respectively for model type 1 and type 2, are able to fit all the 
five different datasets (total electricity, electricity for HVAC and DHW, electricity for 
appliances and lighting, thermal demand for heating, thermal demand for cooling) 
reasonably well, as indicated in Tables 8 and 9, again respectively for model type 1 and 
type 2. In general, R2 values are high in all cases (> 80 %), with the notable exception of  
the electricity for lighting and appliances for model type 1 (67.34 %). 
Electricity for appliances and lighting is highly dependent on user behaviour and less 
dependent on weather, essentially only on the amount of daylight hours (from sunrise to 
sunset) for lighting. The thresholds of acceptability for model calibration (according to 
M&V protocols reported in Section 4.2), specified in Table 5 are satisfied in all the cases, 
except for model type 1 trained on HVAC and DHW electricity demand, where the 
Cv(RMSE) is greater than 15 % (17.35 %). NMBE is very small in all cases (the maximum 
value found is 1.51 %, for thermal demand for cooling, using model type 1) and the 
maximum value of MAPE is 13.46 %, showing how the models are overall able to fit all 
the dataset well. 
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Table 8: Results of analysis of measured and predicted data for the monitoring period – 
Model type 1 

Dataset End-use Energy indicators Statistical indicators 

  Energy 
measured 

Energy 
predicted R2 MAPE NMBE Cv(RMSE) 

   kWh kWh % % % % 
Electric 
energy Total 35130 34819 84.41 10.33 -0.88 12.12 

 HVAC, DHW 12270 12139 91.23 12.59 -1.07 17.35 

 Appliances 
and lighting 22860 22868 67.34 9.50 0.04 10.56 

Thermal 
energy Heating 23790 23795 98.29 12.83 0.02 11.68 

 Cooling 6838 6735 97.01 5.48 -1.51 13.52 
 
Table 9: Results of analysis of measured and predicted data for the monitoring period – 

Model type 2 
Dataset End-use Energy indicators Statistical indicators 

  Energy 
measured 

Energy 
predicted R2 MAPE NMBE Cv(RMSE) 

   kWh kWh % % % % 
Electric 
energy Total 35130 34849 92.24 6.73 -0.80 8.88 

 HVAC, 
DHW 12270 12195 95.53 13.46 -0.61 12.75 

 Appliances 
and lighting 22860 22872 85.26 6.21 0.05 7.31 

Thermal 
energy Heating 23790 23798 99.30 9.26 0.03 6.20 

 Cooling 6838 6827 96.47 3.65 -0.16 11.93 
 
However, due to the fact that the results of model formulations reported in Tables 8 and 9 
use dummy variables (0-1), which are used essentially to include/exclude (turn on-off) part 
of the models, there are conditions where the output is 0, in particular for the thermal model 
for heating in summer (no-heating) and, viceversa, the thermal model for cooling in winter 
(no-cooling).  
This effect determines a series of points (with output equal to 0) that have to be excluded 
from the computation of statistical indicators. For this reason, statistical indicators are re-
computed by excluding zeros and reported in Table 10 hereafter for the thermal demand 
(heating and cooling) sub-models. The statistical indicators present some differences but 
all the models are still calibrated according to thresholds in Table 5, except for type 1 
cooling model. 
 
Table 10: Results of analysis of measured and predicted data for the monitoring period 

– Statistical indicators recomputed for thermal demand sub-models 
Model End-use Statistical indicators 
  R2 MAPE NMBE Cv(RMSE) 
   % % % % 
Type 1 Heating 98.32 13.47 0.03 7.96 
 Cooling 92.48 10.85 2.78 17.88 
Type 2 Heating 95.91 20.28 0.02 12.42 
 Cooling 90.91 19.19 -1.51 17.77 
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After that, the regression models fitted to energy signatures are used as a basis to compute a 
monthly time series of energy demand data for the monitoring period (36 months, 3 years) 
as shown in Figures 4. In this case also, the results of regression models type 1 are reported 
on the left, while the ones of regression models type 2 are reported on the right, with the 
electricity demand above and the thermal demand below. The difference between measured 
and predicted energy demand is very small in all the cases. 
 

  

  
Figure 4: Electricity and thermal demand time series – monthly values, model type 1 on 

the left, model type 2 on the right 
 
The next step is the visual analysis which involves plotting the differences between 
measured and predicted data (i.e. residuals, error term) as a function of both outdoor air 
temperature (the most important input variable) and time (monthly intervals of the 
monitoring period), to highlight potential patterns in residuals. The error term is plotted in 
Figures 5 and 6, respectively for outdoor air temperature dependence and time dependence. 
Again, model type 1 results are reported on the left, while model type 2 results are reported 
on the right. 
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Figure 5: Error term of energy signature models of electric and thermal demand – 

monthly values, model type 1 on the left, model type 2 on the right 
 

The residuals with respect to temperature (Figure 5) seem relatively uniform with some 
exception at lower temperature, around 4°C (model type 1 and 2), and higher temperature, 
around 24 °C (model type 1). As expected, the spread of data around the mean (equal to 
zero) is larger in model type 1 compared to model type 2. The error term for the thermal 
models (heating and cooling) is equal to zero in many point because of the model 
formulation using dummy variables, as explained before in relation to the necessity of re-
computing the statistical indicators, reported in Table 10. The residuals (error term) with 
respect to time (Figure 6), highlight how the electricity demand was lower than the one 
predicted by the models in the first months of the monitoring period (1-5 in particular), for 
both type 1 and 2 models, while the distribution in the case of thermal demands seems more 
uniform. 
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Figure 6: Error term of electricity and thermal demand time series – monthly values, 
model type 1 on the left, model type 2 on the right 

 
The final step of the visual analysis of residuals (error term), can be performed using a 
control chart [45] as in Statistical Process Control (SPC) [44]. In this case, for the sake of 
simplicity, only the control chart for the residuals of total electricity demand is presented 
in Figure 7. However, the technique can be used for all the other datasets to analyse 
performance anomalies at multiple levels in the building (when sub-metering data are 
available). Further, it can be combined with the visualization of the cumulative sum of 
differences between measured and predicted values (CUSUM) [46] and other innovative 
related techniques when additional explanatory variables (covariates) are present [57]. 
In a control chart, the error term is plotted with respect to the number (1, 2 and 3) of 
standard deviations σ from the mean (equal to zero). In general, the limit of 3 standard 
deviations from the mean is considered as an indicator of anomaly in the series of 
residuals. As can be seen in Figure 7, both models type 1 and 2 indicate that months 1 
and 9 have larger deviations from the mean, and month 9 is flagged as an anomaly (> 3 
σ) by model type 2. The spread of residuals is much smaller for model type 2 (as expected) 
and this implies that this model can indicate tighter boundaries for the statistical control 
of energy performance in time. 
As a conclusion, both visual and numerical data analysis is considered in the workflow 
aimed at model testing; the models were calibrated in most of the conditions but, beyond 
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calibration, one of the essential goals was to test how simple, intuitive and interpretable 
(in a "human in the loop" approach) the workflow could be. 
 

  
Figure 7: Statistical process control of total electricity demand residuals – monthly 

values, model type 1 on the left, model type 2 on the right 
 
6.2 Limitations 
The fundamental limitations of the approach proposed in this study are based on the 
requirement for rules to define dummy variables. As such, the approach is semi-automated. 
In any case, the rules are stated transparently and are intrinsically linked to the approximated 
physical interpretation of the regression coefficients [24]. 
Furthermore, solar radiation data are generally less widely available than temperature data. 
However, solar radiation variable is critical to improving model performance for very 
efficient buildings, in which passive solar gains play a critical role. To overcome this 
limitation, it is possible to consider the relationship between temperature and time of year 
with solar radiation [58] and use additional models to perform a reconstruction of solar data, 
in case they are not directly available. 
Additionally, sub-metering data are used in this study to test the approach at multiple levels 
within the building. This level of detail may not be available on a large scale basis, but 
disaggregation techniques [41], supplemented by analytical formulations of the building 
energy balance [43], can be used instead and can be part of future research. 
Finally, monthly interval data were used in this study rather than daily, hourly, or sub-hourly 
data. Even though building performance simulation tools can provide hourly and sub-hourly 
outputs, the calibration of building energy models using monthly data remains widespread, 
as evidenced by systematic reviews by Coakley et al. [10] and, more recently, Chong et al. 
[11]. In fact, data collected on a monthly base are simpler to found (e.g. by digitalizing utility 
billing data). While monthly-based models do not fully exploit the possibilities provided by 
higher data granularity, they are computationally inexpensive and can still provide useful 
insights on energy performance if calibrated.  
Following the discussion of current limitations and the underlying potential for further 
development, the following Section provides indications for future research. 
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7 Further research potential 
Further research can be developed in a variety of directions based on the results presented 
and discussed in the preceding Section. The first development path can be focused on 
scalability (both temporal and spatial) and integration across life cycle phases (from early 
design to operation). In fact, regression-based approaches can be applied to energy 
signature data with monthly, daily, and hourly/sub-hourly time intervals (temporal 
scalability), but also at multiple levels in energy models (spatial scalability), as shown in 
previous research [15], thereby adapting them based on the scope and on the granularity 
of data available. 
In general, using data at higher resolution (daily, hourly, sub-hourly) could aid in increasing 
the complexity and capabilities of models (e.g. load profiles modelling, DSM events 
modelling, etc.). However, maintaining a certain degree of comparability with models built 
using monthly data is critical to enabling the effective integration of short-term and high-
frequency data with long-term and low-frequency data (i.e. alternating different monitoring 
strategies), as demonstrated in ASHRAE 1404-RP [59]. 
Nonetheless, more sophisticated models can perform a variety of functions, potentially being 
integrated as a system. In particular, they may evolve into “digital twins”, which can 
supplement building performance simulation tools and track the evolution of building 
performance across life cycle phases, starting from parametric simulation in design phase, 
to initial commissioning, and up continuous monitoring/commissioning. Overall, the 
possibility to use flexible and interpretable models calibrated on measured data (at 
different intervals) could enable multiple feedback loops in design and operation practices 
in the built environment, in a continuous improvement logic [38].  
A second path of development can be the one making use of the approximated physical 
interpretation of regression-models’ coefficients. Indeed, identifying lumped thermo-
physical properties for buildings is critical to understanding the performance of building 
technologies.  
This was the case, for example, of previous research aimed at incrementally calibrating a 
Resistance Capacitance (RC) [51] building energy model on the same case study building; 
similar examples can be found in recent literature [52]. Using the rigorous and harmonised 
rules, which serve as the foundation of M&V protocols, in conjunction with other 
standards, focused on building performance simulation, can help improve the energy 
modelling process through empirically grounded and tested methods. 
The third direction is related to heat pump performance analytics and electric grid 
interaction. The regression model results can be used to implement a calculation of the 
part load ratio (PLR) of a heat pump based on the actual balance-point temperature of the 
building (which may vary significantly depending on building characteristics) rather than 
a fixed reference point (i.e. 16 ºC) as in current technical standards dealing with heat 
pump test conditions [60] and performance assessment at part-load and on a seasonal 
basis [61]. 
In the latter, part load ratio is defined as the outdoor temperature in the interval of 
calculation minus 16 °C, divided by the reference design temperature minus 16 °C, 
assuming the same value both for heating and cooling, when the heat pump is reversible 
(like in this case, providing both heating and cooling services). This is not the case in real 
building operation (as shown also in this research) and regression models can improve 
the accuracy of analytical methods that are present in technical standardization at the 
state-of-the-art. By exploiting the scalability of the modelling approach, it could be 
possible to evaluate and forecast much better the performance of heat pumps and their 
interaction with the electric grid at large scale. 
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Overall, these examples of research development paths are clearly not exhaustive, but the 
evolution of interpretable data-driven modelling approaches into "digital twins" 
characterised by systems of interacting models is a promising research direction that 
could help to accelerate building stock decarbonisation through innovative services and 
technologies [62]. 
 
 
8 Conclusion 
Data-driven building energy modelling approaches based on machine learning have 
proven to be effective in a variety of applications. However, there are numerous issues to 
consider in today's research. To begin with, multiple "performance gaps" (differences 
between expected and measured performance) are commonly found in buildings, and 
appropriate analysis techniques should be used. Among those using machine learning, the 
issue of generalisation (i.e. a model's ability to perform adequately on previously unseen 
data) is a major topic. 
Other critical issues, in addition to generalisation, are interpretability and explainability; 
interpretability (i.e., the ability for humans to understand the rationale behind model 
output and inspect the algorithmic logic) in particular is critical to fostering a "human-in-
the-loop" approach.  
In response to these issues, in this study we examined a Passive House building with two 
primary objectives. The first one was creating a simple and flexible regression model 
formulation (i.e. able to fit multiple energy datasets, maintaining the same underlying 
structure), using dummy variables, and indicating a way to automate the process of model 
performance comparison and selection.  
Statistical indicators were employed to this end, considering general ones and M&V 
specific ones (i.e. energy model calibration criteria). Dummy variables were included in 
the datasets by means of interpretable rules that can satisfy the fundamental constraints 
considered as the motivation of this research (i.e. using interpretable models as a way to 
enhance the “human-in-the-loop” approach and referring to harmonized procedures to 
improve model reproducibility and standardization). 
Despite their simplicity, the model formulations proposed are able to fit the data 
reasonably well and can be considered calibrated, following M&V procedures, in most 
of the cases. Indeed, even with limited information, such as monthly interval data (utility 
bills and temperatures), the proposed model formulations are appropriate for quick and 
low-cost (but robust being based on M&V) performance evaluation, which can support 
the design of energy efficiency measures to meet decarbonisation targets and to reduce 
reliance on fossil fuels. Further, it can provide a low cost “entry-level” “digital twin” for 
the building, which can then evolve including more information and a more sophisticated 
modeling strategy (i.e. employing daily, hourly, sub-hourly interval data, as indicated in 
Section 7). 
The second objective was to identify future research paths based on the first objective's 
research outcomes and to evaluate them in light of current research developments in the 
broad area of data-driven building energy modelling. The first path identified is based on 
temporal and spatial scalability of techniques, as well as on model integration across 
building life cycle phases. The second path relies on the approximated physical 
interpretation of regression-model coefficients and on the related analytical formulations 
(e.g. on the thermo-physical parameters of the building). The third path is concerned with 
heat pump performance analytics and electric grid interaction, both of which are critical 
to meeting decarbonisation targets (by means of electrification of heating but considering 
electric grid supply constraints as well). 
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Overall, the future research paths indicated are clearly not exhaustive, but they aim to 
highlight the potential of systems of interacting (interpretable data-driven) models that 
can evolve into "digital twins" which can help accelerate the transition to a more efficient 
and decarbonized building stock. Simultaneously, systems of interacting models can 
assist in addressing important issues such as generalisation, interpretability, and 
explainability, overcoming limitations inherent in the use of machine learning models and 
promoting a "human-in-the-loop" approach to a wider audience, not just the research 
community.  
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