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Abstract
The impact of AI on numerous sectors of our society and its successes over the years indicate that it can assist in resolving 
a variety of complex digital forensics investigative problems. Forensics analysis can make use of machine learning models’ 
pattern detection and recognition capabilities to uncover hidden evidence in digital artifacts that would have been missed 
if conducted manually. Numerous works have proposed ways for applying AI to digital forensics; nevertheless, scepticism 
regarding the opacity of AI has impeded the domain’s adequate formalization and standardization. We present three critical 
instruments necessary for the development of sound machine-driven digital forensics methodologies in this paper. We cover 
various methods for evaluating, standardizing, and optimizing techniques applicable to artificial intelligence models used in 
digital forensics. Additionally, we describe several applications of these instruments in digital forensics, emphasizing their 
strengths and weaknesses that may be critical to the methods’ admissibility in a judicial process.
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1 Introduction

The advancement of research and development of method-
ologies for big data mining [1] powered by Artificial Intel-
ligence (AI) [2, 3], which seeks to discover meaningful 
and explorable patterns in data, has enabled/motivated its 
application in digital forensics (DF) investigation.1 Digital 
artifacts are collections of digital data that are frequently 
large, complex, and heterogeneous. Despite concerns about 
the ability of “black-box” AI models [4] to generate reli-
able and verifiable digital evidence [5], the assumption that 
cognitive methodologies used in big data analysis will suc-
ceed when applied to DF analysis has fueled a decade-long 
surge of research into the application of AI in DF. Note that, 
our reference to AI methods in this paper includes machine 

learning (ML) [6, 7] and deep learning (DL) [170] methods; 
with distinctions made where necessary.

To begin, a misunderstanding exists regarding the col-
loquial use of the terms “Forensics AI” and “AI Forensics” 
within the forensics community (and beyond), with some 
using the phrases interchangeably as referring to the applica-
tion of AI in DF. While both phrases are self-explanatory, it 
is vital to clarify common misconceptions and distinguish 
the two concepts. On the one hand, according to [8], a word 
preceding ‘forensics’ in the DF domain denotes the target 
(tool or device) to be analyzed (e.g., cloud forensics, net-
work forensics, memory forensics, etc.). As a result, the 
author refers to “AI Forensics” as a forensic analysis of AI 
tools or methods, rather than forensic investigation applying 
AI techniques. In the same vein, the authors in [9], refers to 
AI Forensics as “scientific and legal tools, techniques, and 
protocols for the extraction, collection, analysis, and report-
ing of digital evidence pertaining to failures in AI-enabled 
systems.” To summarize their definition, AI Forensics is the 
analysis of the sequence of events and circumstances that led 
to the failure of an intelligent system, including assessing 
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1 an investigation of a case (criminal or civil) enabled by computing 
devices, with the primary goal of establishing facts or finding admis-
sible digital evidence in court.
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whether or not the failure was caused by malicious activity 
and identifying responsible entity(ies) in such scenario.

In contrast to the previously described concept, a com-
prehensive review of research databases such as Google 
Scholar, IEEE Explore, and Scopus for the terms “Foren-
sics AI” or “Digital Forensics AI” reveals that the majority 
of resources are based on DF analysis methods assisted by 
AI techniques. However, in this paper, we refer to Digital 
Forensics AI (hereafter referred to as DFAI), as a generic 
or broader concepts of automated systems that encompasses 
the scientific and legal tools, models, methods; including 
evaluation, standardization, optimization, interpretability, 
and understandability of AI techniques (or AI-enabled tools) 
deployed in digital forensics domain. Also, we refer to “digi-
tal evidence mining” as the process of automatically identi-
fying, detecting, extracting, and analyzing digital evidence 
with AI-driven techniques. The phrase “mining” is borrowed 
from the notion of data mining, which embodies procedures 
and components that can be applied in the analysis of digital 
evidence.

Importantly, as accurate and precise as most AI algo-
rithms are; owing to numerous research focus and resources 
dedicated to them of recent, their applications to digital 
forensics require significant cautions, and consideration 
for domain-specific intricacies. Clearly, the results of a 
business-oriented AI task will be evaluated differently from 
those of a forensic investigation. Additionally, the bulk of 
AI algorithms are based on statistical probabilities, which 
commonly results in non-deterministic outputs. Thus, the 
challenge would be to establish the correctness of the out-
comes and to communicate the probabilistic conclusion of 
a forensic examination in the simplest and most understand-
able manner possible in order for it to be admissible in legal 
proceedings.

As a result, in this work, we emphasize the importance of 
three scientific instruments in the application of AI in digital 
forensics: evaluation; standardization; and optimization of 
the approaches used to accomplish the tasks. In subsequent 
sections of this work, we will discuss the significance of 
these instruments and their components.

This paper makes the following contributions:

– We present various AI model evaluation approaches, 
emphasizing their importance for both DFAI methodolo-
gies and the forensic tasks to which they are best suitable.

– We propose a confidence scale (C-Scale) for the evalu-
ation of strength of evidence that is adaptive to an AI 
generated probabilistic results.

– We discuss numerous optimization techniques that may 
be appropriate for certain forensic analysis, as well as a 
comparison of their strengths and drawbacks, including 
their time complexity for DFAI tasks.

The subsequent parts of the paper are organized as fol-
lows. Section 2 covers the methods for evaluating DFAI 
techniques. In Sect. 3, the methods for standardizing DFAI 
techniques are discussed, while Sect. 4 elaborates on the 
techniques optimization. Finally, in Sect. 5, we discussed 
the future direction and conclusions.

2  Methods for Evaluating DFAI Techniques

During a forensic investigation, examiners develop an initial 
hypothesis based on observed evidence. Following that, the 
hypothesis is evaluated against all other competing hypoth-
eses before final assertions are made [10]. The issue is that, 
as highlighted in [11], in an attempt to make sense of what 
they observe (sometimes coercively to ensure that it fits the 
initial assumption), investigators subconsciously: (1) seek 
findings that support their assertions; (2) interpret relevant 
and vague data in relation to the hypothesis; and (3) disre-
gard or give less weight to data that contradict the working 
hypothesis. Numerous factors may contribute to this bias, 
including but not limited to: confidence (as a result of the 
presumption of guilt), emotional imbalance, concern about 
long-term consequences (e.g., loss of prestige), and person-
ality characteristics (e.g., dislike for uncertainty or a procliv-
ity to over-explore various scenarios) [12]. Consequently, 
before a forensic investigation can reach a conclusion, each 
component of the initial hypothesis must be independently 
and thoroughly tested (or evaluated) to ascertain the degree 
of confidence in the methodology that produced the fact. 
Evaluation, therefore, is the process of judging the strength 
of evidence adducing opposing assertions, as well as their 
relative plausibility and probability [13].

Expert examiners can evaluate forensic examination 
data using a variety of techniques, some of which are based 
on predefined scientific standards and others on logical 
deductions supported by experience or subjective reason-
ing. However, in the context of DFAI, forensic evaluation 
is performed by evaluating the AI algorithms deployed in 
the forensic investigation. This deployment requires metrics 
and measurements that are compatible with AI model evalu-
ation. The evaluation of DFAI models can be carried out on 
the algorithm’s functional parameters (i.e., individual mod-
ules) or on their outputs. Unlike conventional approaches 
for evaluating ML or DL models, which apply standard met-
rics associated with the task or learning algorithm, gaining 
confidence in the outcome of a DFAI research may require 
additional human observation of the output. Numerous stud-
ies in DF have revealed that forensic practitioners frequently 
issue inconsistent or biased results [13, 14]. In addition, the 
majority of AI-based approaches lack the necessary clarity 
and replicability to allow investigators to assess the accuracy 
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of their output [15]. Thus, a forensically sound process2 , is 
one that integrates automated investigative analysis—evalu-
ated through scientific (accuracy and precision) metrics—
with human assessments of the outcome. For example, a 
DF investigation into Child Sexual Exploitation Material 
(CSEM) [16, 17] may seek to automatically detect and clas-
sify images of people found on a seized device as adult or 
underage (based on automatic estimated age). Because of 
possible misrepresentation in the dataset, misclassifica-
tion (i.e., false positive), misinterpretation of features, and 
missing of critical features during the classification process 
that could have served as evidence (false negative; e.g., an 
underage wearing adult facial makeup) may occur [18]. In 
this case, merely addressing bugs in algorithmic codes may 
not be sufficient, as the classification errors may be subcon-
sciously inherited and propagated through data. Similarly, 
the work described in [19] is a temporal analysis of e-mail 
exchange events to detect whether suspicious deletions of 
communication between suspects occurred and whether the 
deletions were intended to conceal evidence of discussion 
about certain incriminating subjects. One significant draw-
back of that analysis is the model’s inability to thoroughly 
investigate if the suspicious message(s) were initiated or 
received by the user or were deliberately sent by an unau-
thorized hacker, remotely accessing the user’s account to 
send such incriminating message. To reach a factual con-
clusion in this case, various other fragmented unstructured 
activity data (unrelated to e-mail, perhaps) must be analyzed 
and reconstructed. Depending on the design, a robust AI-
based system can uncover various heretofore unrecognized 
clues. If these new revelations (even though relevant) are not 
properly analyzed and evaluated, they may lead investigators 
to believing that the outputs dependably fulfil their needs 
[15]. As a result, an extensive review of the output of DFAI 
will be required (supposedly provided by human experts) to 
arrive at a factually correct conclusion. This has also been 
highlighted as an important instrument for examining digital 
evidence in [10]. Additionally, expert knowledge that has 
been codified as facts (or rules) in a knowledge base can be 
used in place of direct human engagement to draw logical 
inferences from evidence data.

As with the output of any other forensic tool capable of 
extracting and analyzing evidence from digital artifacts, 
which frequently requires additional review and interpreta-
tion that are compatible with the working hypothesis, the 
results of forensic examinations conducted using DFAI 
should be viewed as “recommendations” that must be inter-
preted in the context of the overall forensic observation and 
investigation [15]. In addition, the evaluation apparatus must 

be verifiable, appropriate for the task it seeks to solve, and 
compatible with the other contextual analysis of the inves-
tigative model. Taking this into consideration, the methods 
for evaluating a DFAI techniques can be viewed in terms of 
two significant instruments: performance and forensic evalu-
ation. Below, we discuss the significance and components 
of each of these instruments. These two instruments, in our 
opinion, are quite essential for a sound digital forensic pro-
cess based on DFAI.

2.1  Methods for Evaluating the Performance 
of DFAI Models

In a machine-driven system, evaluation produces value as a 
measure of the model’s performance in accomplishing the 
task for which it was commissioned, which may be used 
to influence decision-making [10]. Depending on the prob-
lem the model attempt to solve, evaluation may be: a set of 
thresholds formulated as binary (i.e., ‘yes’ or ‘no’, or 0 or 1) 
or categorical (qualitative; one of a possible finite outcome) 
as the case maybe; discrete (enumeration of strength; e.g., 
range between 0 to 10); or continuous (e.g., probability dis-
tributions of real values between 0 and 1). Consequently, 
evaluating the performance of a DFAI model built to recog-
nize specific faces in a CSEM is distinct from evaluating the 
performance of a model meant to classify faces as underage 
or adolescent. Similarly, distinct metrics are required for 
models that detect spam e-mails and those that attempt to 
infer intent from an e-mail content. The majority of DFAI 
tasks will fall into one of three categories: classification, 
regression, or clustering. The scientific methods used for 
evaluating the performance of these three categories are dis-
cussed below. It is worth mentioning, however, that these 
are standard metrics for ML tasks. Hence, we offer only a 
brief review of the methods, emphasizing the intersection 
and relevance of each metric to DFAI (including the weak-
nesses and strengths that make them appropriate or other-
wise) where necessary. Therefore, readers are encouraged to 
consult additional publications on ML metrics for complete 
details.

2.1.1  Evaluating Classification Algorithms in DFAI

Classification models are predictive in nature, identifying the 
class to which a set of input samples belongs. Classification 
tasks are evaluated by comparing predicted class samples to 
ground-truth samples. In a vast majority of cases, classifica-
tion model design will include both positive and negative 
examples. The former represent true samples obtained from 
data, whilst the latter are fictitious samples that do not exist 
in the real sense. A classification task is commonly modelled 
in ML as a binary representation that predicts a Bernoulli 
probability distribution [21] for each sample. Bernoulli 

2 Transparent digital forensics procedure that preserves the true con-
text of the data for use in a legal proceeding.
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distributions are a type of discrete probability distribution 
in which events have binary outcomes such as 0 or 1. There-
fore, the performance of a classification model is measured 
by its ability to correctly predict (assign a high probability 
value to) the class of positive samples and to assign a very 
low probability value to non-existent samples.

Prior to deploying a DFAI model, it is necessary to exam-
ine the characteristics of the investigation to determine 
whether the model is appropriate for that purpose. Practi-
tioners are expected to be aware of the unique characteristics 
of learning algorithms and to use them appropriately. For 
instance, in a forensic investigation involving facial classi-
fication, two main techniques that can be applicable: verifi-
cation and identification. Verification entails comparing an 
unknown face to a known face directly (One-vs-One) [22] 
and computing their similarity score. This can be adapted 
as a binary classification task, in which the system predicts 
whether or not two faces share a high degree of similar-
ity, based on a predetermined threshold. On the other hand, 
identification involves One-vs-Rest [23] comparison, in 
which an unknown face is compared to the faces in a data-
base of known persons. The Identification task is typically 
a “Multi-Class Classification” [24] problem, in which sam-
ples are classified into one of a set of known classes. Other 
classification models are: Multi-label classification [25] and 
Imbalanced classification [26].

Metrics such as accuracy, precision, recall, and F-Meas-
ure are all relevant depending on the investigation’s char-
acteristics. The measure of “accuracy” can be seen as the 
validity measure of a model. It is the ratio of the cor-
rectly classified samples to the total samples. Accuracy 
tells whether a model was correctly trained and how well 
it will function in general. However, caution should be 
exercised when using this information alone to reach a 
general conclusion in forensic investigation, as it provides 
little information about its application to the problem and 
performs poorly in circumstances of severe class imbal-
ance. That is, if the dataset is asymmetric, e.g., if the pro-
portion of false positives is not (or nearly) equal to the 
proportion of false negatives. Accuracy is calculated in 
terms of a confusion matrix while performing a binary 
classification task, such as predicting whether an e-mail is 
“spam” or “not-spam.” The confusion matrix [27] [28] is 
applied to a set of test data, for which the true values are 
known. What a classifier seek to minimize is the number 
of “False Positives” and “False Negatives.” A true posi-
tive (tp) is one in which the model accurately predicts the 
positive samples, while a true negative (tn) indicates the 
result of correctly predicted negative samples. Similarly, a 
false positive (fp) outcome occurs when the model incor-
rectly predicts positive samples, whereas a false negative 
(fn) outcome occurs when the model inaccurately predicts 

negative samples. Therefore, in terms of confusion matrix, 
an accuracy measure is represented as:

To ascertain the reliability of a DFAI model, precision met-
ric [29] is critical. It provides additional assurance by posing 
the question: “how frequently is the model correct when it 
predicts a positive sample?” With precision, we affirm the 
classifier’s ability not to label a negative sample as posi-
tive. Given that the outcome of a forensic investigation may 
be critical to the outcome of an inculpatory or exculpatory 
proceeding, the cost of a high rate of false positives may be 
detrimental.

Additionally, in  situations where the cost of a false 
negative is potentially catastrophic, such as a facial rec-
ognition investigation to discover criminal materials via 
training examples. While the system is capable of identi-
fying and classifying a large number of positive samples, 
it may be necessary to ascertain how many faces were 
correctly identified from the predicted samples. This is 
where recall [29] plays a critical role in DFAI. Recall is 
crucial for evaluating working hypotheses and can help 
in answering some potentially damning questions during 
court proceedings. Recall facilitates informed decisions 
on false negatives; for example, by highlighting crucial 
details that should not be overlooked.

To take advantage of both precision and recall’s evalua-
tive strength, the F-Measure (or F-Score) can be employed 
to measure the model’s accuracy. It takes into considera-
tion both false positives and negatives; with a low value 
indicating a good F-Measure. This has the potential to 
aid in the reduction of false assumptions during forensic 
investigations.

Another relevant metric for measuring a classifier’s 
capacity to distinguish between classes is the Area Under 
the Curve (AUC) [30], which serves as a summary of the 
Receiver Operating Characteristic (ROC) curve [31]. The 
ROC curve is constructed by plotting the tp rate versus the 
fp rate at various threshold values. The AUC and Aver-
age Precision (AP) [32] are the quality measures used in 
link the performance of link prediction models, as well 
as the probability of a relationship between hypothetical 
variables.

There are instances when evaluating accuracy becomes 
preferable to F-measures; this is especially true when the 
cost of false positives and negatives is similar, meaning 
that the consequences are not negligible. If the situation 
is reversed, it is reasonable to evaluate the F-measure. 
However, some critical concerns about the F-measure’s 
weaknesses are discussed in [33, 34]. Notable among them 
are its bias towards the majority class and its underlying 

(1)Accuracy =
tp + tn

tp + tn + fp + fn
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assumption that the actual and predicted distributions 
are identical. Additionally, caution should be exercised 
when evaluating performance on classified samples that 
involves the assignment of a threshold (as is the case in 
some logistic regression models). Increasing or decreasing 
the threshold value (in a classification model) has a major 
effect on the precision and recall results. In contrast to a 
model developed to optimize business decisions, it may be 
prudent to avoid including any threshold in DFAI—as it 
would be appropriate to have a realistic view of the analy-
sis’ outcome, unless there is certainty that doing so will 
not have a detrimental impact on the outcome. Nonethe-
less, accuracy is crucial; so, the threshold can be consid-
ered provided the trade-offs can be quantified and justified 
sufficiently.

2.1.2  Evaluating Regression Algorithms in DFAI

In contrast to classification models, which predict the classes 
of input samples, regression models predict an infinite num-
ber of possible (continuous; real-valued such as integer or 
floating point) outcomes. In DFAI, regression analysis can 
be utilized for two conceptually distinct purposes: forecast-
ing and prediction; and inference of causal relationships 
between dependent (observed) and independent (predic-
tors) variables. Before a regression analysis may be commis-
sioned, the examiner must be convinced that the correlations 
present in the data possess the predictive power to infer a 
new context or that these correlations can induce a causal 
interpretation based on observational data [35, 36]. This is 
particularly important for forensic investigations. A signifi-
cant factor that can improve the predictive capabilities of a 
regression model is when the input variables are arranged 
chronologically (according to event time), a notion referred 
to as time series forecasting. This is important for forensic 
tasks such as detecting deviations (anomalies), forecasting 
crime, predicting probable connections between data, and 
reconstructing events. Furthermore, while working with 
regression models, interpolation and extrapolation [37] are 
critical concepts to understand. Often, the former is prefer-
able, as it involves the prediction of values within the range 
of data points in the dataset used to fit the model. The lat-
ter, on the other hand, depending on the task, might not be 
fully desirable for DFAI. Extrapolation is based on regres-
sion assumptions and requires predicting values outside the 
observed data range. Extrapolating over a range that is sig-
nificantly larger than the actual data is risky and it is a sign 
of likely model failure.

A regression model’s performance is measured as an 
error in prediction, i.e., how close the predictions were to the 
ground truth. To do this, the following error measures are 
frequently used: Mean Squared Error (MSE) [38–40], Root 
Mean Squared Error (RMSE) [41], Mean Absolute Error 

(MAE) [40], and Mean Absolute Percentage Error (MAPE) 
[42]. Although there are several other error metrics avail-
able; the choice of which is determined by the type of error 
being evaluated. We present a brief discussion about the 
above-mentioned metrics below.

MSE can be used to evaluate the quality of a predictor 
or an estimator. However, in DFAI, it better-off as a predic-
tor since it can map arbitrary input to a sample of random 
variables. A MSE of zero indicates a perfectly accurate pre-
diction, however this is rarely possible [43]. Unfortunately, 
other measures have been sometimes preferred to MSE due 
to its disproportionate weighting of outliers [44]. This occurs 
as a result of magnification of large errors than on small 
ones, due to each value being squared.

An extension of the MSE is the RMSE; which is always 
non-negative. A value of zero (0) is almost unrealistic; and 
if it does occur, it indicates that the model is trivial. RMSE 
is highly susceptible to outliers, as larger errors are signifi-
cantly weighted. It may be prudent to establish a baseline 
RMSE for the working dataset in DFAI tasks by predicting 
the mean target value for the training dataset using a naive 
predictive model3. This can be accomplished by transform-
ing or scaling the dataset’s feature vectors between 0 and 1 
(i.e., normalization).

In contrast to the previously stated error measures, which 
require squaring the differences, MAE changes are linear, 
intuitive, and interpretable; they simply represent the con-
tribution of each error in proportion to the error’s absolute 
value. MAE calculates the error difference between paired 
observations expressing the same event, i.e., it is scale-
dependent; it uses the same scale as the data being meas-
ured4 Moreover, it does not give greater or lesser weight 
to errors and hence provides a realistic view of the main 
prediction errors; thus, it is strongly recommended for DFAI. 
Additionally, it is a frequently used metric for forecasting 
error in time series analysis [45], which may be beneficial 
when examining an event reconstruction problems.

While MAPE appears to be well-suited for prediction, 
particularly when adequate data is available [46], caution 
should be exercised to prevent the ’one divided by zero’ 
problem. Additionally, MAPE penalizes negative-valued 
errors significantly more than positive-valued errors; as a 
result, when utilized in a prediction task, it favours methods 
with extremely low forecasts, making it ineffective for evalu-
ating tasks with large errors [46].

3 A model in which the minimum possible effort or the less complex 
procedures are employed to make a prediction, often a random or 
constant prediction.
4 See “Evaluating Forecast Accuracy.” OTexts. Cited on Aug. 5, 
2021. Available at https:// otexts. com/ fpp2/ accur acy. html.

https://otexts.com/fpp2/accuracy.html
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There are other error measures for regressors such as 
Max Error [47]; that calculates the maximum residual error 
and detect worst case errors [15], and R2 (also known as 
R-Squared, Goodness of fit; Co-efficient of Determination) 
[48–50], which is the measure of variance proportion in the 
regressor.

Following the description of each of these error measure-
ments for regression problems and their associated limita-
tions in some cases, selecting which one is most appropriate 
for a specific forensic task can be somewhat puzzling. How-
ever, as demonstrated in [51], the RMSE is unreliable and 
unsuitable for determining the correctness of a time series 
analysis (such as temporal event reconstruction). Addition-
ally, the study in [44, 52] stated that RMSE possessed “dis-
turbing characteristics,” rendering it ineffective as an error 
measure. MSE and all other squared errors were also deemed 
unsuitable for evaluation purposes (in the study). The work 
described in [53] somewhat challenged these conclusions 
by presenting arguments in support of RMSE. Nevertheless, 
MAE has been recommended in the majority of cases, which 
is understandable. As previously stated, the MAE metric is a 
consistent and compatible evaluation technique with DFAI; 
it is a more natural representation of the model’s average 
error magnitude [52] that appropriately depicts the model’s 
performance. The R2 is another metric that deserves a role 
in DFAI. A recent comparison of regression analysis error 
measures is discussed in [54]. R2 exhibit desirable features, 
including interpretability in terms of the data’s informa-
tion content and sufficient generality that span a relatively 
broad class of models [55]. Although a negative R2 indicates 
a worse fit than the average line, this representation may 
be critical for determining how the learning model fits the 
dataset. Further on this, regardless of whether an examiner 
reports the R2 score, or whether it helps to determine the 
performance of a regressor, it is a highly effective technique 
for evaluating the performance of a regression analysis and 
highly recommended for DFAI analysis.

2.1.3  Evaluating Clustering Algorithms in DFAI

Evaluating a clustering method can be challenging because 
it is mostly used in unsupervised learning [56, 57]; which 
means that no ground-truth labels are available. Cluster-
ing in a supervised (learning) [58] setting, on the other 
hand, can be evaluated using supervised learning metrics. 
One significant downside with unsupervised learning that 
fact-finders should be aware of is that applying clustering 
analysis to a dataset blindly would categorize the data into 
clusters (even if the data is random), as this is the algo-
rithm’s expected function. As a result, before deciding on a 
clustering approach, examiners must verify the non-random 
structure of the data. Three critical factors that should be 
considered in clustering are: (1) Clustering tendency; (2) 

Number of clusters, k; and (3) Clustering quality. We give a 
brief explanation of these factors below.

1. Clustering tendency: tests the spatial randomness of 
data by measuring the probability that a given dataset is gen-
erated by a uniform data distribution. If the data is sparsely 
random, clustering techniques may be meaningless. It is 
critical (especially in DFAI) for examiners to conduct this 
preliminary assessment, in part because it can assist reduce 
the amount of time required to analyze artifacts. A method 
for determining a dataset’s cluster tendency is to utilize the 
Hopkins statistic [59], which is a type of sparse sampling 
test. The Hopkins statistic is used to test the null hypothesis 
( H

0
 ) and the alternative hypothesis ( Ha ). the Hopkins statis-

tic is close to 1 or H > 0.5 , we can reject the null hypothesis 
and infer that there are significant clusters in the data.

2. Number of clusters: obtaining the ideal number, k, of 
clusters is critical in clustering analysis; while there is no 
definitive method for doing so, it can rely on the shape of 
the distribution, the size of the data set, and the examiner’s 
preference. If k is set to a value that is too high, each data 
point has a chance of forming a cluster, whereas a value that 
is too low may result in inaccurate clusters. Additionally, the 
following approaches can help forensic examiners determine 
the cluster number:

– Prior domain knowledge—prior domain knowledge 
(based on experience on use case) can provide insight 
into the optimal number of clusters to choose.

– Data driven approach—employs mathematical methods 
to determine the correct value, such as rule of thumb 
method, elbow method [60, 61] and gap statistics [62].

3. Clustering quality: characterised by minimal intra-
cluster distance and maximal inter-cluster distance.

To evaluate the performance of a clustering task, two 
validation statistics are key, namely: internal cluster valida-
tion and external cluster validation.

Internal cluster validation:  evaluates a clustering struc-
ture’s goodness without reference to external data. It fre-
quently reflects the compactness, connectedness, and sepa-
ration of the clusters. The silhouette coefficient (SC) [63, 
64] and Dunn index (DI) [65] can be used to evaluate how 
well the algorithm performs in comparison to its internal 
clusters. By measuring the average distance between two 
observations, the SC determines how well they are clustered. 
SC has been applied in a variety of forensics-related clus-
tering methodologies, including document forensics [173], 
image source identification [174, 175], and text forensics 
(e.g. authorship) [176, 177].

However, if computational cost is not an issue, the DI 
can be utilized. A practical application of DI in computer 
forensics is reported in [178], where it aids in the evalu-
ation of ransomware sample similarity. There are further 
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indices (for example, the Davies-Bouldin index [66]); but, 
the silhouette and Dunn provide, in principle, the closest 
compatibility with DFAI in general, and specifically in terms 
of interpretability.

External cluster validation:  compares and quantifies 
a cluster analysis’ results against externally known bench-
marks (e.g., externally provided gold standard labels). Such 
benchmarks are made up of a collection of pre-classified 
items, which are often created by (expert) humans. The 
evaluation approach quantifies the degree to which the 
clustering analysis result corresponds to predefined ground 
truth classes. To evaluate the performance of external cluster 
indices, the Rand index [67], the Purity index [68], the 
F-measure (with precision and recall; as indicated in the 
classification task), and the Fowlkes-Mallows index [69] 
can be utilized. As a matter of fact, it remains unclear how 
external cluster validation could improve DFAI. To elabo-
rate on this fact, given the majority of digital artifacts from 
which evidence can be derived are sparse, unconventional, 
and previously unseen, having a ground truth label with 
which to compare may be impracticable. Moreover, given 
the majority of DF analysis are crime-specific (or relating to 
a particular case), the question is whether it is appropriate to 
compare crime-related data analysis to a general task ground 
truth labels. However, if gold standard, case-based labels 
are available, such as those for videos and photos in [70] 
or (though limited in scope and diversity) the “Computer 
Forensic Reference Dataset Portal CFReDS)5” or “Datasets 
for Cyber Forensics,6” then suitable comparisons can be 
established.

2.2  Forensic Evaluation

Upon the establishment of facts through a forensic inves-
tigation, decision-making follows, which is the adoption 
of a hypothesis as a conclusion [71]. While evaluation of 
forensic outcome is usually discussed in court contexts, 
review of forensic decisions is appropriate at all phases of 
the investigation [72]. It begins with evaluation of the indi-
vidual hypothesis against all competing claims; the accu-
racy (including quantification of error rates) of the results 
obtained through automated tools used in the analysis; the 
extent to which experience and domain knowledge were 
helpful; and the ease with which the entire investigative pro-
cess can be explained to a non-expert. Because automated 
systems are not self-contained and thus cannot take every-
thing into account [15], it is possible that multiple DFAI 
approaches were used to find solutions to all competing 
hypotheses. As a result, forensic evaluation in this case will 

entail weighing the differing claims against the overall inves-
tigative problem. One way of determining this is to assign 
an evidential weight (strength of evidence) or “Likelihood 
Ratios” (LR) [73–75] to all contending claims. Although 
LR was originally created as a framework for evaluating 
forensic (science) evidence, the concept can be adopted to 
help make the DFAI’s outcome more intelligible. Contrary 
to the factually deterministic requirements of evidence in a 
criminal or civil case, the majority of AI-based algorithms 
and their outputs are mostly probabilistic. However, forensic 
examiners do not pronounce judgments or issue final deci-
sions; they rather provide expert testimony (or an opinion) 
or report of their findings to fact finders (attorneys, judges, 
etc.). Succinctly reporting forensic investigation findings 
remains a challenge [76], and while it may be comprehen-
sible to state an opinion on a hypothesis and its alternatives 
as true (or false), such approach lacks the transparency and 
logical informativeness necessary to reach a verdict in a 
legal proceeding. Consequently, reporting DF findings in 
terms of weights or LRs enables the decision maker to assign 
the evidence an appropriate level of confidence [15]. LRs 
represent examiners’ assessment of the relative probability 
of observed features under various hypotheses concerning 
a particular case. Furthermore, the European Network of 
Forensic Science Institutes (ENFSI) [75] recommends LR 
(simply in terms of numbers) even when examiners must 
make subjective decisions [75], because it makes the exam-
iner’s belief and inferential process explicit and transpar-
ent, facilitating the evaluation of strengths and weaknesses 
for those who rely on it [76]. While expressing subjective 
decision in terms of LRs has grown widespread in Europe, 
doubts have been raised in support of empirical data instead 
[73]. In other contexts, verbal expressions of LRs have been 
proposed; for example according to [73], consider an LR 
expression in the form: “at least 1,000 times more likely” 
and “far more probable.” The former is likely to receive 
scepticism regarding the basis for that figure, whereas the 
latter has a stronger possibility of acceptance [73].

Consequently, given the probabilistic (or stochastic) 
nature of the results of DFAI models, and the fact that these 
models have been empirically verified as accurate and well-
suited for analytical purposes7, as well as the inclusion of an 
“expert-in-the-middle8,” it is still necessary to find the most 
appropriate way to report the results in the clearest and most 
understandable manner possible, albeit as recommendations. 
The recommended LR by the UK’s Forensic Science Provid-
ers (AFSP) on “standard for the formulation of evaluative 
forensic science expert opinion” is available in [77].

5 https:// cfreds. nist. gov/
6 https:// datas ets. fbrei tinger. de/ datas ets/

7 Via published studies, surveys, experiments, and peer review.
8 Either by way of having human expert verify the results manually, 
or with a rule-based expert system.

https://cfreds.nist.gov/
https://datasets.fbreitinger.de/datasets/
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However, in 2016, the US President’s Council of Advi-
sors on Science and Technology [78] recommended that 
forensic examiners reveal the error rates observed in black-
box validation when reporting or testifying on forensic com-
parisons. Thus, error rates have become an intrinsic element 
of investigative outcome reporting, and with it, fact-finders 
have a greater logical and empirical understanding of the 
probative value of the examiner’s conclusion [73]. It is not 
straightforward to express likelihood ratios in ways that 
are consistent with probabilistic distributions or error esti-
mates (usually real values between 0 and 1). An approach 
was proposed in [79] which is based on the combination of 
prior probabilities and the likelihood ratio. However, when 
the conditional components of a hypothesis are transposed, 
evaluating its probability might be logically fallacious [72]. 
Probabilities are rarely acceptable in legal decisions, because 
an 80% probability is synonymous to the fact that one in 
five cases would be decided wrongly [80]. Given that prob-
ability is relative to certainty (or otherwise), we can align 
our DFAI evaluation intuition with the “Certainty Scale”, 
or “Confidence Scale” (C-Scale) proposed in [72, 81, 82], 
which is reasonably appropriate for assigning strength of 
evidence to continuous values with respect to the hypoth-
esis. As noted by [72]; “...the strength of evidence does not 
exist in an abstract sense, and is not an inherent property 
of the evidence; it only exists when a forensic practitioner 
assigns value to the evidence in light of the hypothesis.” 
Therefore, in light of each working hypothesis resolved via 
DFAI, Table 1 represent a proposed C-Scale for express-
ing the strength of evidence that is compatible with DFAI 
analysis.

This is by no means a standard evaluation, but rather a 
tentative proposition that will need to be refined as research 
in this field progresses. Additionally, unlike the LR recom-
mendation and the C-Scale proposals, which are based on 
hypothesis (or strength of hypothesis) about source identi-
fication during a forensic investigation, the DFAI C-scale 

evaluation method is fairly generic (for hypothesis and 
AI models) and applicable in a wide variety of situations, 
including strength of evidence. Furthermore, the FP and 
FN rating scales in Table 1 can be adjusted according to 
investigative tasks, as there are instances when a 50% to 60% 
false positive/negative rate would indicate “weak support”.

As previously stated, human expert interpretation and 
evaluation are key components of DFAI in a partially auto-
mated setup because it is difficult to predetermine all of the 
reasoning required to do a forensic investigation work [15]. 
However, in a fully automated scenario, learning algorithms 
in conjunction with contextually structured expert systems 
can incorporate domain-specific knowledge-base rules. An 
expert system can also be built to evaluate every hypothesis 
at each modular level and make recommendations based on 
codified LRs.

3  Standardization in DFAI

The issue of standardization in digital forensics has persisted 
for several years; first because standard guidelines have been 
unable to keep up with the dynamic pace of technological 
sophistication, and second, because forensic stakeholders 
have been unable to agree on certain rules and standards, 
resulting in conflict of interest [83]. Additionally, the dis-
tinctiveness of investigation, the domain’s diversity, and the 
existence of disparate legislative frameworks are all reasons 
cited as impediments to the standardization of the DF field 
[85, 86]. Nowadays, when it comes to standardization, the 
majority of what is available (in the form of guidelines) are 
check boxes; since the notion is that the more details, the 
better the standard [87]. Nonetheless, the “Forensic Sci-
ence Regulator” in a 2016 guidance draft highlighted the 
validation of forensic methods as a standard, rather than the 
software tool [84]. This method validation entails a number 
of assessments, including the evaluation of data samples, 
which are relatively small in DF [88]. Standardization in DF 
(as well as DFAI) is a broad and intricate area of study, as 
every component of DF requires it. However, as part of the 
advancement of DFAI (for which further study is envisaged), 
we examine standardization within the context of forensic 
datasets and error rates.

3.1  DFAI Datasets

Datasets (or data samples) are a critical component of AI, as 
they define the validity of an AI model to a great extent. A 
dataset is a set of related, discrete elements that have varying 
meanings based on the context and are used in some type 
of experiment or analysis [89]. To evaluate or test novel 
approaches or to replicate existing procedures, similar 
data sets are required; for example, investigations on facial 

Table 1  A proposed AI-adaptive C-Scale evaluation of strength of 
evidence for DFAI

C-Value Accuracy 
Score (%)

False posi-
tive rate 
(%)

False nega-
tive rate 
(%)

Strength of support

C0 0–20 55–100 55–100 Erroneous (Incorrect)
C1 20–30 50–55 50–55 Extremely weak 

evidence
C2 30–40 40–50 40–50 Very weak evidence
C3 40–55 30–40 30–40 Weak evidence
C4 55–70 20–30 20–30 Strong evidence
C5 70–90 10–20 10–20 Very strong evidence
C6 90–100 0–10 0–10 Extremely strong 

evidence
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recognition require human facial sample data. Similarly, an 
inquiry into message spamming necessitates the collection 
of e-mail samples. Datasets are often beneficial in the fol-
lowing ways, according to the National Institute of Standards 
and Technology (2019)9:

– For training purposes: dataset is generated for training 
purposes, i.e., simulation of case scenarios in order to 
train a model to learn the specifics of that environment, 
and to facilitate practitioner’s training on case handling 
so that their ability to identify, examine, and interpret 
information can be assessed.

– Tool validation: wherein dataset is utilized to determine 
the completeness and correctness of a tool when it is 
deployed in a given scenario.

– Familiarity with tool behavior: for instance, a dataset 
collected from users’ software interaction traces. As a 
result, such datasets are crucial for deciphering how cer-
tain software behaves on a device and for assisting in the 
interpretation of digital traces left by usage [86].

The process of creating a dataset is critical, even more so in 
the domain of DF, where each component must be verifiable, 
fit for purpose, and compliant with some set of standards. 
Therefore, the created dataset must be realistic and reli-
able [90]. This also entails having a high-quality, correctly 
labeled dataset that is identical to the real-world use case 
for testing and evaluation purposes, substantial enough for 
adequate learning, and is accessible to ensure reproducibility 
[89]. In the context of DFAI, there are a few considerations 
that must be made in order to conduct a forensically sound 
operation with respect to datasets.

Due to limited availability of datasets in DF, practitioners 
frequently overuse a single data corpus in developing sev-
eral tools and methodologies, resulting in solutions gradu-
ally adapting to a dataset over time. For example, the Enron 
corpus has developed into a research treasure for a variety of 
forensic solutions, including e-mail classification [91–93], 
communication network analysis [19, 94], and other foren-
sic linguistics works [95–97]. However, proving that a solu-
tion based on a single corpus is sufficiently generalizable 
to establish a conclusion in a forensic investigation will be 
difficult. Nevertheless, this is a widely recognized issue 
among stakeholders, and while it may be excusable in peer 
reviews, it is a major issue in the standardization of DF that 
requires immediate resolution. Similarly, while a workable 
DF dataset is constantly being sought, it is worth emphasiz-
ing that using a (single) dataset to assess the validity of a 

tool or method may not appropriately represent the general 
case scenario.

Datasets are created as a “mock-up” of a specific sce-
nario, representing the activities/events that occur within 
an environment; supposedly within a specified time period. 
Each use case is time-dependent; as such, the continued rel-
evance of a particular use case (from a previous period) in a 
future period may be debatable. This is particularly true in 
the domain of DF. For instance, given the advancements in 
computer network architecture, it may be illogical to use a 
dataset of network traffic from the 1990s to model an intru-
sion detection system today. This is also a point made in 
[98]. Similarly, it may seem counter-intuitive to argue that 
a model trained on images retrieved from an older (e.g., 
2000) CCTV footage or camera is helpful for identifying 
objects in a contemporary crime scene image - technology 
has improved. However, in an ideal circumstance and for a 
robust model, updating the dataset with a collection of new 
features compatible with recent realities, rather than com-
pletely discarding the old dataset, should be viable.

Criminal cases such as hate speech [99] may involve 
local nuances [101], and while global dimension may not 
be impossible [100], investigations should take into account 
regional differences. For instance, in a typical forensic lin-
guistics investigation [95–97] (e.g., cyberbullying [102]), a 
language corpus plays a vital role. However, native speakers’ 
use of language (for example, English) may differ greatly 
from those of non-native speakers. Language, in usage and 
writing, varies across borders. An AI model trained to iden-
tify instances of bullying using a message corpus derived 
from British databases may not be completely representative 
of the same use case in Anglophone Africa – some English 
phrases are offensive to native speakers but inconsequen-
tial to non-natives. As such, a DFAI training dataset should 
accurately represent the use case (in terms of geographi-
cal location and dimensionality) for which application is 
intended.

Lastly, the demand for synthetically generated datasets 
is increasing in the DF domain, and rightly so. The issues 
of privacy, unavailability, and non-sharing policy continue 
to be a barrier to getting forensically viable datasets for the 
purpose of training, testing, and validating forensic tools. 
Synthetic data, first introduced in [103, 104], is described 
as an artificially generated data that contains statistical 
properties of the original data. While synthetic data can be 
extremely beneficial for research and education, the question 
is whether any novel technique can be tested on fictitious 
data [105], and particularly for DF; whether a perfect simu-
lation of a crime event can be achieved. Nonetheless, several 
research (not related to DF) have demonstrated the useful-
ness of synthetic data in comparison to actual data [106, 
107], in which a model was trained on synthetic data and 
tested on real data. The results indicated that the accuracy 

9 National Institute of Standards and Technology, 2019. The 
CFReDS Project. Available at https://www.cfreds.nist.gov/. 
(Accessed 20 June 2021).
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of a variety of ML approaches were slightly decreased and 
varied when a synthetic dataset was used. Synthetic data can 
be used to augment or enhance an existing dataset, as well 
as to adjust for data imbalances created by an event’s rarity. 
In DFAI, modeling with synthetic data is sometimes useful, 
but not always. Synthetic data generation requires a purpose-
built dataset that may be too narrow for general-purpose 
solutions; demonstrating the results’ applicability to real-
world crime data may be difficult. This point is highlighted 
in [108], while some other challenges are emphasized in 
[109]. Furthermore, synthetic datasets are randomised, 
which means that the data do not follow a regular pattern. 
We foresee an extended challenge if the dataset is used to 
train an unsupervised neural network model – the model 
may learn non-interpretable patterns. While it is natural to 
assume that random data is less biased, there is no means 
to verify this claim. Thus, while synthetic datasets may be 
advantageous for solving specific ML problems, their usage 
in DFAI should be carefully considered.

3.2  DFAI Error Rates

As critical as accuracy is in determining the correctness of 
an evidence mining process, so also is the error rate. The 
error rate not only indicates the probability that a particular 
result is correct, or the strength of a technique, but also its 
limitations. According to the Scientific Working Group on 
Digital Evidence (SWGDE) [110], the term “error” does not 
allude to a mistake or blunder, but rather to the inevitable 
uncertainty inherent in scientific measurements. Numerous 
factors can influence these uncertainties, including algorith-
mic flaws, statistical probability, physical measurements, 
and human error [110]. One of the criteria for validating 
scientific methods under Daubert standard10 is the assess-
ment of error rate. Indeed, some of the other requirements 
(in the Daubert standard) are heavily weighted around error 
rate. For example, the Daubert standard requires the vali-
dation (or test) of a theory or methodology. The question 
is how can we validate a hypothesis and its alternatives, 
or a method, without determining the rate of uncertainty? 
Additionally, peer-review publishing of the method(s) used 
in forensic examination of digital artifacts is critical. Peer-
review enables scientific validation of the technique and 
quantification of methodological uncertainties. This dem-
onstrates the importance of publishing error rates for foren-
sic methods alongside accuracy values. Thus, in contrast 
to conventional approaches to AI/ML methods that place 
a premium on accuracy (or precision), we propose that the 
results of DFAI algorithm include additional information 
regarding the method’s errors and uncertainties. That way, 

the method’s limitations are known in advance, allowing 
for an assessment of whether the method’s outcomes are 
sufficiently (and scientifically) valid as evidence.

In alignment with the guidelines offered in [110], the 
uncertainty associated with any DFAI technique can be 
assessed in two ways: random and systematic [111]. Ran-
dom uncertainties are related with the technique’s algorithm 
and are commonly associated with measurements, whereas 
systematic uncertainties are typically associated with imple-
mentation and it occur in tools. DF tools represents imple-
mentation of a technique, and their functionality varies 
according to the task they seek to resolve. It is not uncom-
mon for software to possibly contain intrinsic bugs [112], 
which are caused by logical flaws or incorrect instructions. 
For instance, an erroneous string search algorithm can cause 
a tool to report certain critical evidence incompletely. In 
this case, the tool will extract some relevant strings but will 
likely under-report their extent. Due to the fact that these 
flaws are not random, the tool frequently produces the same 
output when given the same input, which may be inadvert-
ently deceptive to an examiner. Consequently, additional 
error mitigation methods may be required to detect and fix 
the error.

Due to the probabilistic nature of DFAI algorithms (the 
outcome of which may be random), the error rates are 
expressed in terms of false positive and false negative rates 
(which we discussed earlier). Depending on the percent-
ages of these errors, and as long as adequate confidence in 
the algorithm’s optimality exists, the error rates may only 
indicate the technique’s limitations, not its true efficiency. 
It is critical to report and publish error rates for techniques 
in the DF domain [113], and this should be especially true 
for DFAI. This increases the technique’s transparency and 
ensures that, in the event of method replication, the intended 
outcome is known. Additionally, disclosing error rates pro-
vides prospective researchers with a baseline understanding 
of the components that function efficiently, where improve-
ments are anticipated, as well as prevent potential biases in 
interpretation. Mitigating this error may not be straightfor-
ward scientifically, as it is dependent on a variety of factors; 
however, algorithm optimization, sufficient datasets, accu-
rate labelling (in supervised settings), and strong domain 
knowledge (for proper interpretations) are some of the ways 
to achieve a fairly reasonable success. Additional mitigat-
ing strategies for systematic errors include training, written 
procedures, documentation, peer-review, and testing [110].

10 https:// www. law. corne ll. edu/ wex/ daube rt_ stand ard.

https://www.law.cornell.edu/wex/daubert_standard
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4  Methods for Optimizing DFAI Techniques

Developing an AI/ML model involves initializing and opti-
mizing weight parameters via an optimization method until 
the objective function11 tend towards a minimum value, or 
the accuracy approaches a maximum value [114]. In addition 
to learning in predictive models, optimization is necessary 
at several stages of the process, and it includes selecting: (1) 
the model’s hyper-parameters (HPs) [115]; (2) the transfor-
mation techniques to apply to the model prior to modelling; 
and (3) the modelling pipeline to apply. This section will 
not explore the depth of optimization in AI, but will instead 
describe hyper-parameter optimization (HPO) [116] as a 
component in DFAI models.

Two parameters are critical in ML models: (1) the model 
parameters, which can be initialized and updated during the 
learning process; and (2) the HPs, which cannot be estimated 
directly from data learning and must be set prior to training 
a ML model – because they define the model’s architecture 
[117]. Understanding which HP is required for a given task 
is critical in a variety of scenarios, ranging from experimen-
tal design to automated optimization processes. The tradi-
tional method, which is still used in research but requires 
knowledge of the ML algorithm’s HP configurations, entails 
manually tuning the HP until the desired result is achieved 
[11]. This is ineffective in some cases, particularly for com-
plex models with non-linear HP interactions [118]. Numer-
ous circumstances may necessitate the use of HPO tech-
niques [119]; we highlight few of them below, specifically 
focusing on DFAI tasks. 

1. Conducting a digital forensic investigation requires an 
inordinate amount of time, and minimizing this time 
has been a primary focus of research in this domain 
for years. Similarly, machine-driven techniques can be 
time consuming, depending on the size of the dataset or 
the number of HPs. Applying AI techniques on already 
complicated forensic investigations almost always adds 
complexity. HPO can significantly reduce the amount of 
human effort required to tune these HPs, hence consider-
ably shortening the entire forensic analysis time.

2. We have already highlighted the importance of perfor-
mance in the context of DFAI procedures. ML methods 
require a range of HP settings to obtain optimal perfor-
mance on a variety of datasets and problems. Numerous 
HPO techniques exist to assist in optimizing the perfor-
mance of AI-based models by searching over different 

optimization spaces in quest of the global optimum for 
a given problem.

3. As previously stated, reproducibility is a necessary con-
dition for a standard DF technique. HPO can assist in a 
variety of ways in achieving this goal. When evaluating 
the efficacy of several AI algorithms on a certain analy-
sis, for example, adopting the same HP settings across 
all models establishes a fair comparison process. This 
can also be used to determine the optimal algorithm for 
a particular problem. Reporting these HP configurations 
can be advantageous in the event of DFAI model replica-
tion.

As with conventional AI models, when developing a DFAI 
model with HPO in mind, the process will include the fol-
lowing: an estimator (a classifier or regressor) with its objec-
tive function, a search (configuration) space, an optimization 
method for identifying suitable HP combinations, and an 
evaluation function for comparing the performance of vari-
ous HP configurations [118]. A typical HP configuration can 
be continuous (e.g., multiple learning rate values), discrete 
(e.g., the number of clusters, k), binary (e.g., whether to use 
early stopping or not), or categorical (type of optimizer), all 
of which can be combined to produce an optimized model. 
Because the majority of ML algorithms have well-defined 
open-source frameworks (such as scikit learn12) that can 
assist in solving problems by tuning (changing values) 
some already pre-set HPs, we will focus on HPOs related to 
DL models because they require self/auto-tuning of un-set 
parameters. HP in DL are set and tuned according to the 
complexity of the dataset and the task, and they are propor-
tional to the number of hidden layers and neurons in each 
layer [120]. The initial parameter setting for a DL model is to 
specify the loss function (binary cross-entropy [121], multi-
class cross-entropy [122], or squared error loss) appropri-
ate for the problem type. Then comes the type of activation 
function (e.g., ReLU [123], sigmoid,13 etc.) that describes 
how the weighted sum of the input is transformed into the 
output. Finally, the optimizer type is specified, which may be 
stochastic gradient descent (SGD) [124], Adaptive Moment 
Estimation (Adam) [125], or root mean square propagation 
(RMSprop) [126]. In what follows, we describe several opti-
mization techniques that can be vital to the optimization of 
a DFAI model.

11 or loss function: is a function that maps an event or values of one 
or more variables onto a real number intuitively representing some 
cost associated with the event.

12 https:// scikit- learn. org/ stable/ index. html.
13 See https:// deepai. org/ machi ne- learn ing- gloss ary- and- terms/ sigmo 
id- funct ion.

https://scikit-learn.org/stable/index.html
https://deepai.org/machine-learning-glossary-and-terms/sigmoid-function
https://deepai.org/machine-learning-glossary-and-terms/sigmoid-function
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4.1  Methods for Hyper‑Parameter Optimization 
in DFAI

A. Trial and error method
This method involves tuning parameters manually. It 

entails testing a large number of HP values based on experi-
ence, guesswork, or analysis of prior results. The approach 
is to improve parameter guesses iteratively until a satisfying 
result is obtained. This approach may be impractical for a 
variety of issues, particularly those involving DF analysis, 
that could involve large number of HP or complex models 
[118]. However, this technique can improve interpretability 
by allowing for the assessment of the model’s various work-
ing parts as the parameters are tuned.

B. Grid search (GS) This is a frequently used tech nique 
for exploring the HP configuration space [127]. It does a par-
allel search of the configuration space and is suitable within 
a limited search space; otherwise, it may suffer from the 
“curse of dimensionality” [129]

When DF examiner has sufficient knowledge about the 
(finite) set of HP to specify [95] for the search space, GS is 
preferable. Because computational intensity is one of GS’s 
drawbacks [128], its usage in DFAI is mostly focused on 
comparing the performances of many ML algorithms [169] 
in order to identify which one achieves the best performance 
on a certain forensic task. The authors in [130] described a 
botnet detection method using GS optimization techniques.

C. Randon search (RS)
RS was proposed in [131] as a way to circumvent GS’s 

limitations. Unlike GS, however, RS randomly selects a pre-
defined number of candidate samples between a specified 
upper and lower bound and trains them until the budget is 
exhausted or the target accuracy is reached. It does this by 
allocating resources to best-performing regions with paral-
lelization [132].

Due to the simplicity with which RS parallelizes, it is 
an ideal choice for DFAI tasks involving convolutional 
networks (CNN) [133], such as multimedia forensics (e.g., 
sound and video), image forensics, and so on, in which (low-
dimensional) features are mapped from one layer to the next. 
This method can be time and memory-intensive. To optimize 
the process, a batching strategy [135] is implemented that 
takes advantage of the batch size and learning rate to reduce 
training time without compromising performance. In this 
case, RS may be useful in terms of determining the ideal 
range of values for these parameters [134], as just the search 
space must be specified. Additionally, RS’s use in optimiz-
ing multimedia forensics analysis suggests that it may be 
key for recurrent neural networks (RNN) [136], although RS 
has the disadvantage of not taking past results into account 
during evaluation [118]. As a result, using RS in recursive 
tasks such as event reconstruction in DFAI may result in 
less-than-optimal outcomes.

D. Gradient descent (GD)
The gradient descent [137] optimization computes the 

gradient of variables in order to determine the most prom-
ising path to the optimum. Gradient-based optimization 
techniques converge faster to the local minimum than the 
previously described techniques, but they are only applicable 
to continuous HP, such as the learning rate in NN [138], as 
other types of HP (e.g., categorical) lack gradient direction. 
The application of GD in DFAI approaches is almost ubiq-
uitous, as it is used in virtually all DL models. It is one of 
the most straightforward optimization architectures to under-
stand and interpret. However, the findings published in [172] 
proved the occurrence of “Catastrophic Forgetting” when 
gradient descent is used, particularly for reproduction. That 
is, when trained on a new task, ML models may forget what 
they learned on a previous task with only gradient descent. A 
combination with dropout [172] is recommended, however.

E. Bayesian Optimization (BO)
BO [139, 140] is an iterative algorithm that calculates 

future evaluation points based on the prior results. It is a 
typical model for all sorts of global optimization, with the 
goal of becoming less incorrect with more data [141]. BO 
identifies optimal HP combinations faster and it is applicable 
regardless of whether the objective function is stochastic, 
discrete, continuous, convex, or non-convex. Gaussian pro-
cess (GP) [142], Sequential Model-based algorithm con-
figuration (SMAC) [143], and Tree Parzen Estimator (TPE) 
[144] are an examples of common BO algorithms. BO is 
especially useful in tools like the Waikato Environment for 
Knowledge Analysis (WEKA) [145], an open-source tool 
with collections of ML and data processing algorithms. 
Numerous DF analyses methods [146–148] have been pro-
posed or conducted using WEKA—leveraging its robust 
data mining capabilities and the possibility to choose from, 
or compare a variety of extensible, base learning algorithms 
for a specific forensic task. Selecting the right algorithm and 
HPs for optimal performance and accuracy in a WEKA-
based DFAI analysis might be challenging. In this case, the 
excellent properties of BO can aid in choosing the optimal 
ML method and HP settings that minimizes analytical errors.

The works presented in [149] and [150] demonstrates 
how BO can be used (more precisely, with SMAC and 
TPE) as meta-learning to guide the choice of ML algo-
rithms and HPO settings that outperform conventional 
selections on a classification task.

F. Multi-fidelity optimization (MFO)
MFO techniques are frequently used to overcome the 

time constraints limitations imposed by other HPO due 
to huge configuration space and datasets. MFO evaluates 
practical applications by combining low and high-fidelity 
measures [151]. In low-fidelity, a relatively small subset 
is evaluated at a low cost and with poor generalization 
performance; while in high-fidelity, a larger subset is 
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examined at a higher cost and with improved generaliza-
tion performance [152].

MFO techniques include “bandit-based” [153] methods 
that allocates computational resources to the “best-arm” 
(most promising) HP settings. Successive halving (SHA) 
and Hyperband (HB) are the two most often used bandit-
based algorithms [152, 154].

The application of MFO techniques to DFAI can be 
exemplified with transfer learning (TL) [155], which is the 
process by which previously stored knowledge is used to 
solve different but related problems. TL has been deployed 
in a variety of DFAI methods [156, 157], most notably on 
image forensics and detection problems using labeled sam-
ples. Thus, low or high fidelity optimization can be help-
ful for determining the optimal solution depending on the 
size of the stored knowledge (dataset), the investigative 
problem, and available computational resources. [158] 
describes an example of work on detecting (signature-based 
and unknown) malware-infected domains based on HTTPS 
traffic, using TL and optimized with Hyperband optimiza-
tion. Additionally, a state-of-the-art HPO technique called 
Bayesian Optimization Hyperband (BOHB) [159], which 
combines BO and HB to maximize the benefits of both, is 
gaining attention, and it will be interesting to see how DF 
research employs this promising technique in the future.

G. Metaheuristic algorithms
Metaheuristic algorithms are a popular type of optimi-

zation technique that are primarily inspired by biological 
evolution and genetic mutations. They are capable of resolv-
ing problems that are not continuous, non-convex, or non-
smooth [118]. Population-based optimization algorithms 
(POAs) [160] are an excellent example of metaheuristic 
algorithms since they update and evaluate each generation 
within a population until the global optimum is found. The 
two most frequently utilized types of POA are genetic algo-
rithms (GA) [161] and particle swarm optimization (PSO) 
[162]. PSO, specifically, is an evolutionary algorithm that 
functions by allowing a group of particles (swarm) to trav-
erse the search space in a semi-random fashion [116], while 
simultaneously discovering the optimal solution through 
information sharing across swarms.

Network forensics with DL is an ideal use for PSOs, 
as training such models can be time-consuming since it 
requires identifying complex patterns from large amounts 
of data. To detect network intrusion or attack, iterative 
reverse-engineered codes on parser and network traf-
fic logs are required; this can be challenging for humans 
[163]. The work described in [163] shows the efficacy 
of PSO as a useful instrument to minimize/maximize an 
objective function, and to determine the optimal HPs (such 
as epochs, learning rate, and batch size) that contribute to 
the deep forensic model’s AUC accuracy and the reduction 
in false alarm rate.

4.2  General Discussion on HPO in DFAI

It is worth emphasizing that the techniques discussed 
here are by no means exhaustive in terms of definition, 
components, and applicability. These few are chosen for 
their popularity and as a means of briefly discussing opti-
mization techniques in the context of DFAI models. As 
such, in depth discussions about HPOs are available in 
[114, 118]. In general, depending on the size of the data, 
the complexity of the model (e.g., the number of hidden 
layers in a neural network (NN) [164–166] or the num-
ber of neighbours in a k−Nearest Neighbors (KNN) [167, 
168]), and the available computational resources, an HP 
configuration may lengthen the time required to complete 
a task. Further along this line, in most cases, only a few 
HP have a substantial effect on the model’s performance in 
ML methods [118]. As such, having many HP configura-
tions exponentially increases the complexity of the search 
space. However, with DL, HPO techniques will require 
significant resources, particularly when dealing with large 
datasets. Considering all of these complexities, especially 
in the context of DFAI, where timeliness, transparency, 
and interpretability are critical, a well-chosen HPO tech-
nique should aid in rapid convergence and avoid random 
results. However, given that DF analysis are case-specific, 
often distinctive, with interpretability as a fundamental 
requirement, decomposing complexity should be a prior-
ity. Thus, unless forensic investigators have sufficient com-
puting resources and a working knowledge of the param-
eter settings for various HPO techniques, they may choose 
to consider the default HP settings in major open-source 
ML libraries, or make use of a simple linear model with 
reduced complexity, where necessary. In case of a self-
defined DNN model, basic HP settings and early stopping 
techniques can be considered. Finally, to summarize the 
various HPO algorithms mentioned thus far, table 2 com-
pares these HPO algorithms and their respective strengths 
and drawbacks, as adapted from [118] but extended with 
additional inputs.

5  Conclusion and Future Works

In this paper, we addressed common misunderstandings 
about “AI Forensics” and “Digital Forensics AI” (DFAI). 
We presented the notion of AI Forensics as specified in 
the literature, while also providing a conceptual descrip-
tion of “Digital Forensics AI” as a generic term referring to 
all the components and instruments used in the application 
of AI in digital forensics. As a result, we examined tech-
niques and methods for evaluating the effectiveness of clas-
sification and regression algorithms, as well as algorithms 
based on clustering that are employed in digital forensics 
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investigation. We focused on indicators that should not be 
disregarded while evaluating a predictive model’s correct-
ness. Additionally, we examined forensic (decision) evalu-
ation and proposed an AI-adaptive confidence scale report-
ing system that takes into account the error rates associated 
with false positives and negatives in a forensic output. 
We laid great emphasis on the datasets and error rates of 

AI-based programs used in digital forensics when it comes 
to standardization.

Finally, we conducted a comparative review of the key 
optimization techniques used in machine learning models, 
focusing on their application (and suitability) for digital 
forensics. We summarized these techniques and their vari-
ous strengths and drawbacks, as well as their corresponding 
time complexities. Additionally, we presented our opinion 

Table 2  The comparison of HPO techniques (n denote the number of HP values and k is the number of HP)

HPO Technique Strengths Drawbacks Time Complexity

GS O(nk)

* Simple * Effective with categorical HP
* Independent (Parallelization) * Time consuming
* Exhaustive use of the search space * HP grows exponentially

* Possible overfitting
RS O(n)

* Effective parallelization * Less-effective with conditional HP
* Improvement over GS * Ignores previous result during evaluation
* Better with low-dimensional data * Potential for variance since it is random
* Reduce overfitting
* No HP tunning except for specifying search space

GD O(nk)

* Fast convergence speed for continuous HP such as 
learning rate

* Support only continuous HP

* Detects only a local optimum
BO(BO-GP, 

SMAC, BO-
TPE)

0(nk) (BO-GP), 
O(nlogn) 
(SMAC, BO-
TPE)

* Fast convergence speed for continuous HP * Poor parallelization capacity
* Effective with all types of HP (in SMAC and BO-TPE 

cases)
* Slow convergence with dimension > 1000

* Computes mean and variance * Specification of prior is difficult
HP 0(nlogn)

* Better parallelization * Less-effective with conditional HP
* Subset with small budget required

BO-HP 0(nlogn)
* Effective with all types of HP * Subset with small budget required
* Better parallelization

GA 0(n2)

* No initialization * Poor parallelization capacity
* Effective with all types of HP * Computational complexity
* Produces multiple optimal solutions
* Possible global optimal solution
* Large solution space
* Support multiple objective function

PSO 0(nlogn)
* Better parallelization * Initialization required
* Effective with all types of HP * Weak local optimum search space
* Efficient global search algorithm
* Insensitive to caling of design variables
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on the usage of hyper-parameter optimization in AI-based 
DF analysis under discussion section.

As this is an attempt to formalize the concept of DFAI 
with all its prospective components, future work will strive 
to expand standardization beyond the two areas addressed 
thus far: datasets and error rates. Furthermore, the idea of 
expanding the methods for evaluating DFAI techniques to 
include comparative analysis of the various methods in prac-
tical settings appears to be a promising development for the 
domain, and it will be fascinating to see how it evolves in 
the future. Additionally, the explainability/interpretability 
and understandability of AI models employed in forensic 
investigation (and, more widely, in general) remains a con-
cern. This is also a critical instrument of DFAI for which 
resources can be expanded; hence, our future work will look 
to broaden the research focus in this direction.
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