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Quantum Concentration Inequalities

Giacomo De Palma and Cambyse Rouzé

Abstract. We establish Transportation Cost Inequalities (TCIs) with re-
spect to the quantum Wasserstein distance by introducing quantum ex-
tensions of well-known classical methods: First, we generalize the Do-
brushin uniqueness condition to prove that Gibbs states of 1D commuting
Hamiltonians satisfy a TCI at any positive temperature and provide con-
ditions under which this first result can be extended to non-commuting
Hamiltonians. Next, using a non-commutative version of Ollivier’s coarse
Ricci curvature, we prove that high temperature Gibbs states of commut-
ing Hamiltonians on arbitrary hypergraphs H = (V, E) satisfy a TCI with
constant scaling as O(|V |). Third, we argue that the temperature range
for which the TCI holds can be enlarged by relating it to recently estab-
lished modified logarithmic Sobolev inequalities. Fourth, we prove that
the inequality still holds for fixed points of arbitrary reversible local quan-
tum Markov semigroups on regular lattices, albeit with slightly worsened
constants, under a seemingly weaker condition of local indistinguishabil-
ity of the fixed points. Finally, we use our framework to prove Gaussian
concentration bounds for the distribution of eigenvalues of quasi-local
observables and argue the usefulness of the TCI in proving the equiva-
lence of the canonical and microcanonical ensembles and an exponential
improvement over the weak Eigenstate Thermalization Hypothesis.

1. Introduction

Given a random variable X of law μ taking values on a metric space (Ω, dΩ)
and a function f : Ω → R, a concentration of measure inequality quantifies
the probability that the random variable f(X) deviates from its mean or its
median. Since the early age of the theory, concentration inequalities have seen
many new methods, refinements and exciting applications to various areas of
mathematics [1–3]. Among the different classes of concentration inequalities,
Gaussian concentration is arguably the most standard one: the measure μ is
said to be sub-Gaussian if there exist constants K,κ > 0 such that, for all
A ⊆ Ω with μ(A) ≥ 1/2 we have for any r ≥ 0
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μ ({x ∈ Ω : dΩ(x,A) < r}) ≥ 1 − Ke−κr2
. (1)

In her seminal work [4], Marton made the beautiful observation that the above
behavior can be obtained as a consequence of a transportation cost inequality:
if there exists c > 0 such that, for any probability measure ν << μ,

W1(μ, ν) ≤
√

c S(ν‖μ) , (TC(c))

then (1) holds with constants κ = 1
c and K = 1 for all r >

√
c ln 2. Here,

S(ν‖μ) refers to the relative entropy between the measures ν and μ, whereas
the quantity W1(μ, ν) in (TC(c)) is the Wasserstein distance between the two
measures μ, ν:

W1(μ, ν) := sup
‖f‖L≤1

∣
∣Eμ[f ] − Eν [f ]

∣
∣ .

Later, Bobkov and Götze [5] proved that transportation cost inequalities are
in fact equivalent to the property of sub-Gaussianity: more precisely, (TC(c))
holds if and only if for all Lipschitz functions f : Ω → R,

Pμ

(∣∣f(X) − Eμ[f(X)]
∣∣ > t

)
≤ 2 e− t2

c ,∀t ≥ 0 .

One of the main advantages of transportation cost inequalities is their ten-
sorization property: assume that μ satisfies TC(c), then μ⊗n satisfies TC(nc)
for all n ∈ N, where the set Ωn is provided with the metric

dn(xn, yn) :=
n∑

i=1

dΩ(xi, yi) .

Perhaps the simplest example of that sort is given by taking Ωn = [d]n en-
dowed with the Hamming distance dH . In the case n = 1, the corresponding
Wasserstein distance reduces to the total variation, and TC(1/2) holds for any
measure μ, since it simply reduces to Pinsker’s inequality. For n ≥ 1, μ⊗n

satisfies TC(n/2).
While the theory of concentration inequalities for i.i.d. random variables

is by now well understood, things become more challenging when the random
variables are allowed to depend on each other [3,6]. One way to extend con-
centration bounds to weakly dependent random variables is to assume that
their joint law μ satisfies the so-called Dobrushin uniqueness condition [6].
Dobrushin’s uniqueness condition plays an important role in the study of
Gibbs measures in the one-phase region; however, it often turns out to be
a very strong requirement on the measure μ. More recently, Marton gave an
attempt at extending the i.i.d. theory beyond the mere Gibbs setting [7]. Her
main result consists in a logarithmic Sobolev inequality for a generic measure
μ—well known to imply transportation cost inequalities—under the so-called
Dobrushin–Shlosman mixing condition [8], the latter condition being weaker
than Dobrushin’s uniqueness condition. As mentioned in [9], such paths to
establish Gaussian concentration suffer from the difficulty of deriving explicit
constants. Moreover, the result of [7] also relies on the crucial assumption that
the measure μ has full support.
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Recently, concentration inequalities have attracted much attention in the
communities of random matrix theory, quantum information theory and op-
erator algebras [10–18]. In [14], a quantum Wasserstein distance of order 1
(or quantum W1 distance) was defined on the set of the quantum states of n
qudits with the property that it strictly reduces to the classical Wasserstein
distance on [d]n for states that are diagonal in the computational basis. This
quantum generalization of the Wasserstein distance is based on the notion of
neighboring states. Two quantum states of n qudits are neighboring if they
differ only in one qudit, i.e., if they coincide after that qudit is discarded. The
quantum W1 distance is then that induced by the maximum norm that assigns
distance at most one to every couple of neighboring states [14, Definition 4].
Such norm is called quantum W1 norm and is denoted with ‖·‖W1

. The quan-
tum W1 norm proposed in Ref. [14] admits a dual formulation in terms of a
quantum generalization of the Lipschitz constant. Denoting with On the set of
the observables of n qudits, the Lipschitz constant of the observable H ∈ On

is defined as [14, Sect. V]

‖H‖L : = 2max
i∈[n]

min
{∥∥∥H − H(i)

∥∥∥
∞

: H(i)

∈ On does not act on the i-th qudit} . (2)

Then, the quantum W1 distance between the states ρ and ω can also be ex-
pressed as [14, Sect. V]

‖ρ − ω‖W1
= max {Tr [(ρ − ω)H] : H ∈ On, ‖H‖L ≤ 1} . (3)

Moreover, in [14] it was showed that TC(n/2) holds for any tensor product ω =
ω1 ⊗ · · · ⊗ ωn of quantum states, hence extending Marton’s original inequality
with the exact same constant: for any state ρ of n qudits,

‖ρ − ω1 ⊗ · · · ⊗ ωn‖W1
≤
√

n

2
S(ρ‖ω1 ⊗ · · · ⊗ ωn) ,

where S(ρ‖ω) := Tr[ρ (ln ρ−ln ω)] denotes Umegaki’s relative entropy between
the states ρ and ω.

Main results: In this paper, we prove that any of the following conditions
implies a transportation cost inequality:

(i) A non-commutative Dobrushin uniqueness condition (Sect. 3);
(ii) A generalization of Ollivier’s coarse Ricci curvature bound (Sect. 4);
(iii) A modified logarithmic Sobolev inequality condition (Sect. 5);
(iv) A condition of local indistinguishability of the state (Sect. 6).

Each of these methods comes with its strengths and weaknesses:

(i) The non-commutative Dobrushin uniqueness condition implies a nontriv-
ial TCI at any temperature (see Remark 1), but the scaling of the constant
c with the number of subsystems is optimal only in one dimension (see
Remark 2).
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(ii) The coarse Ricci curvature bound provides TC inequalities for essentially
any geometry, but it is only valid above a threshold temperature that de-
pends on the locality of the Hamiltonian. Furthermore, such threshold
temperature is in practice strictly larger than the true critical tempera-
ture (see Proposition 9).

(iii) Quantum modified logarithmic Sobolev inequalities are typically more
difficult to prove than their classical counterparts and are currently only
proven to hold in specific cases. However, for one-dimensional systems, a
recently derived modified logarithmic Sobolev inequality [19,20] provides
us with TC (up to polylogarithmic overhead) at any positive temperature.

(iv) The condition of local indistinguishability of the state for regular lattices.
Although the condition can be checked for classical systems, we do not
yet have a way to prove it in the quantum setting.
We conclude the article with two natural applications of our bounds.

First, we derive Gaussian concentration bounds for a large class of Lipschitz
observables whenever the state ω is that of a commuting Hamiltonian at large
enough temperature (Sect. 7). Second, we argue on the use of the transporta-
tion cost inequality in proving the equivalence between the microcanonical
and the canonical ensembles and an exponential improvement over the weak
Eigenstate Thermalization Hypothesis (Sect. 8).

2. Notations and Basic Definitions

Given a finite set V , we denote by HV =
⊗

v∈V Hv the Hilbert space of
n = |V | qudits (i.e., Hv ≡ C

d for all v ∈ V ) and by BV the algebra of
linear operators on HV . OV corresponds to the space of self-adjoint linear
operators on HV , whereas OT

V ⊂ OV is the subspace of traceless self-adjoint
linear operators. O+

V denotes the cone of positive semidefinite linear operators
on HV and SV ⊂ O+

V denotes the set of quantum states. We denote by PV the
set of probability measures on [d]V . For any subset A ⊆ V , we use the standard
notations OA,SA . . . for the corresponding objects defined on subsystem A.
Given a state ρ ∈ SV , we denote by ρA its marginal onto the subsystem A. For
any X ∈ OV , we denote by ‖X‖1 its trace norm. The identity on Ov, v ∈ V ,
is denoted by Iv.

Given two states ρ, ω ∈ SV such that supp(ρ) ⊆ supp(ω), their quantum
relative entropy is defined as [21–23]

S(ρ‖ω) = Tr
[
ρ (ln ρ − ln ω)

]
. (4)

Whenever ρ = ρAB is a bipartite state and ω = ρA ⊗ρB , their relative entropy
reduces to the mutual information

I(A;B)ρ := S(ρAB‖ρA ⊗ ρB) . (5)

In the next sections, we also utilize the measured relative entropy [24–27]

SM(ρ‖ω) := sup
(X ,M)

S(Pρ,M‖Pσ,M ) , (6)
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where the supremum above is over all positive operator valued measures M
that map the input quantum state to a probability distribution on a finite set
X with probability mass function given by Pρ,M (x) = TrρM(x).

In this paper, we study inequalities relating the W1 distance between two
states to their relative entropy. More precisely, for a fixed state ω ∈ SV , we
are interested in upper bounding the best constant C(ω) > 0 such that, for all
ρ ∈ SV with supp(ρ) ⊆ supp(ω),

‖ρ − ω‖W1
≤
√

C(ω)S(ρ‖ω) . (7)

In general, given a constant c ≥ C(ω), we refer to the above inequality for
C(ω) replaced by c as a transportation cost inequality, denoted by TC(c). As
mentioned in the introduction, the following holds [14, Theorem 2]:

Proposition 1. For any product state ω ∈ SV ,

C(ω) ≤ |V |
2

. (8)

In the next sections, we aim at recovering the linear dependence of the
constant C(ω) on the size n = |V | of the system under various measures of
independence.

We will need the following properties of the quantum W1 distance:

Proposition 2 [14, Proposition 2]. The quantum W1 distance coincides with
the trace distance for quantum states that differ in only one site, i.e., for any
X ∈ OT

V such that TrvX = 0 for some v ∈ V we have

‖X‖W1
=

1
2

‖X‖1 . (9)

Proposition 3 [14, Proposition 5]. The quantum W1 distance between two quan-
tum states that differ only in the region A ⊆ V is at most 2 |A| times their
trace distance, i.e., for any X ∈ OT

V such that TrAX = 0 we have

‖X‖W1
≤ |A| ‖X‖1 . (10)

Proposition 4 (Tensorization [14, Proposition 4]). The quantum W1 distance
is additive with respect to the tensor product, i.e., let A, B be disjoint subsets
of V . Then, for any ρA, σA ∈ SA and any ρB , σB ∈ SB we have

‖ρA ⊗ ρB − σA ⊗ σB‖W1
= ‖ρA − σA‖W1

+ ‖ρB − σB‖W1
. (11)

Proposition 5 [14, Proposition 13]. Let Φ : OV → OV be a quantum channel.
For any v ∈ V , let Av ⊆ V be the light-cone of the site v, i.e., the minimum
subset of V such that TrAi

Φ(X) = 0 for any X ∈ OV such that TrvX = 0.
Then, Φ can expand the quantum W1 distance by at most twice the size of the
largest light-cone, i.e., for any X ∈ OT

V we have

‖Φ(X)‖W1
≤ 2max

v∈V
|Av| ‖X‖W1

. (12)

Proposition 6 [14, Proposition 15]. For any H ∈ OV and any v ∈ V , we have
∥∥∥∥H − Iv ⊗ 1

d
TrvH

∥∥∥∥
∞

≤ ‖H‖L . (13)
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Proposition 7 [14, Corollary 1]. For any ρ, σ ∈ SV ,

‖ρ − σ‖W1
≥ 1

2

∑

v∈V

‖ρv − σv‖1 , (14)

and equality holds whenever both ρ and σ are product states.

Theorem 1 (W1 continuity of the entropy [14, Theorem 1]). For any ρ, σ ∈
SV , we have

|S(ρ) − S(σ)| ≤ g
(‖ρ − σ‖W1

)
+ ‖ρ − σ‖W1

ln
(
d2 |V |) , (15)

where for any t ≥ 0

g(t) = (t + 1) ln (t + 1) − t ln t . (16)

3. Dobrushin Uniqueness Condition

In this section, we consider a spin chain and prove the transportation cost
inequality under a quantum generalization of Dobrushin’s uniqueness condi-
tion [6]. Such condition is formulated in terms of the conditional probability
distributions of the state of a subset of V conditioned on the state of a second
disjoint subset of V . Therefore, formulating a quantum version of Dobrushin’s
uniqueness condition requires a quantum counterpart of the conditional prob-
ability distribution. In the classical setting, given two random variables X and
Y taking values in finite sets and with joint probability distribution ωXY , the
conditional probability distribution ωY |X of Y given X with probability mass
function

ωY |X=x(y) =
ωXY (x, y)

ωX(x)
(17)

represents the knowledge that we have on Y when we know only the value
of X. We can associate with such conditional distribution the stochastic map
ΦX→XY that has as input a probability distribution pX for X and as output
the joint probability distribution of XY with probability mass function given
by

ΦX→XY (pX)(x, y) = ωY |X=x(y) pX(x) =
ωXY (x, y)

ωX(x)
pX(x) . (18)

In the quantum setting, we consider a bipartite quantum system AB and a
joint quantum state ωAB of AB. The quantum counterpart of the stochastic
map (18) is called quantum recovery map [28,29], and its action on a quantum
state ρA of A is

ΦA→AB(ρA) =
∫

R

ω
1−it

2
AB ω

it−1
2

A ρA ω
− 1+it

2
A ω

1+it
2

AB dμ0(t) , (19)

where μ0 is the probability distribution on R with density

dμ0(t) =
π dt

2 (cosh(πt) + 1)
. (20)
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We stress that (19) reduces to (18) whenever ρA, ωA and ωAB commute. If
A is in the state ωA, the recovery map ΦA→AB recovers the joint state ωAB ,
i.e., ΦA→AB(ωA) = ωAB . The relevance of the recovery map comes from the
recoverability theorem [29], which states that ΦA→AB can recover a generic
joint state ρAB from its marginal ρA if removing the subsystem B does not
significantly decrease the relative entropy between ρ and ω. More precisely, for
any quantum state ρAB of AB we have

S(ρAB‖ωAB) − S(ρA‖ωA) ≥ SM(ρAB‖ΦA→AB(ρA)) . (21)

We consider the setting where V is partitioned as

V = A1 
 · · · 
 Am . (22)

For any i ∈ [m], we denote with Ai
1 the union A1 
 · · · 
Ai. The recoverability

theorem implies the following Lemma 1, which we will employ several times:

Lemma 1. For any ρ, ω ∈ SV , we have

S(ρ‖ω) ≥ 1
2m

(
m∑

i=1

∥∥∥ρAi
1
− ΦAi−1

1 →Ai
1
(ρAi

1
)
∥∥∥

1

)2

, (23)

(
1

2m

m∑

i=1

∥∥∥ρAi
1
− ΦAi−1

1 →Ai
1
(ρAi

1
)
∥∥∥

1

)2

≤ 1 − exp
(

−S(ρ‖ω)
m

)
, (24)

where ΦAi−1
1 →Ai

1
are the recovery maps associated with ω.

Proof. Eq. (19) and Pinsker’s inequality imply for any i ∈ [m]

S(ρAi
1
‖ωAi

1
) − S(ρAi−1

1
‖ωAi−1

1
) ≥ SM

(
ρAi

1

∥∥∥ΦAi−1
1 →Ai

1
(ρAi−1

1
)
)

≥ 1
2

∥∥∥ρAi
1
− ΦAi−1

1 →Ai
1
(ρAi−1

1
)
∥∥∥

2

1
. (25)

Summing (25) over i and using the convexity of the square function yields

S(ρ‖ω) ≥ 1
2

m∑

i=1

∥∥
∥ρAi

1
− ΦAi−1

1 →Ai
1
(ρAi−1

1
)
∥∥
∥

2

1

≥ 1
2m

(
m∑

i=1

∥∥∥ρAi
1
− ΦAi−1

1 →Ai
1
(ρAi

1
)
∥∥∥

1

)2

. (26)

The claim (23) follows.
With an analogous proof, applying the improved Pinsker’s inequality

1
4

‖σ − τ‖2
1 ≤ 1 − e−SM(σ‖τ) (27)

and the convexity of the function t �→ − ln
(
1 − t2

)
, we get

S(ρ‖ω) ≥ −m ln

⎛

⎝1 −
(

1
2m

m∑

i=1

∥∥∥ρAi
1
− ΦAi−1

1 →Ai
1
(ρAi

1
)
∥∥∥

1

)2
⎞

⎠ . (28)

The claim (24) follows. �
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The following property of the recovery map will be fundamental:

Lemma 2. Let ωABC be a joint state of the tripartite quantum system ABC.
Let us assume that ωABC is Markovian, i.e.,

I(A;C|B)ω = 0 . (29)

Then, the recovery map ΦAB→ABC associated with ωABC does not act on the
subsystem A.

Proof. From the characterization of the states that saturate the strong subad-
ditivity [30], the Hilbert space HB of B has a decomposition

HB =
k⊕

i=1

HBL
i

⊗ HBR
i

, (30)

where the Hilbert spaces
{

HBL
i

}k

i=1
and

{
HBL

i

}k

i=1
are pairwise orthogonal,

and ωABC can be expressed as

ωABC =
k⊕

i=1

pi ω
(i)

ABL
i

⊗ ω
(i)

BR
i C

, (31)

where p is a probability distribution on [k], and each ω
(i)

ABL
i

or ω
(i)

BR
i C

is a
quantum state with support in the corresponding HA ⊗ HBL

i
or HBR

i
⊗ HC .

We have for any quantum state ρAB of AB

ΦAB→ABC(ρAB) =
∫

R

ω
1−it

2
ABC ω

it−1
2

AB ρAB ω
− 1+it

2
AB ω

1+it
2

ABC dμ0(t) . (32)

We have for any z ∈ C that

ωz
ABC ω−z

AB =
k⊕

i=1

(
ω

(i)

BR
i C

)z (
ω

(i)

BR
i

)−z

(33)

does not act on A, and the claim follows choosing z = (1 − it) /2. �

3.1. Markovian Case

In this subsection, we assume that ω ∈ SV is a one-dimensional quantum
Markov state. More precisely, let {A1, . . . , Am} be a partition of V and let
K = max (|A1| , . . . , |Am|). Then, we assume that

I(Ai;Ai−2
1 |Ai−1)ω = 0 (34)

for any i = 3, . . . , m. For any i ∈ [m], let Φi be the recovery map (19)
associated with ωAi

1
that recovers Ai from Ai−1

1 . From Lemma 2, Φi acts only
on Ai−1, i.e., it is a map Φi : OAi−1 → OAi−1Ai

. We also define

Φ̃i = TrAi−1 ◦ Φi : OAi−1 → OAi
. (35)

We can now state the main result of this section:
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Theorem 2. Let us assume that for any i ∈ [m], Φ̃i is a contraction with
respect to the trace norm for all the couples of quantum states of Ai−1

1 that
differ only on the subsystem Ai−1, i.e., that coincide after discarding Ai−1.
More precisely, we assume that there exists 0 ≤ η < 1 such that for any
i ∈ [m] and any X ∈ OT

Ai−1
1

with TrAi−1X = 0 we have
∥∥
∥Φ̃i(X)

∥∥
∥

1
≤ η ‖X‖1 . (36)

Then, we have

C(ω) ≤ 2mK2

(
1

1 − η
+ 1

)2

. (37)

Furthermore, for any ρ ∈ SV we have

‖ρ − ω‖W1
≤ K

(
1

1 − η
+ 1

)
2m

√
1 − e− S(ρ‖ω)

m . (38)

Proof. Let ρ ∈ SV . On the one hand, we have from Lemma 3

‖ρ − ω‖W1
=

∥∥∥
∥∥

m∑

i=1

(Φm ◦ · · · ◦ Φi+1)(ρAi
1
− Φi(ρAi−1

1
))

∥∥∥
∥∥

W1

≤
m∑

i=1

∥∥∥(Φm ◦ · · · ◦ Φi+1)(ρAi
1
− Φi(ρAi−1

1
))
∥∥∥

W1

≤ K

(
1

1 − η
+ 1

) m∑

i=1

∥
∥∥ρAi

1
− Φi(ρAi−1

1
)
∥
∥∥

1
. (39)

On the other hand, we have from (23) of Lemma 1

S(ρ‖ω) ≥ 1
2m

(
m∑

i=1

∥
∥∥ρAi

1
− Φi(ρAi−1

1
)
∥
∥∥

1

)2

, (40)

and the claim (37) follows. The claim (38) follows by employing (24) in place
of (23). �

Remark 1. Condition (36) holds for some η < 1 iff Φ̃i strictly decreases the
trace distance between any two quantum states that differ only in the subsys-
tem Ai on which Φ̃i acts, i.e., that coincide after discarding Ai. We expect
this condition to hold for any strictly positive temperature.

Remark 2. An example of quantum state satisfying (34) is a Gibbs state of a
nearest-neighbor Hamiltonian on the D-dimensional cubic lattice Λ = [L]D,
where x, y ∈ Λ are neighbors iff ‖x − y‖1 = 1. We can then choose m = L + 1
and

Ai = {x ∈ Λ : x1 = i} , i = 0, . . . , L , (41)

with

K = (L + 1)D−1
, (42)
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and get from Theorem 2

C(ω) ≤ 2 (L + 1)2D−1

(
1

1 − η
+ 1

)2

= 2 |V | 2D−1
D

(
1

1 − η
+ 1

)2

. (43)

We stress that, assuming that η remains bounded away from 1, we get C(ω) =
O(|V |) iff D = 1, i.e., for one-dimensional systems.

Remark 3. We can choose

η = max
{∥∥∥Φ̃i(X) − ωAi

⊗ TrAi−1X
∥∥∥

1
: i ∈ [m] , X ∈ OAi−1

1
, ‖X‖1 = 1

}

≤ max
i∈[m]

∥∥
∥Φ̃i − ωAi

⊗ TrAi−1

∥∥
∥

�
, (44)

where ωAi
⊗ TrAi−1 : OAi−1 → OAi

is the quantum channel that replaces the
input quantum state with ωAi

and

‖Φ‖� = sup
{∥∥(Φ ⊗ IB(H))(X)

∥∥
1

: X ∈ B(H⊗2) , ‖X‖1 = 1
}

(45)

denotes the diamond norm of the linear map Φ on B(H).

Proposition 8. Let ω ∈ SV satisfy (34), and assume

a = max
i∈[m−1]

S∞(ωAi
⊗ ωAi+1‖ωAiAi+1) <

1
2

, (46)

where

S∞(ρ‖σ) = ln inf {λ ∈ R : ρ ≤ λσ} (47)

denotes the quantum max-divergence [31] between the quantum states ρ and σ.
Then, we can choose in (36)

η =
√

2 a . (48)

Proof. From Remark 1, we can choose

η = max
i∈[m]

max
|ψi〉

∥∥∥Φ̃i(|ψi〉〈ψi|) − ωAi
⊗ TrAi−1 |ψi〉〈ψi|

∥∥∥
1

≤ max
i∈[m]

max
|ψi〉

‖Φi(|ψi〉〈ψi|) − ωAi
⊗ |ψi〉〈ψi|‖1 , (49)

where each |ψi〉 is a unit vector in HAi−1
1

. We have from Pinsker’s inequality

‖Φi(|ψi〉〈ψi|) − |ψi〉〈ψi| ⊗ ωAi
‖1 ≤

√
2SM(|ψi〉〈ψi| ⊗ ωAi

‖Φi(|ψi〉〈ψi|)) .
(50)

(46) implies

ln ωAi−1Ai
≥ ln ωAi−1 + lnωAi

− a . (51)

From the characterization of the states that saturate the strong subadditivity
[30], we get

ln ωAi−1
1

+ lnωAi−1Ai
= lnωAi−1 + lnωAi

1
, (52)

therefore, (51) can be rewritten as

ln ωAi
1

≥ ln ωAi−1
1

+ lnωAi
− a . (53)
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Choosing in (25) ρAi
1

= |ψi〉〈ψi| ⊗ ωAi
we get with the help of (53)

SM(|ψi〉〈ψi| ⊗ ωAi
‖Φi(|ψi〉〈ψi|))

≤ 〈ψi|
(
ln ωAi−1

1
− TrAi

[
ωAi

ln ωAi
1

])
|ψi〉 − S(Ai)ω ≤ a , (54)

and the claim follows. �

Remark 4. Condition (36) is reminiscent of the so-called Dobrushin uniqueness
condition (see [6, Theorem 4]).

3.2. Non-Markovian States

Here, we prove an alternative version of Theorem 2 where the Markov condition
(34) is replaced by exponential decay of correlations.

Theorem 3. Let V = [n] be a one-dimensional lattice, and let ω ∈ SV . For
any i ∈ [n], let Φi be the recovery map associated with ω1...i that recovers the
site i from the sites 1 . . . i − 1. We assume that ω has exponentially decaying
correlations, in the sense that there exist C ≥ 0 and 0 ≤ η < 1 such that for
any i ∈ [n], any k = 0, . . . , max(i, n − i) and any τ ∈ S1...i,

‖Tri−k+1...i+k(Φn ◦ · · · ◦ Φi+1)(τ1...i) − τ1...i−k ⊗ ωi+k+1...n‖1 ≤ C ηk . (55)

We also assume that for any i ∈ [n], any k = 0, . . . , i−1 and any τ ∈ S1...i−1

‖Tri−k...iΦi(τ1...i−1) − τ1...i−k−1‖1 ≤ C ηk . (56)

Then,

C(ω) ≤ 8n

(

2 +
C + 1
1 − η

− ln
(
C2 n

)

2 ln η

)2

. (57)

Proof. From (23) of Lemma 1, we have for any ρ ∈ SV

S(ρ‖ω) ≥ 1
2n

(
n∑

i=1

‖ρ1...i − Φi(ρ1...i−1)‖1

)2

. (58)

We have

‖ρ − ω‖W1
=

∥∥∥∥∥

n∑

i=1

(Φn ◦ · · · ◦ Φi+1)(ρ1...i − Φi(ρ1...i−1))

∥∥∥∥∥
W1

≤
n∑

i=1

‖(Φn ◦ · · · ◦ Φi+1)(ρ1...i − Φi(ρ1...i−1))‖W1
. (59)

For any i ∈ [n], we have from Lemma 5

‖(Φn ◦ · · · ◦ Φi+1)(ρ1...i − Φi(ρ1...i−1))‖W1

≤ 2
max{i, n−i}∑

k=0

‖Tri−k+1...i+k(Φn ◦ · · · ◦ Φi+1)(ρ1...i − Φi(ρ1...i−1))‖1

≤ 2
max{i, n−i}∑

k=0

(‖ρ1...i−k − Tri−k+1...iΦi(ρ1...i−1))‖1

+C ηk ‖ρ1...i − Φi(ρ1...i−1))‖1

)
. (60)
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We have for any k0 ∈ {0, . . . , i − 1}
i−1∑

k=0

‖ρ1...i−k − Tri−k+1...iΦi(ρ1...i−1)‖1

≤
k0∑

k=0

‖ρ1...i − Φi(ρ1...i−1)‖1 +
i−1∑

k=k0+1

‖ρ1...i−k − ω1...i−k

−Tri−k+1...iΦi(ρ1...i−k − ω1...i−k)‖1

≤ (k0 + 1) ‖ρ1...i − Φi(ρ1...i−1)‖1 + C

i−1∑

k=k0+1

ηk−1 ‖ρ1...i−k − ω1...i−k‖1

≤ (k0 + 1) ‖ρ1...i − Φi(ρ1...i−1)‖1 +
C ηk0

1 − η
‖ρ − ω‖1 , (61)

therefore

‖(Φn ◦ · · · ◦ Φi+1)(ρ1...i − Φi(ρ1...i−1))‖W1

≤ 2
((

k0 + 1 +
C

1 − η

)
‖ρ1...i − Φi(ρ1...i−1)‖1 +

C ηk0

1 − η
‖ρ − ω‖1

)
, (62)

and

‖ρ − ω‖W1
≤ 2

((
k0 + 1 +

C

1 − η

) n∑

i=1

‖ρ1...i − Φi(ρ1...i−1)‖1 +
n C ηk0

1 − η
‖ρ − ω‖1

)

≤ 2

(
k0 + 1 + C

1 + ηk0
√

n

1 − η

)√
2 n S(ρ‖ω) , (63)

and the claim follows choosing

k0 =

⌈

− ln
(
C2 n

)

2 ln η

⌉

. (64)

�

3.3. Auxiliary Lemmas

Lemma 3. Under the same hypotheses of Theorem 2, for any i ∈ [m] and any
X ∈ OT

Ai
1

such that
TrAi−1Ai

X = 0 (65)
we have

‖(Φm ◦ · · · ◦ Φi+1)(X)‖W1
≤ K

(
1

1 − η
+ 1

)
‖X‖1 . (66)

Proof. We have from Lemma 4 and from the contractivity of the trace distance

‖(Φm ◦ · · · ◦ Φi+1)(X)‖W1
≤ |Ai−1| ‖(Φm ◦ · · · ◦ Φi+1)(X)‖1

+
∥
∥(Φm ◦ · · · ◦ Φi+1)

(
TrAi−1X

)∥∥
W1

≤ K ‖X‖1 +
∥∥(Φm ◦ · · · ◦ Φi+1)

(
TrAi−1X

)∥∥
W1

.

(67)
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We have
∥
∥(Φm ◦ · · · ◦ Φi+1)

(
TrAi−1X

)∥∥
W1

≤ |Ai|
∥∥(Φm ◦ · · · ◦ Φi+1)

(
TrAi−1X

)∥∥
1

+
∥∥TrAi

(Φm ◦ · · · ◦ Φi+1)
(
TrAi−1X

)∥∥
W1

≤ K
∥
∥TrAi−1X

∥
∥

1
+
∥∥
∥(Φm ◦ · · · ◦ Φi+2 ◦ Φ̃i+1)

(
TrAi−1X

)∥∥
∥

W1

. (68)

Iterating the procedure, we get
∥∥(Φm ◦ · · · ◦ Φi+1)

(
TrAi−1X

)∥∥
W1

≤ K
(∥
∥TrAi−1X

∥
∥

1
+
∥
∥∥Φ̃i+1

(
TrAi−1X

)∥∥∥
1

+ · · · +
∥∥∥(Φ̃m ◦ · · · ◦ Φ̃i+1)

(
TrAi−1X

)∥∥∥
1

)

+
∥∥∥TrAm

(Φ̃m ◦ · · · ◦ Φ̃i+1)
(
TrAi−1X

)∥∥∥
W1

≤ K
(
1 + η + · · · + ηm−i

) ∥∥TrAi−1X
∥∥

1
+
∥∥TrAi−1Ai

X
∥∥

1

≤ K

1 − η

∥∥TrAi−1X
∥∥

1
≤ K

1 − η
‖X‖1 , (69)

where the last two inequalities follow from (36) and (65), respectively. The
claim follows. �

Lemma 4. For any X ∈ OT
V and any A ⊆ V ,

‖X‖W1
≤ |A| ‖X‖1 + ‖TrAX‖W1

. (70)

Proof. Without loss of generality, we can assume that V = [n] and A = [k] for
some k ∈ [n]. We have

‖X‖W1
≤
∥∥∥∥X − I

d
⊗ Tr1X

∥∥∥∥
W1

+
∥∥∥∥
I

d
⊗ Tr1X

∥∥∥∥
W1

=
1
2

∥∥
∥∥X − I

d
⊗ Tr1X

∥∥
∥∥

1

+ ‖Tr1X‖W1

≤ ‖X‖1 + ‖Tr1X‖W1
, (71)

where the equality follows from Propositions 2 and 4 and the last inequality
follows from the triangle inequality for the trace norm and its contractivity
with respect to partial traces. By induction, we get

‖X‖W1
≤ (‖X‖1 + · · · + ‖Tr1...k−1X‖1) + ‖Tr1...kX‖W1

≤ k ‖X‖1 + ‖Tr1...kX‖W1
, (72)

and the claim follows. �

Lemma 5. Let V = [n]. Then, for any X ∈ OT
V ,

‖X‖W1
≤ ‖X‖1 + ‖Tr1X‖1 + · · · + ‖Tr1...n−1X‖1 . (73)

Proof. Follows from Lemma 4. �
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4. Curvature Bound

In the seminal paper [32], Ollivier introduced a generalization of the notion
of curvature to generic, possibly discrete, metric spaces. In his framework, the
curvature of a metric space (Ω, d) endowed with a classical stochastic map P
acting on the probability measures on Ω is defined as the following contraction
property of the Wasserstein distance W1: for any two probability measures
μ1, μ2,

W1(P (μ1), P (μ2)) ≤ (
1 − κ

)
W1(μ1, μ2) . (74)

The constant κ > 0 is called the coarse Ricci curvature of the triple (Ω, d, P ).
In particular, it is easy to verify that the existence of a positive coarse Ricci
curvature induces the uniqueness of the invariant measure ν for the Markov
kernel P . Moreover, it was recently proven in [33] that Ollivier’s coarse Ricci
curvature provides an upper bound on the transportation cost inequality for
the measure ν, hence recovering the results from the smooth Riemannian set-
ting.

Here, inspired by the works of [32] and [33], we prove that a contraction
of the Lipschitz constant under a certain quantum channel constructed from
the Petz recovery maps of the Gibbs state ω can be used to conclude that
ω satisfies a transportation cost inequality. In particular, we do not need to
assume that the underlying graph is Z, in contrast with Sect. 3. Let G = (V,E)
be a hypergraph with n = |V |, and let H :=

∑
A∈E hA be a Hamiltonian whose

local terms hA pairwise commute and are supported on the hyperedges A ∈ E.
For a given site v ∈ V , we recall the composition of the partial trace Trv on v
with the rotated Petz recovery map of v:

Ψv(ρ) = Φv ◦ Trv(ρ) =
∫

R

ω
1−it

2 ω
−1+it

2
vc (ρvc ⊗ Iv)ω

−1−it
2

vc ω
1+it

2 dμ0(t) (75)

for the probability density μ0(t) := π
2

(
cosh(πt) + 1

)−1. Note that since we
assumed ω to be the Gibbs state of a commuting Hamiltonian, the map Ψv

acts non-trivially on the neighborhood of v

Nv :=
⋃

{A ∈ E : v ∈ A} . (76)

We also introduce the quantum channel

Ψ =
1
n

∑

v∈V

Ψv . (77)

We assume that Ψ is a contraction with respect to the W1 norm, i.e., that

‖Ψ‖W1→W1
= max

Δ∈OT
V

‖Ψ(Δ)‖W1

‖Δ‖W1

≤ 1 − κ

n
(78)

for some κ > 0, in analogy with (74). This contraction property was already
derived in Ollivier’s original article [32] as a generalization of Dobrushin’s
uniqueness condition. Here, we first prove that this condition implies the trans-
portation cost inequality for the Gibbs state ω ≡ ωβ := e−βH/Tr e−βH :
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Theorem 4. With the conditions of the previous paragraph, we have

C(ωβ) ≤ 2n
N2

(1 − e−κ)2
, (79)

where N := maxv∈V |Nv|.
Proof. We have for any state ρ ∈ SV

‖ρ − ωβ‖W1
≤

n∑

i=1

∥∥Ψi−1(ρ) − Ψi(ρ)
∥∥

W1
+ ‖Ψn(ρ) − ωβ‖W1

. (80)

The last term can be controlled by ‖ρ − ωβ‖W1
thanks to the contraction (78):

‖Ψn(ρ) − ωβ‖W1
≤
(
1 − κ

n

)n

‖ρ − ωβ‖W1
≤ e−κ ‖ρ − ωβ‖W1

. (81)

On the other hand, the sum on the right-hand side of (80) can be controlled
as follows:

n∑

i=1

∥∥Ψi−1(ρ) − Ψi(ρ)
∥∥

W1
≤ 1

n

n∑

i=1

∑

v∈V

∥∥Ψv(Ψi−1(ρ)) − Ψi−1(ρ)
∥∥

W1

≤ N

n

n∑

i=1

∑

v∈V

∥∥Ψv(Ψi−1(ρ)) − Ψi−1(ρ)
∥∥

1
, (82)

where the last inequality follows by Proposition 3. Proceeding as in the proof
of Lemma 1, by the joint use of Pinsker’s inequality with the recoverability
bound followed by the data processing inequality we can further bound the
trace distances above so that

n∑

i=1

∥
∥∥Ψi−1(ρ) − Ψi(ρ)

∥
∥∥

W1
≤ N

n

n∑

i=1

∑

v∈V

√
2 SM(Ψi−1(ρ)‖Ψv(Ψi−1(ρ)))

≤ N

√√
√√2

n∑

i=1

∑

v∈V

SM(Ψi−1(ρ)‖Ψv(Ψi−1(ρ)))

≤ N

√√
√
√2

n∑

i=1

∑

v∈V

(S(Ψi−1(ρ)‖ωβ) − S(TrvΨi−1(ρ)‖Trvωβ))

≤ N

√√
√
√2

n∑

i=1

∑

v∈V

(S(Ψi−1(ρ)‖ωβ) − S(Ψv(Ψi−1(ρ))‖ωβ))

(1)

≤ N

√√√
√2n

n∑

i=1

(S(Ψi−1(ρ)‖ωβ) − S(Ψ(Ψi−1(ρ))‖ωβ))

≤ N
√

2n S(ρ‖ωβ) . (83)

Inequality (1) above uses the concavity of the entropy, so that for any state ρ
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1
n

∑

v∈V

(S(ρ‖ωβ) − S(Ψv(ρ)‖ωβ)) = S(ρ‖ωβ) +
1
n

∑

v∈V

S(Ψv(ρ))

+
1
n

∑

v∈V

Tr [Ψv(ρ) ln ωβ ]

≤ S(ρ‖ωβ) + S(Ψ(ρ)) + Tr [Ψ(ρ) ln ωβ ]

= S(ρ‖ωβ) − S(Ψ(ρ)‖ωβ) . (84)

Plugging (81) and (83) onto (80), the result follows. �

It remains to prove that (78) is satisfied at high enough temperature.

Proposition 9. There exists an inverse temperature βc > 0 such that for all
β < βc, (78) holds for some constant κ(β) > 0. In particular, whenever N > 1,
one can choose

βc = (5N max
A∈E

‖hA‖∞)−1W
( 1

16d3

)
, (85)

where W denotes the Lambert function and is defined as the inverse of x �→
xex.

Proof. We have

‖Ψ‖W1→W1
= max

Δ∈OT
V

‖Ψ(Δ)‖W1

‖Δ‖W1

. (86)

Any Δ ∈ OT
V can be expressed as [14, Sect. III]

Δ =
∑

v∈V

Δv (87)

such that for any v ∈ V , Δv ∈ OT
V satisfies TrvΔv = 0 and

‖Δ‖W1
=
∑

v∈V

‖Δv‖W1
=

1
2

∑

v∈V

‖Δv‖1 . (88)

Therefore, we have

‖Ψ‖W1→W1
= max

v∈V
max

{‖Ψ(Δv)‖W1
: Δv ∈ OT

V , TrvΔv = 0, ‖Δv‖1 = 2
}

.

(89)

We have

‖Ψ(Δv)‖W1
≤
∥∥∥∥Ψ(Δv) − Iv

d
⊗ TrvΨ(Δv)

∥∥∥∥
W1

+
∥∥∥∥
Iv

d
⊗ TrvΨ(Δv)

∥∥∥∥
W1

=
1
2

∥
∥∥∥Ψ(Δv) − Iv

d
⊗ TrvΨ(Δv)

∥
∥∥∥

1

+ ‖TrvΨ(Δv)‖W1

≤ 1
2

‖Ψ(Δv)‖1 +
1
2

‖TrvΨ(Δv)‖1 + ‖TrvΨ(Δv)‖W1
, (90)
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where the equality follows from Proposition 2 and 4. Since TrvΔv

= 0, we have Ψv(Δv) = 0, and
1
2

‖Ψ(Δv)‖1 ≤ 1
2n

∑

w∈V \v

‖Ψw(Δv)‖1 ≤ 1 − 1
n

. (91)

For any w ∈ V \Nv, we have

TrvΨw(Δv) = Ψw(TrvΔv) = 0 . (92)

Then,

TrvΨ(Δv) =
1
n

∑

w∈Nv\v

TrvΨw(Δv) . (93)

We have for any w ∈ Nv\v, recalling that v ∈ Nw,

TrNw\vTrvΨw(Δv) = TrNw
Ψw(Δv) = TrNw

Δv = 0 , (94)

therefore,

‖TrvΨw(Δv)‖W1
≤ (N − 1) ‖TrvΨw(Δv)‖1 , (95)

and

‖TrvΨ(Δv)‖W1
≤ N − 1

n

∑

w∈Nv\v

‖TrvΨw(Δv)‖1 . (96)

Moreover,

‖TrvΨ(Δv)‖1 ≤ 1
n

∑

w∈Nv\v

‖TrvΨw(Δv)‖1 . (97)

Putting together (90), (91), (96) and (97), we get

‖Ψ(Δv)‖W1
≤ 1 − 1

n
+

N − 1
2

n

∑

w∈Nv\v

‖TrvΨw(Δv)‖1

≤ 1 − 1

n
+

N − 1
2

n

∑

w∈Nv\v

(‖ωw ⊗ TrvwΔv‖1 + 2 ‖Ψw − ωw ⊗ Trw‖�
)

= 1 − 1

n
+

2N − 1

n

∑

w∈Nv\v

‖Ψw − ωw ⊗ Trw‖� , (98)

where ωw ⊗Trw is the quantum channel that replaces with ωw the state of the
site w. We then have

‖Ψ‖W1→W1
≤ 1 − 1

n
+

2N − 1
n

∑

w∈Nv\v

‖Ψw − ωw ⊗ Trw‖� . (99)

We have

‖Ψw − ωw ⊗ Trw‖�

≤
∫

R

∥∥
∥ω

1−it
2 ω

it−1
2

wc (Iw ⊗ Trw [·]) ω
− it+1

2
wc ω

1+it
2 − ωw ⊗ Trw [·]

∥∥
∥

�
dμ0(t) .

(100)
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Since the Hamiltonian terms hA commute we have that, given Hv :=
∑

A
v hA,

ω
1−it

2 ω
it−1

2
vc = e−β 1−it

2 Hv

(
Trv

[
e−βHv

]) it−1
2

. (101)

Now,
∥∥∥ω

1−it
2 ω

it−1
2

vc − d
it−1

2 I

∥∥∥
∞

≤
∥∥∥e−β 1−it

2 Hv − I

∥∥∥
∞

∥∥∥
(
Trv

[
e−βHv

]) it−1
2
∥∥∥

∞

+
∥
∥∥
(
Trv

[
e−βHv

]) it−1
2 − d

it−1
2 I

∥
∥∥

∞
(1)

≤ β

√
1 + t2

2
‖Hv‖∞ eβ

√
1+t2
2 ‖Hv‖∞d− 1

2 e
β
2 ‖Hv‖∞

+
√

1 + t2

2
M1+

√
1+t2
2 d

∥∥∥d−1Trv

[
e−βHv

]− I

∥∥∥
∞

≤ β
√

1 + t2‖Hv‖∞ d1+

√
1+t2
2 eβ‖Hv‖∞

(
2+

√
1+t2
2

)

≡ fv(β, t) . (102)

Inequality (1) above follows from the operator convexity of x �→ x− 1
2 as

well as Lemma 6, where M := max{‖Trv

[
e−βHv

]‖∞, ‖Trv

[
e−βHv

]−1‖∞, d} ≤
d eβ‖Hv‖∞ . Moreover,

e−2β‖Hv‖∞d−1
I ≤ ωv ≤ e2β‖Hv‖∞d−1

I ⇒ ‖ωv − d−1
I‖1 ≤ 2β‖Hv‖∞ e2β‖Hv‖∞ .

(103)

Therefore,
∥∥∥ω

1−it
2 ω

it−1
2

vc (Iv ⊗ Trv [·]) ω
− it+1

2
vc ω

1+it
2 − ωv ⊗ Trv [·]

∥∥∥
�

≤ d
1
2
(
eβ‖Hv‖∞ + 1

)
fv(β, t) + ‖d−1

I − ωv‖∞

≤ d
1
2
(
eβ‖Hv‖∞ + 1

)
fv(β, t) + 2β‖Hv‖∞ e2β‖Hv‖∞ , (104)

and the integrand in (100) tends to zero pointwise for β → 0. On the other
hand, we have for any t ∈ R

∥∥∥ω
1−it

2 ω
it−1

2
vc (Iv ⊗ Trv [·]) ω

− it+1
2

vc ω
1+it

2 − ωv ⊗ Trv [·]
∥∥∥

�

≤
∥∥∥ω

1−it
2 ω

it−1
2

vc (Iv ⊗ Trv [·]) ω
− it+1

2
vc ω

1+it
2

∥∥∥
�

+ ‖ωv ⊗ Trv [·]‖�

≤ 2 , (105)

therefore the integrand in (100) is uniformly bounded. Then, we get for all
t ∈ R+ that

‖Ψv − ωv ⊗ Trv‖� ≤ d
1
2
(
eβ‖Hv‖∞ + 1

)
fv(β, t) + 2β‖Hv‖∞ e2β‖Hv‖∞ + 2μ0([−t, t]c)

(106)

Therefore, for any 0 < κ < 1 there exists β(κ) > 0 such that condition (78) is
satisfied for all 0 ≤ β ≤ β(κ). More precisely, in view of (106) and (98), it is
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sufficient that

4β
√

1 + t2C d
3+

√
1+t2
2 eβC

(
3+

√
1+t2
2

)
+ 2μ0([−t, t]c) ≤ N − 1

2N − 1
(107)

where C := supv ‖Hv‖∞. Moreover, it is clear that μ0([−t, t]c) ≤ 2e−πt. The
result follows after choosing t so that the exponentially decaying term 4e−πt

counts for at most half the upper bound and solving (107) for βc, up to some
numerical simplifications. �

Remark 5. The lower bound (85) can be compared to that in the classical
setting [32, Example 17] (see also [34]): there, the author showed that for a
Hamiltonian of the form U(S) := −∑

x∼y∈G S(x)S(y) − H
∑

x S(x), where
S(x) ∈ {−1, 1} denotes the spin configuration at the site x of a graph G, i.e.,
d = 2,

βc ≥ 1
2

ln
(N + 1

N − 1

)
∼N→∞

1
N

,

which shows asymptotic optimality of our result, up to numerical multiplicative
constants. For comparison, the exact value of βc for the Ising model on the
regular infinite tree with degree N is known to be equal to 1

2 ln
(

N
N−2

)
.

4.1. Auxiliary Lemma

Lemma 6. For any positive, definite matrices A,B and all z ∈ C,

‖Az − Bz‖∞ ≤ |z| max{‖A‖∞, ‖A−1‖∞, ‖B‖∞, ‖B−1‖∞}1+| Re(z)| ‖A − B‖∞ ,
(108)

Proof. It suffices to use a linear interpolation between A and B: A(s) :=
sA + (1 − s)B. We have

Az − Bz =

∫ 1

0

d

ds
A(s)z ds

= z

∫∫

[0,1]2
A(s)zu d

ds
ln(A(s)) Az(1−u) dsdu

= z

∫∫

[0,1]2

∫ ∞

0

A(s)zu(A(s) + v)−1 (A − B)(A(s) + v)−1

A(s)z(1−u) dvduds . (109)

Then,

‖Az − Bz‖∞ ≤ |z|
∫ 1

0

∫ ∞

0

‖A(s)Re(z)‖∞ ‖(A(s) + v)−1‖2
∞ ‖A − B‖∞ dvds

≤ |z| ‖A − B‖∞ M(z)
∫ 1

0

‖A(s)−1‖∞ ds

≤ |z|M(z) · M ′ ‖A − B‖∞ . (110)

by the operator convexity of x �→ x−1 where M(z) := maxs∈[0,1] ‖(sA + (1 −
s)B)Re(z)‖∞ and M ′ := max{‖A−1‖∞, ‖B−1‖∞}. The result follows by oper-
ator convexity of the inverse function and further simple estimates. �
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5. Modified Logarithmic Sobolev Inequalities

In this section, we pursue a different approach to prove transportation cost in-
equalities for W1, namely through the existence of a non-commutative entropic
inequality known as the modified logarithmic Sobolev inequality [35,36]. In or-
der to introduce our main result, we need a variation of the Lipschitz constant
that was introduced in [13]. This definition departs from a noncommutative
differential structure, which we define below (see [37]):

Definition 1. (Differential structure) A set of operators Lk ∈ OV and con-
stants ωk ∈ R define a differential structure {Lk, ωk}k∈K for a full rank state
ω ∈ SV if

1 {Lk}k∈K = {L†
k}k∈K;

2 {Lk}k∈K consists of eigenvectors of the modular operator Δω(X) :=
ωXω−1 with

Δω(Lk) = e−ωkLk . (111)

Such a differential structure can be used to provide the set of matrices
with a Lipschitz constant that is tailored to ω, see, e.g., [13,37] for more on
this. In order to distinguish that constant from ‖.‖L, we refer to it as the
differential Lipschitz constant and denote it by |||∇X|||. It is defined as:

|||∇X||| :=

(
∑

k∈K
(e−ωk/2 + eωk/2)‖∂kX‖2

∞

)1/2

, (112)

where ∂kX ≡ [Lk,X]. For ease of notations, we will denote the differential
structure by the couple (∇, ω). The notion of a differential structure is also in-
timately connected to that of the generator of a quantum dynamical semigroup
converging to ω [37], and properties of that semigroup immediately translate
to properties of the metric. This is because the differential structure can be
used to define an operator that behaves in an analogous way to the Laplacian
on a smooth manifold, which in turn induces a heat semigroup. We refer to
[13,37] for more details on this connection and interpretation.

When the state ω is a quantum Gibbs state corresponding to a local, com-
muting Hamiltonian associated with a uniformly bounded interaction defined
on a lattice V ⊂⊂ Z

D, the differential structure (∇, ω) can be chosen as local.
This means that the operators Lk ≡ Li,α are indexed by a site i ∈ V and an
index α of a set Γ whose cardinality only depends on the local dimension d and
the locality κ of ω. Moreover, we assume that the operators Li,α are supported
on a neighborhood Ni of site i of diameter r ≡ r(κ) and the corresponding
constants ωi,α are uniformly bounded: supi∈ZD maxα∈Γ |ωi,α| ≡ Ω < ∞. The
definition in Eq. (112) yields a metric on states by duality:

W∇(ρ, ω) := sup
X=X†, |||∇X|||≤1

|Tr (X(ρ − ω))| .

Proposition 10. Given the Gibbs state ω of a local commuting Hamiltonian H
on V ⊂⊂ Z

D with |V | = n and associated local differential structure (∇, ω),
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the following bound holds for all ρ ∈ SV :

‖ρ − ω‖W1
≤ C

√
n W∇(ρ, ω) ,

for some constant C independent of n.

Proof. By duality, it is equivalent to prove that for all H ∈ OV

|||∇H||| ≤ C
√

n ‖H‖L .

First, we have

|||∇H||| =
(∑

i∈V

∑

α∈Γ

(e−ωi,α/2 + eωi,α/2) ‖[Li,α,H]‖2
∞
) 1

2
(113)

≤
√

n|Γ|
√

2 eΩ/2 max
i∈V

max
α∈Γ

‖[Li,α,H]‖∞ . (114)

Now, since for each pair (i, α), Li,α is supported on a neighborhood Ni of site
i ∈ V ,

‖[Li,α,H]‖∞ =
∥∥[Li,α,H − INi

d|Ni| ⊗ TrNi
(H)]

∥∥
∞ (115)

≤ 2 ‖Li,α‖∞
∥∥H − INi

d|Ni| ⊗ TrNi
(H)

∥∥
∞ . (116)

Next, by a telescopic sum argument, we can further control the last infinity
norm on the right hand side above as follows: given an arbitrary ordering of
the region Ni,

∥∥H − INi

d|Ni| ⊗ TrNi
(H)

∥∥
∞

(1)

≤
|Ni|∑

j=1

∥
∥∥
(
I1...j−1

dj−1
⊗ Tr1...j−1 − I1...j

dj
⊗ Tr1...j

)
(H)

∥
∥∥

∞
(117)

(2)

≤ |Ni| max
j∈Ni

‖H − Ij

d
⊗ Trj(H)‖∞ , (118)

where (1) follows from the triangle inequality, whereas (2) follows from the
fact that the maps I1...j−1

dj−1 ⊗ Tr1...j−1 are completely positive and unital, and
therefore contract the operator norm. All in all, we have derived the following
bound on the differential Lipschitz constant of H:

|||∇H||| ≤
√

n|Γ| 2
√

2 eΩ/2 max
i∈V

max
α∈Γ

‖Li,α‖∞ |Ni| max
j∈Ni

‖H − Ij

d
⊗ Trj(H)‖∞

(119)
(3)

≤ d2 − 1
d2

√
n|Γ| 2

√
2 eΩ/2 max

i∈V
max
α∈Γ

‖Li,α‖∞ |Ni| ‖H‖L (120)

≡ C
√

n max
i∈V

‖H − Ij

d
⊗ Trj(H)‖∞ , (121)

for some constant C independent of n, and where (3) follows from Proposi-
tion 6. �
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The advantage of W1 as compared to W∇ is that it does not depend
on the state ω. On the other hand, the bound derived in Proposition 10 can
be used in conjunction with recently proved transportation cost inequalities
for W∇ through the proof of the existence of a modified logarithmic Sobolev
inequality in order to get analogous inequalities for W1 (see [38] for more
details):

Theorem 5. Let ω be the Gibbs state of a local commuting Hamiltonian H
at inverse temperature β on V ⊂⊂ Z

D. Then, there exists a critical inverse
temperature βc such that C(ωβ) ≤ C n for some constant C independent of
n = |V | whenever β < βc if any of the two conditions below is satisfied:

(i) H is classical;
(ii) H is a nearest neighbor Hamiltonian.

Moreover, we can drop the assumption of 2-locality in the 1D case, where βc =
0 at the cost of getting a slightly worsened constant C(ωβ) ≤ Cnpolylog(n),
so that we recover the result of Theorem 2.

Proof. In [19,20,38], the existence of local differential structures associated
with ω that satisfy the so-called modified logarithmic Sobolev inequality was
proved under the conditions of the theorem. Moreover, the modified loga-
rithmic Sobolev inequality implies the transportation cost inequality for the
differential Wasserstein distance [13]: there exists a constant C ′ independent
of n such that

W∇(ρ, ω) ≤
√

C ′ S(ρ‖ω) (122)

for all state ρ ∈ SV . This fact in conjunction with Proposition 10 allows us to
conclude. �

6. Local Indistinguishability

In this section, we provide a transportation cost inequality under a condition
of local indistinguishability [39–41]. In the classical setting, this condition con-
stitutes a weakening of Dobrushin Shlosman’s mixing condition [8] recently
considered by Marton [7]. Moreover, as opposed to the latter, our technique
has the benefit of not requiring the local specifications of the state to be uni-
formly lower bounded by a positive number, at the cost of getting a slightly
worsened constant.

6.1. Transportation Cost from Local Indistinguishability

We start by proving our general result in the quantum setting. Here, we assume
that the n = (2m+1)D qudits are arranged on a D-dimensional regular lattice
V := [−m,m]D. Before we state our main result, we need to introduce the
notion of a non-commutative conditional expectation.



Vol. 23 (2022) Quantum Concentration Inequalities 3413

Definition 2. (Conditional expectations) Let N ⊆ BV be a von Neumann sub-
algebra1 of BV . A conditional expectation onto N is a completely positive
unital map E†

N : BV → N satisfying

(i) for all X ∈ N , E†
N (X) = X;

(ii) for all a, b ∈ N ,X ∈ BV , E†
N (aXb) = aEN (X)b.

We denote by EN its adjoint map with respect to the trace inner product, i.e.,

Tr(EN (X)Y ) = Tr(XE†
N (Y )) .

As a simple example, we consider a full-rank state σ ∈ SV and let (etL)t≥0

be a quantum Markov semigroup. Under the following detailed balance condi-
tion, the limit limt→∞ etL†

= E†
N is a conditional expectation onto the algebra

N of fixed points of the semigroup:

∀X,Y ∈ BV , Tr
(
σ X†L†(Y )

)
= Tr

(
σ L†(X)†Y

)
.

Next, for a state ρ, the relative entropy with respect to N is defined as follows

S(ρ‖N ) := S(ρ‖EN (ρ)) = inf
EN (σ)=σ

S(ρ‖σ) ,

where the infimum is always attained by σ = EN (ρ). Indeed, for any σ satis-
fying EN (σ) = σ, we have the following chain rule (see [42, Lemma 3.4])

S(ρ‖σ) = S(ρ‖EN (ρ)) + S(EN (ρ)‖σ) . (123)

Hence, the infimum is attained if and only if S(EN (ρ)‖σ) = 0.

Definition 3. (Local indistinguishability) Let {NC}C⊆V be a set of subalgebras
of BV such that BCc ⊂ NC and E := {EC}C⊆V be a set of compatible condi-
tional expectations E†

C : BV → NC acting non-trivially on region C, i.e., they
satisfy the property that for any C ⊆ C ′, EC ◦ EC′ = EC′ ◦ EC = EC′ . Then,
we say that E satisfies local indistinguishability if there exists a fast decaying
function ϕ : N → R independent of V such that for every regions XY Z ⊂ V
with dist(X,Z) ≥ �, and for all states ρ ∈ SV ,

‖EY Z ◦ (EXY Z − EXY )(ρ)‖1 ≤ |XY Z|ϕ(�) ,

For instance, take a product state ω ∈ SV and for each region C ⊆ V ,
denote EC(ρ) = TrC(ρ) ⊗ ωC . One can easily verify that the maps EC are
conditional expectations and satisfy the local indistinguishability condition
with ϕ = 0. We are now ready to state and prove the main theorem of this
section. For a strictly decreasing function ϕ : N → R+ and a positive real
number a > 0, we denote by ϕ−1(a) := min{� ∈ N : ϕ(�) ≤ a}.

Theorem 6. Let E be a set of compatible conditional expectations satisfying
local indistinguishability with fast decaying function ϕ. Then, for all hypercubes
V0 ⊂ V and all ρ ∈ SV ,

‖ρ − EV0(ρ)‖W1
≤ 2

√
20 (7ϕ−1(|V0|−3/2))D

√
|V0|S(ρ‖EV0(ρ)) , (124)

1We recall that a finite dimensional von Neumann algebra is a matrix algebra that is close
under taking the adjoint.
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Figure 1. Geometry of the lattice in the proof of Theorem 6
with tiling by regions A+ := ∪iA+,i, B+ := ∪iB+,i and C :=
∪Ci

for some fixed constant c of order 1. In particular, whenever EV (ρ) = ωV ∈
SV for all states ρ, and assuming the exponential clustering function ϕ(�) :=
κe−�/ξ, the state ωV satisfies TC(c) with c = O(npolylog(n)).

Proof. For sake of clarity, we provide the proof for D = 2 only, although
the general case follows similarly. First, we partition the hypercube V0 into
regions A, B+ and C+ in the same way as done in [41] (see also Fig. 1). Then,
by triangle inequality

‖ρ − EV0(ρ)‖W1

≤ ‖ρ − EA+EB−C(ρ)‖W1 + ‖EA+EB−C(ρ) − EV0(ρ)‖W1

≤ ‖(id − EA+EB+EC)(ρ)‖W1 + ‖EA+(EB+EC − EB−C)(ρ)‖W1

+ ‖(EA+EB−C − EV0)(ρ)‖W1

≤ (I) + 2|Amax
+ | (II) + (III) , (125)

where

(I) :=‖(id − EA+EB+EC)(ρ)‖W1

(II) :=‖(EB+EC − EB−C)(ρ)‖W1

(III) :=‖(EA+EB−C − EV0)(ρ)‖W1

and where the last bound in (125) follows from Proposition 5 with |Amax
+ | :=

maxi |A+,i|. Now, we control each of the norms on the right-hand side of (125)
separately. First, we denote by EC(0) := id, C(i) := ∪j≤iCj given an arbitrary
ordering of the connected subregions in C, and similarly for the other regions
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A+ and B+. Then,

(I) ≤‖(id − EC)(ρ)‖W1 + ‖(EC − EB+EC)(ρ)‖W1

+ ‖(EB+EC − EA+EB+EC)(ρ)‖W1 (126)

≤|Cmax|
∑

i∈IC

‖(EC(i−1) − EC(i))(ρ)‖1

+ |Bmax
+ |

∑

i∈IB+

‖(E
B

(i−1)
+

− E
B

(i)
+

)(EC(ρ))‖1

+ |Amax
+ |

∑

i∈IA+

‖(E
A

(i−1)
+

− E
A

(i)
+

)EB+EC(ρ)‖1 (127)

≤|V max
0 |

{√
2|IC |

√∑

i∈IC

S(EC(i−1)(ρ)‖EC(i)(ρ))

+
√

2|IB+ |
√ ∑

i∈IB+

S(E
B

(i−1)
+

(EC(ρ))‖E
B

(i)
+

(EC(ρ)))

+
√

2|IA+ |
√ ∑

i∈IA+

S(E
A

(i−1)
+

EB+EC(ρ)‖E
A

(i)
+

EB+EC(ρ))
}

(128)

≤|V max
0 |

√
2|Imax|

{√
S(ρ‖EC(ρ)) +

√
S(EC(ρ)‖EB+EC(ρ))

+
√

S(EB+EC(ρ)‖EA+EB+EC(ρ))
}

(129)

with

|Cmax| := max
i

|Ci|
|V max

0 | := max{|Amax
+ |, |Bmax

+ |, |Cmax|}
|Imax| := max{|IA+ |, |IB+ |, |IC |}

where |IC | denotes the number of connected components in C, and similarly
for the other sets. Above, (126) follows by the triangle inequality, (127) by
the triangle inequality and Proposition 3, and (128) by Pinsker’s inequality as
well as Jensen’s inequality for x �→ x

1
2 . (129) follows from the chain rule in

(123), and the fact that the regions Ci, resp. A+,i, resp. B+,i, do not overlap,
so that for instance EA+,i

EA+,j
= EA+,j

EA+,i
= EA+,j∪A+,i

. Next, we control
the second norm on the right-hand side of (125): using Proposition 3 , we have

(II) ≤ 2|B+| ‖(EB+EC − EB−C)(ρ)‖1

= 2|B+| ‖(EB+EC − EB−C)(EC − EB−C)(ρ)‖1 (130)

≤ 2|B+| ‖EB+EC − EB−C‖1→1 ‖(EC − EB−C)(ρ)‖1

≤ 2|B+| max
ρ′∈SV

‖EB(EC − EB−C)(ρ′)‖1 ‖EC(ρ) − EB−C(ρ)‖1 (131)

≤ 2 |B+| |B−C|ϕ(�) ‖EC(ρ) − EB−C(ρ)‖1 (132)
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≤ 2 |B+| |B−C|ϕ(�)
√

2S(EC(ρ)‖EB−C(ρ)) . (133)

Above, (130) follows form the compatibility of the conditional expectations,
and (131) from EB+ ◦ EB = EB+ and the monotonicity of the trace-distance
under such CPTP map. (132) follows from the condition of local indistin-
guishability when taking X = C\B, Y = B\B− and Z = B−, and assuming
that dist(X,Z) ≥ �. Finally, (133) follows from an application of Pinsker’s
inequality. Similarly, we find

(III) ≤ 2 |A+| |V0|ϕ(�)
√

2S(EB−C(ρ)‖EV0(ρ)) (134)

Then, by inserting (129), (133) and (134) into (125), we have

‖ρ − EV0(ρ)‖W1

≤ 2
√

2max
{|V max

0 |
√

|Imax|, |A+| |V0| ϕ(�), |B+| |B−C|ϕ(�)
}

{√
S(ρ‖EC(ρ)) +

√
S(EC(ρ)‖EB+EC(ρ)) +

√
S(EB+EC(ρ)‖EA+EB+EC(ρ))

+
√

S(EB−C(ρ)‖EV0(ρ)) +
√

S(EC(ρ)‖EB−C(ρ))
}

≤ 2
√

10max
{|V max

0 |
√

|Imax|, |A+| |V0| ϕ(�), |B+| |B−C|ϕ(�)
}

(
S(ρ‖EC(ρ)) + S(EC(ρ)‖EB+EC(ρ)) + S(EB+EC(ρ)‖EA+EB+EC(ρ))

+ S(EC(ρ)‖EB−C(ρ)) + S(EB−C(ρ)‖EV0(ρ))
) 1

2 (135)

≤ 2
√

20max
{|V max

0 |
√

|Imax|, |A+| |V0| ϕ(�), |B+| |B−C|ϕ(�)
}
S(ρ‖EV0(ρ))

1
2

(136)

where (135) is another directly application of Jensen’s inequality for x �→ x
1
2 ,

whereas (136) follows from two uses of the chain rule (123) after adding the
positive term S(EA+EB+EC(ρ)‖EV0(ρ)) to the square root and a final use
of the data processing inequality. The result then follows after choosing the
length � := ϕ−1(|V0|−3/2) so that

max
{|A+| |V0|, |B+| |B−C|}ϕ(�) ≤ |V0|2ϕ(�) ≤ |V max

0 |
√

|Imax| .
With this choice, and estimating |V max

0 | ≤ (7�)D the bound found in (136) can
be further controlled by

‖ρ − EV0(ρ)‖W1 ≤ 2
√

20 (7�)D
√

|V0|S(ρ‖EV0(ρ)) (137)

≤ 2
√

20 (7ϕ−1(|V0|−3/2))D
√

|V0|S(ρ‖EV0(ρ)) . (138)

�

6.2. Classical Case

In this section, we restrict our analysis to classical conditional expectations
and probability measures. In this setting, it is easy to see that the property
of local indistinguishability is implied by the following condition. Here, with a
slight abuse of notations, we will use the same symbol for a probability measure
μ on the Borel sets of [d]V and its corresponding probability mass function.
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Definition 4 (Local indistinguishability, classical case.) Let μ be a probability
measure on [d]V , and {μC}C⊆V be a set of compatible conditional probability
measures μC(.|xCc) acting on the sets [d]C , i.e., they satisfy the property that
for any C ⊆ C ′, EμC

◦ EμC′ = EμC′ ◦ EμC
= EμC′ . Then, we say that the

measure μ satisfies local indistinguishability if there exists a fast decaying
function ϕ : N → R+ such that for every regions V ′ = XY Z ⊂ V such that
dist(i, j) ≥ � for any i ∈ X and j ∈ Z,

max
xX∈[d]X

max
xV ′c ∈[d]V ′c

∑

yV ′

∣∣μY |XV ′c(yY |xXxV ′c)μXY |ZV ′c(yXY |yZxV ′c)

− μV ′|V ′c(yV ′ |xV ′c)
∣∣ ≤ |V ′|ϕ(�) ,

where ∂Z denotes the boundary of Z.

Corollary 1. Let μ be a probability measure on [d]V satisfying local indistin-
guishability with fast decaying function ϕ. Then, for all ν << μ,

W1(ν, μ) ≤ 2
√

20 (7ϕ−1(n−3/2))D
√

nS(ν‖μ) . (139)

Equivalently, the measure μ satisfies the following sub-Gaussian tail: for any
function f such that ‖f‖L ≤ 1,

Pμ

(
|f(X) − Eμ[f(X)]| > t

)
≤ 2 exp

(
− t2

80n(7ϕ−1(n−3/2))2D

)
. (140)

7. Gaussian Concentration

As mentioned before, the classical transportation cost inequalities for a mea-
sure μ are equivalent to the sub-Gaussian bounds on the tail probability of
any Lipschitz function f of a random variable X drawn according to μ. One
way to see this is by using the variational formulation of the relative entropy
in order to bound the Laplace transform of f(X). In the non-commutative
setting, this leads to the following characterization of the transportation cost
constant C(ω):

Proposition 11. For any ω ∈ SV ,

C(ω) = 4 sup
K∈OV

ln Tr exp (K + lnω) − Tr [ω K]
‖K‖2

L

, (141)

and the sup can be restricted to K ∈ OV such that Tr [ω K] = 0.

Proof. Let C̃(ω) be the right-hand side of (141). On the one hand, let K ∈ OV

satisfy Tr [ω K] = 0, and let

ρ =
exp (K + lnω)

Tr exp (K + lnω)
∈ SV . (142)

We have

ln Tr exp (K + lnω) = Tr [ρK] − S(ρ‖ω) ≤ ‖ρ − ω‖W1
‖K‖L

−‖ρ − ω‖2
W1

C(ω)
≤ C(ω) ‖K‖2

L

4
, (143)
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therefore C̃(ω) ≤ C(ω).
On the other hand, let ρ ∈ SV , and let K ∈ OV such that

‖K‖L =
2 ‖ρ − ω‖W1

C̃(ω)
, Tr [ω K] = 0 , Tr [ρK] =

2 ‖ρ − ω‖2
W1

C̃(ω)
.

(144)

We have

S(ρ‖ω) ≥ Tr [ρK] − ln Tr exp (K + lnω) ≥ ‖ρ − ω‖2
W1

C̃(ω)
, (145)

where the last inequality follows from the definition of C̃(ω), therefore C(ω) ≤
C̃(ω), and the claim follows. �

In the tracial setting [10], and more generally whenever [K,ω] = 0 the
quantity Tr exp(K + lnω) can be interpreted as the Laplace transform of K
in the state ω, and therefore the equivalence between Gaussian concentration
and the transportation cost inequality holds. However, this is no longer true
when K and ω do not commute, and the following bound can turn out to be
strictly stronger to the transportation cost inequality as a consequence of the
Golden–Thompson inequality: for any K ∈ OV such that Tr[ωK] = 0,

ln Tr
[
ω eK

] ≤ C ′(ω)
4

‖K‖2
L . (146)

In other words, C ′(ω) ≥ C(ω). Recently, bounds of the form of (146) were ob-
tained for some subclasses of Lipschitz observables K (typically local observ-
ables) when the ω is the Gibbs state of a (possibly non-commuting) quasi-local
Hamiltonian H [43] using cluster expansion techniques. However, the existence
of the Gaussian concentration inequality for general Lipschitz observables was
left open.

Here instead, we pursue a different approach using our transportation cost
inequality. In particular, we prove that (146) can be approximately recovered
for Gibbs states of commuting Hamiltonians for a larger class of Lipschitz
observables than those considered in [43]. For this, we adapt the result of [13,
Theorem 8] which was written for W1,∇ to the case of W1. In this section, we
denote by XR, respectively, XI the real, respectively, imaginary parts of an
operator X ∈ BV . Given an observable O ∈ OV with spectral decomposition
O :=

∑
λ λPλ, a state ω ∈ SV and a real number r ∈ R, we denote by

Pω(O ≥ r) :=
∑

λ≥r

Tr(ωPλ) (147)

the probability of getting an eigenvalue λ ≥ r when measuring O on the
state ω.
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Theorem 7. Assume that the full-rank state ω ∈ SV satisfies TC(c) for some
c > 0. Then, for any observable O ∈ OV ,

Pω

(|O − Tr(ωO) I| ≥ r
) ≤ 2 exp

(

− r2

4c max
{‖(ω− 1

2 Oω
1
2 )R‖2

L, ‖(ω− 1
2 Oω

1
2 )I‖2

L

}

)

.

(148)

Whenever [O,ω] = 0 the bound can be tightened into

Pω

(|O − Tr(ωO) I| ≥ r
) ≤ 2 exp

(
− r2

c‖O‖2
L

)
. (149)

Therefore, whenever ω ∈ SV corresponds to the Gibbs state of a local commut-
ing Hamiltonian on a hypergraph at inverse temperature β, the above bounds
hold as long as 0 < β < βc where βc is defined in (85).

Proof. Given X ∈ BV , we denote by X := XR+iXI its decomposition onto real
and imaginary parts. We also assume that Tr(ωX) = 0 and ‖XR‖L, ‖XI‖L ≤ 1.
By assumption, we have that for any ρ ∈ SV

|Tr(ρX)| ≤ |Tr(ρXR)| + |Tr(ρXI)| ≤ 2 ‖ρ − ω‖W1
≤ 2

√
c S(ρ‖ω) . (150)

Then, since infθ>0

(
a
θ + bθ

2

)
=

√
2ab for any a, b ≥ 0, we have that for all

θ > 0:
∣∣Tr(ρX)

∣∣ ≤
√

2
S(ρ‖ω)

θ
+

c θ√
2

⇔ θ
∣∣Tr(ρX)

∣∣− c√
2

θ2 ≤
√

2 S(ρ‖ω) .

(151)

Next, we further upper bound the relative entropy in terms of the maxi-
mal divergence Ŝ(ρ‖ω) := Tr

[
ω
(
ω− 1

2 ρω− 1
2
)
ln(ω− 1

2 ρω− 1
2 )
]

[44]. Choosing ρ =
ω

1
2 eθOω

1
2 /Tr(ωeθO) for some observable O ∈ OV , we arrive at

θ
∣∣Tr(ρX)

∣∣− c√
2

θ2 ≤
√

2 θ
Tr(ωeθOO)
Tr(ωeθO)

−
√

2 ln
(
Tr(ωeθO)

)
. (152)

Next, we choose X =
√

2ω− 1
2 Oω

1
2 , so that the previous inequality reduces to

ln
(
Tr(ωeθO)

) ≤ c

2
θ2 . (153)

The above inequality can be interpreted as a bound on the log-Laplace trans-
form of the non-commutative variable O in the state ω. By a use of Markov’s
inequality followed by an optimization over the variable θ > 0, we finally get

Pω

(∣∣O
∣
∣ ≥ r

) ≤ 2e− r2
2c . (154)

The result follows after simple rescalings. The tightening in the case of an
observable commuting with ω can be found by following the same steps as the
ones above. �

In general, there is no way to precisely relate the Lipschitz constants
of the real and imaginary parts of ω− 1

2 Oω
1
2 to the Lipschitz constant of O

when [O,ω] �= 0. In the next result, we, however, prove that the constants
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have similar scalings in the case of a commuting Gibbs measure ω of a local
Hamiltonian.

Lemma 7. Let O =
∑

A⊆V λA OA ⊗ IAc be the decomposition of an observable
O in OV , where for each subregion A, OA is exactly supported in A with
‖OA‖∞ ≤ 1, and λA ∈ R. Let further ω be the Gibbs state of a geometrically
k-local, commuting Hamiltonian HV :=

∑
B⊂V hB⊗IBc at inverse temperature

β. Then,

‖(ω− 1
2 Oω

1
2 )R‖L , ‖(ω− 1

2 Oω
1
2 )I‖L ≤ 4max

i∈V

∑

A⊂V
A∂k
i

|λA| exp
(
β

∑

B∩A �=∅
‖hB‖∞

)
,

(155)

where A∂k := {j ∈ V : dist(j, A) ≤ k} denotes the k-enlargement of A.
In particular, whenever the state ω satisfies TC(c) with c = O(n), any local
observable O gives rise to a sub-Gaussian random variable variance O(n) when
measured in the state ω.

Proof. We prove the bound for the real part of (ω− 1
2 Oω

1
2 )R since the proof for

the imaginary part follows the exact same reasoning. First, by Proposition 6,
since for any A ⊂ V , (σ− 1

2 OAσ
1
2 )R is supported in region A∂k, we have that

‖(ω− 1
2 Oω

1
2 )R‖L ≤ 2 max

i∈V

∥
∥
∥
∑

A⊂V
A∂k�i

λA

[
(ω− 1

2 OAω
1
2 )R − Tri

[
(ω− 1

2 OAω
1
2 )R

]⊗ Id

d

]∥∥
∥

∞

(156)

≤ 4 max
i∈V

∑

A⊂V
A∂k�i

|λA| ‖ω− 1
2 OAω

1
2 ‖∞ (157)

≤ 4 max
i∈V

∑

A⊂V
A∂k�i

|λA| ‖eβ
∑

B∩A�=∅ hB OAe−β
∑

B∩A�=∅ hB ‖∞ (158)

≤ 4 max
i∈V

∑

A⊂V
A∂k�i

|λA| eβ
∑

B∩A�=∅ ‖hB‖∞ . (159)

The result follows. �

7.1. Comparison to Previous Tail Bounds

Our main result can be compared to other recently derived concentration
bounds for quantum Gibbs states: in [45, Corollary 5.4], the authors consider a
product state ρ =

⊗
v∈V ρv ∈ SV as well as a Hamiltonian H =

∑
A∈Ek,m

hA,
where the set Ek,m of subsets of V has the following properties: for any
A ∈ Ek,m,

(i) |A| ≤ k;
(ii)

∣∣{A′ ∈ Ek,m : A ∩ A′ �= ∅}∣∣ ≤ m.
With these conditions, he was able to prove that

Pρ

(|H − Tr(ρH)| ≥ r
) ≤ 2e− r2

4eN3kn ,
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where number N := maxv∈V

∑
A∈Ek,m|v∈A 1 is the number of local terms

acting non-trivially on spin v. A similar bound was previously derived by
Kuwahara [46, Theorem 7], under a notion of g-extensivity: a local Hamiltonian
H is said to be g-extensive if for every spin v,

∑
A∈Ek,m| v∈A ‖hA‖∞ ≤ g. Under

this condition, he shows that

Pρ

(|H − Tr(ρH)| ≥ r
)

= O(1) e
− r2

cn log( r√
n

)
,

where c is a O(1) constant which depends only on k and g. Although these
results recover the Gaussian tails of our Theorem 7 (up to logarithmic over-
heads), they only work for tensor product states and a subclass of Lipschitz
observables. In particular, the tails become trivial whenever the Hamiltonian
is a sum of terms acting on non-intersecting regions A of arbitrary size. In
contrast, our bound is still non-trivial for this class of observables, since their
Lipschitz constant is still O(1).

More recently, Kuwahara and Saito derived new concentration bounds
for Gibbs states of interacting Hamiltonians in order to study the problem of
equivalence of quantum statistical ensembles [43,47] (see Sect. 8): in [47] first,
the authors consider a Gibbs state ω of a local Hamiltonian on a D-dimensional
regular lattice ZD. They further assume the following (r0, ξ) clustering: for any
operators OA, OB supported on the subsets A and B,

|Tr(ωOAOB) − Tr(ωOA)Tr(ωOB)| ≤ ‖OA‖∞ ‖OB‖∞ e− dist(A,B)/ξ, (160)

whenever dist(A,B) ≥ r0. Under this condition, they were able to show in
Equation (S.17) (see also [45, Theorem 4.2] for a similar bound)

Pω

(|O − Tr(ωO)| ≥ r
) ≤ min

{
1, (e + 3eξ)max

(
e−(r2/(cn))

1
D+1

, e− r2

c′�Dn

)}
,

for some constants c, c′ further depending on ξ and D, and where � denotes
the locality of the observable O. Therefore, and although the clustering of
correlations is known to hold at high enough temperature [48], the bound is
suboptimal for two reasons: firstly, whenever r is small enough, the exponent
has the worse scaling r2/(D+1). Secondly, the bounds badly dependence on the
locality of O, and becomes trivial whenever O is a sum of highly non-local
terms. This second limitation also holds for the Gaussian concentration bound
found in [43, Corollary 1] for high-temperature Gibbs states of Hamiltonians
with long-range interactions. In comparison with the works cited above, our
bound always provides better dependence of the tail on the locality of the
observable, albeit under the condition that the Hamiltonian is made of local
commuting terms.

8. Equivalence of Statistical Mechanical Ensembles

The three main ensembles employed in quantum statistical mechanics to com-
pute the equilibrium properties of quantum systems are the canonical ensem-
ble, the microcanonical ensemble and the diagonal ensemble. The quantum
state associated with the canonical ensemble is the Gibbs state, which describes
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the physics of a system that is at thermal equilibrium with a large bath at a
given temperature. The diagonal and microcanonical ensembles both describe
the physics of an isolated quantum system, and the associated states are con-
vex combinations of the eigenstates of the Hamiltonian. The microcanonical
ensemble assumes a uniform probability distribution for the energy in a given
energy shell. The diagonal ensemble includes all the states that are diagonal in
the eigenbasis of the Hamiltonian, and in particular it includes the eigenstates
themselves.

For many quantum systems, the microcanonical and canonical ensembles
give the same expectation values for local observables if the corresponding
states have approximately the same average energy. A lot of effort has been
devoted to determining conditions under which the two ensembles are equiv-
alent [49–52]. The most prominent among such conditions are short ranged
interactions and a finite correlation length, but analytical proofs can be ob-
tained only in the case of regular lattices [52]. The situation is more complex for
the diagonal ensemble. The condition under which this ensemble is equivalent
to the microcanonical and canonical ensembles is called Eigenstate Thermal-
ization Hypothesis (ETH) [53–57], and states that the expectation values of
local observables on the eigenstates of the Hamiltonian are a smooth function
of the energy, i.e., for any given local observable, any two eigenstates with ap-
proximately the same energy yield approximately the same expectation value.
The ETH is an extremely strong condition on the Hamiltonian and several
quantum systems, including all integrable systems, do not satisfy it. A weak
version of the ETH has been formulated [47,58], stating that for any given local
observable, most eigenstates in an energy shell yield approximately the same
expectation value, or, more precisely, that the fraction of eigenstates yielding
expectation values far from the Gibbs state with the same average energy van-
ishes in the thermodynamical limit. The weak ETH implies the equivalence
between the canonical and microcanonical ensembles, but is not sufficient to
prove their equivalence with the diagonal ensemble. Under the hypothesis of
finite correlation length in the Gibbs state, an analytical proof of the weak
ETH is available only for regular lattices [47].

A connection between a transportation cost inequality and the ETH was
made by one of the authors in the case of a regular lattice and a nearest neigh-
bour Hamiltonian [38]. Here, we look at the general problem of the equiva-
lence of the statistical mechanical ensembles and of the weak ETH from the
perspective of optimal mass transport and show that such equivalence can
be formulated as closeness of the respective states in the W1 distance. The
closeness in the W1 distance implies closeness of the expectation values of all
Lipschitz observables, which constitute a significantly larger class than local
observables. Therefore, the perspective of optimal mass transport can signifi-
cantly extend the previous results. Moreover, we will show that the equivalence
of the ensembles is intimately linked to the constant of the transportation cost
inequality for the Gibbs states.

As in the rest of the paper, we consider a quantum system made by n
qudits located at the vertices of a graph with vertex set V . Let us assume
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that a Gibbs state ω ∈ SV satisfies the transportation cost inequality with a
constant

C(ω) ≤ nC , (161)

where C does not depend on n. This condition is satisfied under the hypotheses
of Theorem 2, Theorem 4 or Theorem 5. We stress that, contrarily to the results
of Refs. [47,52], the condition does not require us to restrict to regular lattices,
since Theorem 4 does not need this hypothesis. The following Proposition 12
implies that any state ρ ∈ SV is close in W1 distance to the Gibbs state ω with
the same average energy, provided that ρ and ω have approximately the same
entropy, i.e.,

S(ω) − S(ρ) � n . (162)

Moreover, under the same hypothesis, the average reduced states over one
qudit of ρ and ω are close in trace distance.

Proposition 12. Let ω ∈ SV be a Gibbs state for the Hamiltonian H ∈ OV .
Then, any quantum state ρ ∈ SV with the same average energy as ω satisfies

1
n

‖ρ − ω‖W1
≤
√

C
S(ω) − S(ρ)

n
. (163)

Moreover, let Λ : OV → O(Cd) be the quantum channel that computes the
average marginal state over one qudit, i.e., for any ρ ∈ SV ,

Λ(ρ) =
1
n

∑

v∈V

ρv . (164)

Then,

‖Λ(ρ) − Λ(ω)‖1 ≤ 2

√

C
S(ω) − S(ρ)

n
. (165)

Proof. We have from the transportation cost inequality

‖ρ − ω‖W1
≤
√

C(ω)S(ρ‖ω) =
√

C(ω) (S(ω) − S(ρ)) , (166)

where the last equality follows since Tr [ρ ln ω] = Tr [ω ln ω].
We have from Proposition 7

‖Λ(ρ) − Λ(ω)‖1 ≤ 1

n

∑

v∈V

‖ρv − ωv‖1 ≤ 2

n
‖ρ − ω‖W1

≤ 2

n

√
C(ω) (S(ω) − S(ρ)) ,

(167)

and the claim follows. �

Choosing ρ to be diagonal in the eigenbasis of the Hamiltonian, Proposi-
tion 12 implies that any convex combination of a sufficiently large number of
eigenstates is close in W1 distance to the Gibbs state with the same average
energy. Such number of eigenstates can even be an exponentially small fraction
of the total number of eigenstates appearing in a microcanonical state, since
the uniform superposition of a fraction e−nε of the eigenstates decreases the
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entropy by ε n. Therefore, Proposition 12 constitutes an exponential improve-
ment over the weak ETH.

A natural question is whether also the strong ETH can be captured by
the W1 distance. Unfortunately the answer is negative. Indeed, proving the
strong ETH via optimal mass transport would mean to prove that all the
eigenstates of the Hamiltonian are close in W1 distance to the Gibbs states
with the corresponding average energy. However, Theorem 1 implies that any
state with low entropy, and in particular any pure state, is far from any state
with large entropy, and in particular from a Gibbs state with temperature
Ω(1). More precisely, for any two states ρ, ω ∈ SV ,

‖ρ − ω‖W1
≥ S(ω) − S(ρ) − ln (n + 1) − 1

ln (d2n)
. (168)

Equation (168) also implies that any quantum state which is close in W1

distance to the Gibbs state with the same average energy must have approxi-
mately also the same entropy, and in this sense Proposition 12 is optimal.

8.1. Comparison with Previous Results

To make our result more easily comparable to the literature, let us introduce
more formally the microcanonical ensemble: given the decomposition H =∑

E EP (E), we define the microcanonical ensemble state

ωE,Δ :=
P (E,Δ)

Tr(P (E,Δ))
,

where P (E,Δ) corresponds to the projection onto the subspace spanned by
the eigenvectors whose energy belongs to the interval (E − Δ, E].

Corollary 2. Assume the Gibbs state ω satisfies C(ω) ≤ Cn. Then, for any
Lipschitz observable O,

1
n

∣∣Tr(ωO) − Tr(ωE,ΔO)
∣∣ ≤ ‖O‖L on→∞(1) .

Proof. In view of Proposition 12, it suffices to control the relative entropy
between the microcanonical and canonical ensemble states. Then,

S(ωE,Δ‖ω) = ln
Tr(e−βH)

Tr(P (E, Δ))
+ βTr

[
H

P (E, Δ)

Tr(P (E, Δ))

]
≤ βE + ln

[ Tr(e−βH)

Tr(P (E, Δ))

]
.

(169)

Next, we control the ration Tr(e−βH)
Tr(P (E,Δ)) . For this, we use an argument which

was already used in [47, Equation (S.56)]: First, we have found in (149) that

Pω(|H − Tr(ωH)I| ≥ r) ≤ 2 e
− r2

Cn‖H‖2
L .

Therefore, choosing the interval Δ̃ := (Tr(ωH) −√
Cn ln(4)‖H‖L,Tr(ωH) +√

Cn ln(4)‖H‖L], we have

Tr
[ ∑

E∈Δ̃

e−βE

Tr(e−βH)
P (E)

]
≥ 1

2
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Next, we define

Z̃ := Tr
[ ∑

E∈Δ̃

e−βEP (E)
]

≥ Tr(e−βH)
2

(170)

Choosing a slightly extended interval Δ̃′ := (Tr(ωH) − √
Cn ln(4)‖H‖L −

Δ,Tr(ωH) +
√

Cn ln(4)‖H‖L + Δ], we have

Z̃ ≤
∑

ν∈Z: νΔ∈Δ̃′

Tr(P (νΔ,Δ)) e−βΔ(ν−1) (171)

Now, for E := argmax e−βETr(P (E,Δ)), we have

Tr(νΔ,Δ)e−βδ(ν−1) ≤ eβΔe−βE Tr(P (E,Δ)) .

Replacing in (171), we have that

Z̃ ≤ eβΔ(2 + 2
√

Cn ln(4)‖H‖L/Δ)e−βETr(P (E,Δ))

Finally, using the lower bound (170), we have that

ln
[ Tr(e−βH)
Tr(P (E,Δ))

]
≤ β(Δ − E) + ln(4 + 4

√
Cn ln(4)‖H‖L/Δ)

Therefore, plugging this last bound into (169), we have found that

S(ωE,Δ‖ω) ≤ βΔ + ln(4 + 4
√

Cn ln(4)‖H‖L/Δ) .

Therefore, S(ωE,Δ‖ω) = o(n) whenever Δ = e−o(n), and the result follows.
�

In [47, Theorem 2], it is showed that, under the (r0, ξ)-clustering of cor-
relations (160), for any observable O :=

∑
v Ov where each Ov acts on spin v

as well as other spins w with dist(v, w) ≤ � and has ‖Ov‖∞ ≤ 1,

1
n

∣∣Tr(ωE,ΔO) − Tr(ωO)
∣∣ ≤ 1√

n
max(c1B1, c2B2),

where B1 := log(
√

n/Δ)
d+1
2 , B2 := (�D log(

√
n/Δ))

1
2 , and the constants c1

and c2 depend on D, r0, ξ and the locality k of H. Therefore, as long as the en-

ergy shell Δ is chosen as Δ ∼ e−O(n
1

D+1 ) the averages of the operator density
O
n in the canonical and microcanonical ensemble states converge to the same
number as n → ∞. Similar bounds were also derived in [43, Corollary 3] for
larger classes of non-local Hamiltonians and observables above some thresh-
old temperature. Corollary 2 constitutes an improvement over these results in
two senses: Firstly, it applies to a more general class of Lipschitz observables.
Secondly, it allows for a smaller energy shell Δ = e−o(n). However, the con-
dition TC(Cn) is currently only known to hold for the smaller class of local
commuting Hamiltonians.
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