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S U M M A R Y
In volcanic regions ascending magma is subject to depressurization and is generally accom-
panied by exsolution of volatiles. We assume a process in which these volatiles propagate
upward across newly fractured and permeable rock layers, bringing a sharp increase of pore
pressure and temperature within a thin disc-shaped region (inclusion). Thermo-poro-elastic
(TPE) inclusion models provide a mechanism to explain seismicity and deformation induced
by p and T changes in absence of new magma emplacement in volcanic contexts. They are
also suitable to represent the mechanical effects due to fluid extraction and re-injection in
geothermal fields. In the present work analytic solutions are provided for the displacement,
strain and stress fields assuming a TPE unbounded medium. Significant deviatoric stress is
generated by positive increments of pore pressure and temperature: the stress field is fully
deviatoric outside the TPE inclusion, but a strong isotropic stress component is present within,
leading to highly heterogeneous faulting mechanisms: if the disc plane is horizontal, thrust
faulting mechanisms are favoured within the TPE disc over optimally oriented faults and nor-
mal mechanisms above. The model is easily generalized to a vertically thick disc with variable
temperature and pore-pressure changes: then, an extensional environment can be obtained
even within the TPE inclusion assuming upward decreasing of pore pressure and temperature
changes. The supplied analytical solution may be used to model near-field TPE inclusion
effects and to validate more complex numerical modelling.

Key words: Permeability and porosity; Hydrothermal systems; Induced seismicity; Me-
chanics, theory, and modelling; Volcanic gases.

1 I N T RO D U C T I O N

It is well known in Earth sciences that temperature changes accompanying erosion and sedimentation processes have a strong influence on
the stress field and fault mechanisms within the upper crustal layers (e.g. Turcotte & Schubert 2014). Nevertheless, the role of temperature
changes, T, in triggering and characterizing seismic activity (e.g. Schlindwein et al. 2013) within geothermal and volcanic regions is often
undervalued. Important and widespread effects are also provided by pore pressure changes, p, within permeable rock layers (e.g. Shapiro
2015). At equilibrium, the inclusion method described by Eshelby (1957) allows us to model the mechanical effects of pore-pressure and
temperature changes occurring inside a closed volume (i.e. an inclusion) embedded in an elastic medium. Such an approach can be used, for
example, for modelling the deformation and the stress field induced by geothermal reservoirs (Geertsma 1973; Segall 1992; Rudnicki 1999;
Guido et al. 2015).

The Eshelby’s approach is well known also because it provides an explanation for the heterogeneity of fault mechanisms induced by
oil and gas production, where normal and thrust events occur at close distance from each other, inside and around the reservoir (Segall
1989; Segall & Fitzgerald 1998). Although most of the literature focuses on applications to induced seismicity due to reservoir exploitation,
heterogeneities of fault mechanisms are observed even in volcanological contexts, as for example the Campi Flegrei caldera in Italy (D’Auria
et al. 2014; Nespoli et al. 2021) or the Tatun Volcano Group in Northern Taiwan (Pu et al. 2021). An extreme variability of fault mechanisms
is observed in several tectonically and geothermally active regions of the world such as the South Iceland Seismic zone (e.g. Lund et al.
2005; Stefansson et al. 2011) and the geothermal field of the Krafla volcano, in North East Iceland (Schuler et al. 2016). Often, the
explanation of the heterogeneity of focal mechanisms in volcanological environments is ascribed to the stress changes induced by magmatic
sources of deformation (e.g. D’Auria et al. 2014). In the present work we interpret the heterogeneity of fault mechanism as due to purely
thermo-poro-elastic (TPE) effects generated by an inclusion where changes p and T in pore pressure and temperature, respectively, occur.
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Figure 1. Conceptual model of a TPE source region (yellow–green), with a small thickness b and radius a, undergoing a sudden increase of permeability
due to seismic fractures. The upward migration of previously trapped fluids of magmatic origin (white bubbles) from the underlying partially molten material
(orange) is accompanied by high p, T changes within the TPE source, triggering further seismicity according to a positive feedback mechanism.

While in reservoir exploitation p and T are anthropically induced (injection and production from wells), in a volcanological context they
can derive from the exsolution of magmatic fluids, as suggested by the recent literature (Nespoli et al. 2021) about the caldera of Campi
Flegrei (Italy). Recently, Todesco (2021) has shown that the deformation history during the last 35 years, following the major uplift during
1982–1984, can be ascribed to a poro-elastic behaviour of the shallow hydrothermal system of Campi Flegrei, suggesting that fluids have
an important role in the ongoing unrest. Most of the literature agrees in assigning an important role to the mechanical effects induced by
magmatic fluids both in the deformation and stress field that characterize the caldera of the Campi Flegrei. For the 1982–1984 unrest, the
position and geometry of a TPE inclusion was inferred by Nespoli et al. (2021) by inversion of geodetic data. They also found that most of
relocated hypocentres during this period are within the TPE inclusion, which will be shown to be the region of maximum induced shear stress.
A direct involvement of fluids was also assumed for the seismic swarm occurred at Campi Flegrei in July 2000 (Saccorotti et al. 2001), which
was associated with the upward migration of a pressure front, triggered by an excess of fluid pressure from a magmatic intrusion (Bianco
et al. 2004).

In the following, we assume a scenario in which volatiles of magmatic origin rise towards the surface by crossing a brittle layer (Fig. 1).
In volcanic regions ascending magma is subject to depressurization and is generally accompanied by exsolution of volatiles (mostly H2O and
CO2) at high temperature and pressure which can efficiently migrate across fissures and cracks of the embedding rock, providing significant
flows of fluid mass and heat. Due to the lower density and viscosity of volatiles, the pressure decrease accompanying their upward migration
is smaller than the ‘magmastatic’ decrease of pressure of ascending basaltic magma. Accordingly, the migration of volatiles is expected to
be faster and more efficient than magma uprise. An increasing deviatoric stress, possibly due to tectonic deformation (e.g. Belardinelli et al.
2011) and/or to new magma emplacement (e.g. Trasatti et al. 2011), is assumed to generate seismic fractures within the brittle layer which
provide a substantial increase of permeability. The permeability change plausibly takes place progressively during seismic activity but, for
the sake of mathematical simplicity, we shall assume that it takes place suddenly, following the breaching of an impervious barrier initially
present at the base of the brittle layer. Then, upward migration of magmatic fluids is allowed, bringing a sharp increase of pore pressure,
temperature and seismicity. Such a scenario can be assumed for example for the Campi Flegrei caldera (Lima et al. 2021) and is consistent
with the enhanced seismic tomography studies of Calò & Tramelli (2018). A similar scenario was proposed by Zencher et al. (2006) to
explain earthquake triggering by fluids uprising from the brittle–ductile transition in the South Iceland Seismic Zone. Unlike the model of
Zencher et al. (2006), we consider that the region affected by increases of p and T is finite volume (Fig. 1) as in Belardinelli et al. (2019).
Even if both changes in pore pressure and temperature provide formally similar incremental stresses, because they are obtained from similar
constitutive relationships, they obey different propagation equations (e.g. Bonafede & Mazzanti 1997; Nespoli et al. 2021). Furthermore only
pore pressure changes affect explicitly the Coulomb failure function change, and then the induced seismicity, as already shown in Belardinelli
et al. (2019).

A realistic description of the proposed scenario requires accounting for the complex properties of the solid and fluid phases and their
mutual interactions, but its quantitative implementation represents a formidable task even when resorting to numerical methods. In fact, as
we shall see in the following, even a linear theory for a homogeneous TPE medium requires at least 12 material constants to characterize
the thermomechanical properties of the rock and fluid. Moreover temperature changes may be enhanced by latent heat release if phase
transitions take place within propagating fluids and this may considerably extend the spatial domain of temperature changes. The increasing
pore pressure, in turn, is expected to open fissures and cracks wider as suggested by Zencher et al. (2006) and to trigger induced seismicity,
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thus providing a positive feedback mechanism between pore pressure, seismicity and effective permeability. However both the geometrical
distribution of permeability and its evolution following seismic events are generally unknown and difficult to model (e.g. Gischig et al. 2014;
Rinaldi & Nespoli 2017). As in any class of problems, an effective strategy consists in starting from simple cases and then moving towards
increasing complexity. The purpose of the present paper is to provide fully analytical solutions to model the TPE effects of the volume where
exsolved hot and pressurized magmatic volatiles accumulate, by representing it as a TPE inclusion embedded in an unbounded homogeneous
medium. The proposed solution can be used to model the mechanical state attained by the medium at a given instant of time during the
exsolution of magmatic fluids inside the TPE inclusion. At this time p and T are the changes of pore pressure and temperature with respect to
the configuration before the beginning of exsolution. While in Belardinelli et al. (2019) the TPE inclusion has a spherical symmetry, in this
paper it is assumed disc-shaped, which is considered a more realistic geometry. Moreover we shall account for different spatial extensions of
temperature and pore-pressure changes (Fig. 1) within the TPE inclusion. We also show how p and T are expected to evolve with time under
the simplified assumption of a 1-D vertical propagation with constant permeability without phase transitions.

The advantage in assuming an unbounded medium is that exact analytic solutions may be derived in this framework for the deformation
and stress fields; the obtained solution has several similarities with the uniform opening dislocation problem (mode I) but has also important
differences. Another important result, valid in an unbounded medium, is that a simplified diffusion equation may be obtained for the pore
pressure, formally independent from stress, as already noted by Shapiro (2015) and Wang (2017). Neglecting the presence of the free surface
may appear unrealistic but Mantiloni et al. (2020) provided semi-analytical solutions for a disc-shaped TPE source in a homogeneous half-
space as the sum of different terms, showing that the term which describes the effect of a TPE disc embedded within an unbounded medium
is dominant close to and within the disc.

Analytical solutions of simple boundary-value problems allow exploring quickly the effects of various properties and their mutual
interactions. Furthermore, the analytical solutions allow us to distinguish phenomena due to the boundary conditions from the consequences
of the material response, while the theory generally provides an environment inside which additional complications may be implemented,
if necessary. Finally, complex geometries, medium heterogeneities (e.g. Minakov & Yarushina 2021) and the inclusion of non-linear effects
inevitably require the use of numerical analysis techniques (e.g. Nespoli et al. 2021) and the exact solutions of simple particular cases are
invaluable for the validation of computer codes. An additional strength of an elastic analytical solution, is that a generalization to a viscoelastic
behaviour may be obtained using the correspondence principle (Fung 1965).

2 C O N S T I T U T I V E T P E R E L AT I O N S H I P S

The strain field εij in a TPE medium which undergoes a change of stress τ ij, a change of pore pressure p and a change of temperature T, with
respect to an initial configuration of equilibrium, is provided by the following constitutive relation (e.g. Biot 1941; McTigue 1986):

εi j = 1

2μ

(
τi j − ν

1 + ν
τkkδi j

)
+ 1

3H
pδi j + 1

3
αs T δi j , (1)

where μ is the rigidity of the medium, ν the drained isothermal Poisson ratio, 1/H is the poroelastic expansion coefficient, as defined by Biot
(1941) and αs is the coefficient of thermal expansion in drained conditions (equal to the thermal expansion of the solid skeleton). In eq. (1)
and hereinafter we use the Einstein’s notation which implies the summation on repeated indices.

The ‘stress-free strain’ (i.e. the strain produced by T and p in absence of stress) is simply:

ε0 δi j =
(

1

3H
p + 1

3
αs T

)
δi j . (2)

We observe that ε0 depends linearly on T and p changes inside the inclusion and will be referred as ‘TPE inclusion potency’ since displacement,
strain and stress will be shown to be proportional to ε0. The inverse relation providing τ ij in terms of εij, p and T is simply obtained from eq.
(1) and eq. (2) as

τi j = 2μ

{
εi j + 1

1 − 2ν
[νεkk − (1 + ν)ε0] δi j

}
. (3)

As shown by Rice & Cleary (1976) the constant H may be computed from the bulk modulus K = 2μ(1+ν)
3(1−2ν) of the porous medium in

drained isothermal conditions and the unjacketed bulk modulus K ′
s , according to the relation

1

H
= 1

K
− 1

K ′
s

, (4)

K ′
s can be interpreted as the bulk modulus of the solid phase with good approximation (Rice & Cleary 1976; Wang 2017).

Following Rice & Cleary (1976), a different description of the poro-elastic properties may be used, in which the Skempton parameter B
(Skempton 1954) and the undrained Poisson ratio νu appear. The Skempton parameter B describes the pore pressure induced by a change of
isotropic stress in undrained and isothermal conditions

�p = − B

3
τkk (undrained and isothermal conditions) (5)
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which allows writing the undrained Poisson ratio in isothermal conditions, from eq. (1), as

νu = 3ν + B(1 − 2ν) K
H

3 − B(1 − 2ν) K
H

. (6)

3 M E T H O D O F S O LU T I O N F O R T H E D I S P L A C E M E N T F I E L D

As shown in detail by Belardinelli et al. (2019), the equilibrium displacement field ui produced by a localized uniform increase of temperature
T and pore-pressure p within a TPE source volume VS may be computed according to the inclusion method described by Eshelby (1957) as

ui (x) = 3K ε0

∫
Vs

∂Gik(x, x′)
∂x ′

k

dV ′, (7)

where Gik(x, x
′
) is the drained isothermal Green’s function in an elastic medium. Clearly Gik(x, x

′
) is given by the same expression which

applies in a purely elastic medium if an isothermal process in free drainage conditions is considered, provided that ν is the drained isothermal
Poisson ratio. It is worth noting that, according to eq. (1), the deviatoric strain does not depend on p and T (Fjær et al. 2008; Shapiro 2015).
If we assume that the embedding medium is elastic, unbounded and homogeneous, we have (e.g. Landau & Lifshits 1967)

Gik(x, x′) = 1

16πμ(1 − ν)

[
(3 − 4ν)

δik

r
+ (xi − x ′

i )(xk − x ′
k)

r 3

]
, (8)

where r = |x − x
′ | is the distance between x and x

′
. Exploiting the property Gik(x, x

′
) = Gik(x − x

′
) (valid for a homogeneous unbounded

medium) we obtain by straightforward calculation

∂Gik(x, x′)
∂x ′

k

= −∂Gik(x, x′)
∂xk

= − 1 − 2ν

8πμ(1 − ν)

∂

∂xi

(
1

r

)
(9)

and eq. (7) may be rewritten in vector form as

u(x) = −ε0
(1 + ν)

4π (1 − ν)
∇
[∫

Vs

1

|x − x′|dV ′
]

= − ε1

4π
∇
, (10)

where the relation K = 2μ(1+ν)
3(1−2ν) for the drained isothermal bulk modulus was used and


(x) =
∫

Vs

1

|x − x′|dV ′, ε1 = ε0
(1 + ν)

(1 − ν)
. (11)

From eqs (10), (11) and ∇2r−1 = −4πδ(x − x
′
) we see that

∇ · u = − ε1

4π
∇2
 = ε1

∫
Vs

δ(x − x′)dV ′ =
{

ε1 if x ∈ Vs

0 otherwise,
(12)

where δ(x − x
′
) is Dirac’s delta, so that ε1 is the dilatation in the interior of the TPE source while the strain field is purely deviatoric outside.

Accordingly, the displacement potential 
 obeys the Poisson equation ∇2
S = −4π within the TPE source region VS (where 
 ≡ 
S) and
the Laplace equation ∇2
el = 0 in the elastic region Vel surrounding VS (where 
 ≡ 
el), which is assumed in isothermal and free drainage
conditions.

The medium which embodies the TPE inclusion volume VS can be assumed drained or elastic in two different scenarios:

(i) The external medium is assumed to be in hydrostatic isothermal conditions. This is reasonable if, as in Nespoli et al. (2021), the fluid flow
is large enough to dissipate efficiently incoming heat and pore pressure. This can occur if the inclusion is placed just below a high permeability
aquifer as suggested by observations at Campi Flegrei (Calò & Tramelli 2018) and assumed in the model of Nespoli et al. (2021). In this
case, the internal region adjusts the boundary condition of near-lithostatic pore pressure present below its bottom to the near hydrostatic value
present within the aquifer above (e.g. Lima et al. 2021).
(ii) The external medium is assumed to be elastic and with low permeability. This happens when no variations of pore pressure and temperature
occur in the external region, as expected in geothermal environments (e.g. Guido et al. 2015; Wangen & Halvorsen 2020), where the reservoir,
that is the inclusion, is hydraulically confined. Accordingly, the timescale for fluids to diffuse outside VS is much longer than the one needed
to diffuse within VS.

Displacements and tractions must be continuous across the surface � enclosing VS; thus 
 must be continuous with continuous
derivatives across �. In particular ∇
S = ∇
el on �.

It may be added that the continuity of tractions τ ijnj across � is already fulfilled according to Eshelby’s inclusion procedure and requires,
according to eqs (3) and (12), a discontinuity in the second derivatives of the potential, since εi j = − ε1

4π

∂2


∂xi ∂x j
:

[
∂2
el

∂xi∂x j
− ∂2
S

∂xi∂x j

]
�

n j = 4πni . (13)
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This requires that the linear dilatation/contraction εnn = εijninj in the normal direction of � is discontinuous across the boundary. The jump
amplitude is −ε1, so that contraction is predicted outside and dilatation inside �, along the normal direction ni.

We note that eq. (7) provides the equilibrium displacement for a given ε0, or given temperature and pore pressure changes. Following
energy balance and transport equations it is possible to model how the TPE inclusion potency ε0, that is p and T, evolves with time, as shown
in the next section.

4 H I N T S A N D F I E L D E Q UAT I O N S F O R M O D E L L I N G T H E E V O LU T I O N O F p A N D T

For the sake of simplicity we assume an initial configuration within the brittle layer in which the pore-pressure has a hydrostatic gradient
and the temperature is uniform. In this case the total temperature TTOT(x, t), equals the temperature variation T, apart from an inessential
constant value. Such an assumption is justified if the temperature increase at the base of the TPE layer appears within a time much shorter
than the characteristic conductive timescale. The space–time evolution of pore-pressure and temperature changes, p and T, are described by
the following equations (e.g. Bejan 1984). The first equation is the fluid mass continuity equation:

∂ρ f

∂t
+ ∇ · (ρ f q) = 0, (14)

where t is time, ρ f is fluid density and q is the specific discharge rate, that is the volume of fluid crossing the unit surface in a unit of time.
The second equation is the phenomenological Darcy law, an empirical relation between the pressure gradient and the specific discharge rate

q = − k

η
∇ p, (15)

where k is the permeability of the solid matrix, η is fluid viscosity and p is assumed as the fluid pressure in excess of the hydrostatic value ph

(with ∇ ph = ρ f g). The third equation is the mechanical equilibrium equation which, considering the stress change τ ij superposed onto the
configuration of gravitational equilibrium (e.g. a lithostatic configuration), reads

∂τi j

∂x j
= 0. (16)

The fourth equation is the energy balance for the whole system (e.g. Bejan 1984), in which local thermal equilibrium is assumed between the
solid matrix (with porosity φ, density ρs specific heat cs, thermal conductivity λs) and the fluid (with specific heat cf, conductivity λf):

ρc
∂T

∂t
+ ρ f c f q · ∇T = λ∇2T − q · ∇ p, (17)

where ρc = [φρ fcf + (1 − φ)ρscs] and λ = [φλf + (1 − φ)λs] denote average specific heat per unit volume and average conductivity,
respectively. In eq. (17) the heat transferred by conductive processes, λ∇T2 and the mechanical work rate q · ∇p done on the unit fluid volume,
which is converted into heat through viscous dissipation, are written in the right-hand side (r.h.s.).

The set of equations is completed by the fully contracted compatibility equation, ∇2εkk − ∂2

∂xi ∂xk
εik = 0, which can be merged with the

fluid mass conservation (eq. 14) to provide the following equation (e.g. McTigue 1986)[
∂

∂t
− D∇2

](
τkk + 3

B
p

)
= Dβ1∇2T + β2

∂T

∂t
, (18)

where D is the hydraulic diffusivity

D = kμ

η
f (B, ν, νu), with f (B, ν, νu) = 2B2(1 + νu)2(1 − ν)

9(1 − νu)(νu − ν)

and

β1 = μαs
4

3

1 + ν

1 − ν
, β2 = 2μBφ(α f − αs)

(1 + ν)(1 + νu)

3(νu − ν)
.

In the previous equation αs, αf are thermal expansion coefficients for the solid and fluid phase, respectively. The term multiplied by β1

describes purely thermo-elastic effects and it is present in the compatibility equation of thermoelastic equilibrium in absence of fluids (e.g.
when φ = 0). The term multiplied by β2 describes the effects of the fluid contained inside the pores. The factor f(B, ν, νu) has order of
magnitude 1 so that D ∼ kμ

η
. Inserting εkk = ε1 (from eq. 12) into the constitutive relationship, we find τ kk = −4με1 = −4με0(1 + ν)/(1 −

ν), so that τ kk appearing in eq. (18) can be rewritten in terms of p and T. As a consequence of that, the term proportional to ∇2T appearing
in the left-hand side of eq. (18) cancels with the term multiplied by β1 in the r.h.s. Taking into account the relationship between poro-elastic
parameters, H = 2μB(1 + νu)(1 + ν)/(9νu − 9ν) (e.g. Wang 2017), the following diffusion equation is obtained for the pore pressure:(

∂p

∂t
− D∇2 p

)
= (γ1 + γ2)

∂T

∂t
, (19)

where

γ1 = 4

9
μBαs

(1 + νu)

(1 − νu)
γ2 = 2

9
μB2φ(α f − αs)

(1 − ν)(1 + νu)2

(1 − νu)(νu − ν)
.
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Thus, the term proportional to γ 2 describes the pore pressure induced by a sudden increase of temperature in undrained conditions, due to
the greater thermal expansion of the fluid with respect to the thermal expansion of pores. The term proportional to γ 1 is present even when
αf = αs; it may be understood as arising, in undrained conditions, from the compression of the solid matrix, undergoing thermal dilatation
constrained by the embedding medium.

4.1 The case of a flat TPE inclusion

In this paragraph, we assume a flat TPE inclusion with a thickness b, as the yellow-green region shown in Fig. 1, and the case of scenario 1
(Section 3). The complete set of equations described in the previous section is rather complex and non-linear terms q · ∇T, q · ∇p appear in
eq. (17). However the two terms in the r.h.s. of eq. (17) are negligible in high permeability (k > 10−13 m2, e.g. Wang 2017) media endowed
with normal thermal conductivity (λ ∼ a few Wm−1K−1, e.g. Turcotte & Schubert 2014), undergoing temperature changes �T ∼ 100 K
and pressure changes �p ∼ 107 Pa. Values of �T ∼ 102 K and �p ∼ 107 Pa seem plausible in proximity of magma reservoirs. There the
temperature is up to 103 K (e.g. Sigurdsson et al. 1999) greater than typical mid-crustal values and the release of volatiles from magma
reservoirs at a few km depth, subject to near-lithostatic pressure, may occur. Furthermore, the mechanical strength of basaltic rock is generally
evaluated in the order of ∼10 MPa (e.g. Heap et al. 2021), then we expect that p can be up to this value, otherwise below the TPE region
(Fig. 1), tensile failure (hydrofracture) of basaltic rocks would occur, drastically reducing p. For example, if we consider water substance
(ρ fcf ≈ 4.2 × 106 Jm−3 K−1), we see that the dissipative heat production q · ∇ p ∼ k

ηb2 �p2 in the r.h.s. of eq. (17) is more than 2 orders

of magnitude smaller than the advective term ρ f c f q · ∇T ∼ k
ηb2 ρ f c f �p�T . Moreover, thermal conduction λ∇2T ∼ λ�T/b2 is ∼4 orders

smaller than heat advection for η = 10−3 Pa s; then, both terms can be neglected and the following initial and boundary value problem is
obtained referring to Fig. 1.

ρc
∂T

∂t
+ ρ f c f q · ∇T = 0

{
with B.C. T (0, t) = �T
and I.C. T (ζ, 0) = 0

, (20)

where ζ = 0 at the bottom of the TPE inclusion region. If after the beginning of exsolution (t > 0), q were nearly constant, the solution would
be:

T = �T [1 − �(s − VT t)] , (21)

where �(x) is the Heaviside step function (�(x) = 0 if x < 0, �(x) = 1, if x > 0), s denotes the abscissa along the fluid streamlines and
VT = ρ f c f

ρc q is the speed of the temperature front. If thermal conduction were considered in eq. (17), the equation might be solved using the
technique of separation of variables, providing a solution as an infinite series: the temperature front would not be strictly discontinuous, but
the transition from �T to zero would take place within a narrow spatial range ∼ √

λt/(ρc) (a few meters even after several years). Neglecting
heat conduction across the lateral impervious boundary of the TPE region, we may consider s vertical so that both T and p are functions of
the vertical coordinate ζ and time t only. The temperature front reaches the top the TPE region at ζ = b in a time tT = b/VT.

Inserting eq. (21) into eq. (19) for pressure, we may consider the following boundary value problem for p(ρ, ζ , t):

(
∂

∂t
− D∇2

)
p = (γ1 + γ2)VT �T δ(ζ − VT t)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

with B.C. p = �p in ζ = 0, ∀t ≥ 0
p = 0 in ζ = b, ∀t ≥ 0
∂p
∂ρ

= 0, in ρ = a, ∀t ≥ 0

and I.C. p = 0 in 0 < ζ < b, ρ < a,∀t = 0

(22)

where the lateral boundary ρ = a is assumed impervious to fluid flow, so that ∂p/∂ρ = 0. This problem is compatible with the previous
assumption that p is a function of ζ and t only, confirming that the streamlines are along the vertical direction.

The problem (22) was solved using the technique of separation of variables (Fig. 2) but an accurate approximate solution may be found
since tT is several orders of magnitude longer than the characteristic pressure diffusion time tp = b2/D; indeed we have

tT = b

VT
∼ b2η

k�p

ρc

ρ f c f
, tp = b2

D
∼ b2η

kμ f (B, ν, νu)
(23)

thus, tp/tT ∼ �p/μ � 1. For example, for Berea sandstone, which is a highly porous rock, μ = 6 GPa (Wang 2017; Rice & Cleary
1976) and we get tp/tT = 8 × 10−4). Then a quasi-static approximation is appropriate for t > tp (Fig. 2b), where eq. (22) becomes
∂2 p
∂ζ 2 � − γ1+γ2

D VT �T δ(ζ − VT t) with the following simple solution:

p(ζ, t) =

⎧⎪⎪⎨
⎪⎪⎩

�p

(
1 − ζ

b

)
+ �ζ

(
1 − VT t

b

)
if 0 ≤ ζ ≤ VT t

(�p + �VT t)

(
1 − ζ

b

)
if VT t < ζ ≤ b

where � = (γ1 + γ2)VT �T

D
. (24)

The p profile consists in two rectilinear segments with uniform gradients slowly varying with time, matching to each other continuously
in ζ = VTt (the thermal front, red line in Fig. 2b). Since q (the volumetric flow) is proportional to dp/dζ (according to the Darcy law) the
discontinuity of the pressure gradient can be ascribed to the density change due to the temperature discontinuity: the mass flow must be
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(a) (b)

Figure 2. Evolution of p and T across the TPE thickness b. The pore pressure p rapidly attains a nearly uniform gradient, before the T front has advanced
appreciably (a). Most of the T propagation takes place under a nearly constant pressure gradient (b). We assumed �p = 10 MPa, �T = 100 K, with material
parameters pertinent to Berea sandstone (Rice & Cleary 1976).

x

z

y

r

z

x

ada
b

x'

P

b

z

x

y
a0

(a) (b)

Figure 3. (a) TPE source due to increasing temperature T and pore pressure p within a flat disc with radius a0 and thickness b embedded within an elastic

unbounded medium. Red arrows represent three orthogonal force dipoles located in ∀ x
′ ∈ VS contributing to displacement in x through ∂Gik (x,x′)

∂x ′
k

(eq. 7 in the

main text). (b) Parameters used to compute the displacement potential d
R at a point P due to an elementary TPE ring with volume dVs = 2πab da. Spherical
(r, θ , ϕ) and cylindrical (ρ, ϕ, z) coordinates of P are indicated.

continuous, not the volumic flow. However, � � �p
b unless �T is unreasonably high: using TPE parameters pertinent to Berea sandstone, we

get �/�T = 1.4 × 10−4�p/b: �T should be greater than 103 K in order to provide important changes to the pressure gradient. Thus, the two
gradients may be safely assumed very close to the standard stationary value �p/b as shown in Fig. 2(b).

For a TPE disc located within a half-space, Nespoli et al. (2021) obtained the same eq. (19) assuming a configuration of uniaxial strain
with constant vertical stress inside the inclusion. The latter restriction is no more needed in the present case, as in a full space εkk = ε1,
according to eq. (12) and the isotropic stress may be expressed in terms of T and p only. According to our results (eq. 21 and Fig. 2b) and the
ones shown in fig. 2 of Nespoli et al. (2021), for each instant of time, a discontinuous vertical profile for the TPE potency ε0 is obtained, as
considered in the following Section 7.

5 D I S C S H A P E D T P E S O U RC E

The TPE inclusion considered by Belardinelli et al. (2019) is a spherically symmetric TPE shell surrounding a spherical pressurized magma
chamber. In this paper, we consider a more realistic shape for the TPE inclusion consisting in a flat cylinder with radius a0 and small thickness
b � a0 (Fig. 3a).

The problem for the displacement field due to a thin TPE disc is formally similar to the gravitational field due to a galactic disc with
uniform density (Villumsen 1983, 1985) or the electrostatic field due to a uniformly charged disc (Jackson 1999). However, no analogy with
the mentioned problems may be suggested for the stress and strain fields within and outside a TPE source.
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5.1 The potential field of a ring element

The TPE disc depicted in Fig. 3(a) is axially symmetric and VS may be decomposed into infinitesimal annular rings over the plane z = 0 with
radius a around the z-axis, as depicted in Fig. 3(b).

Even if cylindrical coordinates may seem a more natural coordinate system for discs, a solution in terms of spherical coordinates is
much more easily implemented. The potential d
R generated at a point P with spherical coordinates r, θ , ϕ by an elementary TPE ring can
be written as an expansion in Legendre polynomials P�(cosθ ) (see e.g. Jackson 1999):

d
R(r, θ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dVs

a

∞∑
�=0

( r

a

)�

P�(cos γ )P�(cos θ ), if r < a

dVs

r

∞∑
�=0

(a

r

)�

P�(cos γ )P�(cos θ ), if r > a

, (25)

where dVs = 2πa b da is the ring volume, a is the ring radius, r = |x|, γ is the angle between the z-axis and any point x′ of the ring and θ is
the angle between the z-axis and the position vector x where d
R is computed. The disc is assumed to lay on the plane z = 0, so that γ = π

2

and P�(cos γ ) = P�(0) for all the rings composing the disc.
If θ = 0, the point x is on the z-axis and d
R may be computed by elementary methods from eq. (11) since |x − x′| = √

r 2 + a2 for all
points in the ring and

d
R(r, θ = 0) = dVs√
r 2 + a2

. (26)

Legendre polynomials P�(cos θ ) are symmetric or anti-symmetric functions of x = cosθ , since P�( − x) = ( − 1)�P�(x); they are
normalized to unity in x = 1 and their values are confined within ±1, ∀x ∈ [ − 1, 1] (see e.g. Abramowitz & Stegun 1965). Legendre
polynomials may be efficiently computed using the recurrence relation

�P�(x) = (2� − 1)x P�−1(x) − (� − 1)P�−2(x) with P0(x) = 1 and P1(x) = x (27)

Only even polynomials survive in eq. (25), since

c� ≡ P�(0) =
{

(−1)m

4m
(2m)!
(m!)2 if � = 2m

0 if � = 2m + 1
m = 0, 1, 2, . . . (28)

Coefficients c� = P�(0) may be computed more conveniently from the recurrence relation (eq. 27):

�c� = −(� − 1)c�−2 with c0 = 1 and c1 = 0 (29)

from which it is clear that odd terms vanish in eq. (25), while even coefficients are c2m = − 2m−1
2m c2m−2, for example c0 = 1, c2 = − 1

2 , c4 =
3
8 , c6 = − 5

16 , . . . . Using Stirling’s formula in eq. (28), we get

c2m ∼ (−1)m

(πm)1/2
(asymptotically, for large m values). (30)

The potential d
R due to one ring with radius a is then

d
R(r, θ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d
in
R (r, θ ) = (2πb da)

∞∑
m=0

( r

a

)2m
c2m P2m(cos θ ) if r ≤ a

d
ex
R (r, θ ) = (2πb da)

∞∑
m=0

(a

r

)2m+1
c2m P2m(cos θ ) if r ≥ a

. (31)

We shall denote the region r < a0 as the internal domain and the region r > a0 as the external domain; the internal domain is a sphere with
radius a0 and it must not be confused with the TPE source region which is the thin disc (Fig. 3a).

5.2 The potential field of the thin disc

In order to compute the potential 
D, due to the entire disc, we superpose the potential d
R due to all rings with 0 ≤ a ≤ a0, integrating eq.
(31) with respect to a from a = 0 to a = a0:


D(r, θ ) =
∫ a0

0
d
R(r, θ ) =

⎧⎪⎪⎨
⎪⎪⎩

∫ r

0
d
ex

R +
∫ a0

r
d
in

R if r ≤ a0∫ a0

0
d
ex

R if r ≥ a0

. (32)
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Inserting eq. (31), the following result is obtained for r < a0:


D(r, θ ) = (2πb)
∞∑

m=0

c2m P2m(x)

[∫ r

0

(a

r

)2m+1
da +

∫ a0

r

( r

a

)2m
da

]
if r < a0

= (2πba0)
∞∑

m=0

c2m P2m(x)

[(
1

2m + 2
+ 1

2m − 1

)
r

a0
− 1

2m − 1

(
r

a0

)2m
]

,

(33)

where x = cosθ . Similarly, if r > a0, we obtain:


D(r, θ ) = (2πba0)
∞∑

m=0

c2m

2m + 2
P2m(x)

(a0

r

)2m+1
if r > a0. (34)

In particular, if r = 0, only the term m = 0 survives in eqs (33) and 
D(0, θ ) = (2πba0).
Along the symmetry axis, r = z and θ = 0, if z > 0, while r = −z and θ = π , if z < 0; we may compute directly 
D from eq. (26),

obtaining


D(r = |z|, ρ = 0) = 2πb

∫ a0

0

a√
r 2 + a2

da = 2πba0

[√
r 2

a2
0

+ 1 − r

a0

]
(35)

that can be used to test the convergence of the expansions (33) and (34) which is very slow when r is close to a0.

5.3 The displacement field of the thin disc

Using spherical coordinates (r, θ , ϕ), we have

∇
 =
(

∂


∂r
,

1

r

∂


∂θ
,

1

r sin θ

∂


∂ϕ

)
; (36)

then, the displacement component uϕ vanishes identically, as might be anticipated from symmetry considerations. Non-vanishing components
ur, uθ can be written from eqs (33) and (34) according to eq. (10) using the dimensionless constant

A = ε1
b

2a0
, (37)

where ε1 linearly depends on the TPE inclusion potency ε0 (see eq. 11).
We have

ur (r, θ ) = −Aa0

∞∑
m=0

c2m P2m(x)

[(
1

2m + 2
+ 1

2m − 1

)
− 2m

2m − 1

(
r

a0

)2m−1
]

if r < a0 (38)

ur (r, θ ) = Aa0

∞∑
m=0

c2m P2m(x)
2m + 1

2m + 2

(a0

r

)2m+2
if r > a0 (39)

Taking into account that P0(x) = 1, the polar component of displacement is

uθ (r, θ ) = −Aa0

∞∑
m=1

c2m
dP2m(x)

dθ

[(
1

2m + 2
+ 1

2m − 1

)
− 1

2m − 1

(
r

a0

)2m−1
]

if r < a0 (40)

uθ (r, θ ) = −Aa0

∞∑
m=1

c2m
dP2m(x)

dθ

[
1

2m + 2

(a0

r

)2m+2
]

if r > a0 (41)

and the differential relation

dP�+1(x)

dx
= (� + 1)P�(x) + x

dP�(x)

dx
, with x = cos θ (42)

may be used to compute iteratively dP2m (x)
dθ

. We may easily check from eqs (38) and (39) and from eqs (40) and (41) that both the displacement
components ur and uθ are continuous term by term in r = a0; however, this is not sufficient to guarantee that the sum of the series is continuous
in r = a0 on the disc plane (θ = π /2), as explained in detail in the Appendix.

From eq. (35) we obtain the closed form solution along the z-axis (where θ = 0, π )

ur (r = z, θ = 0) = Aa0

(
1 − r√

r2+a2
0

)
= uz(z > 0, ρ = 0)

ur (r = −z, θ = π ) = Aa0

(
1 − r√

r2+a2
0

)
= −uz(z < 0, ρ = 0)

, (43)

where z, ρ are cylindrical coordinates: z = rcosθ and ρ = rsinθ (see Fig. 3a). Of course, uθ must vanish along the z-axis and actually all terms
vanish in the expansions (40) and (41) since dP2m (x)

dθ
= − sin θ

dP2m (x)
dx . Figs 4 and 5 show ur and uθ versus r and versus θ , respectively.

When r = 0, we have



Stress changes by exsolution of magmatic fluids 879

r/a0r/a0

u 
 /A

a
r

0

u
/A

a 0

radial displacement polar displacement

90°- 

30°

45°

0°

60°

75°

N

N

continuation

0.99 1.00 1.01

continuation

0.99 1.00 1.01

0.6

0.4

-0.2

0.0

-0.1
75°

90°

45°

0°

60°

30°

0.00      0.25      0.50      0.75       1.00      1.25      1.50      1.75      2.00 0.00      0.25      0.50      0.75       1.00      1.25      1.50      1.75      2.00

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

1.0

0.8

0.6

0.4

0.2

(a)
0.0

(b)

Figure 4. Normalized displacement components ur/Aa0, uθ /Aa0 versus r/a0 around a thin circular disc for a few values of θ between 0◦ and 90◦, using series
truncation to order N = 1000. Displacements for θ ∈ [90◦, 180◦] may be obtained considering that ur is an even function of x = cos θ and uθ is odd. Dotted
segments in the inset show interpolated values between r1/a0 = 0.995 and r2/a0 = 1.005.
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Figure 5. Displacement components ur, uθ versus θ around a thin circular disc for a few values of r/a0 between 0 and 1, using series truncation to order N =
80. As discussed in the text, ur is a continuous even function of x = cos θ and uθ is discontinuous and odd. In the external domain r/a0 > 1 both displacement
components are continuous and decrease rapidly (not shown to avoid confusion).

ur (0, θ) = −Aa0

∞∑
m=0

c2m P2m(x)

[
1

2m + 2
+ 1

2m − 1

]
(44)

uθ (0, θ) = −Aa0

∞∑
m=1

c2m
dP2m(x)

dθ

[(
1

2m + 2
+ 1

2m − 1

)]
. (45)

From symmetry considerations, the displacement vector u must be directed along z when r → 0 and eq. (43) yields uz = Aa0 in z = 0+, where x
= cos θ = 0+, while uz = −Aa0 in z = 0−, where x = cos θ = 0−. Accordingly, when r → 0, u � Aa0k̂ sgn(x), where k̂ = (cos θ êr − sin θ êθ )
is the unit vector along the z-axis, êr , êθ are unit vectors in the radial and polar directions and sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0. In
spherical coordinates we have ur(0, θ ) = Aa0|cos θ | and uθ (0, θ) = −Aa0 sgn(cos θ ) sin θ , with a jump discontinuity in θ = π /2. We conclude
that

−
∞∑

m=0

c2m P2m(x)

[
1

2m + 2
+ 1

2m − 1

]
= | cos θ | = |x | (46)

∞∑
m=1

c2m
dP2m(x)

dθ

[
1

2m + 2
+ 1

2m − 1

]
= sgn(cos θ ) sin θ = sgn(x)

√
1 − x2. (47)

From Fig. 6 we see that convergence is fast for the series (eq. 46) but much slower for (eq. 47), as it typically happens in the expansion
of a function containing a jump discontinuity. Taking into account the previous considerations we may rewrite:


D(r, θ ) = (2πba0)

{
1 − |x |

(
r

a0

)
−

∞∑
m=1

c2m P2m(x)
1

2m − 1

(
r

a0

)2m
}

if r < a0 (48)

ur (r, θ ) = Aa0

{
|x | +

∞∑
m=1

c2m P2m(x)
2m

2m − 1

(
r

a0

)2m−1
}

if r < a0 (49)
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Figure 6. Displacement components ur/Aa0 and uθ /Aa0 computed in r = 0 according to the series expansion truncated at order N (indicated in the box)
compared with the exact solution provided by eqs (46) and (47).

and

uθ (r, θ ) = −Aa0

{
sgn(x) sin θ −

∞∑
m=1

c2m
dP2m(x)

dθ

1

2m − 1

(
r

a0

)2m−1
}

if r < a0. (50)

The previous solutions for the displacement field have several similarities with a mode-I Volterra dislocation (e.g. Aki & Richards 2002)
characterized by uniform opening along z, but the equivalent body forces are described by a different moment tensor: isotropic for the TPE
disc, as shown by eq. (7), with a strong deviatoric component for a mode-I Volterra dislocation. This difference has important implications
for the stress and strain field inside the TPE inclusion, as we will see in the following sections. For r < a0, the strain components are derived
from eqs (49) and (50) in the next section.

5.4 The strain tensor field of the thin disc

In spherical coordinates, the strain tensor components are given by:

εrr = ∂ur
∂r , εθθ = 1

r

(
∂uθ

∂θ
+ ur

)
, εϕϕ = 1

r sin θ

(
∂uϕ

∂ϕ
+ ur sin θ + uθ cos θ

)
εrθ = 1

2

(
1
r

∂ur
∂θ

+ ∂uθ

∂r − uθ

r

)
, εrϕ = 1

2

(
1

r sin θ

∂ur
∂ϕ

+ ∂uϕ

∂r − uϕ

r

)
, εθϕ = 1

2r

(
1

sin θ

∂uθ

∂ϕ
+ ∂uϕ

∂θ
− uϕ cot θ

) (51)

In the following, we rewrite urr = ∂ur
∂r , urθ = ∂ur

∂θ
, uθθ = ∂uθ

∂θ
, uθr = ∂uθ

∂r . Taking into account that in the present problem uϕ = 0, that ur, uθ

are independent of ϕ and that, from eqs (10) and (36), uθr = 1
r (urθ − uθ ), we have

εrr = urr , εθθ = 1

r
(uθθ + ur ) , εϕϕ = 1

r sin θ
(ur sin θ + uθ cos θ )

εrθ = uθr , εrϕ = 0, εθϕ = 0
. (52)

By straightforward calculation we get the following explicit expressions:

5.4.1 Radial component

εrr = A
∞∑

m=1

2mc2m P2m(x)

[
r

a0

]2m−2

if r < a0 (53)

εrr = −A
∞∑

m=0

(2m + 1)c2m P2m(x)
[a0

r

]2m+3
if r > a0 (54)

If θ = 0, that is x = 1, from eq. (43) we have the closed form result

εrr (r, θ = 0) = −A

(
1 + r 2

a2
0

)−3/2

(55)

The series (eqs 53 and 54) are absolutely convergent if r �= a0 but clearly are not convergent when r = a0, where analytic continuation may
be used if θ �= π

2 ; if θ = π

2 , the series diverge to ±∞ (Fig. 7a).
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Figure 7. Strain components εij/A versus r/a0 around a thin circular disc for a few values of θ between 0◦ and 90◦. Trends for 90◦ < θ ≤ 180◦ may be simply
obtained considering that εrr, εθθ , εϕϕ are even functions of x = cos θ while εrθ is odd.

5.4.2 Polar component

The normal strain component in the polar direction is

εθθ = A

{
2δ(x)

a0

r
+

∞∑
m=1

c2m

2m − 1

(
r

a0

)2m−2 [
d2 P2m

dθ2 + 2m P2m

]}
if (r < a0) (56)

εθθ = A

{
1

2

(a0

r

)3
+

∞∑
m=1

c2m

2m + 2

(a0

r

)2m+3 [
(2m + 1)P2m − d2 P2m

dθ2

]}
if (r > a0) (57)

where δ(x) is Dirac’s delta, which arises from the derivative of sgn(x) in eq. (50).
The second derivative of d2Pn(x)/dθ2 may be conveniently rewritten using the differential equation obeyed by Legendre polynomials

(1 − x2)
d2 Pn(x)

dx2
− 2x

dPn(x)

dx
+ n(n + 1)Pn(x) = 0, with x = cos θ. (58)

We have:

d2 P2m(cos θ )

dθ2
= x P ′

2m(x) − 2m(2m + 1)P2m(x), (59)

where P
′

denotes the first derivative of P with respect to x = cos θ and the differential relation (42) may be used to compute P ′
2m(x). In the

disc plane we have θ = π

2 and x = 0 so that

d2 P2m(cos θ )

dθ2

∣∣∣∣
θ=π/2

= −2m(2m + 1)c2m (60)

Thus, the infinite series (eqs 56 and 57) are not convergent in r = a0, where analytical continuation may be used if θ �= π

2 and diverge to ∓∞
in r = a0 if θ = π

2 (Fig. 7b).

5.4.3 Azimuthal component

The azimuthal normal component is
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Figure 8. Strain components εij/A versus θ around a thin circular disc for a few values of r.

εϕϕ = A
∞∑

m=1

c2m

2m − 1

(
r

a0

)2m−2 [
2m P2m + cos θ

sin θ

dP2m

dθ

]
if r < a0. (61)

εϕϕ = A
∞∑

m=0

c2m

2m + 2

(a0

r

)2m+3
[

(2m + 1)P2m − cos θ

sin θ

dP2m

dθ

]
if r > a0. (62)

Again, these series are not convergent in r = a0, θ �= π

2 , where analytical continuation should be used and diverge to +∞ in r = a0, θ = π

2

(Fig. 7c).

5.4.4 Shear component

The only non-vanishing shear component of strain is

εrθ = A
∞∑

m=1

c2m
dP2m

dθ

(
r

a0

)2m−2

if (r < a0) (63)

εrθ = A
∞∑

m=1

c2m
dP2m

dθ

(a0

r

)2m+3
if (r > a0). (64)

These series are absolutely convergent if r �= a0 and are not convergent if r = a0, where analytical continuation may be used if θ �= π

2 (Fig. 7d).
If θ = π

2 , εrθ vanishes changing sign across the disc section. It is worth to note that if θ = π

2 a singular term =Aa0sgn(x)δ(r − a0) should be
added to eqs (63) and (64) due to the sudden change of uθ for θ = π

2
∓ from ∓Aa0 if r < a0 to zero if r > a0. This jump is responsible for a

localized peak of εrθ near r = a0 when θ is only slightly different from 90◦ (dashed line).
All strain components are shown graphically in Fig. 7 as functions of r and in Fig. 8 as functions of θ .
If r < a0 and x = cos θ �= 0 or if r > a0 ∀x ∈ [ − 1, 1], using the differential eq. (58), we may easily check that εrr + εθθ + εϕϕ = 0,

outside the disc plane, as requested by eq. (12). In the interior of the TPE disc we must account for the effect of the δ-function appearing in
eq. (56). We must also take into account the constraints imposed by the welded-boundary conditions on �, as we will see in the following
section.
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6 T H E T H I N D I S C I N C Y L I N D R I C A L C O O R D I NAT E S

For geophysical applications, the deformation field within and close to the TPE disc of infinitesimal thickness, b, is best understood in
cylindrical coordinates, if we assume that the disc symmetry axis, z, is the vertical direction. The transformation from spherical components
ur, uθ , uϕ to cylindrical components uz, uρ , uϕ preserves the right handed coordinate system. For a vector u we have⎡
⎢⎣uz

uρ

uϕ

⎤
⎥⎦ =

⎡
⎢⎣cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎥⎦×

⎡
⎢⎣ur

uθ

uϕ

⎤
⎥⎦ . (65)

We note that uϕ is left unchanged. For the strain tensor εij we have⎡
⎢⎣εzz εzρ εzϕ

ερz ερρ ερϕ

εϕz εϕρ εϕϕ

⎤
⎥⎦ =

⎡
⎢⎣cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎥⎦×

⎡
⎢⎣εrr εrθ εrϕ

εθr εθθ εθϕ

εϕr εϕθ εϕϕ

⎤
⎥⎦×

⎡
⎢⎣ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤
⎥⎦, (66)

where the product between matrices is the usual product ‘rows times columns’. In particular, over the top and bottom surfaces of the disc
(z = ± b

2 ), we have, respectively, θ = π

2
∓ and uz = −uθ , uρ = ur while εzz = εθθ , εzρ = −εrθ , ερρ = εrr.

The ‘welded boundary conditions’ over the top and bottom disc faces (i.e. over z = ± b
2 , ∀ρ < a0) require continuity of displacements

uz, uρ and continuity of tractions τ ρz, τ zz going from the interior (|z| < b
2 ) to the exterior (|z| > b

2 ) of the disc. If θ = π

2 , we get from eq. (52)
εϕϕ = ur/r = uρ /ρ so that even εϕϕ must be continuous across the top and bottom disc faces. Continuity of uρ finally requires that ερρ =
∂uρ /∂ρ is continuous over the disc faces. Considering the infinitesimal thickness of the disc, uρ , ερρ , εϕϕ within the source region are given,
respectively, by eqs (49), (53) and (61) with x = cosθ = 0. When θ = π

2 the shear component εzρ = −εrθ vanishes according to eq. (63).
As stated after eq. (13), a finite amplitude discontinuity is present in εzz across the top and bottom faces of the disc: thus, the value of

εzz above the top surface and below the bottom surface of the disc may be computed either from eq. (56) in the limit x = 0∓, so that the
δ-function vanishes, or from εkk = 0 (eq. 12), which yields εzz = −(ερρ + εϕϕ). Within the source region, εkk = ε1 (from eq. 12) so that εzz

= ε1 − (ερρ + εϕϕ). The addition of ε1 in εzz within the source region may be understood from eq. (50) as due to the jump of uz from −Aa0

in z = − b
2 to +Aa0 in z = + b

2 . We may approximate to first order the singular term of uz within the source region as usi
z = 2Aa0

z
b so that

εsi
zz = ∂usi

z
∂z = 2 A

b a0 = ε1, after inserting eq. (37). The same result for the singular component of strain, εsi
zz , is obtained if the term containing

the Dirac’s δ-function in eq. (56) is approximated as

εsi
zz = 2Aδ(x)

a0

r
= 2Aδ

( z

r

) a0

r
= 2Aa0δ(z) �

{
2Aa0

1
b = ε1 if |z| ≤ b

2

0 if |z| > b
2

(67)

according to the properties of the δ-function.
In analogy with the potential, we use the superscripts (el) and (S) to denote a tensorial field as evaluated outside and inside the disc,

respectively. For ρ < a0 the strain tensor ε
(el)
i j just above z = b/2 and below z = −b/2, that is z → 0∓, and in z = 0, within the disc, ε

(S)
i j is

provided by the following expressions after assuming A = ε1
b

2a0
, θ = π

2 and r = ρ in eqs (53), (56) and (61)

ε(S)
ρρ (ρ) = ερρ(z = 0, ρ < a0) = ε1

b

2a0

∞∑
m=1

2mc2
2m

[
ρ

a0

]2m−2

,

ε(S)
ϕϕ (ρ) = εϕϕ(z = 0, ρ < a0) = ε1

b

2a0

∞∑
m=1

2m

2m − 1
c2

2m

(
ρ

a0

)2m−2

,

ε(S)
zz (ρ) = εzz(z = 0, ρ < a0) = ε1 − (ερρ + εϕϕ) = ε1

[
1 − b

2a0

∞∑
m=1

4m2

2m − 1
c2

2m

(
ρ

a0

)2m−2
]

,

ε(el)
ρρ (z = 0∓, ρ < a0) = ε(S)

ρρ (ρ),

ε(el)
ϕϕ (z = 0∓, ρ < a0) = ε(S)

ϕϕ (ρ),

ε(el)
zz (z = 0∓, ρ < a0) = −(ερρ + εϕϕ) = ε(S)

zz (ρ) − ε1,

(68)

while other components vanish.
Laterally outside the disc, that is for ρ > a0 and z = 0, ε(el)

ρρ , ε(el)
zz and ε(el)

ϕϕ are given by eqs (54), (57) and (62), respectively with x = 0,
that is θ = π

2 .
From eq. (3), the stress tensor out of the TPE disc (where both εkk and ε0 vanish) is purely deviatoric so that we get simply

τ (el)
ρρ = 2με(el)

ρρ , τ (el)
ϕϕ = 2με(el)

ϕϕ , τ (el)
zz = 2με(el)

zz . (69)

The stress tensor τ
(S)
i j within the TPE source is most easily computed after separating it into the isotropic component 1

3 τ
(S)
kk δi j and the

deviatoric component τ
(D)
i j = τ

(S)
i j − 1

3 τ
(S)
kk δi j ; from the constitutive relation (3), taking into account that ε1 = 1+ν

1−ν
ε0, we get

1

3
τ

(S)
kk δi j = −4

3
με1δi j , τ

(D)
i j = 2με

(D)
i j = 2μ

(
ε

(S)
i j − 1

3
ε1δi j

)
(70)
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Figure 9. Deviatoric stress components, (normalized to 2με1) within a TPE disc, computed at z = 0∓, with aspect ratio b/a0 = 1/10 (solid lines) and just

above or below the disc faces (dashed). The isotropic stress within the disc 1
3 τ

(S)
kk is also shown as the black solid line (τ kk vanishes outside the TPE disc).

where ε
(D)
i j = ε

(S)
i j − 1

3 ε
(S)
kk δi j is the deviatoric strain tensor.

In order to avoid cumbersome notation, the superscript (S) is omitted in the deviatoric strain and stress components inside the TPE
source. The deviatoric stress components τ

(D)
i j = 2με

(D)
i j within the TPE disc are

τ (D)
ρρ = 2μ

(
ερρ − 1

3 ε1

)
τ (D)
ϕϕ = 2μ

(
εϕϕ − 1

3 ε1

)
τ (D)

zz = 2μ
(
εzz − 1

3 ε1

) = 2μ
[

2
3 ε1 − (ερρ + εϕϕ)

]
.

(71)

In Fig. 9 solid lines show the deviatoric components of stress within the TPE disc (normalized to 2με1) assuming b/a0 = 1/10 and dashed
lines show the deviatoric components of stress just above the top surface of the disc (or just below the bottom surface). It is worth to recall
that within a mode-I Volterra dislocation both stress and strain cannot be evaluated, since no material is present in the dislocation interior.
Instead eq. (70) show important contributions, both deviatoric and isotropic, to the stress field in the interior of the TPE inclusion.

Previous considerations refer to a disc of infinitesimal thickness. A disc of finite thickness can be modelled expressing in cylindrical
coordinates the solutions for displacement and strain of Section 5.3 and 5.4, respectively, assuming that: (i) the aspect ratio of the disc is low,
that is b/a0 � 1 and (ii) the δ-function appearing in the εzz component inside the disc is approximated as in eq. (67). In this way we see that
for ρ < a0 and |z| < b/2, the component τ ρ z vanishes only in z = 0 but generally it is not equal to zero within the disc. Moreover, in order to
represent a non uniform TPE potency inside a disc it is possible to consider piled up thin discs, as shown in the following section.

7 T H E E F F E C T S O F A T P E D I S C O N S E I S M I C I T Y

Inside the TPE disc, we can see from eq. (68) that εϕϕ is always less than ερρ and, since b � a0 (by assumption), we have generally
τ (D)

zz � τ (D)
ρρ > τ (D)

ϕϕ promoting thrust faulting, if z is assumed vertical (apart from the region ρ � a0 where the series may attain large values
and the order of principal stresses is reversed). The opposite holds in the elastic region above the disc, where τ (el)

zz < τ (el)
ρρ < τ (el)

ϕϕ suggesting
a normal faulting environment if z is vertical (apart from the region ρ � a0). In any case, the deviatoric stress inside the TPE disc is much
higher than outside (Fig. 9).

The maximum shear traction within the TPE disc acts on 45◦ dipping, radially striking surfaces, within most of the TPE region. However,
given the compressive environment and the small difference between τ (D)

ρρ and τ (D)
ϕϕ , even a moderate component of pre-stress may alter the

order of these principal stresses, favouring reverse ring faulting when τϕϕ is the intermediate stress.
To better understand the effect of a TPE source on seismicity, it is worth introducing the induced change of Coulomb failure function

(�CFF, e.g. Wang 2017; Nespoli et al. 2018) generated by the TPE inclusion which can be computed according to

�CFF = |τ | + f (σn + p), (72)

where τ and σ n are the shear and the normal traction change induced by the TPE inclusion on a fault plane, respectively, p is the pore pressure
change and f is the friction coefficient. Specifically, we compute the �CFF induced by different TPE potency distributions within two or more
discs of finite thickness. In so doing we account for a smaller TPE potency in the upper part of the disc (green region in Fig. 1), with respect
to the lower one, owing to a vanishing temperature change. As reported in Section 4, this configuration is suitable to model, at a given time, a
sharp temperature front propagating across both discs, with advective mechanism driven by a uniform pressure gradient.
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Table 1. Values of thermo-poro-elastic parameter pertinent to
highly porous sedimentary rocks (Rice & Cleary 1976), as as-
sumed in the present work.

Thermo-poro-elastic parameters

Rigidity μ 6 GPa
Poisson’s ratio ν 0.2
Poroelastic constant H 10 GPa
Thermal expansion (solid) αs 3 × 10−5 K −1

Table 2. Pore pressure p and temperature T changes assumed in three different cases of TPE inclusion with
finite thickness, constituted by two depth ranges (n.1 = deep, −100 m ≤ z < 0; n.2 = shallow, 0 ≤ z < 100 m
). For both depth ranges it is reported whether the internal stress field is extensional (favouring normal faults)
or compressive (favouring thrust faults). Cases 2 and 3 are obtained overlapping two TPE discs.

Finite thickness TPE inclusion
Case 1 Case 2 Case 3

−100 m ≤ z < 0 T1 [K] 100 100 97
p1 [MPa] 1 1 10

ε01 1 × 10−3 1 × 10−3 1 × 10−3

Environment Compressive Compressive Compressive
0 ≤ z < 100 m T2 [K] 100 0 97

p2 [MPa] 1 0.5 10
ε02 1 × 10−3 2 × 10−5 1 × 10−3

Environment Compressive Extensional Compressive

Figure 10. Stress field generated by a 200-m-thick TPE disc with radius a0 = 2000 m, with a uniform TPE inclusion potency ε0 = 1 × 10−3 (e.g. T = 100 K
and p = 1 MPa or T = 97 K and p = 10 MPa), assuming the thermo-poro-elastic parameters reported in Table 1. Plot are obtained using series truncation at
N = 1000.

7.1 Finite thickness disc

First, we study the case of a TPE disc with finite thickness (Case 1 in Table 2) with a homogeneous TPE inclusion potency inside. Stress
components using parameter values (Table 1) pertinent to highly porous sedimentary rocks (e.g. Rice & Cleary 1976; Wang 2017) are shown
in Fig. 10.

It is worth noting that, even in the case of a finite thickness disc, the ‘welded boundary conditions’ over the top and bottom disc faces
(which require the continuity of tractions τ ρz, τ zz) are fulfilled. Differently from a TPE source with infinitesimal thickness, for which τ ρz = 0
inside the inclusion (see Section 6), in the case of a finite-thickness disc a small shear component τ ρz appears close to the lateral boundaries
of the inclusion, even in its interior (Fig. 10).

Thanks to the translational invariance Gij(x, x
′
) = Gij(x − x

′
) of the Green’s function in an unbounded elastic medium, the solution S for

the stress field produced by two vertically piled-up, finite-thickness discs, D1 and D2, with thickness b1 and b2 and TPE potency ε01 and ε02,
respectively, may be easily obtained adding the solution S1 for D1 alone to the solution S2 for D2 alone, which is vertically shifted of b1 with
respect to S1. In particular, within the lower disc the solution, S is obtained as the sum of the internal solution, S(S)

1 and the external solution,
S(el)

2 . Within the upper disc, S is the sum of S(el)
1 and S(S)

2 . Above the upper disc (and below the lower disc), S is given by the sum of S(el)
1

and S(el)
2 . The representation of piled-up discs may be generalized in an obvious way to approximate a disc with finite thickness b through its

decomposition in n thin discs, each with intensity ε0k and thickness bk = b
n , k = 1, 2, . . . n, emplaced between z = − b

2 and z = b
2 . It is worth

to note that the solution of a thin disc with a finite thickness b � a0 and a uniform TPE inclusion potency ε0 (Fig. 10) can be obtained as
reported at the end of Section 6 or equivalently, with two (or more) piled-up discs with ε0k = ε0.

Fig. 11 shows the stress field generated by a TPE inclusion in which the lower disc (from z = −100 m to z = 0) is affected by T1 and p1,
while the upper disc (from z = 0 to z = 100 m) is affected by T2 = 0 and p2 = 1

2 p1 (Case 2 in Table 2). Such a configuration is suitable to
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Figure 11. (a) Stress field generated by a 200-m-thick TPE disc with radius a0 = 2000 m composed by a lower disc (−100 m ≤ z < 0) with a TPE inclusion
potency ε01 = 1 × 10−3 (e.g. T1 = 100 K and p1 = 1 MPa) and an upper disc (0 ≤ z < 100 m) with ε02 = 2 × 10−5 (e.g. T2 = 0 K and p2 = 0.5 MPa),
assuming the thermo-poro-elastic parameters reported in Table 1. Plot are obtained using series truncation at N = 1000.

model a TPE inclusion when the thermal front of the fluids has reached only half thickness of the inclusion (Fig. 2b.) The low TPE inclusion
potency of the upper disc leads to a lower stress magnitude with respect to the case with uniform TPE potency (Fig. 10). Furthermore, τ ρρ

changes sign (from τ ρρ < 0 to τ ρρ > 0) laterally within the upper disc (compare Figs 10 and 11). This effect is due to the ‘interaction’
between the two discs: the stronger and deeper disc induces within the weaker upper disc an extensional contribution to τ ρρ , S(el)

1 . There,
the compressive contribution generated by the upper disc onto itself, S(S)

2 , is smaller in magnitude than S(el)
1 . Only in Case 2 we obtain an

extensional environment, favouring normal faults, within the TPE inclusion (Table 2), where generally a compressive environment, favouring
thrust faults, is present, in agreement with results obtained for a disc of infinitesimal thickness (Fig. 9).

The �CFF is computed assuming optimally oriented fault planes (the ones where �CFF is maximum) for the two cases (Table 2) shown
in Figs 10 and 11. The resulting �CFF are computed in vertical sections (Figs 12a–i) and in a vertical profile along the disc axis (ρ = 0) for
three different values of friction (f = 0.2, 0.4 and 0.8). In all cases the �CFF is discontinuous at the top of the TPE disc. In Case 2 a second
discontinuity arises at the interface between the two TPE discs. The discontinuities are due to the strong difference between the magnitude of
deviatoric stress inside and outside a disc, as evidenced at the beginning of this Section (Fig. 9). In Case 1, with uniform ε0, regardless of the
friction coefficient, inside the inclusion the �CFF reaches the highest value on the axis of symmetry of the disc and it gradually decreases
towards the lateral boundaries (Fig. 12). This result is due to the strong reduction of the deviatoric-stress component magnitude near the lateral
boundaries of the TPE disc (Fig. 9). The �CFF is positive in almost all the vertical sections, apart from Case 1 with f = 0.4 and 0.8 (Figs 12b
and c), where �CFF assumes slightly negative values near the lateral boundaries of the inclusion. A similar behaviour was also envisaged
by Belardinelli et al. (2019) who found that high T/p ratios, in conjunction with high friction coefficients, can lead to negative �CFF values
close to the external boundary of a spherical-shell shaped TPE inclusion.

Along the axis of symmetry of the inclusion (ρ = 0, –100 m <z <100 m), in the case of uniform T and p (Case 1), the magnitude
of �CFF decreases for higher friction coefficients. Differently, in the case of lower T and p in the upper disc (Case 2), this trivial effect is
observed only in the lower disc. In Case 2, the increase of �CFF in the upper disc, by increasing friction, is due to the extensional stress field
induced by the deeper disc (by means of S(el)

1 ), which prevails over the compressive stress caused by S(S)
2 inside the shallower disc, as already

explained.
In Case 3 the TPE inclusion potency is uniform, with the same value as in Case 1, but it was obtained from eq. (2), assuming a greater

pore-pressure and a lower temperature, uniformly distributed within the TPE inclusion (p1 = p2 = 10 MPa and T1 = T2 = 97 K). As in Case
1, the maximum �CFF, for each z, is obtained within the disc, along its symmetry axis. Even if the stress field generated in both cases is
the same (Fig. 10), inside the TPE source the induced �CFF is greater in Case 3 with respect to Case 1 (Fig. 12), because in Case 3 the
higher pore pressure strongly reduces the frictional resistance (lubrication effect). This is confirmed by the effect of the friction coefficient
shown in Fig. 12: in Case 3 the �CFF increases for larger friction coefficients, unlike Case 1. Results of Fig. 12 confirm that optimally
oriented dip-slip faults are distributed around and within the TPE disc, with the same mechanisms as deemed considering the order of stress
components shown in Figs 10 and 11.

7.2 Seismicity due to fluid extraction

Even if the previous paragraphs were focused on volcanological applications, in which hot and pressurized fluids are injected into the TPE
inclusion, the solutions provided in the present paper are also suitable to model fluid withdrawal in geothermal fields. Fig. 13 shows an
example of application of a TPE inclusion, suitable to model fluid production from a deep reservoir, as modelled by Segall & Fitzgerald
(1998) assuming an isothermal reduction in pore pressure. It was obtained assuming a negative TPE inclusion potency, ε0, that arises from p <

0 and T = 0. Fig. 13 a shows the expected fault mechanisms due to fluid withdrawal, as commonly reported in geothermal environments (Segall
1989; Bardainne et al. 2008; Chang & Segall 2016; Wang & Manga 2021): normal faulting can be promoted within and near the periphery
of the reservoir, while reverse faulting can be favoured above and below the reservoir. As we can see from Fig. 13b, this heterogeneity of
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(a) (b) (c)

() (e) (f)

(g)

(j) (k) (l)

(h) (i)

Figure 12. �CFF (colour) generated on optimally oriented fault planes by a 200-m-thick TPE disc with radius a0 = 2000 m, for Case 1 (a–c), Case 2 (d–f),
Case 3 (g–i), reported in Table 2 and for three different friction coefficients f = 0.2 (a, d, g), 0.4 (b, e, h), 0.8 (c, f, i). Green lines separate zones where normal
faulting is favoured, from the ones of thrust faulting. Bottom panels (j, k, l) show �CFF profiles computed along the axis of symmetry of the inclusions (ρ =
0, z). Purple boxes and lines indicate the location of the boundary of the TPE inclusions.

fault mechanisms inside and in the surrounding of the reservoir, is reproduced with our solutions for a TPE inclusion with negative potency.
A negative potency is also obtained in a geothermal reservoir where re-injection of cold (T < 0) fluids is used to maintain constant pressure
(p = 0) after its exploitation. In the case of fluid injection with p > 0 and T > 0 (Fig. 12), the distribution of optimally oriented faults had
opposite mechanisms with respect to the case of fluid withdrawal (Fig. 13). In particular, thrust faults were favoured within the inclusion.

8 D I S C U S S I O N

In this paper we provide analytical solutions for displacement, strain and stress field for a disc shaped TPE inclusion embedded in a
homogeneous full-space. The series expansions appearing in our solutions provide fast convergence in all the full-space, apart from r = a0,
where the series diverge. The infinite singularity of ur (and err) along the disc rim is clearly unphysical since ur should be continuous in r
= a0 and, even more important, this singularity would entail interpenetration of matter. A similar problem arises in the framework of tensile
dislocations with assigned Burgers vectors (Landau & Lifshits 1967). In analogy with the mentioned dislocation problem, the unphysical
singularity may be removed assuming that temperature and pore pressure changes T and p vanish gradually when ρ → a0 : this would make
uρ bounded along the disc rim.

Of course, the models presented above are applicable to deep TPE sources, that is having depths greater than the lateral extent, since
the effects due to the proximity of the free surface cannot be obtained using the present method based on a displacement potential, because
the Green’s function in a half-space is no longer symmetric and eqs (10)–(12) no longer hold. Nevertheless, for a horizontal TPE disc in
a half-space bounded by a free surface, Mantiloni et al. (2020) showed that semi-analytic solutions can be obtained separating Mindlin’s
Green’s function (Mindlin 1936) into a singular component, the explicit expressions of which are provided in the present paper, and a regular
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(a)

(b)

Figure 13. Example showing how to model mechanical effects on seismicity due to geothermal production (fluid extraction) in a TPE reservoir. (a) Sketch
of observed faulting mechanisms due to fluid withdrawal from a geothermal reservoir (modified after Segall 1989). (b) �CFF (colour) and expected fault
mechanisms due to a TPE inclusion assuming p = −10 MPa and T = 0 (ε0 = −3 × 10−4), f = 0.2 and the thermo-poro-elastic parameters reported in Table 1.
Green lines separate zones where normal faulting is favoured, from the ones of thrust faulting, as also reported. The black box indicates the location of the
boundary of the TPE inclusion.

component coping with the free surface conditions which was evaluated numerically. For a deep source and in near-field condition, where
the induced seismicity is expected to occur (e.g. Nespoli et al. 2021), the regular components can be neglected and the stress field estimated
through eq. (71) well approximates the total stress even in the presence of a free surface. Differently from Mantiloni et al. (2020), in the
present model the external stress field is entirely deviatoric, as due to the absence of the free surface condition and this allows writing εkk = ε1,
leading to a simpler pressure diffusion equation. As in Belardinelli et al. (2019), in the far field, displacements and stresses are asymptotically
equal (within a multiplicative factor) to those provided by a pressurized spherical cavity.

The displacement of a TPE disc scales with Aa0, while stress scales with 2με1 (see sections 5.3 and 6). It is worth noting that this is
still true for discs of very large thickness (b ≈ a0), since they can be represented by superimposition of several TPE discs with small (b �
a0) thickness, following the procedure outlined in Section 6.1. We recall that both A and ε1 are proportional to the TPE inclusion potency
ε0 (eqs 11 and 37, respectively). Then according to our model, in order to evaluate the numerical amplitude of TPE effects expected in a
volcanic (or, more generally, geothermal) environment, it is necessary to estimate reasonable values of the TPE inclusion potency ε0, which
in turn linearly depends on p and T (eq. 2). Using parameter values pertinent to highly porous sedimentary rocks (Table 1), as in Section 6,
and reasonable estimates of T and p (see Section 4.1), a temperature increase T = 100 K without any pore pressure increase (i.e. p = 0,
ε0 = 0.001) within a disc with a0 = 1 km and b = 1

10 a0 = 100 m provides the following numerical values of the normalization constants:
2με1 = 18 × 106 Pa for stress components, Aa0 = 7.5 cm for the displacement; if a pore pressure increase p = 10 MPa applies without any
temperature increase (i.e. T = 0, ε0 = 3.3 × 10−4) the following values are obtained for the normalization constants: 2με1 = 0.6 × 106 Pa
for stress components, Aa0 = 0.25 cm for the displacement. Even if the temperature effects seem much more relevant than the pore pressure
effects, it must be mentioned that the geometrical extension of temperature changes is expected to increase much more slowly than pore
pressure changes, in a high permeability medium, since the propagating fluid rapidly cools down while crossing the colder rock matrix
(Nespoli et al. 2021).

Furthermore, even if the pore pressure provides smaller effects than T (for most rocks), the importance of p in promoting faulting
processes within the TPE region is enhanced by its lubrication effects, according to the modified Mohr–Coulomb criterion (Section 7.1). In
fact, under the same TPE inclusion potency ε0, effects on induced seismicity are larger for greater p and lower T (Case 3 in Fig. 12 to be
compared with Case 1).

Assuming a uniform TPE inclusion potency as in the case of the thin disc or Cases 1 and 3, we can provide an estimate of pore pressure
changes suitable to realize positive �CFF for an assigned T value according to the following consideration. As tensile stresses are assumed
positive, the friction resistance decreases both if the normal stress within the solid matrix, σ n, increases (σ n > 0) or if the pore pressure, p,
increases. Actually, within the TPE inclusion an increase of confining pressure − 1

3 τ
(S)
kk = 4

3 με1 (eq. 70) occurs, so that a decrease of normal
stress is expected (σ n < 0). Roughly assuming that σn ∼ 1

3 τ
(S)
kk , in order to reduce friction the pore pressure increase should exceed the
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confining pressure increase. To this aim, friction is reduced if p > − 1
3 τkk = 4

3 με1 = cT with

c = μαs[
9
4

1−ν

1+ν
− μ

H

] = 2 × 105 Pa K−1, (73)

where the estimate is made using the values of TPE parameters μ, ν, H, αs reported in Table 1. For a given temperature change T, p = cT is an
upper estimate of the pore pressure change suitable to counterbalance the change in normal stress due to the intrusion of hot and pressurized
fluids within the TPE inclusion. This can be explained considering that the increase of confining pressure overestimates the increase of
compressive normal stress, −σ n, on optimally oriented planes. The lubrication effect is negligible in our Case 1 because p � cT, unlike Case
3 where p � cT (Fig. 12).

9 C O N C LU S I O N S

The TPE disc model shows that a significant deviatoric stress is generated by changes of pore pressure p and temperature T within it. If the
ground surface is assumed to lay above the TPE disc, this is if z is vertical, for positive increments of p and T, the induced stress field and the
expected heterogeneity of focal mechanisms can be summarized as follows:

(i) The compressive stress axis within the disc is horizontal, so that thrust faulting mechanisms are favoured within the TPE disc over optimally
oriented faults.
(ii) Above the inclusion, in the elastic domain the compression axis is vertical, favouring normal faulting mechanisms as also obtained by the
spherical shell model of Belardinelli et al. (2019) and the model of Mantiloni et al. (2020).
(iii) Even in the interior of the TPE inclusion, an extensional environment, that is normal faulting mechanisms, can be obtained assuming a
temperature gradient much steeper than the pressure gradient, as we expect during the vertical uprise of hot and pressurized fluids.

Inverse faulting mechanism confined in a bounded region can suggest the presence of a TPE source with ε0 > 0 located in the same
region. Looking at Figs 9, 10 and 11 we may speculate that radially striking faults should be favoured with respect to ring faults (since τ ρρ

is the intermediate principal stress), but the role of the initial stress (before p and T were imposed) is crucial in determining the order of
principal stresses between τ ρρ and τϕϕ . If a nearly uniform component of regional tectonic stress is dominant, the strike direction is the radial
direction parallel to the compressive tectonic axis; if a local axially symmetric field was originally present, with compressive axis in the radial
direction, ring faults are to be expected within the TPE region.

TPE models are suitable to describe hot fluids ascending from a deep reservoir, causing temperature and pore pressure increases in the
overlying region. Our results show that at least in the central part of the TPE disc basis surface shear tractions vanish. Thus the solution
applies even if the TPE disc overlays a fluid magma reservoir, because the usual boundary conditions imposed at a solid/fluid interface are
fulfilled. The present model is also suitable for applications in geothermal contexts to represent fluid re-injection or production, assuming T
< 0 and p = 0 or T = 0 and p < 0, respectively (Segall & Fitzgerald 1998).

If crustal elastic heterogeneities or an arbitrary TPE inclusion shape are to be taken into account, numerical models should be used (e.g.
Nespoli et al. 2021). The present solution allows us to test numerical models in near field for a TPE disc located in a homogeneous medium.
The proposed model may be easily generalized to account for p and T variable with z and ρ within the TPE disc since, realistically, they both
should vanish gradually when approaching the elastic domain. Such a generalization most probably allows preventing the singularity of the
solution at the disc lateral surface too and is left for future developments.
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A P P E N D I X : N O T E S O N C O N V E RG E N C E O F S E R I E S I N S E C T I O N S 5 . 3 A N D 5 . 4

Absolute convergence of the series for the displacement components ur and uθ is proved if r �= a0 (e.g. using D’Alambert’s criterion). When
r → ∞, ur (eq. 39) decreases asymptotically as ∼r−2 and uθ (eq. 41) as ∼r−4. In the following of the Appendix we focus on the cases r
≤ a0. When r = a0 and θ �= π

2 convergence for ur is extremely slow while uθ diverges. For both components analytic continuation may be
preferably used to estimate their values in r � a0. In r = a0 and θ = π

2 a logarithmic singularity is present in ur while uθ vanishes. It is worth
to recall that uθ is an odd function of x = cos θ : it vanishes continuously in θ = π

2 if r > a0 but a jump discontinuity from −Aa0 to +Aa0 is
present when θ = π

2
∓ if r < a0.The resulting trends of ur and uθ are shown in Figs 4 and 5.

A1 Radial component of displacement (eq. 49)

The series appearing in eq. (49) is absolutely convergent if r/a0 < 1 since
∣∣c2m P2m(x) 2m

2m−1

∣∣ ≤ 1 and, using the sum of the geometric series,
we get

∞∑
m=1

∣∣∣∣∣c2m P2m(x)
2m

2m − 1

(
r

a0

)2m−1
∣∣∣∣∣ ≤ 1√

t

∞∑
m=1

tm =
√

t

1 − t
,

where t =
(

r
a0

)2
< 1 and we have taken into account the asymptotic trend (eq. 30) and the property |Pn(x)| ≤ 1, ∀n. The number N of terms

needed to get a fair approximation of the series in eq. (49) is strongly dependent on the value r/a0: we may evaluate N according to the
following scheme. The rest RN of the series of absolute values is such that

RN ≤
∞∑

m=N+1

tm−1/2 = t N+1/2

1 − t
<

t N

1 − t
.

Then RN is negligible (i.e. RN � 1) if N � log(1−t)
log t (Fig. A1).

log(1‐t)/ log t
10

3

10
2

10

1
10.950.90.850.80.750.70.60.55

r/a0

Figure A1. For each r/a0, if the number N of terms is located above the curve log (1 − t)log t as function of r/a0, a good approximation of the series in eq. (49)
is obtained.

Thus, only few terms are sufficient to provide a proper evaluation of the series (eq. 49) as far as r/a0 < 0.7 but the number N increases
rapidly to 10 if r/a0 = 0.9, to 200 if r/a0 = 0.99 and becomes infinite when r/a0 → 1 (Fig. A1). If r > a0 we may prove in a similar way that
the series (eq. 39) is absolutely convergent and continuous. Fig. 4(a) shows ur versus r for a few values of θ , and Fig. 5(a) shows ur versus θ

for a few values of r.
When r � a0 (near the boundary between the inner and outer domain) the series in eq. (49) diverges logarithmically to +∞ when θ → π

2

(Fig. 4a) and t → 1 since P2m(0) = c2m and the mth term in the series, according to eq. (30), is asymptotically greater than 1
π

√
t

tm

m (remind that

log(1 − t) = −∑∞
m=1

tm

m if t < 1). The singularity may be eliminated considering that the equivalent body force system generating
∂Gi j

∂x j
in eq.

(10) is actually distributed over the volume Vs = πa2
0b with small but finite thickness b instead of the flat disc surface πa2

0 ; this means that the
solution (eq. 49) is valid only if a0 − r � b. Similar considerations hold for the series (eq. 39) describing ur in the external domain.When r
→ a0 along directions θ �= π

2 , convergence may be achieved thanks to the sign oscillations of the product c2mP2m(x), but the rate is extremely
slow. In these cases, the value of ur in r = a0, θ �= π

2 may be obtained through analytic continuation starting from values computed at r/a0

< 1 or, more efficiently, through interpolation between points r1/a0 < 1 and r2/a0 > 1, where convergence is achieved at reasonably fast rates
(Fig. 4a inset).
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A2 Polar component of displacement (eq. 50)

Let us consider the polar component uθ and the series in eq. (50); since
∣∣∣ dP2m

dθ

∣∣∣ ≤ m(2m + 1) (see e.g. Abramowitz & Stegun 1965), the rest

of the series of absolute values is

RN < t
∞∑

N+1

mtm,

where t =
(

r
a0

)2
. Using D’Alambert criterion,

∑
mtm is absolutely convergent since the ratio of consecutive terms (m+1)tm+1

mtm = m+1
m t tends

asymptotically to a limit t < 1. The number N of terms required to make RN � 1 may be evaluated from

RN <

∞∑
N+1

qm <
q N+1

1 − q
,

where q is computed from the requirement that mtm < q < 1, ∀m > N. The sequence mtm decreases while m increases if m > t
1−t . Thus, once

N > t
1−t we may pose q = (N + 1)tN + 1 and RN � 1 if N � log(1−q)

log q . When r = a0 and θ �= π

2 the series describing uθ are not convergent
(a necessary requirement for convergence of a series is that its mth term vanishes when m → ∞), but analytic continuation may be used to
compute their values if θ �= π

2 . If r = a0 and θ = π

2 the mentioned series vanish because all dP2m
dθ

vanish.

A3 Strain components (eqs 53–64)

Absolute convergence of the series describing the strain components (eqs 53–64) when r �= a0 is proved in a similar way and the number of
terms required to provide a fair approximation may be computed according to the same scheme used for uθ . When r = a0 all the mentioned
series are not convergent but analytic continuation may be used to compute their values if θ �= π

2 . If r = a0 and θ = π

2 all the mentioned series
are divergent to ±∞ apart from εrθ (eqs 63 and 64) which vanish if θ = π

2 , ∀r but is singular in r = a0 because no definite limit exists in a
neighbourhood of r = a0, θ = π

2 (Fig. 7d dashed line).


