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The effect of local thermal non-equilibrium on the onset of thermal instability for a1
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Mixed convection in metallic foams modeled with Darcy’s law under local thermal non–12

equilibrium conditions is investigated, where the solid phase thermal conductivity is as-13

sumed infinitely larger than its fluid phase’s counterpart. A linear and modal stability anal-14

ysis was employed to evaluate the convective and absolute instability thresholds as well15

as their respective cell patterns. This analysis indicates that local thermal non–equilibrium16

always has a stabilizing effect and the spanwise uniform mode is always the most unstable.17

At the onset of convective instability, however, the number of equally unstable cell patterns18

increases with both aspect ratio and local thermal non–equilibrium strength.19
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I. INTRODUCTION20

In the last decades, there has been an increasing interest in the use of metallic foams as heat21

exchangers. This type of material is characterized especially by its stiffness, strength, lightness22

and ability to absorb a large amount of energy. The importance of this kind of material to heat23

transfer enhancement is mainly due to its high thermal conductivity, its high solid–fluid interface24

area and its ability to promote mixing internally1. Metallic foams are often modeled as porous25

media with high porosity and permeability. In addition, on account of their good conducting solid26

phase compared to the fluid phase, the assumption of local thermal equilibrium between the phases27

is likely to fail. For a thorough review on metallic foams and their application as heat exchangers,28

we refer the reader to the existing literature2–4.29

A good understanding of the phenomenon of convection in porous media is closely related to30

the design optimization of metal foams as heat exchangers. The study of thermal instability to31

determine the onset of convection in fluid saturated porous media has been widely investigated32

in the literature. The pioneering studies in this field5,6 focused on a porous layer saturated by a33

Newtonian fluid at rest. Some years later, the effect of a horizontal fluid flow on the transition34

to instability was investigated7. It was found that the horizontal throughflow does not affect the35

instability threshold, but changes the disturbance nature from stationary to travelling.36

These conclusions were based on the concept of convective stability analysis. Such an analysis37

aims to determine the parametric threshold above which a plane wave disturbance with a given38

wave number starts to grow. In the late 1950s, a discussion emerged between different types of39

instability in the context of plasma physics8,9. Later, the concepts of convective and absolute in-40

stabilities were brought to the area of fluid dynamics10. The distinction between these types of41

instability can be done by analyzing the impulse response of the system. If the infinitesimal im-42

pulse grows in time for a fixed position, eventually contaminating the entire domain, the problem43

is said to be absolutely unstable. On the other hand, if a disturbance grows as it is convected by44

the basic flow, eventually leaving the domain, it is said to be convectively unstable. If the problem45

has a basic solution in which the fluid is at rest, the onset conditions of both types of instability46

most likely coincide. When the basic throughflow is nonzero, however, which is the case in many47

real–world problems, the convective/absolute instability nature of the flow must be determined.48

Recently, absolute instability in porous media flows has been the focus of several studies11–20,49

and a more exhaustive review can be found in Barletta 21 . In the context of convection within50



metallic foams, the onset of absolute instability is yet an unanswered question. The present paper51

aims to investigate the transition from convective to absolute instability when the solid and fluid52

phases are not in local thermal equilibrium. The first studies on the onset of convective instability53

in a horizontal porous layer under conditions of local thermal non–equilibrium were carried out54

by Combarnous 22 and later by Banu and Rees 23 . In addition, we consider the porous channel to55

be laterally confined. The pattern selection of the emergent mixed convection is also investigated.56

This investigation is usually performed by means of a weakly nonlinear analysis, since the inter-57

action between the single modes must be taken into account24. Such an approach has indeed been58

used to investigate the effect of local thermal non–equilibrium on the pattern formation for mixed59

convection in porous media25. In the present analysis, however, only the linear pattern selection is60

discussed. This is accomplished by employing the linear growth rates given by both the convective61

and absolute instability analyses.62

II. PROBLEM STATEMENT63

A fluid saturated porous layer is bounded horizontally by impermeable and isothermal walls64

and vertically by adiabatic and impermeable walls. This porous channel is subject to a horizontal65

pressure gradient. A vertical temperature gradient is set up by imposing two different tempera-66

tures at the boundaries with the highest temperature on the lower one. The problem configuration67

is illustrated in the Fig. 1 and coincides with the one investigated by Prats, but with a lateral68

confinement. Among all the possible porous media, we are interested in investigating metallic69

foams. These peculiar, highly conductive, porous media are suitable for designing innovative70

heat exchangers. In this framework, heat transfer processes characterised by fast transients are71

frequent. In order to analyse this type of phenomena, a two–temperature model is here employed:72

one temperature describing the heat transfer for the fluid phase and one temperature for the heat73

transfer for the solid phase. This model allows us to relax the hypothesis of local thermal equilib-74

rium (LTE) between the solid phase and the fluid phase.75

76

The stability of such a system with respect to the onset of buoyancy driven convection will77

be investigated in this paper. The convective stability and absolute instability are here studied.78

Darcy’s law is employed to describe the momentum transfer and the Oberbeck-Boussinesq ap-79

proximation is assumed to model the buoyancy term.80
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FIG. 1. Illustration of the flow geometry under study.

A. Governing equations81

The absence of LTE implies a so called local thermal non equilibrium (LTNE) regime. The

two–temperature model here employed defines, for the same reference elementary volume, two

different temperatures and a interphase heat transfer coefficient h that rules the heat exchange

between solid and fluid. The set of governing equations is thus composed by a local mass balance

equation, a local momentum balance equation, and two energy balance equations, one for the fluid

and one for the solid, namely

∇·u = 0,

µ

K
u =−∇p+ρ f gβ (Tf −T0)ez,

(ρc) f

(

ϕ
∂Tf

∂ t
+u ·∇Tf

)

= ϕ k f ∇2Tf −h
(

Tf −Ts

)

,

(ρc)s(1−ϕ)
∂Ts

∂ t
= (1−ϕ)ks∇

2Ts +h
(

Tf −Ts

)

,

y = 0 :
∂Tf

∂y
=

∂Ts

∂y
= 0, v = 0,

y =W :
∂Tf

∂y
=

∂Ts

∂y
= 0, v = 0,

z = 0 : Tf = Ts = T1, w = 0,

z = L : Tf = Ts = T2, w = 0.

(1)

where the x coordinate direction is assumed homogeneous. Hence, boundary conditions are not

required by a linear and modal stability analysis in this direction. Here, the subscripts f ,s denote,



respectively, the fluid phase and solid phase properties, (x,y,z) are the Cartesian components of

the position vector x, t is the time, u = (u,v,w) is the velocity vector, T is the temperature, T0 is the

reference temperature, ez is the unit vector along the vertical z−axis, ρ is the density, c is the heat

capacity per unit mass, k is the thermal conductivity, ϕ is the porosity, µ is the dynamic viscosity,

β is the thermal expansion coefficient of the fluid, K is the permeability, g is the modulus of the

gravitational acceleration vector g. The channel height is denoted with L while the width with W .

Noting that κ = k/(ρc) is the thermal diffusivity, the relations

x = x∗L, t = t∗
L2

κ f

, u = u∗ ϕ κ f

L
, p = p∗

ϕ µ κ f

K
,

Ts, f = T0 +T ∗
s, f ∆T, T0 =

T1 +T2

2
, ∆T = T1 −T2,

(2)

yield the definitions of the dimensionless quantities, denoted with an asterisk. Eq. (2) allows us to

obtain the following set of dimensionless governing equations from Eq. (1):

∇·u = 0,

u =−∇p+RTf ez,

∂Tf

∂ t
+u ·∇Tf = ∇2Tf −H

(

Tf −Ts

)

,

ξ
∂Ts

∂ t
= ∇2Ts +H γ

(

Tf −Ts

)

,

y = 0,A :
∂Tf

∂y
=

∂Ts

∂y
= 0, v = 0,

z = 0,1 : Tf = Ts =±1

2
, w = 0,

(3)

where the asterisks are omitted for the sake of brevity and the forthcoming analysis is based on

dimensionless quantities. The Darcy–Rayleigh number R and the other dimensionless parameters

employed in Eqs. (3) are defined as

ξ =
κ f

κs
, H =

hL2

ϕ k f

, γ =
ϕ k f

(1−ϕ)ks
, R =

gβ ∆T KL

ϕ κ f ν
, A =

W

L
. (4)



B. Pressure–temperature formulation82

We manipulate Eqs. (3) to obtain the following pressure temperature formulation

∇2 p−R
∂Tf

∂ z
= 0,

∂Tf

∂ t
+(RTf ez −∇p) ·∇Tf = ∇2Tf −H

(

Tf −Ts

)

,

ξ
∂Ts

∂ t
= ∇2Ts +H γ

(

Tf −Ts

)

,

y = 0,A :
∂Tf

∂y
=

∂Ts

∂y
= 0,

∂ p

∂y
= 0,

z = 0,1 : Tf = Ts =±1

2
,

∂ p

∂ z
=±R

2
,

(5)

where the impermeability conditions in Eq. (3) are expressed as pressure conditions by employing83

Darcy’s law.84

III. STABILITY ANALYSIS85

A metallic foam is usually characterized by a high value of thermal conductivity. Let us con-

sider the limiting case where the fluid saturated metallic foam is such that k f /ks ≪ 1 with a finite

value of k f . This assumption yields γ ≪ 1 and ξ ≪ 1. Such results yield an important simplifica-

tion of Eqs. (5), namely

∇2 p−R
∂Tf

∂ z
= 0,

∂Tf

∂ t
+(RTf ez −∇p) ·∇Tf = ∇2Tf −H

(

Tf −Ts

)

,

∇2Ts = 0,

y = 0,A :
∂Tf

∂y
=

∂Ts

∂y
= 0,

∂ p

∂y
= 0,

z = 0,1 : Tf = Ts =±1

2
,

∂ p

∂ z
=±R

2
.

(6)

A. The basic state86

A stationary basic solution of Eq. (3) where a horizontal pressure gradient is imposed is the

following:

∇pb = (−Pe,0,RTf ,b), Ts,b = Tf ,b =
1

2
− z, (7)



where b stands for the basic state and Pe = u0 L/ϕ κ f is the Péclet number, which derives from87

the velocity scaling in Eq. (2) with u0 defined as characteristic velocity imposed by the stationary88

pressure gradient. Since the temperatures of the fluid and of the solid phase coincide, the basic89

state is one of local thermal equilibrium.90

B. Linear and modal disturbance governing equations91

The stability of the basic state, Eqs. (7), is now investigated. The governing equations (6) are

thus perturbed by employing small amplitude disturbances, namely



















p(x,y,z, t)

Tf (x,y,z, t)

Ts(x,y,z, t)



















=



















pb(x,z)

Tf ,b(z)

Ts,b(z)



















+ ε



















pd(x,y,z, t)

Tf ,d(x,y,z, t)

Ts,d(x,y,z, t)



















, (8)

where d stands for the disturbance and ε is a disturbance parameter, small enough to make the

O(ε2) nonlinear terms negligible. The linearised system of governing equations obtained by sub-

stituting Eq. (8) into Eqs. (6):

∇2 pd −R
∂Tf ,d

∂ z
= 0, (9a)

∂Tf ,d

∂ t
+Pe

∂Tf ,d

∂x
+

∂ pd

∂ z
−RTf ,d = ∇2Tf ,d −H(Tf ,d −Ts,d), (9b)

∇2Ts,d = 0, (9c)

y = 0,A :
∂Tf ,d

∂y
=

∂Ts,d

∂y
=

∂ pd

∂y
= 0, (9d)

z = 0,1 : Tf ,d = Ts,d = 0,
∂ pd

∂ z
= 0. (9e)

We an now express (pd,Tf ,d,Ts,d) in terms of the Fourier modes

pd =
1√
2π

∫ +∞

−∞
ψ(y,z)ei k x eλ t dk,

Tf ,d =
1√
2π

∫ +∞

−∞
θ(y,z)ei k x eλ t dk ,

Ts,d =
1√
2π

∫ +∞

−∞
φ(y,z)ei k x eλ t dk ,

(10)

which are spatially periodic and temporally evolving since k is a real wave number and λ is a

complex parameter with frequency ω = −Im[λ ] and temporal growth rate Re[λ ]. Alternatively,



they can also be expressed in terms of the Fourier modes

pd =
1√
2π

∫ +∞

−∞
ψ(y,z)ei k x e−iω t dω,

Tf ,d =
1√
2π

∫ +∞

−∞
θ(y,z)ei k x e−iω t dω ,

Ts,d =
1√
2π

∫ +∞

−∞
φ(y,z)ei k x e−iω t dω ,

(11)

which are temporally periodic and spatially evolving since ω is a real frequency and k is a complex

parameter with wave number Re[k] and spatial growth rate −Im[k]. Furthermore, they also have

complex eigenfunctions ψ(y,z), θ(y,z) and φ(y,z) that depend on the parameters k and n or ω and

n, respectively. By employing Eq. (10), we can manipulate Eq. (9) to obtain

∂ 2ψ

∂y2
+

∂ 2ψ

∂ z2
− k2ψ −R

∂θ

∂ z
= 0,

∂ 2θ

∂y2
+

∂ 2θ

∂ z2
−
(

k2 +H −R+ i k Pe+λ
)

θ − ∂ψ

∂ z
+Hφ = 0,

∂ 2φ

∂y2
+

∂ 2φ

∂ z2
− k2φ = 0,

y = 0,A :
∂θ

∂y
=

∂φ

∂y
=

∂ψ

∂y
= 0,

z = 0,1 : θ = φ = 0,
∂ψ

∂ z
= 0,

(12)

which can also be obtained from Eq. (11) if we let ω = iλ . The disturbances (ψ,θ ,φ) can be

expressed in the form of normal modes according to the boundary conditions in Eq. (14)

ψ =
∞

∑
n=0

∞

∑
m=1

ψn,m cos
(nπy

A

)

cos(mπz) ,

θ =
∞

∑
n=0

∞

∑
m=1

θn,m cos
(nπy

A

)

sin(mπz) ,

φ =
∞

∑
n=0

∞

∑
m=1

φn,m cos
(nπy

A

)

sin(mπz) . (13)

By applying Eq. (13) to Eq. (12) we may write

(k2 + s2 +π2m2)ψn,m +π mRθn,m = 0,
(

λ + k2 + s2 + i k Pe+π2m2 −R
)

θn,m −π mψn,m +H(θn,m −φn,m) = 0,
(

k2 +π2m2 + s2
)

φn,m = 0,

(14)

where

s2 =
n2π2

A2
. (15)



The last equation in Eqs. (14) allows us to conclude that φn,m = 0 for every n and m, which means

its first two equations can be manipulated to yield the dispersion relation

λ = R− π2m2 R

k2 +π2m2 + s2
−H − k2 − s2 −π2m2 − i k Pe. (16)

With the aim of encompassing the dependence on m, we introduce the scaling

λ ′ =
λ

m2
, R′ =

R

m2
, H ′ =

H

m2
, k′ =

k

m
, s′ =

s

m
, Pe′ =

Pe

m
, (17)

so that Eq. (16) can be rewritten as

λ ′ = R′− π2R′

k′2 +π2 + s′2
−H ′− k′2 − s′2 −π2 − i k′Pe′. (18)

Equation (18) coincides with Eq. (16) when m = 1. In the following, the primes will be omitted92

for the sake of brevity. This is equivalent to employing Eq. (16) with m = 1.93

C. Onset of convective instability94

The first step in the present study is to identify the onset of instability, i.e. under which para-95

metric conditions the flow first becomes unstable. In the presence of throughflow, this is often96

called the onset of convective instability. This analysis can be pursued by considering either spa-97

tially periodic Fourier modes that can neither grow nor decay in time, i.e. Re[λ ] = 0, or temporally98

periodic Fourier modes that neither grow nor decay in space, i.e. −Im[k] = 0.99

Under these constraints, the imaginary part of Eq. (18) yields

ω = k Pe. (19)

This result implies that traveling disturbances propagate at the same dimensionless velocity of the100

basic flow, Eq. (7). We can thus conclude that the principle of exchange of stabilities holds in the101

reference frame co-moving with the basic flow.102

Putting together Eq. (19) with the assumptions Im[k] = Re[λ ] = 0 and Eq. (18), yields

R =

(

k2 + s2 +π2
)(

k2 + s2 +H +π2
)

k2 + s2
, (20)

where the least stable mode is recovered when m = 1 according to Eq. (17). The critical values kc,

which are the values of k that minimize R, must satisfy either equation














k2 + s2 = s2
c ∀ s ≤ sc,

k = 0 ∀ s,

(21)



H = 0

10

20

40

60

80

100

sc = π 1/2(H + π 2)1/4

0 2 4 6 8 10
0

50

100

150

200

250

s

R
c

FIG. 2. Critical Rayleigh number Rc as a function of the parameter s for different values of H. Black

lines represent Rc∀s ≤ sc whereas red lines represent Rc∀s in Eq. (23). Dashed (red) line represents local

minima whereas solid (black and red) lines represent global minima.

where the former describes a circle centered at the origin (k,s) = (0,0) with radius sc, defined as

sc =
√

π(H +π2)1/4. (22)

They represent the wave number of the disturbance that will first become unstable as R is increased

to Rc = R(kc). Substituting Eq. (21) into Eq. (20) leads to the critical Rayleigh numbers

Rc =















H +2π
(

π +
√

H +π2
)

∀ s ≤ sc,

(π2 + s2)(H +π2 + s2)

s2
∀ s,

(23)

which show that the parameter Rc has a dependency on both s and H. Figure 2 summarizes

these findings by presenting Rc from Eq. (23) as a function of s for different H. Note that sc

increases as H increases, which is why the critical interval increases with H. Since Rc(∀s ≤ sc)≤
Rc(∀s), as shown in Fig. 2, and s ≤ sc, because the integer n can be as small as zero as it was

defined in Eq. (13), the critical wavelength is given by kc =
√

s2
c − s2. Two limits are worth further

discussion. One is the unlikely upper limit s = sc, since it can only be achieved when A and n

satisfy

A = n
√

π
/

(H +π2)1/4, (24)



which means that we must have A = n when H = 0 and A = n/2 when H = 15π2, for instance.

In these very specific cases, a uniform (kc = 0) and stationary (ωc = 0), according to Eq. (19),

disturbance becomes dominant. The other one is the lower limit s → 0 for either an unbounded

domain in the streamwise direction, i.e. A → ∞, or a spanwise uniform instability, i.e. n = 0.

Equation (20) can then be simplified to

kc =

√

π
√

H +π2. (25)

Furthermore, the thermal uncoupling between solid and fluid phases occurs for a vanishing dimen-103

sionless inter-phase heat transfer coefficient, i.e. in the limit H → 0. In this case, if s → 0, the104

mathematical formulation matches that of the classical Darcy–Bénard problem and one obtains105

kc = π from Eq. (25) and Rc = 4π2 from Eq. (23). Finally, it is important to note that the classical106

Darcy–Bénard Rayleigh number Ra and the one used here are not the same. According to Eq. (4),107

they are related by Ra = γ R/(1+ γ). Additionally, γ → 0 because ks ≫ k f was assumed and108

Eq. (23) states that Rc → ∞ as H → ∞. Hence, both products γ R and γ H become ill–defined when109

H → ∞. The latter also appears in Eq. (5), which means this limit cannot be enforced when using110

Eq. (6). It turns out that γ ∼ O(10−3) and O(1) < H < O(105), according to typical values found111

in the literature for h, L, ϕ , ks and k f
1. Hence, we focus our studies on the range 0 ≤ H ≤ 100.112

D. Onset of absolute instability113

The onset of convective instability can be analyzed by studying the first Fourier mode that

becomes unstable. The onset of absolute instability, on the other hand, requires an analysis of the

entire convectively unstable wavepacket. It occurs when the upstream edge of this wavepacket

becomes stationary. This can be numerically evaluated through the zero group velocity condition

∂λ

∂k
= 0, (26)

which marks the location of the saddle point {k0,λ (k0)}. The steepest descent calculation required

to pursue this analysis extends the real wave number k of spatially periodic Fourier modes into the

complex plane, allowing it to be complex. By employing Eq. (16) and the zero group velocity con-

dition (26), the saddle points k0 must be evaluated numerically by using a root finding procedure.

The Rayleigh number at the saddle point, R0 = R(k0,λ (k0)), is obtained by evaluating

Re[λ (k0)] = 0. (27)



Since Eq. (26) is a necessary but not sufficient condition for absolute instability, causality must be114

verified to make sure that the Rayleigh number at the onset of absolute instability Ra is equal to R0.115

This is done for a large enough number of saddle points in order to generate enough confidence116

that the entire set satisfies causality. A sample case is presented in Fig. 3 for H = 10, Pe = 10 and117

s = 2. Causality is demonstrated in two different ways. One is a simple visual inspection to make118

sure that the downstream propagating branch, labeled k+, goes from stable (R < Rc) to marginally119

stable (R = Rc) to convectively unstable (Rc < R < Ra) to marginally absolutely stable (R = Ra),120

at which point it pinches with a stable upstream propagating branch, labeled k−. Another way is121

by calculating the steepest descent curve, shown by the red dashed line in Fig. 3 (left), in order to122

demonstrate that it contains no singularity. The steepest ascent curve, shown by the blue dashed123

line in Fig. 3 (left), yields the wave packet characteristic group velocity shown in Fig. 3 (right).124

k
+

k
-

R<Ra

R>Ra

R=Ra

0 2 4 6 8
-4

-2

0

2

4

6

8

Re[k]

-
Im

[k
]

k
+

k
-

50 55 60 65 70 75 80
-15

-10

-5

0

5

10

15

20

R

R
e
[∂
k
/∂
λ
]

FIG. 3. Stability branches for H = 10, Pe = 10 and s = 2. (Left) Collision criterion together with steepest

ascent (blue) and descent (red) paths passing through the saddle point. (Right) Characteristic group velocity

of both wave packets involved in the collision at the saddle point.

Once we gained confidence that these calculations indeed yielded onsets of absolute instability,125

a parametric analysis was pursued. The value of Ra as a function of s for a range of Péclet numbers126

is shown in Fig. 4 with (left) H = 0 and (right) H = 10. When Pe = 0, the onsets of convective and127

absolute instability occur at the same threshold Rayleigh number, i.e. Rc =Ra. Otherwise, a region128

of convective instability appears when Pe> 0. Furthermore, for a given value of s, increasing either129



Pe or H has a stabilizing effect, i.e. Ra increases. Although Fig. 4 clearly shows this stabilizing130

effect of Pe, the same cannot be said about H. In order to highlight the effect of thermal non-131

equilibrium, the threshold (top left) Darcy–Rayleigh number, (top right) frequency, (bottom left)132

spatial growth rate and (bottom right) wave number at the onset of absolute instability are shown133

as functions of H for different Pe in Fig. 5 when s = 0. This value of s was selected because Fig. 4134

shows that it yields the location of all global minima when the Péclet number is positive. The135

stabilizing effect of H is now clearly shown in Fig. 5. Furthermore, both threshold frequency and136

wave number increase with H. These trends are the same for any positive Péclet number. On the137

other hand, the qualitative impact of H on the spatial growth rate depends on the Péclet number.138

For small (large) Pe, the spatial growth rate decreases (increases) when H increases.139

IV. LINEAR PATTERN SELECTION140

As discussed in section III C, the onset of convective instability occurs for an infinite combina-141

tion of aspect ratios A and Fourier modes n, which indicates the spanwise cell pattern. Figure 6142

highlights this issue by showing the critical (left) Rayleigh number and (right) wave number as143

functions A for different n when H = 0. This figure shows the cell pattern selected at the onset144
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FIG. 5. Critical (top left) Darcy–Rayleigh number, (top right) frequency, (bottom left) spatial growth rate

and (bottom right) wave number at the onset of absolute instability as functions of H for different Pe when

s = 0.

of convective instability as a function of the aspect ratio in the regime of complete thermal un-145

coupling between the phases. It is important to emphasize that the number of marginally unstable146

patterns increases with A, indicating co-dimension points (black dots). They can be found by147

equating both formulas for Rc in Eq. (23). In other words, Fig. 6 (left) shows that n = 0 is the148

only marginally unstable mode when A < 1, both n = 0 and 1 modes are marginally unstable when149
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spanwise cell pattern n. Black dots indicate co-dimension points. Solid lines indicate that s ≤ sc whereas

the dashed ones indicate that s ≥ sc, where sc is defined in Eq. (22).

A < 2, all three n = 0, 1 and 2 modes are marginally unstable when A < 3, and so on. Furthermore,150

Fig. 6 (right) shows that the critical wave number of each positive mode (n > 0) increases with A,151

eventually reaching its asymptotic limit of kc(A → ∞)→ π , where kc(∀A) = π when n = 0. The152

effect of thermal non–equilibrium on the marginally stable cell pattern formation can be evaluated153

now by considering different values of H. These results are summarized in Fig. 7, which is similar154

to Fig. 6 (left) but constrained to s ≤ sc and n < 10. By increasing H for a fixed A leads to an155

increase in the number of unstable spanwise cell patterns. In other words, the co-dimension points156

occur at smaller aspect ratios as H increases.157

The identification of the cell patterns beyond marginal stability often requires a nonlinear anal-158

ysis26. This is, however, beyond the scope of the present paper. Nonetheless, there is still much to159

explore in this realm from a linear standpoint by distinguishing between convective and absolute160

instabilities. Although they have been understood for decades now27, novel techniques for their161

detection are still being developed28 and their influence on porous media flows is still being un-162

covered29. Figure 8 shows the most relevant Fourier modes (top left) at marginal stability, (top163

right) during convective instability, (bottom left) at the onset of absolute instability as well as (bot-164



tom right) during absolute instability for Pe = 10, H = 30 and A = 2.5. The first plot confirms165

the information already discussed in Fig. 7, which showed that modes n = 0, 1, 2 and 3 become166

marginally unstable (Re[λ ] = Im[k] = 0) simultaneously at R = Rc. A convectively unstable re-167

gion is reached beyond this point, i.e. when Rc < R < Ra, which means incoming disturbances are168

spatially amplified (−Im[k] > 0). In other words, they grow in amplitude as they are convected169

downstream. Figure 8 (top right) shows that the spanwise uniform mode (n = 0) has the highest170

spatial growth rate when R = Rc+10, which is in fact true for all convectively unstable conditions171

evaluated. Assuming all incoming disturbances enter the flow with similar amplitudes, the n = 0172

mode is the most likely one to grow (in space) downstream and reach nonlinear saturation first.173

The onset of absolute instability is then reached when R = Ra (Re[λa] = 0). Beyond this point,174

i.e. when R > Ra, disturbance measured at any given spatial location are temporally amplified175

(Re[λa] > 0). Saddle points shown in Fig. 8 (bottom left) indicate that the n = 0 mode is the first176

one to become absolutely unstable whereas the cusp points30 shown in Fig. 8 (bottom right) indi-177

cate that this same mode remains the dominant one within the absolutely unstable region. This is178

true for all absolutely unstable onsets and absolutely unstable regions evaluated. Assuming that179

all disturbances initially present in the flow have similar amplitudes, the n = 0 mode is the most180

likely one to grow (in time) and reach nonlinear saturation first. It should be emphasized again181

that these are linear cell pattern selection mechanisms. Nonlinear interactions can change the cell182
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pattern selected by the flow.183

The linear spanwise cell pattern that is selected at the onset of absolute instability can now be184

investigated a bit further. This is done here for Pe = 10 and H = 30, although similar trends were185

observed at all other parametric conditions evaluated. Figure 9 shows the critical (top left) Darcy–186

Rayleigh number, (top right) frequency, (bottom left) spatial growth rate and (bottom right) wave187

number at the onset of absolute instability as functions of the aspect ratio for the first ten Fourier188
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modes. The spanwise uniform mode (n = 0) is the first one to become absolutely unstable and this189

onset is not affected by the aspect ratio for the entire aspect ratio range shown in Fig. 9 (top left).190

On the other hand, all spanwise nonuniform (n> 0) modes are destabilized by an increasing aspect191

ratio. Furthermore, this same figure implies that all spanwise cell patterns become absolutely192

unstable at the same time when A → ∞. The behavior of spanwise nonuniform modes, however, is193

not monotonic with respect to the aspect ratio. At small A, they are streamwise uniform (Re[ka] =194

0), stationary (Im[λa] = 0) and their spatial growth rates (-Im[ka]) increase with A. Beyond a certain195
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FIG. 9. Absolute critical values to Pe = 10 and H = 30, considering n and A variation.



critical aspect ratio, they become streamwise nonuniform (Re[ka] 6= 0), oscillatory (Im[λa] 6= 0)196

and their spatial growth rates (-Im[ka]) decrease with A. All three characteristic trends seem to197

converge towards their respective spanwise uniform mode (n = 0) values when A → ∞.198

V. CONCLUSIONS199

The present paper investigates mixed convection taking place within metallic foams under lo-200

cal thermal non–equilibrium between the solid and the fluid phases. This is done in two major201

ways. First, the linear convective/absolute threshold values of the Darcy–Rayleigh number for the202

onset of instability are evaluated. Second, the cell pattern selected within each unstable region is203

estimated within a linear framework. The following remarks are noteworthy:204

1. Local thermal equilibrium has a stabilizing effect on both onsets of convective and absolute205

instability, independently of the Péclet number and aspect ratio;206

2. The number of spanwise cell patterns selected at the onset of convective instability, i.e.207

marginal stability, increases with aspect ratio. In the limit of an infinite aspect ratio, all208

spanwise cell patterns become linearly convectively unstable at the same time;209

3. The number of spanwise cell patterns selected at marginal stability for a fixed aspect ratio210

increases as the local thermal non–equilibrium becomes stronger;211

4. Within convective and absolute instability regions, the uniform spanwise mode is the most212

unstable for all aspect ratios and extent of local thermal non–equilibrium.213

According to the literature1, metallic foam heat exchangers operate within O(1) < Pr <214

O(102) and O(1) < Re < O(102), where Pr and Re are the Prandtl and Reynolds numbers, re-215

spectively. This means one can expect O(1) < Pe < O(104). Although natural convection is216

always desirable, heat transfer enhancements due to forced convection are dominant at high Péclet217

numbers. Hence, the present results are relevant for small and moderate Péclet numbers. They218

indicate that natural convection due to a convective instability is a quite likely scenario for any Pe219

but natural convection due to an absolute instability is likely only for small Pe.220
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local thermal non–equilibrium on the pattern formation for mixed convection in porous media24. In58

the present analysis, however, only the linear pattern selection is discussed. This is accomplished59

by employing the linear growth rates given by both the convective and absolute instability analyses.60

II. PROBLEM STATEMENT61

A fluid saturated porous layer is bounded horizontally by impermeable and isothermal walls62

and vertically by adiabatic and impermeable walls. This porous channel is subject to a horizontal63

pressure gradient. A vertical temperature gradient is set up by imposing two different temperatures64

at the boundaries with the highest temperature on the lower one. The problem configuration is illus-65

trated in the Fig. 1 and coincides with the one investigated by Prats, but with a lateral confinement.66

Among all the possible porous media, we are interested in investigating metallic foams. These67

peculiar, highly conductive, porous media are suitable for designing innovative heat exchangers.68

In this framework, heat transfer processes characterised by fast transients are frequent. In order69

to analyse this type of phenomena, a two–temperature model is here employed: one temperature70

describing the heat transfer for the fluid phase and one temperature for the heat transfer for the solid71

phase. This model allows us to relax the hypothesis of local thermal equilibrium (LTE) between the72

solid phase and the fluid phase.73
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