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JOT: a Variational Signal Decomposition
into Jump, Oscillation and Trend

Antonio Cicone and Martin Huska and Sung-Ha Kang and Serena Morigi

Abstract—We propose a two stages signal decomposition
method which efficiently separates a given signal into Jump,
Oscillation and Trend. While there have been numerous advances
in signal processing in past few decades, they mainly aim to
analyze the signal in terms of oscillating (underlying frequencies)
or non-oscillating (underlying trend) features. Both traditional
Time-Frequency analysis methods, like Short Time Fourier
Transform, wavelet, and advanced ones, like Synchrosqueezing
wavelet, Hilbert Huang Transform or IMFogram, can fail when
abrupt changes and jump discontinuities appear in the signal.

We present a variational framework separating piece-wise
constant jump features as well as smooth trends and oscillating
features of a given signal. In the first stage, a three component
signal decomposition is applied, using sparsity promoting reg-
ularization, and Sobolev spaces of negative differentiability to
model oscillations. In the second stage, components are refined
using residuals of other components. The proposed method finds
big and small jumps, is stable against high level of noise, is
independent from the choice of basis functions, and does not have
different level of decompositions which can be affected by large
discontinuities. This variational framework is free from training
in network-based approaches, and can be used for generating
training data. The optimization problem is efficiently solved by
an alternating minimization strategy. Applied as pre-processing
for time-frequency analysis and Synchrosqueezing, it allows for
improvements in results showing much clearer separation without
artifacts. The proposed method is tested against synthetic data,
where the ground truth is known, and real world data.

I. INTRODUCTION

The goal of signal decomposition is extraction and sepa-
ration of signal components from composite signals, which
should preferably be related to semantic features. The underly-
ing features which characterize the components to be separated
are typically defined by criteria that indicate (mathematical)
homogeneity. Examples for these are a smooth trend, high
oscillating components and piece-wise constant behaviour.

Over the past decades, a wide variety of signal processing
methods have been proposed to perform a time-frequency anal-
ysis of a given signal and to extract its features. Among them
we mention here the most popular methods, like short-time
Fourier transform (STFT), wavelet transform, and recent ones,
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like the Synchrosqueezing transform (SST) based on contin-
uous wavelet transform (CWT) [1], Hilbert-Huang Transform
(HHT) based on Empirical Mode Decomposition (EMD) [2],
Fourier–Singh analytic signal (FSAS) representations based
on Fourier quadrature transforms (FQTs) [3], spectral kurtosis
(SK) [4], or IMFogram based on Fast Iterative Filtering (FIF)
[5].

These conventional methods suffer in dealing with interfer-
ence elements, such as noise which exists in the whole fre-
quency range, the presence of oscillatory and non-oscillatory
behaviors, and anomalies such as impulse features like jumps,
spikes and sudden drops. This kind of anomalies affects the
detection of the underlying trends in time series data or signals,
since these abrupt changes corrupt the mean level of a signal.
Often, the jump step is small and the time series is damaged
by some type of noise, and this makes the problem even more
challenging because the jump step may be hidden by the noise.
In [6] the authors show how anomalies in signals can badly
effect a decomposition produced using EMD– or FIF–based
algorithms. In particular, they highlight how anomalies, that
are commonly present in a real life signal, can have negative
influence in a decomposition and in the derived time-frequency
representations if not properly handled. This is true, for low
frequency components, even far away from the locations of the
anomalies. Such jumps, spikes and sudden drops can impact
the physical meaningfulness of a signal decomposition and the
associated time-frequency representation produced with all the
aforementioned techniques.

In frequency domain, a jump can be present in all frequen-
cies, which become active by the time localization of the jump
nearby [6]. This is the reason why any filtering approach,
which relies on a certain cutoff frequency to separate jumps
from the meaningful signal, has problems in removing these
artifacts in a neat way.

There is the need for a new accurate method able to identify
and remove these anomalies, and possibly separate data trend
from noise if present in the measurements, such that the state
of the art time-frequency analysis methods can produce crisper
plots which are less prone to artifacts.

Figure 1 shows some examples of real life signals containing
spikes and jumps which impose challenges to classical and
modern techniques for nonstationary signal processing. Figure
1(a) is a sample of the Earth’s Electric Field measured using
the CSES-01 satellite [7]. This signal shows small discon-
tinuities which are created by measurement interruptions in
the period of data acquisition; Figure 1(b) is an example
of clean Electrocardiogram (ECG) data perturbed due to
simulated electrode motion artifacts on certain segments of



2

(a) (b) (c)
Fig. 1. Anomalies present in signals: (a) Earth’s Magnetic Field, (b) ECG
Data with electrode motion artifact, (c) CPU Magnetic Field..

the data set [8]; Figure 1(c) is an example of CPU emanated
electromagnetic signal, where discontinuities are introduced
by some operations performed by the device [9].

We propose an innovative approach to address the prob-
lem of separating signals like those shown in Figure 1,
where the underlying data comprises jump-sparse discontinu-
ities (anomalies), a smoothly varying component (underlying
trend), and a highly oscillating component (noise/features).
The main idea is to model a given finite-length discrete-time
signal f ∈ RN as

f = v∗ + w∗ + n∗ , (1)

where v∗ ∈ RN represents a piecewise-constant (sparse-
derivative) component, w∗ ∈ RN is a smooth low-oscillating
function, and n∗ ∈ RN contains zero-mean high-oscillations
of the signal, which can include additive white noise, as well
as a meaningful oscillatory components.

In Figure 2, we illustrate two examples of decomposition
of an original signal f (on the left) and their extracted com-
ponents v∗, w∗, n∗, respectively (on the right) separated using
the proposed method. In these two examples v∗ represents the
abrupt changes occurring in the signal. The goal for the first
row example is to recover the jumps v∗ and the trend w∗

from a noisy signal f1, while for the second row signal f2 we
want to eliminate the jumps v∗ from the measured signal f2
to obtain jump-free high-frequency data with a low frequency
trend n∗ + w∗. The proposed method gives such flexibility.
Figure 3 shows a time-frequency plot of the raw data f2
illustrated in Figure 2 obtained by the continuous wavelet
transform (CWT). The results are affected by artifacts coming
from the sudden steps which mask the frequency patterns of
interest, see Figure 3 (left). Whereas, if we remove the steps
first, the new time-frequency plot becomes clearer, Figure 3
(right).

We propose a two-stage variational approach. The first stage
separates the given signal f according to the decomposition
model (1), then the second stage applies a refined restoration,
using the residuals from other components.

The main contributions of this paper are

1) the development of a stable separation method for jump
discontinuity, underlying trend and oscillatory compo-
nents estimation, based on a three-component variational
approach, which does not require any training set;

2) efficient decomposition algorithm which works well for
real data without any a priori knowledge.

3) automatic recovery of jump locations without any a prior
knowledge of the type or number of the jumps that occur
on the signal.

We refer to the proposed method as Jump, Oscillation and
Trend (JOT) decomposition framework.

Following the literature review in this section, in Section
II, we present the details of the proposed JOT decomposition
framework. Section III contains numerical implementations
details. Numerical results are reported in Section IV, and, in
Section V, concluding remarks are presented.

A. Related Work

The problem of estimating underlying trends in time series
data or signals arises in a variety of disciplines including
macroeconomics, geophysics, financial time series analysis,
social sciences, biological and medical science. Many trend
filtering methods have been proposed, and most of them
are linear filtering; see [10] for a survey of linear filtering
methods in trend estimation. The most widely used methods
are bandpass filtering [10], moving average filtering, expo-
nential smoothing, and Hodrick–Prescott (H-P) filtering, [11].
In case the signals possess discontinuities, classical first-order
Mumford–Shah (MS) models take this explicitly into account
by incorporating the jump sets. In [12], the higher order MS
model introduced is capable, for given order of polynomial,
to simultaneously estimate a discontinuity set, i.e. a domain
partitioning, and a corresponding piecewise smooth signal.

Recently, sparsity-enhancing representation has attracted a
great deal of attention in the field of feature extraction, and
extensive applications have been considered in signal and
image processing. Signal decomposition methods via sparse
optimization have achieved good performance exploiting `1
norm-based regularizers [13]. In [14] the authors proposed the
`1 trend filtering, a variation on H-P filtering which substitutes
a sum of absolute values (i.e., an `1 norm) for the `2 norm
used in H-P filtering to penalize variations in the estimated
trend. The convex `1 norm may reduce the amplitudes of the
signal, thus affecting the accuracy of the decomposition. To
overcome this problem, non-convex sparse regularizers have
been used. The non-convex `0 pseudonorm-based penalty is
the main ingredient for the recovery of jump-sparse and sparse
signals from noisy data, as used in the proposal of the inverse
Potts energy functionals [15] for signal decomposition. This
approach reveals great ability to well recover pure piecewise-
constant signals. A wide class of non-convex penalties have
been successfully proposed following the convex non-convex
strategy via variational optimization. Their use in sparse
optimization allows to significantly improve signal denoising
[16] and decomposition [17]. The minimax convex penalty
considered in our sparse optimization falls in this non-convex
sparsity-inducing penalty class [18].

For the scientific signal processing community, the study of
techniques for the time-frequency analysis and decomposition
of signals is a long lasting line of research which has led over
the decades to the development of many important algorithms
and approaches, which are nowadays commonly used in many
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(f1) input → (v∗) jumps (w∗) trend (n∗) noise

(f2) input → (v∗) jumps (w∗) low frequency (n∗) high frequency

Fig. 2. Decomposition results of the proposed method: (first column) the given signals f1 and f2; (first row) the jumps v∗, the trend w∗ and noise n∗

are separated from the given signal f1; (second row) eliminate the steps v∗ from f2 to obtain jump-free high-frequency data with a low frequency signal
w∗ + n∗.

Fig. 3. (left) CWT time-frequency plot of the raw signal f2 shown in Figure
2; (middle) CWT of the f2 signal after Potts model jump removal; (right)
CWT after removing the jumps and high frequency noise using the proposed
work.

research fields [19]. When the signal under analysis is non-
stationary, standard methods, like (Short Time) Fourier Trans-
form and Wavelet Transform, were proved to be inadequate
to provide detailed time-frequency information, due to their
inherent linearity. Two decades ago Huang and collaborators
introduced a game changer method called Hilbert Huang
Transform (HHT) [2]. This is an iterative, local and adaptive
data-driven method based on a “divide et impera” approach.
The key idea is simple, but powerful: the signal f is first
subdivided into several simple components, called Intrinsic
Mode Functions (IMFs), plus a trend via what is called the
Empirical Mode Decomposition (EMD) method; then, each
IMF is analyzed separately in the time-frequency domain via
the computation of each component instantaneous frequency
obtained using the Hilbert Transform. In [2] the authors define
informally the IMFs as oscillatory functions that fulfill two
properties: the number of zero crossing equals the number of
its extrema, plus or minus one; the envelops connecting its
maxima and minima have to be symmetric with respect to
the horizontal axis. The decompositions produced using the
EMD algorithm proved to be successful for a wide range
of applications, see for instance [6] and references therein.
An alternative iterative method for a signal decomposition, is
the so called Iterative Filtering (IF) algorithm [20], which,
as for the EMD, does not require any “a priori” assumption
on the signal under analysis. The structure of IF resemble
the EMD, yet, the key difference is in the signal moving
average computation, which is obtained in the IF method as

the convolution of the signal f with an a priori chosen filter
function. This apparently small difference between the IF and
EMD moving average computation opened the doors to the
mathematical analysis of IF [21]. The Fast Iterative Filtering
(FIF) method allows to speed up the IF computations via FFT
[21].

Regarding time-frequency analysis of the IMFs, besides
the Hilbert Transform, recently it has been published a new
representation method called IMFogram, which allows to pro-
duce crisp and detailed time-frequency plots of nonstationary
signals [5] and converges, in the limit, to the spectrogram
based on the STFT [22].

We propose a nonconvex variational model for signal de-
composition where a sparsity-inducing regularizer is intro-
duced to allow for effectively extracting the impulse features
from harmonic and highly oscillating parts of the original
signal. This approach is motivated by image decomposition
stated from the seminal work of Y. Meyer [23], who proposed
separating the image into geometric part, e.g. using TV
denoising [24], and oscillatory texture or noisy part. Various
work has followed [25], [26], [27], [28] just to mention a few.
In particular, in [29], the authors proposed a model which
decomposes the given image into a piecewise-constant part, a
harmonic part and a noisy part. This is based on the work in
[30], which is proposed for the decomposition of functions
on triangulated surfaces. Compared to other decomposition
models, the model proposed in [29] captures the structure
part more clearly with the sparsity enforcing regularization
term, which is well suited for jump separation in the signal
processing.

II. THE PROPOSED JOT SIGNAL DECOMPOSITION
FRAMEWORK

The Jump, Oscillation and Trend (JOT) decomposition
framework consists of two stages: (i) three component signal
decomposition using sparsity promoting regularization and
Sobolev spaces of negative differentiability to model oscil-
lations, and (ii) component refinement using residuals. Fig. 5
presents an outline of the proposed method.



4

A. Stage 1: Three-Component Signal Decomposition

The first step of our sparsity-enhanced signal decomposi-
tion is performed via the following non-convex minimization
problem

{v̄, w̄, n̄} ← arg min
v,w,n∈RN

J (v, w, n) , (2)

J (v, w, n) :=
1

2
‖v + w + n− f‖22

+γ̄1

N∑
j=1

φ (‖(Dv)j‖; a) + γ̄2 ‖Hw‖22 + γ̄3‖n‖4H−1

where the scalar value γ̄i represent the regularization param-
eters balancing the regularization terms and the fidelity term.
The function φ(·; a) : [0,+∞) → [0, 1] is a non-convex
parametrized sparsity promoting penalty function, the oper-
ators D and H represent first and second-order derivatives,
respectively. We denote by ‖ · ‖H−1 the norm of the negative
Sobolev space H−1 which is proved to be bounded for
oscillatory functions [28], being therefore useful for modeling
the highly oscillating component of a signal. The minimax-
concave (MC) penalty, introduced in [18], and used in the
proposed signal decomposition model (2), is a piecewise-
quadratic function defined by

φ(t; a) =

{
−a

2
t2 +

√
2a t for t ∈

[
0,
√

2/a
)
,

1 for t ∈
[√

2/a,+∞
)
.

(3)

The parameter a in φ(·; a) affects the degree of non-convexity,
such that φ(·; a) tends to `0 pseudonorm for a → ∞.
For a = 0, the MC penalty is defined as φ(t; a) = |t|.
Unlike the classical `1 norm regularizer the proposed MC
penalty can accurately preserve the amplitude of the piecewise-
constant signal component v while better representing sharp
discontinuities, thus to improve the decomposition accuracy,
[29], [31], [16]. The smooth varying component (underlying
trend) w is obtained via penalizing the second derivative in
the signal to capture non-oscillating features.

For the oscillatory components n, we consider the negative
Sobolev space H−1(Ω), on the interval Ω, which is the dual
space of H1

0(Ω), and is endowed with the following norm

‖n‖H−1 = inf


√∑

i

|gi|2
∣∣ n = DT g

 ≈ ‖g‖2 , (4)

where D denotes the first-order linear differential operator,
and DT the adjoint operator. Therefore, given the inner
product < ·, · >, D and DT satisfy the fundamental relation
< x,Dy >=< DTx, y >. A visual insight on the motivation
for using Sobolev spaces of negative differentiability to model
oscillations is given in Fig. 4 where the function g (red
colored) is over-imposed on the function n (black colored)
which consists of a piecewise-constant signal of six different
frequencies with the same amplitude. The associated function
g, computed as g = (DDT )−1Dn, has `2-norm values
which decrease with increasing frequency of n. Therefore,
by penalizing ‖g‖2 we aim to capture the higher-frequency
oscillatory parts of the signal. We remark that since we do not
assume any a priori knowledge, Sobolev spaces of negative

Fig. 4. Signal n (black) with increasing frequency and same magnitude
oscillations; associated function g (red). As the frequency of n increases,
‖g‖2 decreases.

differentiability may capture both oscillating features as well
as noise. If a priori more information about the type of
oscillation is known, different G-norms can be explored [32].

By adopting the norm in (4) the considered variational
problem reads as

{v̄, w̄, ḡ} ← arg min
v,w,g∈RN

J (v, w, g) , (5)

J (v, w, g) :=
1

2
‖v + w +DT g − f‖22

+γ1

N∑
j=1

φ (‖(Dv)j‖; a) + γ2 ‖Hw‖22 + γ3‖g‖42,

where the non-negative parameters γ1, γ2, and γ3 are appro-
priately selected to balance the energies in the minimizing
function J . The oscillatory component n̄ is finally obtained
as n̄ = DT ḡ.

Among various image decomposition models which can be
applied to signal decomposition, the proposed model of sepa-
ration to three components, Jumps, Oscillations and Trend,
is particularly well-suited for real data, such as the ones
illustrated in Fig. 1. The main idea behind the model (5) is that
the noise (and high frequency component) is captured by H−1
norm, which gives small value when it is highly oscillatory,
while it is balanced with the sparsity promoting function
φ(·), that well filters the sparse piecewise-constant jumps, and
the change in the trend is captured by the non-oscillatory
component w. Notice all three norms are emphasizing different
aspects of the signal: φ uses the sparsity of first derivatives, w
is found by minimizing second derivatives for smoothness, and
n is found from minimizing L2 norm of g where DT g = n.

The proposed model (5) identifies jumps, represented by v,
without any a priori knowledge on their localization; where a
jump is characterized by sparse intensity discontinuities which
is not part of noisy oscillations nor a trend. In addition, as side
result from the numerical procedure applied to minimize the
functional (5), the model determines the signal z̄ in (20) which
allows for an automatic detection of the jump location.

In many practical applications the amplitude h of the
constant step jumps contained in v is a priori known, see e.g.,
Fig. 1(b). In such cases, we can impose a constraint in the
minimization problem (5) to force v̄ to be a binary vector. This
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Fig. 5. Diagram scheme of the proposed JOT framework.

leads to the following constrained minimization problem:

{v̄, w̄, ḡ} ← arg min
v,w,g∈RN

J (v, w, g) s. t. v ∈ {0, h}N (6)

where the functional J (v, w, g) is the same as in (5).

B. Stage 2: Residual Aided Refinement

Due to the ill-posedness of the inverse decomposition prob-
lem, in practice the three resulting components from stage
1 may be slightly mixed, regardless of the choice of the
regularization parameters γ1,γ2,γ3, which anyway strongly
depend on the signal morphology. Some trend can be find in v̄,
and some noise (highly oscillating behaviour) in the smoothed
component w̄. The trend contribution in v̄ should be extracted
and added to w̄, as well as the noise, mistakenly introduced
into w̄, should then be added to n̄. This is illustrated in the
diagram scheme in Fig. 5.

The goal of this second stage is thus to refine the results v̄,
w̄, n̄ obtained from stage 1 to satisfy the specific application
target when needed. We note here that in real experiments
results from stage 1 can be good enough. In the numerical
section, we report some final results obtained directly from
stage 1, e.g. Figure 11, 12 and 15.

Refinement of v̄. The refined v∗ component is obtained
from v̄, solution of problem (5), by subtracting the intrinsic
oscillating parts:

v∗ = v̄ − rv ,

where rv is carried out by filling in v̄ the intervals corre-
sponding to the jumps with piecewise-constant samples (hence
named inpainting).

To this aim, by exploiting the automatic jump-detection
result, provided in stage 1 and discussed in Section III, we
build a binary vector d ∈ RN with components one only
in correspondence of the indices of v̄ that belong to the K
localized jumps. We set the matrix M ∈ R(N−K)×N to be
the sampling matrix obtained from the identity matrix IN by
eliminating its rows corresponding to the non-zero indices in d.
We denote by Mc ∈ RK×N its complement matrix, consisting
of the rows of IN not appearing in M .

The inpainted residual rv ∈ RN is then expressed as a sum
of two terms

rv = MT y +MT
c x , (7)

where y = Mv̄ represents the samples from v̄ to be kept and
x ∈ RK is the remaining unknown samples. This is obtained

by solving the following small dimensional linear least squares
problem

x∗ ← arg min
x∈RK

∥∥D(MT y +MT
c x)

∥∥2
2
. (8)

Refinement of w̄. The spurious trend extracted from v̄,
computed as rv in (7), can now be added to w̄. The final
smooth component w∗ is then computed by solving the
quadratic optimization problem

w∗ ← arg min
w∈RN

1

2
‖w − (w̄ + rv)‖22 + α‖Dw‖22 (9)

which smoothes the w̄ + rv signal. The convex optimization
problem (9) is a Tikhonov-like variational formulation that
enforces smooth solutions. We note that problem (9) gener-
alizes to the H-P trend estimation method (see [11]) when
D is replaced by second-order difference matrix H . The H-P
filtering is supported in several standard software packages for
statistical data analysis, e.g., SAS, R, and Stata.

The component w̄ may contain residues of highly oscillating
components, that we collect in the residual signal given by

rw = (w̄ + rv)− w∗. (10)

Refinement of n̄. The n̄ component from Stage 1 is
updated by adding to it the highly oscillating residual from
w∗, computed as rw in (10),

n∗ = n̄+ rw. (11)

In Fig. 6, we present the workflow for the signal f1
shown in Fig. 2, following the proposed JOT decomposition
framework illustrated in Fig. 5. Each graph of v̄, w̄, n̄, v∗, w∗

and n∗ is presented in red and superposed against the ground
truth signals in blue to show the effects of each stage. We
observe the important role of the residuals which refine the
decomposition results obtained in Stage 1.

In real applications, one may combine three components
v∗, w∗, and n∗ differently: (i) If the focus is on the jumps
with an expected amplitude, e.g. in noisy barcode reading, the
clean component v∗ should provide this information; (ii) If
the focus is on further analysis of the signal without jumps,
one can analyze either w∗ or n∗ separately, or provide the
reconstructed signal without jumps w∗ + n∗.

III. NUMERICAL IMPLEMENTATIONS

The first-order difference of an N -point signal x is approx-
imated by forward finite difference scheme and represented in
matrix vector form as Dx where D is the matrix

D =


−1 1

−1 1
. . . . . .

−1 1

 ∈ R(N−1)×N . (12)

Analogously, the second-order difference operator H is ap-
proximated by the finite central difference scheme and repre-
sented in matrix vector form as Hx where H is the matrix

H =


−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

 ∈ R(N−2)×N . (13)
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Fig. 6. Decomposition workflow for signal f1 according to the diagram in Fig. 5.

The original signal is padded to obtain zero Neumann
boundary conditions for first and second-order differential
operators.

A. Stage 1: Three-Component Decomposition

The numerical solution of the optimization problem (5) is
obtained via alternating strategy which deals with the variables
separability and makes full use of the separable structure of the
objective function. The iterative scheme consists in minimizing
successively with respect to each variable, that we chose to be
v ∈ RN and x := (w; g)T ∈ R2N , that is to solve iteratively,
for initialized v(0) and x(0), the two following optimization
problems:

v(k+1) = argmin
v∈RN

J (v, x(k)) , (14)

x(k+1) = argmin
x∈R2N

J (v(k+1), x) . (15)

For the x-subproblem (15), by imposing the first-order opti-
mality conditions, and replacing the nonlinear term

∥∥g(k+1)
∥∥2
2

with the value at the previous iteration k, we obtain the
following linear system of equations

Lx(k+1) = y , (16)

where

L =

[
IN + γ2H

TH DT

D DDT + 2γ3
∥∥g(k)∥∥2

2
IN

]
,

y =

[
f − v(k+1)

D(f − v(k+1))

]
which is solved for x(k+1) = (w(k+1); g(k+1))T .

The system is symmetric, positive definite, but can be
slightly ill-conditioned, which leads to add the regularization
term κ

2 ‖x‖2 to the x-subproblem (15), with κ > 0 a very
small scalar parameter. Hence, a suitable regularized solution

is determined by replacing (16), with the following regularized
system

(L+ κI2N )x(k+1) = y, (17)

where I2N denotes the identity matrix of order 2N . The
system is efficiently solved using iterative preconditioned
conjugate gradient linear solver.

The v-subproblem (14) can be written as

v(k+1) = argmin
v∈RN

J1(v), (18)

J1(v) :=
1

2
‖v − q‖22 + γ1

∑
j

φ(|(Dv)j |; a),

where q := f − w(k) − DT g(k). Necessary conditions for
strong convexity of the cost function J1(v) in (18) are reported
in Proposition 1 and demonstrated in [16]. The minimizer of
(18) is then carried out by a forward-backward splitting (FBS)
iterative scheme which is proved to converge to the unique
solution of (18).

Proposition 1. Let f ∈ RN , γ1 > 0, and φ(·; a) be the penalty
function defined in (3). If

0 ≤ a ≤ 1

4γ1
(19)

then the cost function J1(v) in (18) is strongly convex and the
the FBS iterative algorithm

z(i) = DT
(
Dv(i) − soft1/a(Dv(i))

)
(20)

v(i+1) = arg min
v∈RN

{
1

2
‖q + γ1az

(i) − v‖22 + γ1‖Dv‖1
}
,

(21)

converges to the unique minimizer of J1(v).

For the proof of convergence we refer the reader to [16].
We observe that the backward step (21) is a standard 1-

dimensional TV denoising which can be calculated exactly in
finite-time [33]. In the forward step (20) the soft threshold
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function soft : R → R with threshold parameter λ ≥ 0 is
defined as

softλ(y) :=

{
0, |y| ≤ λ
(|y| − λ)sign(y), |y| ≥ λ.

(22)

If the soft threshold function is applied to a vector, then it is
applied component-wise.

As observed in [16], the signal z∗ computed by (20) upon
convergence of the algorithm behaves as a jump-detector. In
fact, by applying the soft threshold function in (22), we get

z∗ =

{
∆v, |Dv| ≤ 1

a

0, |Dv| ≥ 1
a .

(23)

Hence, the signal z can be interpreted as the response to
a Laplacian (Lap) operator (∆ = DTD) on the piecewise-
constant signal v. The Lap operator takes the second derivative
of the signal: where the signal is basically flat, the Lap will
give zero, in correspondence of jumps with minimal jump
height lower than 1/a, the signal z will zero-crossing the x-
axis.

As illustrated in Figure 7(left), if we consider a smooth jump
edge v with an increasing slope (Dv > 0), the inflection point
of the step edge happened to be the point in which the slope of
the edge (first derivative - Figure 7 middle -) stops increasing,
reaches its maximum then starts decreasing, while the second
order derivative - Figure 7 bottom - vanishes (∆v = 0). In case
of piecewise-constant signals v, which are of interest in our
work, we illustrate in Figure 7(right) the resulting z∗ obtained
in stage 1 upon convergence by processing the original signal
f1. The jump positions of v are located sufficiently close to
the zero values of z∗ between two successive peaks.

The jump width effects the amplitude of derivatives: the
wider jump has the smaller derivative amplitude, and the
effect becomes more noticeable at higher derivative orders.
In general, it is found that the amplitude of the nth derivative
of a jump is inversely proportional to the nth power of its
width, for signals having the same shape and amplitude. The
amplitude of a derivative of a jump also depends on the shape
of the jump and is directly proportional to its jump height.

This motivated us to use the side result z∗ from stage 1 to
identify the jump locations and, accordingly, define a suitable
vector d for the refinement of v̄.

Moreover, the value of a can be interpreted, according to
(23), as a threshold of the desired sensitivity to the jump
height, over which the signal oscillation will not be considered
a jump. Once a is given, the parameter γ1 is carried out to
satisfy (19) in order to preserve the strong convexity of the
problem.

B. Stage 2: Residual Aided Refinement

Numerical solution of the least squares problem (8) in the
refinement of v̄ is obtained by solving the associated normal
equation system ATAx = AT b with A := DMT

c ∈ RN×K
and b := −DMT y ∈ RN . Being A a full rank matrix, the
refinement for v̄ has a unique least square solution.

The smoothing quadratic minimization problem (9) is a con-
vex optimization problem which unique minimizer is explicitly

Fig. 7. Left: a smooth sigmoid signal (top), and its first (middle) and second
(bottom) derivatives; Right: a non-smooth signal v (dashed black) and z∗

signal in solid red (top); detail shown in the bottom.

input data f1 v∗ + w∗ of JOT v of [15]

Fig. 8. Decomposition results of the input data f1 (left). JOT result in (middle,
red), RMSE = 0.0112, and Potts result (right, black), RMSE = 0.3534,
against the ground truth (blue).

given by imposing the first optimality conditions which lead
to the solution of the following linear system of equations

(IN + αDTD)w = w̄ + rv , (24)

with symmetric positive definite coefficient matrix.

IV. NUMERICAL EXAMPLES

We present numerical examples for both artificial signals,
where we know the ground truths, and real life signals to
showcase the proposed JOT model when applied to the study
of nonstationary signals. We compare with the Potts model
[15], and with the model proposed in [13] which combines
Total Variation and `2 regularizations to reconstruct piece-
wise smooth signals. We note here that [15] yields a jump
segmentation without trends within the segments, i.e. it effects
a piece-wise constant component recovery.

A. Synthetic examples

The first result is presented in Figure 2 for the synthetic sig-
nals f1 and f2. From the second column, the final components
v∗, w∗, n∗ produced by the two stages of JOT are presented.
We observe that jumps as well as trends are well-separated
from noisy oscillations. In Figure 8, we compare the JOT
result (red) with the ground truth (blue), and the Potts model
in [15] (black) for the signal f1. By using the Potts model,
which relies on a sparsity-inducing `0 pseudonorm penalty,
the signal is decomposed into v and the residual f1 − v. JOT
captures the trend more closely to the ground truth, without
staircase effect. This is confirmed by the Root Mean Squared
Error (RMSE) reported in Figure 8.
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[13]:
v,RMSE = 0.1629 w,RMSE = 0.1623 f2 − v − w,RMSE = 0.0259

f2 v∗, RMSE = 0.0110 w∗, RMSE = 0.0109 n∗, RMSE = 0.0027

[15]:
v,RMSE = 0.2848 f2 − v,RMSE = 0.0259

Fig. 9. Decomposition results for input data f2 (left) where all graphs are superposed with the ground truth data (dashed blue): JOT (red, middle row), [13]
(black, top row), and [15] (black, bottom row). RMSE values are lower for v∗ and w∗ of JOT.

In Figure 9, we compare the decomposed components v∗,
w∗, n∗ by JOT (middle row), the method proposed in [13]
(bottom row) and Potts model (top row) for the signal f2. The
superiority of the minimax penalty (3) applied in JOT with
respect to the Total Variation penalty used in the variational
model in [13] is appreciable in the v∗ components. The
advantage of using a specific ‖n‖H−1 term to capture the
oscillatory component, instead of a L2 norm of the residual as
used in [13], is visible in the last column. Residual structures
from v and w can be noted in the first and third row even with
an optimal tuning of the parameters involved.

In Figure 10 first row, we report the raw signal f2, the
Potts model result, and the w∗ term from JOT decomposition
framework. In the second row we show the corresponding
Short Time Fourier Transform, a.k.a. spectrogram. In the
third and fourth row the time frequency plots obtained via
CWT based Synchrosqueezing (SST) [1] and the IMFs based
IMFogram [5] are shown respectively. The IMFs have been
produced using the FIF algorithm [21]. The CWT of these
data sets are shown in Figure 3.

All the time-frequency plots confirm that the proposed
method better remove jumps from the signal. This is par-
ticularly evident in the spectrogram plots (second row of
Figure 10). In the middle panel, we see leftover yellow
vertical lines, which correspond to the jumps, as explained
for instance in [6]. Whereas these vertical lines disappear on
the right panel. The other time-frequency plots, which are
more focused and less prone to artifacts than the Spectrogram,
in particular the SST and the IMFogram, allow to notice
that also low frequency contributions coming from the jumps
are removed properly from the plots. In particular, around
roughly 10 Hz the right panels in the third and fourth row
are empty at any time, whereas the corresponding plots from

Fig. 10. The top row shows the signal f2, the Potts result v and the JOT
result w∗. The rows below show their time-frequency representations. From
the second to last row, Spectrograms, the CWT based Synchrosqueezing, and
the IMFogram are presented respectively.
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Fig. 11. Decomposition results of JOT (stage 1) compared with Potts method.
Top row shows the input data ”CSES Exd” f3. Second row: v̄ + w̄ of JOT
(red) compared with the Potts v̄ component (black). Third and fourth row
depict, respectively, v̄ and w̄ produced by JOT. Last row: n̄ of the proposed
method (red) and the Potts n̄ component (black).

the central column present still some contributions towards the
end of the data set. Furthermore, the proposed approach has
the advantage allowing to separate “for free” also the high
frequency components contained in the signal, as shown in
the time-frequency plots. In fact, from 50 Hz above the right
column panels are completely empty.

JOT framework allows to pre-process data, and, as a conse-
quence, to produce cleaner and crisper time-frequency plots of
a signal by separating jumps and high frequency contributions
in an accurate way.

B. Real life Signals

We illustrate the decomposition of three real signals (IV-B1-
IV-B3) using the proposed JOT framework. We demonstrate
the efficacy of the JOT signal decomposition as a pre-
processing tool in signal analysis.

1) Earth’s Electric Field: The study of the Earth magnetic
and electric field is an active research field in Geophysics.
Among the open questions that are still waiting to be ad-
dressed, we mention the identification and removal of the
magnetic and electric background, i.e. the trend and low
frequency oscillations, the analysis and classification of chirps,
i.e. quick changes in frequency of one of more components
contained in the signal, and other transient phenomena [34].

In Figure 11 first row, we show a sample of the Earth’s
electric field measured by the CSES-01 satellite. CSES-01 is
a sun-synchronous satellite flying at an altitude of ∼ 507 km
[7]. The orbital descending node time is around 14:00 LT and
the revisiting period is of 5 days. In Figure 11, we present
the stage 1 of JOT results showing v̄, w̄ and n̄, respectively in
the third, fourth and last row. In the second row of Figure 11,
we compare with Potts. The proposed method better separates
the jumps producing a cleaner high frequency oscillations
remainder n̄ than the f3 − v of [15], as shown in the last
row of the same figure.

This clear separation is also confirmed by the time-
frequency plots in Figure 12, which are associated with the

Fig. 12. The first row shows the given signal CSES f3, f3 − v from
[15] and n̄ from JOT. Second and third rows illustrate, column-wise, their
associated time-frequency representations. The second row shows CWT based
Synchrosqueezing, and the bottom row, the IMFogram.

raw signal f3, compared with the ones associated with the
f3−v and n̄ components. In particular, even if both approaches
allow to properly remove the main jump present in the middle
of the raw signal, only the proposed approach allows to remove
completely the secondary jumps present in f3. This is shown
by the presence of vertical bars in the CWT of f3 − v and
blue columns in its IMFogram, central column of Figure 12.
These structures disappear, if we study the n̄ component of
JOT, as shown in the right column plots of Figure 12.

Furthermore, the proposed method allows to identify and
separate the electric field background (i.e. trend and low fre-
quency oscillations), depicted in the fourth row of Figure 11.
JOT framework proves to be valuable for the pre-processing
of this kind of data.

2) CPU emanated EM signals: As a second real life
example, we present, in Figure 13 first row, the signal f4
representing electromagnetic side-channel emanations of a
computer processor, i.e. Emanated EM signal. This signal was
measured with a near field magnetic probe (Aaronia H2 near-
field magnetic probe) located around the pins of the processor
of a target device (in this particular case is a A13-OLinuXino).
The processor of this specific device is ARM Cortex A8
whose operating clock frequency is 1 GHz. For recording the
measured data, Keysight UXA signal analyzer is used. The
signal is recorded with 1.28 GHz sampling frequency around
1 GHz center frequency and 500 MHz bandwidth. For more
details on the data and their measurement the interested reader
can refer to [9], [35].

The emanated EM signals are measured to estimate the side-
channel leakage, which is a consequence of program execution
in a computer processor. Understanding the relationship be-



10

tween code execution and information leakage is a necessary
step in estimating information leakage and its capacity limits.

The data collected present many sudden drops due to,
probably, other activities of the motherboard. In Figure 13, the
JOT decomposition captures the sudden jumps as v∗ (second
row) and the low frequency component as w∗ (third row),
and the data of interest n∗ (fourth row) in red. Superposed
in black color, we provide comparison with components v, w
and f4 − v − w obtained by [13]. Stage 2 of JOT does not
only provide better alignment in v∗, but the superior penalty
function we use in stage 1 recovers better the amplitude. The
last two rows of Figure 13 provide comparison of JOT with the
Potts model [15]: The component v∗ + w∗ is shown together
with component v of [15] and components n∗ with f4 − v
of [15] respectively. Due to the Potts model not capturing the
smooth trend, The component f4 − v is affected by spurious
data.

The drops, represented by v∗ influence the time-frequency
plots introducing artifacts at any frequency level, as shown in
Figure 14. In the first row, we present the raw data f4 and
its associated time-frequency representation plots, whereas in
the second row, we plot the time-frequency representations
associated with the n∗ signal of the proposed JOT.

By comparing the first and second row time-frequency
plots of Figure 14, IMFogram time-frequency representations
show how v∗ and w∗ components introduce artifacts at every
frequency level. These artifacts mask the actual active frequen-
cies which instead become well visible after pre-processing
of the data by means of the JOT decomposition algorithm,
Figure 14 second row. In particular, the cycles which are
present in the frequency range [3000, 4000] kHz can be easily
recognized after the JOT pre-processing, in the second row
right IMFogram in Figure 14.

3) ECG Data with moving electrodes: In Figure 15, we
plot the signal f5 which represents an ECG recording created
starting from a clean recording from the MIT-BIH Arrhythmia
Database, to which calibrated amounts of noise has been
added, to simulate electrode motion artifacts [8]. Noise was
added beginning after the first 5 minutes of each record,
during two-minute segments alternating with two-minute clean
segments. The signal-to-noise ratio (SNR) measured in dB
during the noisy segments of this record is -6 dB1.

In this example is evident how the proposed method is able
to produce a better jump identification even in a scenario in
which the jumps can be represented as a piece-wise constant
function.

C. Convergence and CPU time

We present an empirical investigation on the numerical
convergence of the proposed Stage 1 minimization scheme. In
Figure 16, we present the convergence plots showing the decay
of the energy functional J versus the number of iteration
of the numerical optimization scheme for all the signals
presented in this paper. The plots are normalized for an overall
visualization.

1The data and more details on how they have been produced can be found
in the Physionet database at https://physionet.org/content/nstdb/1.0.0/

f1 f2 f3 f4 f5
N 1024 4450 20000 330000 650000

time(s) 0.0031 0.0286 0.0487 0.9667 1.9069
a 8.00e+2 1.39e+4 1.25e+7 5.00e+5 8.68e+8
γ1 3.84e-2 2.50e-6 6.00e+1 1.20e+0 4.17e+3
γ2 7.52e+2 2.31e+1 2.40e+8 1.15e+2 –
γ3 1.80e-4 1.50e-3 1.00e-12 2.90e-11 2.00e-20

TABLE I
CPU TIMING IN SECONDS PER ITERATION.

For an insight onto the computational complexity of the
proposed optimization Stage 1, we report in Table I the cpu
time per iteration in terms of the signal dimension N for every
signal considered in the experiments illustrated in section
IV. The timings refer to a naive implementation in MATLAB
environment on an Intel®Core™i7-8565U CPU with 1.99GHz
and 16GB RAM.

An overall timing of stage 1 of JOT framework come
straightforwardly by combining data in Table I with number
of iterations to achieve convergence reported in Figure 16.

The computational cost of Stage 2 of the proposed JOT
framework consists mainly in the solution of two linear
systems (8) and (9) (via (24)), where the inpaining system
is of dimension K << N while the smoothing linear system
is highly sparse and involves N unknowns. The overall com-
putational cost of stage 2 corresponds at most to one iteration
of Stage 1 reported in Table I.

V. CONCLUDING REMARKS

Many state of the art methods for time-frequency analysis
aim to extract frequencies hidden in nonstationary signals. The
estimation of the signal trend is of fundamental importance
in many applied fields of research, like physics, economy,
medicine, and many more. However, when the signal under
investigation is contaminated by anomalies/jumps, any state of
the art signal processing technique ends up producing time-
frequency representations which are corrupted by artifacts, and
the proper estimation of the signal trend becomes extremely
challenging.

In this paper, we proposed a two-stage signal decomposition
method, called JOT, which allows to separate piecewise-
constant jumps, as well as the oscillatory component, from
the non-oscillating trend. The framework relies on the solution
of convex and non-convex optimization problems by means
of an efficient and robust alternating optimization algorithm
and FBS solver. The theoretical convergence is currently only
supported by robust empirical tests. We plan to explore this in
the future. The numerical procedure proposed for the solution
of the three component decomposition (stage 1) is new, and
differs from the ADMM-based numerical solution described in
[29] for image decomposition. This new alternating procedure
allows for an automatic estimation of the jump locations, and
an exact evaluation of the 1-dimensional TV denoising which
is not available for the 2-dimensional case.

To demonstrate the effectiveness of the proposed frame-
work, we compared its results on synthetic and real life
signals with the ones obtained by the decomposition models
presented in [13] and [15]. Extending from decomposition

https://physionet.org/content/nstdb/1.0.0/
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Results of [13] (black) and JOT (red).

Potts [15] (black) and JOT (red) results

Fig. 13. The first row shows the given CPU signal f4 The second to fourth row show the JOT results v∗, w∗, n∗ in red respectively, superposed in black
v, w and f4 − v − w of [13]. The fifth and sixth row illustrate JOT result v∗ + w∗ and n∗ in red, superposed in black the Potts result v f4 − v of [15].

CPU raw data IMFogram

CPU JOT pre-processed data IMFogram

Fig. 14. Time-frequency representations of the CPU signal f4 in Figure 13:
The second row shows JOT result, subtracting the v∗ and n∗ components
from f . Notices IMFogram shows more clear separation of the signal for
JOT.

to signal recovery or segmentation, one can consider higher
order Mumford-Shah model for signal separation, such as
[12]. In general, we found that (i) the proposed JOT method
identifies not only big but also small step jumps more stably,
e.g., Figure 11 and 15, and (ii) having a dedicated term (the
H−1-norm term) in the functional (2) makes a difference in
capturing highly oscillating components (representing either
noise or signal component). Without such a term, in general,
the residue from a fitting term collects spurious data from the
other components, e.g. see Fig.9, third column and [29].

Fig. 15. Decomposition of the input signal ”118e 6m” f5 (first row) into v̄
(second row) and n̄ (third row) assuming w̄ = 0. In red, the results of stage
1 in comparison to the Potts model result (black).

JOT framework proves to be a reliable and robust method
for the separation of jumps and low frequency oscilla-
tions/trend from a nonstationary signal. JOT decomposition
can become a valuable pre-processing algorithm in real life
applications for the detrending and time-frequency analysis of
signals containing anomalies and jumps.



12

Fig. 16. Plots providing empirical evidence of numerical convergence of the
stage 1, for the signals analyzed.
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information leakage created by execution of series of instructions in a
computer processor,” IEEE Transactions on Information Forensics and
Security, vol. 15, pp. 776–789, 2019.

[10] L. J. Christiano and T. J. Fitzgerald, “The band pass filter*,” Interna-
tional Economic Review, vol. 44, no. 2, pp. 435–465, 2003.

[11] R. J. Hodrick and E. C. Prescott, “Postwar u.s. business cycles: An
empirical investigation,” Journal of Money, Credit and Banking, vol. 29,
no. 1, pp. 1–16, 1997.

[12] M. Storath, L. Kiefer, and A. Weinmann, “Smoothing for signals with
discontinuities using higher order mumford–shah models,” Numerische
Mathematik, vol. 143, no. 2, pp. 423–460, 2019.

[13] A. Gholami and S. Hosseini, “A balanced combination of tikhonov and
total variation regularizations for reconstruction of piecewise-smooth
signals,” Signal Processing, vol. 93, no. 7, pp. 1945 – 1960, 2013.

[14] S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky, “` 1 trend filtering,”
SIAM Review, vol. 51, no. 2, pp. 339–360, 2009.

[15] M. Storath, A. Weinmann, and L. Demaret, “Jump-sparse and sparse
recovery using potts functionals,” IEEE Transactions on Signal Pro-
cessing, vol. 62, no. 14, pp. 3654–3666, 2014.

[16] I. Selesnick, A. Lanza, S. Morigi, and F. Sgallari, “Non-convex total
variation regularization for convex denoising of signals,” Journal of
Mathematical Imaging and Vision, vol. 62, no. 6-7, pp. 825–841, Jul.
2020.

[17] G. Cai, I. W. Selesnick, S. Wang, W. Dai, and Z. Zhu, “Sparsity-
enhanced signal decomposition via generalized minimax-concave
penalty for gearbox fault diagnosis,” Journal of Sound and Vibration,
vol. 432, pp. 213–234, 2018.

[18] C. Zhang, “Nearly unbiased variable selection under minimax concave
penalty,” Ann. Statist., vol. 38, no. 2, pp. 894–942, 04 2010.

[19] P. Flandrin, Time-frequency/time-scale analysis. Academic press, 1998.
[20] L. Lin, Y. Wang, and H. Zhou, “Iterative filtering as an alternative

algorithm for empirical mode decomposition,” Advances in Adaptive
Data Analysis, vol. 1, no. 4, pp. 543–560, 2009.

[21] A. Cicone, “Iterative filtering as a direct method for the decomposition
of nonstationary signals,” Numerical Algorithms, pp. 1–17, 2020.

[22] A. Cicone, W. S. Li, and H. Zhou, “New theoretical insights in
the decomposition and time-frequency representation of nonstationary
signals: the imfogram algorithm.” arXiv preprint, 2021.

[23] Y. Meyer and D. Lewis, Oscillating Patterns in Image Processing and
Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis
Memorial Lectures, ser. Memoirs of the American Mathematical Society.
American Mathematical Society, 2001.

[24] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise
removal algorithms,” Phys. D, vol. 60, no. 1-4, pp. 259–268, 1992.

[25] J. Aujol, G. Aubert, L. Blanc-Féraud, and A. Chambolle, “Image
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