
21 February 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Audrito G., Casadei R., Torta G. (2021). Fostering resilient execution of multi-agent plans through self-
organisation. Institute of Electrical and Electronics Engineers Inc. [10.1109/ACSOS-C52956.2021.00076].

Published Version:

Fostering resilient execution of multi-agent plans through self-organisation

Published:
DOI: http://doi.org/10.1109/ACSOS-C52956.2021.00076

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/876121 since: 2022-03-01

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/ACSOS-C52956.2021.00076
https://hdl.handle.net/11585/876121

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

G. Audrito, R. Casadei and G. Torta, "Fostering resilient execution of multi-agent

plans through self-organisation," 2021 IEEE International Conference on Autonomic

Computing and Self-Organizing Systems Companion (ACSOS-C), DC, USA, 2021, pp.

81-86

The final published version is available online at

https://dx.doi.org/10.1109/ACSOS-C52956.2021.00076

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the

publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/ACSOS-C52956.2021.00076

Fostering resilient execution of multi-agent plans

through self-organisation

Giorgio Audrito

Dipartimento di Informatica

Università di Torino

Torino, Italy

0000-0002-2319-0375

Roberto Casadei

Department of Computer Science and Engineering

Università di Bologna

Bologna, Italy

0000-0001-9149-949X

Gianluca Torta

Dipartimento di Informatica

Università di Torino

Torino, Italy

0000-0002-4276-7213

Abstract—Traditional multi-agent planning addresses the coor-
dination of multiple agents towards common goals, by producing
an integrated plan of actions for each of those agents. For systems
made of large numbers of cooperating agents, however, the execu-
tion and monitoring of a plan should enhance its high-level steps,
possibly involving entire sub-teams, with a flexible and adaptable
lower-level behaviour of the individual agents. In order to achieve
such a goal, we need to integrate the behaviour dictated by a
multi-agent plan with self-organizing, swarm-based approaches,
capable of automatically adapting their behaviour based on the
contingent situation, departing from the predetermined plan
whenever needed. Moreover, in order to deal with multiple
domains and unpredictable situations, the system should, as far as
possible, exhibit such capabilities without hard-coding the agents
behaviour and interactions. In this paper, we investigate the
relationship between multi-agent planning and self-organisation
through the combination of two representative approaches both
enjoying declarativity. We consider a functional approach to self-
organising systems development, called Aggregate Programming
(AP), and propose to exploit collective adaptive behaviour to
carry out plan revisions. We describe preliminary results in this
direction on a case study of execution monitoring and repair of
a Multi-Agent PDDL plan.

Index Terms—Multi-agent systems, Robust plan execution,
Aggregate computing

I. INTRODUCTION

The task of Multi-Agent Planning (MAP) consists of co-

ordinating the actions of multiple agents in a Multi-Agent

System (MAS) towards common goals. Traditionally, planning

addresses both the assignment of tasks/actions to individual

agents, as well as the coordination among different agents in

terms of causal links and concurrent actions [1]. For large-

scale systems of cooperating agents, however, plans can hardly

capture, fully and in advance, the behaviour and interactions of

each individual agent towards desired global state-of-affairs.

Rather, high-level plans should be specified and dynamically

refined to define both team- and individual-level behaviour in

a flexible and adaptable fashion.

The vision presented in this paper aims at achieving such

a goal by combining and integrating two approaches to MAS

implementation that have followed distinct research paths up to

now. On the one hand, there are self-organizing, swarm-based

approaches, capable of automatically adapting MAS behaviour

based on the contingent situation, departing from the predeter-

mined behaviour whenever needed. Such approaches can be

very effective in dealing with small, specific uncertainties in

the operating environment, but are usually not suited to the

execution of complex plans made of several phases, in which

groups of agents and individual agents must be able to exhibit

very different behaviours and coordination capabilities. On the

other hand, there are more traditional systems that are able (at

least in principle) to interpret and execute any plan expressed

in a suitably standardized language, such as the Multi-Agent-

Planning Domain Definition Language (MA-PDDL) [2], but

do not have built-in capabilities to exhibit flexible lower-level

behaviour and coordination with other agents.

In other words, we aim at investigating the integration

between multi-agent plans and self-organisation, where the

former are necessary to achieve complex goals that require

possibly long sequences of agents’ actions; and the latter are

necessary to deal with the uncertainties and complexities of

the execution environment through low-level flexibility.

A fundamental requirement of our investigation is that both

of these ingredients should be based as far as possible on

declarative solutions: the high-level plans should not be hard-

coded in the system, but represented in a suitable language;

and also the self-organization and flexible behaviour capa-

bilities of the agents should be expressible by programming

at a high level, abstracting from low-level details such as

inter-agent communications. For the latter goal, we consider

a functional approach to self-organising systems development,

called Aggregate Programming (AP) [3], that makes it possible

to express collective adaptive behaviour to carry out plan

execution and revision. As we shall review, AP is formalised

through the Field Calculus (FC) [4] and implemented by full

programming languages such as ScaFi [5].

We make a preliminary test of our vision on a case study

of execution monitoring and repair of a MA-PDDL plan.

In particular, we present the architecture of an actor-based

(simulated) system for joint execution of MAP and AP pro-

grams. The system takes a MA-PDDL plan and simulates its

execution, possibly with failures preventing the achievement

of the plan goals. As the plan is executed, an AP program

written in ScaFi (collectively run by the actors, as we shall

see) monitors the status of the system, and in case of failure

triggers a distributed repair process involving not only the

agents executing the plan, but possibly also additional nodes

in the geographic environment where the MAP is executed.

The paper is organised as follows. Section II provides

background on MAP, AP and self-organization hinting at

the gaps that motivate our proposal. Section III describes

a preliminary investigation of combining MAP with self-

organisation. Finally, Section IV wraps up the paper with a

discussion and perspectives for further research.

II. BACKGROUND AND MOTIVATION

A. Multi-Agent Planning (MAP)

MAP evolves from one of the oldest AI problems: auto-

mated planning of the actions that an agent has to execute

in order to reach a goal state from starting in an initial

state. In 2012, the standard language for expressing planning

domains and problems (PDDL) has been extended to the

MA-PDDL language, which can handle multiple agents [2].

Currently, several planners directly support MAP [6], both as

a centralized and as a decentralized process. As an alternative

to using such planners, it is possible to automatically convert

a MA-PDDL problem to a single-agent problem [7] that can

then be solved with one of the many single-agent planners.

A potential issue with the execution of a MA-PDDL plan

is that, if errors occur, it is left unspecified how the single

agents and the MAS as a whole should react. Some work has

been done in the AI community to address monitoring and

repair of Multi-Agent Plans (MAPs) [8]–[11], however, such

approaches only address the monitoring/diagnosis task, assume

a centralized monitoring/repair process, or require full/perfect

communication between the agents in the team.

It is worth mentioning that the multi-agent community has

also followed a somewhat different approach to the MAP

problem. More specifically, it has identified a number of

problem types that are particularly relevant in practice, such

as the path-planning problem, the covering problem (i.e.,

observe a set of areas) and the pickup-and-delivery problem

(i.e., move a set of items from sources to destinations). Such

problem types have then been investigated separately, leading

to specialized solutions that are often partially hardcoded in

the agents behaviours [12], [13].

The main shortcoming of the mentioned approaches is that

they usually lack the capability to capture flexible, reactive

collective behaviour of agents in the presence of uncertainty

and unforeseen events. This is true, even if to a lesser extent,

also for the solutions to specific types of problems.

B. Aggregate Programming (AP) and the Field Calculus (FC)

AP [3], [14] is an approach for designing resilient dis-

tributed systems by abstracting away from individual devices

behaviour and focusing on the global, aggregate behaviour of

the collection of all devices. The AP approach provides smooth

composition of distributed adaptive behaviour, allowing for

the development of highly reusable “building block” operators

capturing common coordination patterns [15], [16]. Most

importantly, AP assumes only local communication between

neighbour agents, and is robust with respect to devices join-

ing/leaving the network, or failing.

AP is formally backed by FC [3], [4], tiny functional lan-

guage for expressing aggregate programs (see [4] for a detailed

account), which is implemented by full-fledged languages like

the Scala-internal ScaFi (Scala Fields) [5] and the C++ internal

FCPP [17]. A summary of the syntax of FC is as follows:

P ::= F e program

F ::= def d(x) {e} function declaration

e ::= x
∣

∣ v
∣

∣ (x)=>e
∣

∣ e(e)
∣

∣ expression

let x = e in e
∣

∣ if(e){e}{e}
∣

∣

rep(e){(x)=>e}
∣

∣ nbr{e}
∣

∣ spawn(e, e, e)

In FC, the main expression e evaluates to a possibly different

value v on each device δ, which may depend on the state of δ

(sensor readings, information received from neighbours, etc.).

Thus, expressions e induce a computational field Φ, which can

be represented as a time-varying map δ1 7→ v1, . . . , δn 7→ vn,

assigning a value vi to each device δi in a network. Each

device δ updates its value (by evaluating e) in asynchronous

computational rounds, and values can be either local (of

any recursive data type), or neighbouring values φ (maps

from neighbour devices δ′ to local values). Besides standard

constructs of functional languages (function declaration, let-

binding, function call, anonymous functions and branching),

the syntax of expressions comprises three peculiar constructs:

• rep(e1){(x)=>e2} (state evolution), which on a device δ

evaluates e2 substituting x with the value calculated for

the whole rep-expression at the previous round on δ (in

the first round, with the value of e1);

• nbr{e} (neighbourhood observation), which produces a

neighbouring value representing an “observation map”

of neighbour’s values for expression e, i.e., a map from

neighbours to their latest evaluation of e.

• spawn(e0, e1, e2) (dynamic process generation and exe-

cution [18]), spawning an aggregate process correspond-

ing to e0 for every key contained in the set given by e1,

passing the value of e2 as further input to each of them.

The aggregate process e0 must be a function taking as

argument a key and a value, and returning a pair of a

result and a status, which may be either: OUTPUT (make

the result available to the calling FC program), BUBBLE

(no result returned, device takes part in the process),

EXTERNAL (the device does not participate in the process

this round), TERMINATED (the whole process should ter-

minate). Once spawned, a process expands from devices

in BUBBLE or OUTPUT status to corresponding neigh-

bour nodes, until it somewhere returns TERMINATED.

We shall clarify spawn through examples in Section III-C

(see [18] for a detailed account).

As syntactic sugar, in this paper we use binary operators in

infix notation and the notation [e1, . . . , en] for tuples. We shall

use several built-in functions, whose meaning will be mostly

self-explanatory. Among them, we shall use the multiplexer

built-in function mux(e0, e1, e2), which returns its second

or third argument depending on the Boolean value of the

first, and the foldhood(e0, e1, e2) function which aggregates

neighbouring field e2 together with a starting value e0 and a

binary aggregation operator e1.

C. Multi-Agent Planning and Self-Organisation

Self-organisation refers to the process whereby a system au-

tonomously (i.e., without external control) seeks and sustains

its order or structures [19]. It is often meant as a bottom-

up decentralised process where macro-level structures emerge

from micro-level activities and interactions. Engineering self-

organising software-based systems [20] typically leverages

mechanisms inspired by nature (e.g., chemistry, physics, ani-

mals, insects). However, few programming approaches tailored

to self-organising systems exist, with AP being the most

developed [3], to the best of our knowledge.

Our vision is that self-organisation can be profitable com-

bined with complementary approaches to multi-agent co-

ordination. The general idea itself is not novel: for in-

stance, research on organic computing proposes to balance

“creative self-organized bottom-up processes” and “top-down

control” [21]. Research on organisational paradigms for

MASs [22] also distinguishes between problem-driven or-

ganisations achieved by task planning, which have issues

in dynamic environments, and self-organising organisational

approaches, which can better deal with continuous pertur-

bations and unpredictable situations but are usually limited

in scope. In [23], a comprehensive view of organisations

in MASs is depicted through two dimensions: organisational

awareness (aware, unaware) and centrality (agent-centred vs.

organisation-centred)— where self-organisation is classified as

agent-centred and organisation-unaware.

Our contribution has intersections with the aforementioned

threads, but also a distinct focus: supporting the execution of

MAPs, i.e., possibly long and complex sequences of actions

that have to be performed by the MAS. In particular:

• we consider the plan (together with declarative models

of the actions) as the main force used to drive the

(dynamic) structure of a self-organising MAS, by defining

workflows and actions to “steer” the self-organisation;

• we advocate that MAPs declarative representations

should be developed that comprise both collective actions

performed by teams of agents, as well as actions to be

performed by individual agents, as required by PDDL

extensions;

• we consider the full execution cycle (including monitor-

ing and repair of the plans), which requires both robust

and flexible plan execution, and incremental (partial-to-

full) re-planning when strictly necessary.

We provide preliminary results in the following section. In

particular, self-organisation can be a key mechanism for ad-

dressing continual planning [24]. An architectural solution

leveraging planning and self-organisation in robotic ensembles

has also been proposed in [25]. Their goal has some similari-

ties with ours, however they ignore the fundamental role that

a suitable representation of the plan can have in automatically

generating the code for monitoring its correct execution and

possible repair. Our vision, instead, implies a strong focus on

Fig. 1. A sample map for the taxi domain.

(:action drive

:agent ?t - taxi

:parameters (?from - location ?to - location)

:precondition (and (at ?t ?from)

(directly-connected ?from ?to)

(free ?to)

)

:effect (and (not (at ?t ?from))

(not (free ?to))

(at ?t ?to)

(free ?from)

)

)

Fig. 2. The drive action for the Taxi PDDL domain.

a declarative representation of the plan (especially the action

models) as well as of the monitoring and repair processes

(c.f. Section IV). We believe that declarativity is essential

for decoupling the system specification from execution and

deployment issues, as well as for enabling formal analysis

including static and dynamic verification.

III. PRELIMINARY INVESTIGATION: PLAN REPAIR

A. Domain: Taxis and Passengers

We take the taxi MA-PDDL domain from the CoDMAP

competition [26] as our running example, which defines two

types of agents: taxis and passengers. Taxis can move from

one location to another in a graph-based map, can carry one

passenger at a time, and have the goal to reach a final location

at the end of the execution. Passengers can enter and leave

taxis, and have the goal to reach a destination at the end of

the execution. The domain is quite simple, but exhibits a basic

form of collaboration among agents: a passenger cannot reach

her destination without the help of a taxi. Figure 1 shows an

example problem with 9 locations (labeled circles), 3 taxis

(T1, . . . , T3) and 7 passengers (P1, . . . , P7).

In our prototype, we automatically translate a MA-PDDL

problem to PDDL 2.1 [27], which allows durative actions,

while the currently available MA-PDDL planners only allow

for atomic actions. Plans to be fed into our simulator have

then been generated with the POPF2 planner [28].

Figure 2 shows the definition of the drive action within the

PDDL specification for the Taxi domain. What is important to

<<actor>>

Simulator

MA-PDDL
plan

SCAFI
aggregate programproblem /

environment
PDDL description

<<actor>>

Agent
Environment

Element

<<actor>>
Aggregate Computing

Node

neighbour

<<actor>>
Passenger

<<actor>>
Taxi

<<actor>>
Location

Fig. 3. Actor-based architecture of the system. Inputs are shown in yellow,
domain-specific entities are shown in blue.

note for the purpose of our paper, is that such a definition con-

stitutes a declarative model of the action, with pre-conditions

and effects on the environment. Such a model can be exploited

not only for the generation of a plan, but also for simulating

and monitoring the plan execution. We can think of a plan,

together with the action models, as a formal specification of

the runtime behaviour of the MAS that executes it.

B. Actor-based System Architecture

In this section, we describe the architecture of a system

for the execution and repair of MA-PDDL multi-agent plans.

The proposed system simulates in software the execution of

actions by the agents, and does not address specific hardware

agents. However, it is intended to model quite closely a

possible software architecture of a system deployed on real

software/hardware agents.

The overall architecture is based on actors that implement

both the agents of the MAS and the nodes of a network for

the execution of aggregate programs [29]. Figure 3 shows the

architecture of the simulation system, including the domain-

specific actors (cf. Section III-A) involved in the execution of

a simple plan. Generic entities of the solution (implemented

in Scala exploiting the AKKA framework [30]) include:

1) (discrete-event) simulator:

a) creates a future event list (FEL) with start/end

action events from the plan and failure events from

the simulation configuration, sending correspond-

ing messages to agent-actors;

b) implements the communication and sensor infras-

tructure needed by FC, i.e., sending to the node-

actors current sensor values and context;

2) agent actors: model active domain entities and have

associated aggregate computing nodes;

3) aggregate computing nodes:

a) have a FC/ScaFi aggregate program to run, a

state (output of their last execution round), a set

of neighbours and their most recent export (i.e.,

a collection of values produced by nbr and rep

constructs to be shared with neighbours [4]);

b) can perform actions get-context (retrieving

the current state, neighbours’ exports, and sensor

data), compute (running the aggregate program

against the current context), and act (performing

actuations).

Domain-specific entities include the following:

1) taxi agent actors:

a) have a location and may be serving one pas-

senger;

b) can perform action drive (for moving a taxi and

the corresponding passenger, if any, from a location

to another one);

2) passenger agent actors:

a) have a location, a target destination, and may

be in a taxi;

b) can perform actions enter (to get into a taxi),

exit (to get off a taxi);

3) location agent actors:

a) have a set of connected locations that can be

directly reached by a taxi performing a drive

action;

b) are assumed to host a computational element, pro-

viding storage and computing services for a given

location.

All the entities (taxis, passengers, and locations) are also

nodes of an aggregate computing system, where we assume

that passengers have a smartphone or another wearable device

for computation, and locations have an associated smart-city

device. Devices corresponding to taxis and passengers in a

same location are all connected together and with the smart-

city device of the location. Additionally, location devices are

also connected to the devices of neighbour locations.

The simulator exploits the plan and the problem description

to determine a list of events (FEL) driving the simulation. For

each event, a corresponding message is sent to the involved

actors, which perform planned actions and reply back with

results so that new events can be scheduled affecting the

environment or other entities.

C. Aggregate Plan Repair

Monitoring and repair have been implemented in the AP

nodes with the Scala-internal ScaFi language [5]. However,

for ease of explanation, in this section we shall describe the

repair algorithm using the syntax of FC described in section

II. The FC program that monitors the plan execution and

triggers a distributed repair when an error occurs is shown

in Figure 4. We highlight keywords in blue, general built-in

functions in violet, values and functions accessing plan and

model information in red, comments in green. For simplicity,

we assume that the only error that can happen is that a taxi

breaks and can no longer serve its assigned passengers.

Firstly, FC nodes keep an up-to-date set brokenTaxis of

currently broken taxis. Taxi nodes whose taxiBroken sensor

let brokenTaxis = rep (emptyset()) { old => foldhood(if (taxiBroken) {singleton(mid)} {emptyset()}, union, nbr{old}) } in

let repairNeeded = !hasTaxi and contains(brokenTaxis, myTaxi) in

// INPUT: key = [passenger, location, location], exec OUTPUT: [[time, taxi], STATUS]

let evaluateTaxi = (key, exec) => {

let myOffer = mux(isTaxi, tuple(timeForLocationAfterPlan(2nd(key)) + 1st(route(2nd(key), 3rd(key))), mid), tuple(infinity, null)) in

let status = mux(1st(key) == mid, mux(exec, OUTPUT, TERMINATED), BUBBLE) in

tuple(gossipMin(myOffer), status)

} in

let fallbackTaxi = rep (none) { old =>

let callProcess = (old == none) and repairNeeded in

let spawnKeys = mux(callProcess, singleton(tuple(mid, curLoc, trgLoc)), emptyset()) in

let bestTaxi = get(spawn(evaluateTaxi, spawnKeys, callProcess), mid) in

let timeSinceImprove = 1st(rep (tuple(0, infinity)) { old =>

mux(bestTaxi == none,

tuple(0, infinity),

tuple(mux(1st(bestTaxi) < 2nd(old), 0, 1st(old) + 1), 1st(bestTaxi)))

} in mux(timeSinceImprove > THRESHOLD, 2nd(bestTaxi), old)

} in

// INPUT: key = [passenger, taxi, location, location] args = unit OUTPUT: [unit, STATUS]

let callTaxi = (key, args) => { mux(2nd(key) == mid, (addToPlan(1st(key), 3rd(key), 4th(key)); TERMINATED), BUBBLE) } in

let spawnKeys = mux(fallbackTaxi == none, emptyset(), singleton(tuple(mid, fallbackTaxi, curLoc, trgLoc))) in

spawn(callTaxi, spawnKeys, unit()) // spawns a process instance with logic ’callTaxi’ for each (new) key in ’spawnKeys’

Fig. 4. Field Calculus code for handling broken taxis.

indicates a failure increase this set by adding their unique

node ID mid to the set. At the same time, each passenger

node determines whether she needs a repair of her plan

(repairNeeded), which happens when she is waiting for a taxi

(hasTaxi) that is in the brokenTaxis set.

When a passenger node needs a plan repair, it tries to find

a fallbackTaxi by spawning a FC process based on function

evaluateTaxi. Let us consider in some detail the rep expression

used to set variable fallbackTaxi. Flag callProcess is set to true

iff in the previous rounds no fallback taxi had been identified

(old variable is none) and the code is evaluated on a passenger

node with repairNeeded equal to true. When callProcess is

true, the key (identifier) spawnKeys of the spawned process

is the singleton set of a 3-tuple containing the ID mid of the

node and its current and target locations.

A new process based on function evaluateTaxi is then

spawned. Note that processes are spawned only at the nodes

of passengers needing a plan repair. However, the semantics

of spawn is such that, after the generation of a process, at each

round the active partecipants propagate it to their neighbours.

The process function evaluateTaxi computes a value (a pair

of a time and the ID of the suggested taxi node) and a

status; when executed on the passenger node that spawned

the process, the status is either OUTPUT or TERMINATED,

based on parameter exec which is set with the value of flag

callProcess; for all other nodes, the status is BUBBLE. The

computed value (which is returned only with the OUTPUT

status) is determined through an aggregate computation in-

volving all the nodes, and contains the estimated time that

will take to the suggested taxi to serve the passenger. Since

the spawned process takes several rounds before converging

to a final value with an (estimated) optimal suggestion, it is

kept alive until it does not improve its output for more than a

THRESHOLD number of rounds. When that happens, the taxi

suggested by evaluateTaxi becomes the chosen fallbackTaxi

for the passenger, causing the process to terminate.

Finally, the passenger must let the chosen taxi know her de-

cision. This task is also performed by spawning a process, this

time based on the callTaxi function. The process is spawned

by the passenger nodes and, when its propagation reaches the

fallbackTaxi node, callTaxi updates the MAP according to the

chosen fix.

IV. DISCUSSION AND RESEARCH ROADMAP

The work described in the previous section is a preliminary

step in integrating the execution of a MAP with the collective

behaviour generated by AP. These early results have several

important limitations, most notably:

• the plan is expressed in MA-PDDL, which is not suitable

to express collective, high-level actions such as those

needed when (possibly large) teams of agents carry plan

actions that often involve entire sub-teams;

• consequently, the execution of the plan does not exhibit

any flexibility (e.g. how many and which agents should

perform a collective action?), unless a failure occurs;

• the monitoring assumes full observability of the relevant

information needed to detect failures (that may not be

true especially for the outcomes of aggregate actions);

• the repair of the plan is a hard-coded AP process written

for a specific domain and kind of failure.

The list above shows that there is still a long way to achieve

our vision. However, we already have some ideas about the

needed steps and techniques that may be helpful.

• A fundamental step would be the development of a lan-

guage for expressing MAPs. A first step in this direction

has been presented in [31], where the authors propose

the notion of aggregate plan to capture the kind of plans

suitable for teams performing collective actions. We still

need to formalize a language to express aggregate plans,

and the models of the actions involved (in terms, e.g., of

pre-conditions, nominal and faulty post-conditions).

• Given an aggregate plan, its execution must be flexible

enough. This will require to define a layer exploiting the

expressive power of FC to induce such flexible collective

behavior in a fully distributed, self-organizing way.

• The properties to be monitored may require more com-

plex mechanisms than just direct observation by individ-

ual agents, such as those investigated in existing work

on Runtime Monitoring of complex spatial and temporal

properties with FC [32]. Furthermore, these properties

should be automatically derived from the plan and the

actions model, instead of manually specified.

• Finally, we envision a layer for the repair of failures

that goes beyond the flexibility directly exhibited by the

execution layer. The characteristics of FC and of the

systems we address seem to suggest that also such a layer

should be an FC process. In order to avoid hardcoding

the repair actions, the layer should exploit knowledge

of the plan and of the actions (failure) models in order

to update the plan itself. In this way, we will probably

start by diagnosing (i.e. assessing) the situation (e.g.,

several observed delays are due to a congestion) and

subsequently finding the minimal plan change required

to put the execution back on track.

The practical long-term goal of our proposal is to achieve

a unified approach to diverse applications that are currently

addressed by specific solutions that are either swarm-based

(e.g., search-and-rescue, crowd safety) or plan-based (e.g.

pickup-and-delivery, area covering, etc.). This should open the

way to address hybrid scenarios requiring the execution of

complex plans that involve, at least partially, swarms of agents.

We believe that a declarative, high-level specification of the

goals, actions and single agents behaviors will help making

the implementation of such systems feasible.

REFERENCES

[1] C. Boutilier and R. I. Brafman, “Partial-order planning with concurrent
interacting actions,” Journal of Artificial Intelligence Research, vol. 14,
pp. 105–136, 2001.

[2] D. L. Kovács, “A multi-agent extension of PDDL3.1,” in International

Planning Competition (IPC), 2012.

[3] M. Viroli, J. Beal, F. Damiani, G. Audrito, R. Casadei, and D. Pianini,
“From distributed coordination to field calculus and aggregate comput-
ing,” J. Log. Algebraic Methods Program., vol. 109, 2019.

[4] G. Audrito, M. Viroli, F. Damiani, D. Pianini, and J. Beal, “A higher-
order calculus of computational fields,” ACM Trans. Comput. Log.,
vol. 20, no. 1, pp. 5:1–5:55, 2019.

[5] R. Casadei, M. Viroli, G. Audrito, and F. Damiani, “Fscafi : A core
calculus for collective adaptive systems programming,” in ISoLA (2),
ser. Lecture Notes in Computer Science, vol. 12477. Springer, 2020,
pp. 344–360.

[6] A. Torreno, E. Onaindia, A. Komenda, and M. Štolba, “Cooperative
multi-agent planning: a survey,” ACM Computing Surveys (CSUR),
vol. 50, no. 6, pp. 1–32, 2017.

[7] M. Crosby and R. Petrick, “Temporal multiagent planning with concur-
rent action constraints,” in ICAPS workshop on distributed and multi-

agent planning (DMAP), 2014.

[8] F. de Jonge, N. Roos, and C. Witteveen, “Primary and secondary
diagnosis of multi-agent plan execution,” Journal of Autonomous Agent

and Multiagent Systems, vol. 18, pp. 267–294, 2009.

[9] M. Kalech, “Diagnosis of coordination failures: A matrix-based ap-
proach,” Journal of Autonomous Agents and Multiagent Systems, vol. 24,
no. 1, pp. 69–103, 2012.

[10] R. Micalizio, “Action failure recovery via model-based diagnosis and
conformant planning,” Computational Intelligence, vol. 29, no. 2, pp.
233–280, 2013.

[11] R. Micalizio and P. Torasso, “Cooperative Monitoring to Diagnose
Multiagent Plans,” Journal of Artificial Intelligence Research, vol. 51,
pp. 1–70, 2014.

[12] M. Liu, H. Ma, J. Li, and S. Koenig, “Task and path planning for multi-
agent pickup and delivery,” in Proceedings of the International Joint

Conference on Autonomous Agents and Multiagent Systems (AAMAS),
2019.

[13] O. Salzman and R. Stern, “Research challenges and opportunities in
multi-agent path finding and multi-agent pickup and delivery problems,”
in Proceedings of the 19th International Conference on Autonomous

Agents and MultiAgent Systems, 2020, pp. 1711–1715.
[14] J. Beal, D. Pianini, and M. Viroli, “Aggregate programming for the

Internet of Things,” IEEE Computer, vol. 48, no. 9, pp. 22–30, 2015.
[15] M. Viroli, G. Audrito, J. Beal, F. Damiani, and D. Pianini, “Engineering

resilient collective adaptive systems by self-stabilisation,” ACM Trans-

actions on Modelling and Computer Simulation, vol. 28, no. 2, pp. 16:1–
16:28, 2018.

[16] R. Casadei, D. Pianini, M. Viroli, and A. Natali, “Self-organising coor-
dination regions: A pattern for edge computing,” in COORDINATION,
ser. Lecture Notes in Computer Science, vol. 11533. Springer, 2019,
pp. 182–199.

[17] G. Audrito, “FCPP: an efficient and extensible field calculus frame-
work,” in International Conference on Autonomic Computing and Self-

Organizing Systems (ACSOS). IEEE, 2020, pp. 153–159.
[18] R. Casadei, M. Viroli, G. Audrito, D. Pianini, and F. Damiani, “Ag-

gregate processes in field calculus,” in International Conference on

Coordination Languages and Models. Springer, 2019, pp. 200–217.
[19] T. De Wolf and T. Holvoet, “Emergence versus self-organisation: Dif-

ferent concepts but promising when combined,” in Engineering Self-

Organising Systems, Methodologies and Applications (ESOA workshop,

AAMAS conference), ser. Lecture Notes in Computer Science, S. Brueck-
ner, G. D. M. Serugendo, A. Karageorgos, and R. Nagpal, Eds., vol.
3464. Springer, 2004, pp. 1–15.

[20] H. V. D. Parunak and S. A. Brueckner, “Software engineering for self-
organizing systems,” Knowl. Eng. Rev., vol. 30, no. 4, pp. 419–434,
2015.

[21] J. Branke, M. Mnif, C. Müller-Schloer, H. Prothmann, U. Richter,
F. Rochner, and H. Schmeck, “Organic computing - addressing com-
plexity by controlled self-organization,” in Leveraging Applications of

Formal Methods (ISoLA). IEEE Computer Society, 2006, pp. 185–191.
[22] C. J. Amaral and J. F. Hübner, “From goals to organisations: Automated

organisation generator for MAS,” in Engineering Multi-Agent Systems

(EMAS), ser. Lecture Notes in Computer Science, vol. 12058. Springer,
2019, pp. 25–42.

[23] G. Picard, J. F. Hübner, O. Boissier, and M.-P. Gleizes, “Reorganisa-
tion and self-organisation in multi-agent systems,” in 1st International

Workshop on Organizational Modeling, ORGMOD, 2009, pp. 66–80.
[24] M. Brenner and B. Nebel, “Continual planning and acting in dynamic

multiagent environments,” Autonomous Agents and Multi Agent Systems,
vol. 19, no. 3, pp. 297–331, 2009.

[25] O. Kosak, C. Wanninger, A. Hoffmann, H. Ponsar, and W. Reif,
“Multipotent systems: Combining planning, self-organization, and re-
configuration in modular robot ensembles,” Sensors, vol. 19, no. 1, p. 17,
2019.

[26] “Competition of Distributed and Multiagent Planners (CoDMAP),”
http://agents.fel.cvut.cz/codmap, accessed: 2021-02-12.

[27] M. Fox and D. Long, “PDDL2. 1: An extension to PDDL for expressing
temporal planning domains,” Journal of artificial intelligence research,
vol. 20, pp. 61–124, 2003.

[28] A. Coles, A. Coles, M. Fox, and D. Long, “POPF2: A forward-chaining
partial order planner,” The 2011 International Planning Competition,
vol. 65, 2011.

[29] R. Casadei and M. Viroli, “Programming actor-based collective adaptive
systems,” in Programming with Actors. Springer, 2018, pp. 94–122.

[30] “Build powerful reactive, concurrent, and distributed applications in Java
and Scala (AKKA),” https://akka.io, accessed: 2021-02-12.

[31] M. Viroli, D. Pianini, A. Ricci, and A. Croatti, “Aggregate plans for
multiagent systems,” International Journal of Agent-Oriented Software

Engineering, vol. 5, no. 4, pp. 336–365, 2017.
[32] G. Audrito, R. Casadei, F. Damiani, V. Stolz, and M. Viroli, “Adaptive

distributed monitors of spatial properties for cyber-physical systems,”
Journal of Systems and Software, vol. 175, 2021.

