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Abstract—The chaotic growth of the Internet of Things (IoT)
determined a fragmented landscape with a huge number of
devices, technologies and platforms available on the market,
and consequential issues of interoperability on many system
deployments. The recent W3C Web of Things (WoT) standards
aimed to ease the deployment of heterogeneous systems by intro-
ducing uniform and well-defined software interfaces among the
systems’ components. Although the WoT reference architecture is
generic and agnostic to the target devices, its widespread adoption
depends on the availability of specific tools named Servients,
which enable the run-time operations of WoT applications. In
this paper we aim at contributing to the adoption of the W3C
WoT standards by presenting WoT Micro-Servient (WMS), a
framework for bringing the WoT paradigm to the extreme edge
of an IoT environment. Through WMS, developers can design,
compile and install WoT applications on micro-controllers and
embedded systems with constrained hardware capabilities. We
describe the architecture and functionalities of the tool, and
demonstrate its effectiveness in terms of reduced latency and
energy consumption compared to the state-of-art proxy-based
solution enabled by Node-wot, i.e. the official implementation of
W3C WoT. Finally, we discuss a real-world application related to
smart home, where WMS is used to enable a WoT-based remote
monitoring and control of indoor plants, by enabling seamless
integration between micro-controllers and mobile devices.

Index Terms—Internet of Things, W3C Web of Things, em-
bedded systems, performance evaluation

I. INTRODUCTION

The last decade has been characterized by the exponential
growth of the number of devices and technologies suitable
for the Internet of Things (IoT) [1]. The reduction of costs
and the miniaturization of electric components have led to
the proliferation of micro-controllers able to sense the en-
vironment, to offload the data through wireless connectivity
and/or to process it locally on the edge. Such devices can
be considered as the backbone of IoT applications in several
contexts, like domotics, smart agriculture, structural health
monitoring, just to cite a few [2]. While the increasing number
of such applications often translates in possible improvement
of several aspects of our lives and society, it also highlights
the severe technical issues posed by the lack of common
standards and interfaces. From a different perspective, the
interoperability can be considered a remunerative research
challenge [3]: a recent report from McKinsey quantifies in
40% the additional IoT value that can be unlocked when
achieving full interoperability among heterogeneous IoT sys-
tems [4]. Researchers have been addressing the interoperability

problem by using different approaches [5], from the definition
of middleware or custom frameworks at the network layers [6]
[7], to the proposal of semantic approaches to achieve inter-
operability among heterogeneous devices and platforms at the
data and application layer [8] [9]. Among others, the Web
of Things (WoT) has gained considerable attention thanks to
the popularity and well-known unifying nature of the Web
[10]. In WoT approaches, Things are treated as Web resources
and all the interactions towards and between them are mapped
over the well-known Representational State Transfer (REST)
pattern. However, due to the lack of a reference architecture,
several different WoT proposals have been presented in the last
years [11] [12], hence leading to a new stalemate. A radical
change occurred in 2015, when the W3C Consortium started
its activities with the ambitious goal to define a reference
architecture for the Web Things and to achieve interoperability
across IoT platforms and domains. One of the pillar of the
standards is constituted by the concept of Web Thing [13]
as the abstraction of a physical or a virtual entity whose
metadata and interfaces are described according to a reference
and well-defined structure, called Thing Description. This is
instantiated as a software object by a program called Servient,
which allows Web Things to exist as network resources and
to be used by consumer applications. In addition, the W3C
community gave concreteness to the WoT architecture by
releasing the Node-wot framework [14] that implements a
reference WoT Servient, and allows programmers to build
WoT applications in Javascript. Despite the freshness of the
standard, several WoT deployments have been proposed in
the literature based on the Node-wot framework, from smart
building [15] to automotive industry [16]. At the same time,
we believe that the success of the W3C WoT initiative strongly
depends on its widespread usage, and hence on the availability
of a capillar software ecosystem of supporting tools. Unfor-
tunately, the Node-wot tool, written on top of the NodeJS
framework, cannot be executed on constrained IoT devices
with limited energy lifetime and computational resources. This
represents an important obstacle for the diffusion of the W3C
WoT standard, since it limits the possibility to natively connect
to the WoT a high percentage of edge IoT devices. Despite
the possibility to adopt other architectural patterns (e.g. based
on proxy and System APIs mechanisms [17]), the usage of
native WoT solutions for embedded systems would definitively
improve the performance of the entire WoT deployment, both



in terms of energy consumption and responsiveness.
In this paper we attempt to fill such gap by providing three

main contributions:

• First, we design and implement a novel WoT-compliant
Servient software -called WoT MicroServient (WMS) in
the following- for resource-constrained edge IoT devices.
Through the WMS tool, users can create and deploy a
Web Thing which can be executed on a micro-controller
in a native manner, so that other WoT-compliant applica-
tions can consume and interact with it (e.g., by reading
a property value or invoking an action). We released the
code of WMS as an open-source project, to allow third
party usage by the W3C WoT community.

• Second, we demonstrate the effectiveness of the WMS
tool through an IoT testbed characterized by the presence
of heterogeneous, low-power devices. We compare its
performance against a proxy-based solution enabled by
the Node-wot framework, and quantify the improvements
of the native WoT Servient for embedded systems in
terms of reduced network latency and increased battery
lifetime.

• Third, we illustrate a concrete use case of WMS in
a smart-home scenario, by providing evidence of the
new possibilities offered by the native WoT Servient for
embedded systems, such as the ease of integration with
mobile devices. More precisely, we design a smart pot
system, through which the vital parameters of a plant
can be monitored by a Mobile APP (both for Android
and iOS) as well as asynchronous events related to
environmental change.

The rest of this paper is structured as follows: in Section II
we provide a brief review of the W3C WoT standards and
its components, and we discuss other similar works on this
field. Section III introduces the WMS architecture, while its
implementation is described in Section IV. Section V provides
a performance evaluation of WMS on a small IoT testbed,
while a possible use-case scenario is presented in Section VI.
Conclusions and future works are discussed in Section VII.

II. RELATED WORK

The Internet of Things (IoT) is characterized by tens of
different technologies, protocols, and architectures that create
barriers for the interconnection of heterogeneous systems. The
lack of interoperability represents one of the hardest challenge
in the IoT landscape, and for this reason several attempts
were made in the past year to counter this problem. Among
others, the W3C Web of Things (WoT) represents a promising
and recent approach for tackling the fragmentation in the IoT
landscape [13]: starting from 2015, several universities and
companies joined the W3C working group with the common
goal of defining a set of standards to ease the deployment
of IoT scenarios, regardless of the implementation details.
Indeed, the W3C WoT architecture can be deployed on all
the interesting use-cases for the IoT, like Industry 4.0, smart-
home, smart agriculture, just to name a few.

Fig. 1. The Thing Architecture [13]

The W3C WoT architecture is mainly based on four com-
ponents:

• Web Thing: a Web Thing, most of the times simply
called Thing, represents “an abstraction of a physical or a
virtual entity whose metadata and interfaces are described
by a WoT Thing Description, whereas a virtual entity is
the composition of one or more Things.” [13]. A Thing
can be a device, a logical component of a device, a local
hardware component, or even a logical entity such as a
location (e.g., room or building).

• WoT Thing Description (TD): the Thing Descrip-
tion [18] is the structured data that defines a Web Thing,
like its metadata, together with its Interaction Affordances
and links to other Things. By default, the TD is serial-
ized by using the JSON-LD language and is structured
according to the Property-Action-Event (PAE) paradigm:
a Property represents an internal state variable of the
Thing, each command that can be invoked on the Thing
is mapped to an action, while each notification fired by
the Thing is an event.

• WoT Scripting API: the WoT Scripting API [19] is
an optional building block that describes an application
programming interface (API) for the WoT interface, i.e,
to allow scripts to discover, activate Things and to expose
Things according to the WoT Interactions specified by the
script itself. The APIs strictly adheres to the TD format,
although it is possible to implement more abstract APIs
on the top.

• WoT Binding Templates: the WoT Binding Tem-
plates [20] are a set of metadata that allows a TD to
use communication protocols across different standards.
More in detail, they enable a Consumer - technically an
application client - to interact with Things that implement
different communication strategies. For example, a Thing
could implement a Machine-to-Machine (M2M) commu-
nication through CoAP with TLS security mechanism and
CBOR as Content Type.

By the architectural perspective shown in Figure 1, a Thing
is composed of 5 different layers: (i) the behaviour, (ii) the
interaction affordances, (iii) the data schemas, (iv) the security
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configuration, and finally (v) the protocol bindings. The first
layer defines the behaviour of a Thing and the handlers for
the interaction affordances. These are described in the second
layer, providing a model that specifies how consumers should
interact with the Thing through abstract operations - hence
without any reference to the specific protocol - and following
the PAE (Properties, Actions, Events) paradigm previously
introduced. The third layer explicitly details the Information
Model, i.e., the payload structure of data exchanged between
Thing and consumer. The fourth layer represents the access
control mechanism to the Thing’s affordances and, together
with the last layer, it is in charge of mapping each interac-
tion affordance to a concrete network protocol to be used,
like HTTPS or CoAPS. All these architectural blocks are
implemented in a software object called Servient. The Servient
plays a crucial role in the WoT, since it represents the run-
time instantiation of the Thing, i.e. it allows turning a Thing
Description into a software object. As the word suggests, the
Servient can act both as client and server. In the first case, a
Servient is a consumer that hence interacts with an Exposed
Thing, i.e., a Thing that has been instantiated by someone else
and that is ready to be queried. On the contrary, in the second
case the Servient is responsible to expose the Thing, hence
enabling the possibility for a consumer to interact with that
Thing. Node-wot [14] is the most used implementation for
the Servient and it maintained directly by the W3C working
group. It strictly adheres to the W3C standards and it is also
considered the reference WoT Scripting APIs. The framework
is written in Typescript and runs within NodeJS, despite there
exists also a version for browsers. As a consequence of the
increase in popularity of the W3C WoT initiative, additional
Servient implementations for different programming languages
have been proposed. In particular, we cite the WotPy [21] tool,
an experimental implementation of a W3C WoT Runtime and
the W3C WoT Scripting API in Python. In particular, the goal
of the authors is to implement the W3C WoT runtime with
complete support for all interaction verbs in all application
layer protocols referenced by the specifications. A Java-based
implementation of the WoT Servient is provided by the Smart
Networks for Urban Participation (SANE) project [22]. The

framework is intended to be used within its own stack or
through a CLI interface. Another interesting initiative is rep-
resented by the work presented in [23], where authors propose
a complete framework for generating custom WoT Servients
starting from the Thing Descriptions. Nevertheless, despite the
final code is written in C++, there is no explicit intention to
target micro-controllers devices like in our study. Besides the
Servient implementations, and as a consequence of the fact
that W3C WoT is gaining attention in the research community,
several other works related to the W3C WoT have been
presented in the last few years. These studies can be classified
into two broad categories: studies investigating the pro and
cons of the W3C WoT standard (providing as well possible
extensions/improvements), and studies describing new services
enabled by the W3C WoT. As example of the first category,
we cite the study in [24], where authors focused on the role
models and lifecycles in IoT and its impact on the Thing
Description (TD), since the latter is intended to be a static
object while Things can change during their lifetime with
respect to their physical and/or software components and
specifications. Another example is represented by the work
proposed in [25], where authors provide an accurate analysis
about the security risks related to the TD modeling. In the
second category, researches take advantage of the W3C WoT
to propose new kind of interoperable systems or applications
built upon Web Things. This is the case of [15], where authors
propose a Building Energy Management System (BEMS) to
enable the universal integration of both private and public
systems through the W3C WoT, or the case of [16] where
authors present the Vehicle Signal ontology (VSSo) - based
on SOSA/SSN Observations and Actuation - to be used in
conjunction with the W3C WoT for semantically describing a
smart vehicle.

III. WMS SOFTWARE ARCHITECTURE

The WMS is a standalone framework that supports the
deployment of W3C Web Things on edge IoT devices, i.e it al-
lows a Thing TD to be natively exposed by a micro-controller
device. The latter must be provided with an IP-based Internet
connection (e.g. over Ethernet or Wi-Fi). As a result, other
W3C WoT applications can consume the Thing and interacts



with the edge device through the standard WoT interface. We
believe that this solution provides two main advantages. First,
it brings the interoperability layer at the edge layer, hence
it can reduce the deployment complexity on scenarios char-
acterized by the presence of heterogeneous sensing devices
using different protocols and software interfaces: in this case,
a single WoT Mashup application is able to consume the IoT
edge devices hiding the heterogeneity of network strategies
through the WoT binding templates mechanism introduced in
Section II. Second, our solution removes the need of ad-hoc
gateways/bridges to integrate the IoT edge devices into the
W3C WoT ecosystem; this again reduces the programming
effort and it can also improve the system performance as better
investigated in Section V. At the same time, while the WMS
allows to expose WoT-compliant Things, hence serving as a
WoT Servient in an effective manner, the tool itself cannot
be precisely mapped to the Servient definition provided in
Section II. Indeed, due to the limited hardware capabilities
of the micro-controllers, WMS supports only a limited subset
of the functionalities of a reference WoT Servient (e.g. the one
available within the Node-wot tool [14]). At the same time, it
acts also as a prototypal IDE framework to design, build and
install Thing applications on embedded systems.
More in details, the WMS tool enables the user to implement
the following operative flow:

1) Device configuration. The user is requested to insert all
the extra-Thing information through the WMS GUI, like
for instance the credentials for the Internet connection
(e.g. Wi-Fi credentials). Similarly, he can add the extra
pieces of code required by the specific embedded system
in use, like for instance instantiating specific global
variables needed by the onboard sensors.

2) Protocol configuration. The user can choose the protocol
bindings among the ones available by the WMS (e.g.
HTTP or Web sockets), as better explained in Sec-
tion IV. The implementation of the protocol bindings
is automatically added to the user code by the WMS
tool.

3) TD configuration. The user can create the Thing De-
scription thanks to the forms made available by the
WMS GUI; in addition, he must provide the code im-
plementing the interaction affordances handlers, which
are application-dependent and hence cannot be generated
automatically by our tool (the same also occurs with the
Node-wot framework).

4) Compilation and upload. Finally, the user can select
the target IoT board among those currenly supported
by WMS and the right serial port; in addition, through
the GUI, he can start the compilation and upload phase,
which installs the WoT application (Servient plus Thing
behaviour) on the physical device.

Based on the above description, we can highlight the pe-
culiarities of the WMS project with respect to state-of-art
WoT Servients like those described in [14] [21]. Those latter
have been designed by leveraging on the full software stack

available in a modern operating system. On the contrary,
the WMS has been designed to adhere with the specifica-
tions of the WoT standard while coping with the limited
hardware/software resources of embedded systems and micro-
controllers. Indeed, WMS supports multiple different protocol
bindings to expose a Thing in order to be consumed by
external WoT-compliant applications; as a result, a Thing
can be provided with multiple endpoints, which is a key
requirement of the W3C WoT. Nevertheless, because of the
limited memory of most of embedded systems, each Servient
can host exactly one single Thing Application. We also remark
that the current implementation of WMS supports only the
expose functionality, but not the consume one, i.e. it does not
allow the embedded Thing to consume external WoT services;
we identified such feature as a future work, although we
believe that it does not limit the potential of the current tool
since -in most IoT devices- the micro-controllers expose basic
functionalities such as transmit sensor measurements (sensors)
or perform simple actions (actuators).
The WMS architecture is composed of three layers as depicted
in Figure 2. The top layer is the WMS GUI, i.e., the software
component easing the creation of WoT applications in a
intuitive and guided manner. More in detail, through the
GUI, an user can easily configure all the options required
by the WoT application. The options can be divided into
two macro-categories: the auxiliary options and the structural
options. The first options include the network settings needed
to connect the board to the Internet and the extra pieces
of code required by the final sketch to properly work on
the target micro-controller. The structural options define the
binding templates to be used by the Thing and the definition
of the properties, actions, and events, hence generating the
TD. For this task, the GUI also takes advantage of predefined
Thing Description template made available by the WMS
tool; such template can be considered the skeleton of every
W3C-complaint Thing since it contains the required metadata
that every TD must contain according to the W3C WoT
standard [18].
The outputs of the GUI layer (options and the self-generated
TD) are passed as input to the WMS Builder layer. This is in
charge of merging the TD-code with extra-code that imple-
ments the Servient functionalities. The added code includes
the Board Templates, that are templates designed on purpose
to address the specific board’s capabilities, for instance for
automatically importing the libraries needed by the onboard
sensors or calling the function needed for the connection to
the access point and the Binding Templates libraries, which
implement the specific network strategies selected by the user
at the previous layer.
Finally, once the final sketch of the WoT application has been
assembled by the WMS, it is compiled and transferred to the
physical device through the facitilities of the Flash Engine
layer. This latter invokes CLI utilities that are specific of
the IoT boards (e.g. Espressif ESP32) selected by the user
through the GUI. At present, WMS supports selected Espressif
boards (e.g. ESP32, ESP8266); we plan to extend the range of



Fig. 3. The WMS GUI

supported boards in order to increase the tool popularity and
usage from the W3C WoT community.

IV. WMS IMPLEMENTATION

We briefly discuss here the main technologies and solutions
used for the implementation of the three layers of the WMS
architecture presented in Section III. The code is released as
an open-source project and it is available on Github1. The
GUI is written in Javascript using the Electron framework2,
hence adopting HTML and CSS for the rendering of the
application components, and it runs over NodeJs V.10.21.x.
Furthermore, the json-editor3 library was used for building
the Thing Description according to the form compiled by the
user in the application. As shown in the screenshot of Figure 3,
the GUI is divided into three main panels, respectively one for
the insertion of the auxiliary options, one for the insertion of
the structural options - data and options required to build the
Thing Description - and a terminal for the interaction with the
flash engine.
The WMS builder is written in Python v.3.6.x and uses the
arduino-cli tool4 for compiling and uploading the sketch on
the IoT device. The board templates are written in Jinja, a
templating language widely used by Web programmers.
Finally, the binding templates libraries used have been created
from scratch in order to handle the most popular IoT proto-
cols. We defined a generic interface for handling the send-
ing/receiving operations required by the Thing. This means
that new protocol bindings can be easily added by simply
writing the code of each method. Furthermore, in this way,
the final sketch code of the Thing application can transparently
call different protocol bindings without requiring any change
to the application logic. In particular, we designed three
different libraries that take advantage of existing libraries for

1https://github.com/UniBO-PRISMLab/micro-wot-servient
2https://www.electronjs.org/
3https://github.com/json-editor/json-editor
4https://github.com/arduino/arduino-cli

microcontrollers, one for each protocol handled by WMS,
i.e.: (i) embeddedWoT HTTP LongPoll implements HTTP -
with the auxiliary addition of longpoll as subprotocol for the
Web Thing events - (ii) embeddedWoT WebSocket for the web
sockets and (iii) embeddedWoT CoAP for the support towards
the CoAP protocol.

V. PERFORMANCE EVALUATION

In this Section, we evaluate the performance of our solution
against the usage of the regular Node-wot Servient in a
Wireless Sensor Network (WSN) scenario. More in detail,
we deployed a network of 10 IoT devices - respectively 5
NodeMCU and 5 ESP32 boards- able to collect environmental
data (e.g. temperature/humidity) and to send it to a collector
node. In the following, we denoted our solution simply as MS
(Micro Servient) rather than WMS since we are not referring
to the whole framework (e.g. including the GUI), but only on
the code generated by WMS. In Figure 4(a) and Figure 4(b)
we depict the two architectures of the evaluated scenarios. In
the first scenario shown in Figure 4(a), each device is mapped
to a Web Thing that is then exposed by the embedded MS;
the collector node is a separate server, connected to the same
WiFi network and hosting a simple Mashup application that
queries each device in order to retrieve data and to compute the
network statistics. All the Web Things expose a single Property
that can be read, and whose response value depends on the URI
variable passed to the query. The response is a buffer of bytes
whose length is given by the aforementioned URI variable.
Through this setting, the Mashup application can change on
demand the payload size expected as response by each Thing.
In the second scenario shown in Figure 4(b), the Web Things
are hosted by a Raspberry Pi 3B+ node, that acts as a proxy
component and that runs a Node-wot Servient; differently from
the previous scenario, each device hosts a simple Web Server
with a single endpoint. However, as in the previous case, the
endpoint is used to retrieve a response value whose dimension
depends on the size parameter in the GET request. Once the
Mashup application, which runs in a separate server, issues
a Read Property operation on a specific Thing, the proxy
internally invokes a GET operation with the correct parameters
on the right device. This implies that in the second scenario
each data request involves two communication hops: from the
Mashup application to the proxy with an HTTP client-server
RESTful connection in order to be compliant with the W3C
WoT standard, and from the proxy to the device using the
same RESTful connection. This latter choice does not impact
significantly the performance with respect to a simpler UDP
direct connection as we demonstrated in [17]. We considered
three different analysis:

1) in order to prove that the MS behaviour does not depend
on the specific hardware in use, we evaluated the average
Round Trip Time (RTT) experienced by each sensor. The
Mashup application issues a total of 1000 requests for
each device, while the payload size (PS) of the response
message is set to 10B and 10KB, respectively.
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Fig. 6. The average throughput for varying PS, with delay equal to d = 0 and d = 100ms between two consecutive requests are shown in Figure 6(a) and
Figure 6(b). The energy consumption of the two scenarios for varying transmission frequencies is shown in Figure 6(c).

2) In order to show the performance gain of MS in terms
of delay and throughput under varying workloads, we
compute the average RTT and throughput metrics as
a function of the payload size (PS) and of the delay
between consecutive requests (d).

3) In order to show the advantage in terms of energy

saving of the entire system deployment, we compare
the energy consumption of two scenarios when varying
the frequency of requests generated by the Mashup
application.

The results of the first analysis are shown in Figure 4(c) and
Figure 5(a). For the Node-wot scenario, we plot separately the



RTT on each communication hop (denoted by different colors
in each bar). From Figure 4(c) we can notice that the average
RTT is approximately equal to 18ms for the MS, while it is
two times larger for Node-wot. Same considerations apply also
to Figure 5(a), where the average RTT is around 100ms when
using MS, and more than 230ms when introducing the proxy.
The delay reduction can be explained by the fact that in MS
there is only one communication hop between data producers
and data consumer. Also, in both Figures we depicted the RTT
value for each IoT device; despite the hardware hetorogeneity,
we can notice that the MS performance are not affected by the
target device.

The results of the second analysis are depicted in Figure 5(b)
and Figure 5(c); more specifically, we report the average RTT
metric as a function of PS on the x-axis, for two different
configurations of the delay parameter, i.e. d = 0ms (sender is
issuing a new request as soon as receiving the reply from the
previous one) in Figure 5(b) and d = 100ms in Figure 5(c),
respectively. Clearly, the average RTT metric increases with
the PS parameter, and - as expected - it is considerably lower
in MS due to the shortest route between each IoT device
and the connector. Same considerations can be derived from
Figure 6(a) (d=0) and Figure 6(b) (d = 100ms) where we
depict the network throughput over PS.

The previous analysis demonstrates that the increased com-
plexity on edge devices does not impact the system per-
formance. We further elaborate on this issue by analyzing
the overall energy consumption of the two scenarios, again
for varying workloads reflected by the frequency of requests
issued by the Mashup application. The results are depicted in
Figure 6(c): on the y-axis we report the total energy depletion
of the MS, which is the summation of the energy depletion
of the IoT devices, and the same metric for the Node-wot
scenario, which includes also the energy overhead introduced
by the proxy device. Although the energy consumption of
the IoT device may be slightly higher in MS due to the
increased software complexity on the edge node, the overall
system consumption is considerably reduced in MS due to
the removal of the proxy node. Due to the limited range
communication between the IoT device and the proxy, only
few devices may be connected to each proxy and hence we
expect such performance gain to be even more effective on
large-scale deployments.

VI. USE-CASE

In this Section we describe a possible application of the
WMS tool for a smart-home use case, and specifically on the
design and implementation of a smart pot. The application
consists of an ESP32 micro-controller equipped with a soil
hygrometer sensor which senses the soil humidity and with a
DHT22 sensor which senses the air temperature and humidity.
The micro-controller is connected to the sensors and hence in
close proximity to the pot of the plant that we want to monitor.
The sensor data is read by a mobile application, so that users
can continuously monitor the environmental conditions of the
plant, and act accordingly (e.g. supply water). The system has

Interaction Affordance Name Type
Property humidity number
Property hygrometer number
Property temperature number

Event cold-air number

TABLE I
THE INTERACTION AFFORDANCES OF THE SMARTPOT-WOT WEB THING

been deployed through the W3C WoT, specifically we created
a Web Thing for the SmartPot-WoT Thing that models the
three sensors, and a mobile application that consumes the
previous Web Thing and is in charge of getting the data from
the sensors and returning them to the end-user. Figure 7 depicts
the use-case, with the mobile application on the left and the
IoT sensors connected to the micro-controller on the right.
The SmartPot-WoT Web Thing is deployed directly on the
micro-controller using the proposed WMS framework. As
described in Section III, we first defined the Interaction
Affordances for the SmartPot-WoT Thing. Specifically for the
use-case, we defined three properties, corresponding to the
three deployed sensors and one event that activates each time
the air temperature is below a certain value (here, we set the
threshold to 10 degree Celsius). Through the WMS GUI, we
set the properties and the event, and we wrote the code for the
Interaction Affordance handlers - that are in charge of dealing
with the local hardware. To this purpose, we used the ESP32
libraries to communicate with the DHT22 and the hygrometer
sensors. The values of these sensors are then bound to the
three Thing properties that are listed in Table VI: humidity,
hygrometer, and temperature. The event cold-air activates an
on-board LED and triggers an alert message to the mobile
application. The final TD for the SmartPot-WoT has been
automatically generated by the WMS framework and loaded
directly on the micro-controller device.
The mobile application has been implemented as an hybrid
application, hence leveraging on Web technologies and in
particular on the Ionic framework5 and the Node-wot browser
library. The goal of the mobile application is to directly
communicate with the SmartPot-WoT Web Thing in order
to monitor all its properties and to receive the events fired
by the smart pot. The mobile application consumes the TD
exposed by the SmartPot-WoT, then it periodically retrieves
the properties’ values via the HTTP protocol, that is chosen
among the available Protocol Bindings supported by the WMS.
Figure 7 shows a screenshot of the mobile application with the
current sensor values.

VII. CONCLUSIONS

In this paper we described the design and the implemen-
tation of WoT MicroServient (WMS), a framework for the
implementation of W3C Web Things on micro-controllers and
devices characterized by constrained computational and energy
resources. More in detail, WMS allows users to easily define
the behaviour of the Things and to generate the code that

5https://ionicframework.com/



Fig. 7. The plant care scenario composed by (on the right side) the ESP32
micro-controller that senses the environmental parameters and by (on the left
side) the Android application that displays the sensors’ value

can be then uploaded on the physical device; as a result, other
WoT applications can natively consume the Thing and interact
with the embedded device. WMS explicitly responds to the
need of extending the list of devices that can natively support
the emerging W3C WoT standards, hence without relying
on additional hardware and software components that could
degrade the system performance. To this purpose, we demon-
strated through a small test-bed that the network performance
(RTT, throughput) can significantly improve through the Micro
Servient (MS) when compared to state-of-art solution based on
the official Node-wot framework implementation which needs
an extra hop of communication. Finally, we demonstrated the
practical usefulness of the tool on a smart home use-case:
specifically, we showed how to monitor vital information of
a plant through the use of a Web Thing running on a micro-
controller that is directly monitored through a Mobile APP
available both for Android and iOS. Future works include
the extension of the WMS tool in order to support additional
micro-controller devices, the design and the implementation
of the consume operation through which the micro-controller
will be able to use data produced by other Web Things, further
evaluation on real-world IoT scenarios characterized by the
presence of heterogeneous sensor devices, such as Structural
Health Monitoring applications and the optimization of the
code automatically generated by the WMS.
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