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Abstract: Recent evidence regarding microbiota is modifying the cornerstones on pathogenesis and
the approaches to several gastrointestinal diseases, including biliary diseases. The burden of biliary
diseases, indeed, is progressively increasing, considering that gallstone disease affects up to 20%
of the European population. At the same time, neoplasms of the biliary system have an increasing
incidence and poor prognosis. Framing the specific state of biliary eubiosis or dysbiosis is made
difficult by the use of heterogeneous techniques and the sometimes unwarranted invasive sampling
in healthy subjects. The influence of the microbial balance on the health status of the biliary tract could
also account for some of the complications surrounding the post-liver-transplant phase. The aim of
this extensive narrative review is to summarize the current evidence on this topic, to highlight gaps
in the available evidence in order to guide further clinical research in these settings, and, eventually,
to provide new tools to treat biliary lithiasis, biliopancreatic cancers, and even cholestatic disease.

Keywords: biliary tract microbiome; cholangiocarcinoma; biliary cancer; cholangitis; oncobiome

1. Introduction: The Microbiome in Healthy Patients

The human microbiota is one of the densest, and quickly developing ecosystems [1].
The term “microbiota” usually defines the assemblage of living microorganisms present
in certain environment [2]. However, as phages, viruses, plasmids, prions, viroids, and
free DNA are usually not considered as living microorganisms [3], they do not belong
to the microbiota. The term microbiome, as it was originally postulated by Whipps and
colleagues [4], includes not only the community of the microorganisms but also their
“theatre of activity” [5].

In healthy conditions, the microbiome bacteria interact with the epithelial barrier and
with the immune system influencing their feedback, but they are also able to produce
substances that influence the local metabolism, thus maintaining homeostasis [6,7]. For
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example, the normal gut microbiome has a specific function in host nutrient metabolism,
xenobiotic and drug metabolism, maintenance of the structural integrity of the bowel
mucosal barrier, immunomodulation, and defense from pathogens [8]. Therefore, an
imbalance of the gut microbiome, due to antibiotics or to bacterial translocation, can
promote the development of diseases [7].

The gastrointestinal system is one of the largest storing places of microorganisms
in the human body and it holds both commensal and pathogenic microbial species [5,9].
To date, little is known about the composition of the biliary tract microbiota and its in-
fluence on the development of biliary diseases. In fact, bile represents a biological fluid
produced in the liver, stored in the gallbladder (interdigestive), and successively released
into the duodenum after food ingestion [10]. While the microbial species of different
parts of gastrointestinal system have been extensively investigated in health and disease,
the identification of bile microbiota has not been addressed [10]. Furthermore, the few
available data on the biliary microbiota are limited to experimental animal and human
pathological models [11].

In their experimental study, Jiménez and co-workers analyzed the bile, gallbladder mu-
cus, and mucosal microbiome of healthy pigs using both culture-based and metagenomics
techniques [10]. All the cultured samples harvested bacterial species and the number of
identified species ranged from 3 to 20 per sample. All the bacteria isolated from cultures
were broadly balanced among the Firmicutes (34%), Actinobacteria (32%) and Proteobacte-
ria (32%) phyla. Bacteroidetes accounted for only a smaller part (2% of the isolates), thus
highlighting an inadequate adaptation to the biliary environment. On the other hand, at
the genus level, Staphylococcus, Streptococcus, Kocuria, Rothia, Acinetobacter, and Psychrobacter
were isolated from different samples, suggesting their possible role as members of the core
biliary microbiota of pigs [10]. Interestingly, the microbiological analysis of gallbladder mu-
cus and mucosa broadened the spectrum of bacteria present in the bile that could possibly
colonize these niches [10].

As aforementioned, research on the composition of the “healthy” human biliary mi-
crobiota is challenging. Indeed, bile sampling techniques, such as endoscopic retrograde
cholangiopancreatography (ERCP), percutaneous biliary drainage, and surgical sampling,
are invasive procedures that are typically performed when a biliary tract disease is diag-
nosed or suspected.

In the study performed by Molinero et al., the biliary microbiota of 27 liver donors
(13 without and 14 with cholelithiasis) were analyzed [12]. The 16S ribosomal RNA se-
quencing showed a prevalence of Actinobacteria, Firmicutes and Bacteroidetes in both the
bile samples and gallbladder tissues of subjects without gallstones [11,12]. Furthermore, a
substantial increase in the presence of the Propionibacteriaceae family and Sphingomonas
genus was also reported, when compared with individuals with gallstones [12]. This study
provided evidence regarding the human biliary microbiota in healthy subjects. However,
the study had limitations [2]. In fact, since liver donors undergo specific treatments and
procedures, such as antibiotics, in the hospital’s intensive care units, their bile samples can
hardly be considered “normal biliary microbiome”. In any case, these results give access to
new perspectives in the identification of bacterial functions in a microbial ecosystem that
was previously unexplored. Despite these interesting results, studies with a larger sample
size are needed to confirm the findings. Indeed, the possible identification of a stable
“biliary tract resident microbial community” may challenge the traditional knowledge on
the development of biliary infectious diseases [11]. It may be tempting to hypothesize that
a local dysbiotic process, rather than an ascending infection from the duodenum, better
explains the occurrence of several biliary diseases, in a “microbiota-centric” view [11].

Recent insights into the biliary microbiota have improved the understanding of the
pathogenesis of biliary diseases, such as gallstones, biliopancreatic cancer, and autoimmune
cholangiopathies. The aim of this narrative review is to summarize the available evidence
about the role of the biliary microbiome in the onset of gallstone disease, biliary cancer,
autoimmune cholestatic diseases and in some settings, such as in liver transplantation (LT).
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2. The Microbiome and Gallstone Disease

Biliary stones are a leading cause of hospitalization in gastroenterological departments
worldwide; in Europe the prevalence of gallstone disease is increasing more and more,
ranging between 5.9% and 21.9% in large surveys [13]. The European Association for
the Study of the Liver (EASL) reports that in Europe about 20% of inhabitants suffers
of lithiasis [14].

The possible role of bacterial microorganisms in gallstone formation has gained grow-
ing interest over the last decade. Its pathogenesis, with variations between countries and
regions, implies the synergic effect of genetic and environmental factors, such as ethnicity,
gender, age, lithogenic genes, hypersecretion of cholesterol or bilirubin by the gallbladder
or liver, bile stasis, diet, metabolism, intestinal factors, the use of drugs, lifestyle, and co-
morbidities [15–17]. Gutiérrez-Díaz and coworkers [18] confirmed the association between
diet, biliary microbiota and gallstone disease, demonstrating that in patients with lithiasis,
a modification in the abundance of bile microorganisms occurs. Bacteroidaceae and Bac-
teroides appear to be negatively correlated with dairy product intake, and Bacteroidaceae,
Chitinophagaceae, Propionibacteraceae, Bacteroides, and Escherichia-Shigella are positively
correlated with several kinds of fiber, phenolics, and fatty acids. Changes of the dynamic
equilibrium among all these factors may influence the risk of lithiasis occurrence.

Several studies have suggested that a resident biliary tract microbiome exists with a
high level of similarity with the duodenal one. The intestinal bacteria (Clostridium, Bifidobac-
terium, Peptostreptococcus, Bacteroides, Eubacterium, and Escherichia coli) involved in bile acid
metabolism can interfere with enterohepatic circulation, leading to lithogenesis [19,20], in
particular Firmicutes, Proteobacteria, and Bacterioidetes [21]. Moreover, pathogenic bacte-
ria of the oral cavity can play a promoter role for gallstone onset, influencing the motility
of the gallbladder and the expression of mucin genes (MUC1, MUC3, and MUC4) [22,23].

In 1966, Maki et al. highlighted the connection between bacterial infection and the
formation of pigmented gallstones for the first time [24], demonstrating that the inoculation
of bacterial β-glucuronidase in the bile could hydrolyze the bilirubin glucuronide into
bilirubin and glucuronic acid, which, precipitating with calcium, forms calcium bilirubinate.
Indeed, β-glucuronidase-expressing bacteria have been frequently identified in the samples
of patients with pigmented gallstones [25,26]. Other bacterial enzymes, such as phos-
pholipases and bile acid hydrolases have later been shown to be implicated with similar
mechanisms in the formation of pigmented gallstones [27,28], reported as containing bacte-
rial sequences of E. coli and Pseudomonas sp. [29]. The following studies have confirmed
Maki’s hypothesis, making this theory widely accepted. Even if the formation of cholesterol
gallstones has traditionally been considered to be affected by metabolic imbalances and
genetic variances rather than a bacterial damaging effect [15], over the years a growing
literature emerged, demonstrating that alterations of the gut microbiota also contribute to
the formation of cholesterol gallstones [22,30,31], especially after the advent of innovative
genomic techniques. Pseudomonas aeruginosa and Enterococcus faecalis have been reported to
shorten the cholesterol crystallization time in the bile, suggesting that these species may be
crucial in the formation of cholesterol gallstones [32].

The gut microbiota plays an active role in bile acid metabolism, regulating the size
and composition of bile acids [12,33]. Changes in the bile acid pool represent a leading
etiopathogenetic factor, as bile is composed mainly of bile acids (nearly 50%); cholesterol
and fatty acids account for nearly 20%, while phospholipids and bilirubin account for a
minority of bile [34,35].

The biliary and gut microbiota are involved in almost all passages of bile formation,
such as the metabolism of lipid and cholesterol, biotransformation, and enterohepatic
circulation. Indeed, a perturbation of the gut microbiota may influence bile acid homeostasis
in any step of the host metabolic pathways, in particular regarding glucose and cholesterol
metabolism, which is crucial for gallstone genesis [36]. We report the main microorganisms
involved in this setting in the gut and biliary microbiota in Table 1.
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Table 1. Gut and biliary microbiota in gallstone disease.

Potential Pathogenesis Mechanism Phylum Family Genus

Gut Microbiota In Gallstone Disease

Genetic/environmental factors, drugs,
lifestyle, comorbidities

Cholesterol/bilirubin hypersecretion

Intestinal, metabolic or dietary factors

Bacterial damaging effect

Perturbation of gut microbiota:

- Alteration of bile acids metabolism and host
metabolic pathways

- Release of proinflammatory and vasoactive
substances

- Role in energy intake, intestinal permeability,
promotion of chronic pro-inflammatory states

↑ Firmicutes

Lactobacillaceae

Clostridiaceae

Ruminococcaceae

Acidaminococcaceae

Lachnospiraceae

Clostridium
Dorea

Ruminococcus
Oscillospira

Veillonella

Blautia
Anaerostipes

↑ Actinobacteria Bifidobacteriaceae Bifidobacterium

↑ Bacteroidetes Bacteroideceae Prevotella
Bacteroides

↑ Fusobacteria Fusobacteriaceae Fusobacterium

↑ Proteobacteria

↓ Firmicutes
Clostridiaceae
Eubacteriaceae
Lachnospiraceae

Faecalibacterium
Eubacterium
Lachnospira
Roseburia

↓ Proteobacteria Desulfovibrionaceae Desulfovibrio

↓ Actinobacteria Bifidobacteriaceae Bifidobacterium

↓ Bacteroidetes

Bacteroideceae

Rikenellaceae
Paludibacteraceae
Barnesiellaceae
Muribaculaceae

Prevotella
Bacteroides
Alistipes
Paludibacter
Barnesiella
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Table 1. Cont.

Potential Pathogenesis Mechanism Phylum Family Genus

Biliary Microbiota In
Gallstone Disease

Genetic/environmental factors, drugs,
lifestyle, comorbidities

Cholesterol/bilirubin hypersecretion

Intestinal, metabolic or dietary factors

Bacterial damaging effect

Perturbation of gut microbiota:

- Alteration of bile acids metabolism and host
metabolic pathways

- Release of proinflammatory and vasoactive
substances

- Role in energy intake, intestinal permeability,
promotion of chronic pro-inflammatory states

↑ Proteobacteria Enterobacteriaceae

↑ Firmicutes Enterococcaceae Enterococcus

↓ Bacteroidetes

↓ Synergistetes Synergistaceae Pyramidobacter
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While the biliary system in healthy patients was once considered to be sterile [37], it has
been demonstrated that the gallbladder physiologically has a composite microbiota, with
different possible routes leading to bacterial colonization of the biliary system, including
duodenal translocation trough the papilla or migration through blood vessels [38,39].

In 1995, Swidsinski et al. [40] analyzed the cholesterol gallstones from patients with
negative bile culture using polymerase chain reaction (PCR)-based amplification and
16S ribosomal RNA sequencing, showing that bacterial DNA was present in 94% of
mixed gallstones (containing cholesterol for 70–90%). Pure cholesterol gallstones (>90%
of content) showed, instead, no bacterial DNA. Three groups of bacteria were identified:
Propionibacteria-related, Clostridia-related, and Enterobacteria-related accounting for 45%,
35%, and 25% of the total, respectively.

While the high concentration of a single bacterial family is compatible with an infection,
the concurrent presence of multiple bacterial species suggests a colonization. Several studies
compared the biliary microbiota of patients with gallstones to those of other sites of the
gastrointestinal tract with findings that all bacterial genera found in the biliary system
were also retrieved in at least one other analyzed tract, thus supporting the case for bile
colonization, which may be pivotal in lithiasis pathogenesis [41,42].

With the support of PCR, the presence of bacteria in the bile samples of patients affected
by biliary tract disorders was discovered, with variable composition of Capnocytophaga spp.,
Lactococcus spp., Bacillus spp., Staphylococcus haemolyticus, Enterobacter or Citrobacter spp.,
Morganella spp., Salmonella spp., and Helicobacter pylori (HP) [42,43].

HP-produced urease represents a crucial link for gallstones through calcium precipitation [44].
One mechanism of action for HP is the release of proinflammatory and vasoactive sub-
stances, such as interleukins IL-1 and IL-6 and tumor necrosis factor (TNF)-alpha, which
may cause oxidative stress and free radical release, that are related to gallbladder inflam-
matory disorders and to the cholelithogenesis [45,46].

The microbiota might also contribute indirectly to gallstone pathogenesis, affecting en-
ergy intake, bowel permeability, and supporting a chronic pro-inflammatory condition [47].
Several in depth studies investigated the metagenomic profiles of the different biliary bac-
terial communities. In patients with pigmented gallstones, genes extracted from Klebsiella
and Enterococcus were found, which are thought to be involved in biofilm arrangement.
Regarding cholesterol stones, bile resistance genes were selected from Escherichia, Shigella,
Serratia, Bacillus, and Klebsiella [48].

Thanks to cultivation or PCR, several bacteria, such as Escherichia coli, Klebsiella pneumo-
niae, Enterococcus faecium, Enterobacter cloacae, and Pseudomonas aeruginosa, have been identi-
fied in bile or gallstone samples [49]. New methods, such as next-generation sequencing
(NGS), helped us to significantly increase our knowledge regarding the microbial flora [50].

Wu and coworkers analyzed, in patients with cholesterol gallstone, gallbladder bile,
gallstones, and feces by performing bacterial 16S rRNA amplicon sequencing [21]; they
detected several gut bacterial operational taxonomic units (OTUs) in the biliary system and
reported dysbiosis in the fecal samples from the patients with gallstones.

In a Chinese study, whole-metagenome shotgun (WMS) and 16S sequencing were
used to investigate the bile samples of 15 patients with choledocholithiasis. Bile was
collected from the common bile duct, and communities in the bile were compared to
matched gut microbiota. Thirteen novel biliary bacterial species were identified in the
human biliary tract that were never documented previously (such as P. piscolens and
Cellulosimicrobium cellulans), revealing heterogeneity among individuals and a prevalence
of microorganisms from the oral cavity/respiratory system instead of the bowel. To note,
in this study there was no correlation between previous endoscopic sphincterotomy and
the biliary microbial composition, in contrast with the hypothesis that sphincterotomy
increases the risk of biliary tract infection [51].

In the previously cited study of Peng et al., they used culture-dependent and culture-
independent methods to study, in 22 patients affected by cholesterol gallstone, the com-
position and function of bacterial clusters in cholesterol gallstones and bile [42]. It was
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reported that Pseudomonas spp. were the dominant inhabitants in both groups. Moreover,
its major role in the formation of cholesterol stones is supported by showing that 30% of
the culturable strains were able to secrete b-glucuronidase and phospholipase A2, and that
the Pseudomonas aeruginosa strains had the highest enzyme activity.

Others have reported that the prevalence of Pseudomonas, Bacillus, Klebsiella, Clostrid-
ium, Staphylococcus, and Enterobacter is more relevant in cholesterol gallstones than in the
bile, supporting the hypothesis that a dysfunction of the bowel barrier with subsequent
bacterial translocation into the biliary tract may act as a critical point in lithogenesis [52].
Of the previously reported gena, Escherichia, Brucella, Citrobacter, Shinella, Aurantimonas,
Lachnospiraceae, and Lactobacillus were founded in gallstones. Specifically, Citrobacter, Lac-
tobacillus, and Aurantimonas are, indeed, common inhabitants of the gut. The presence
of intestinal bacteria in cholesterol gallstones suggests that, after migration towards the
gallbladder, the microorganisms might function as a trigger for the immune system and
stimulate gallstone formation. Based on this study, four genera were potentially involved
in cholesterol crystallization: Pseudomonas, Enterococcus, Klebsiella, and Enterobacter.

Furthermore, a recent study detected a higher prevalence of Bacteroidaceae, Prevotel-
laceae, Porphyromonadaceae, and Veillonellaceae in patients with gallstone disease [12]
compared to individuals without diagnosed hepatobiliary pathology.

A different rate of cultured bacteria in the bile of patients with brown pigment lithiasis
(between 53% and 100%), cholesterol gallstones (between 9% to 34%), and black pigment
stones (from 9% to 19.6%) has been consistently reported [53–55]. A very recent study
aimed to investigate the possible relation between the most abundant bile acids and the
microbiota in gallstone disease [56]. A significant direct correlation between taurocholic acid
(TCA) and taurochenodeoxycholicv acid (TCDCA) and the bile microbiota alpha-diversity
was reported. In more detail, the presence of TCA was associated with species, such as
Jeotgalicoccus psychrophilus, Prevotella intermedia, and Haemophilus parainfluenzae in the bile,
while TCDCA concentration showed a positive link with the presence of Microbacterium,
Lutibacterium, and Sphingomonas genera and Prevotella intermedia species. In conclusion, the
different abundance of TCDCA and TCA correlates with bile microbiota alpha-diversity
and the appearance of specific opportunistic pathogens in the bile of patients affected by
gallstone disease.

Despite the availability of promising studies in this setting, it is still unknown if
microbiological markers for gallstone disease exist, making it an interesting field for future
research, especially for patients suffering from recurrent lithiasis. Besides its role as a
biomarker of biliary diseases, the ‘gut microbiota–bile acid–host’ system may also offer
a target to be manipulated, either with the use of specific probiotic strains or dietary
interventions and prebiotics, as a novel strategy to handle the diseases associated with
defective bile acid metabolism, in the attempt to restore a beneficial diversity of bacteria.

3. Microbiome and Biliary Cancer

The term “oncobiome” has been coined to describe the research field that studies how
the microbiome is involved in the development of neoplastic disease [57]. Oncobiome
research initially focused on colorectal cancer and in recent years has expanded into
several other malignancies [58]. The possible mechanisms by which the microbiome
influences cancer development include: (a) the role of bacterial toxins/metabolites on
cancer onset and development [59–61], (b) how the microbiome can modulate the host’s
local and systemic immune responses [62–64], and (c) specific changes in microbial and
host metabolism [65–67]. It has been hypothesized that these host–microbe interactions
can occur at both the local and systemic levels [68]. Herein, we provide an overview of the
role of the microbiome in the development and progression of biliary cancer.

Cancers of the biliary tract encompass those arising from the intrahepatic and extra-
hepatic bile ducts, the gallbladder, and the ampulla of Vater and represent the sixth most
common cause of malignant lesions in the gastrointestinal tract in western countries. We
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summarized the possible gut and biliary microbiota components involved in these diseases
in Table 2.

3.1. Cholangiocarcinoma

Cholangiocarcinomas (CCA) are malignant neoplasms involving the intrahepatic or
extrahepatic bile ducts and are usually classified, according to anatomy, into intrahepatic,
perihilar, and distal cholangiocarcinomas. Given their high fatality rate and the silent
progression of early disease, identifying the risk factors for the prevention and early
detection of CCA is crucial. There are many known risk factors for the occurrence of
CCA, including genetic background, chronic inflammation, environmental factors, and
parasitic infestations, such as Opisthorchis viverrini (OV) and Clonorchis sinensis. However,
the exact mechanisms of carcinogenesis remain unclear. Experimental studies have shown
an association between microbial gut dysbiosis and the development of CCA [69–71],
probably related to the bile acid metabolism pathway.

It has been reported that conjugated bile acids promote tumorigenesis, whereas un-
conjugated bile acids inhibit CCA cell proliferation. Therefore, an increase in either sec-
ondary or conjugated bile acids could be protumorigenic [70]. In a recent study, elevated
plasma/stool ratios of conjugated secondary bile acids (glycoursodeoxycholic acid and tau-
roursodeoxycholic acid) were reported in CCA patients [72]. Moreover, in clinical studies
conducted in the stools of CCA patients, a high richness (alpha-diversity) was reported
compared to healthy individuals; in particular, a number of Lactobacillus, Actinomyces,
Peptostreptococcaceae, Alloscardovia, and Bifidobacteriaceae were markedly increased. In
addition, vascular invasion, which is a substantial prognostic factor, was associated with
high levels of Ruminococcaceae species in the stools and higher circulating IL-4 levels [72].
Based on these results, it was speculated that the detection of plasma tauroursodeoxycholic
acid, together with the presence of Lactobacillus and Alloscardovia in the stools, could be
used as a potential diagnostic noninvasive biomarker for CCA [72]. Despite these data
highlighting the existence of a certain association between the gut microbiota, the bile
acid profile, and CCA, future studies with rigorous designs and investigations of patient
outcomes are needed [73].

To our knowledge, only one study has evaluated the microbiome of the biliary tract in
PBC patients [93]. Hiramatsu et al. aseptically extracted the gallbladder bile in patients
with PBC undergoing liver transplantation and controls (patients with primary sclerosing
cholangitis (PSC), hepatitis C virus, cholecystitis, etc.) and detected bacterial species by PCR
amplification in 10/15 patients with PBC; the most common were Gram-positive cocci, such
as Staphylococcus aureus, Enterococcus faecium, Streptococcus pneumoniae or other streptococci,
and Lactobacillus plantarum, and they differed significantly from controls, including patients
with cholecystolithiasis.

In conclusion, PBC patients present a distinct microbial profile, both in the gastroin-
testinal and in the biliary tract. Whether this difference is a consequence of the altered bile
acid composition in PBC patients or plays a pathogenetic role in the development and pro-
gression of the disease is still to be determined. Future studies should investigate whether
microbiota composition could predict the response to UDCA treatment, the severity of the
disease, and the development of liver-related events in patients with PBC.

3.2. Microbiota and Autoimmune Hepatitis

Autoimmune hepatitis (AIH) is a chronic, progressive, and immunologically mediated
inflammatory liver disorder [92]. Recent studies in animal models have proposed that
increased intestinal permeability and gut microbiome dysbiosis play a role in the pathogen-
esis of liver inflammation in AIH [93,94]. Table 3 reports some of the main bacteria involved
in this setting. Lin et al. [95] described, for the first time in humans, the features of a leaky
gut (disruption of the architecture of the duodenal mucosa and reduced expression of tight
junction proteins, such as ZO-1 and occludin) and dysbiosis, with a significant decrease of
Bifidobacterium and Lactobacillus in AIH patients as compared to healthy controls. Since then,
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several authors have evaluated the composition of gut microbiota in AIH patients [96–99].
Similar to what was previously reported for PBC patients, Wei et al. [96] identified and
validated a gut microbiome signature of AIH, including four genera (Veillonella, Lacto-
bacillus, Oscillospira, and Clostridiales) that could accurately distinguish AIH patients from
healthy controls. Liwinski et al. [98] more recently showed that a disease-specific decline
of the relative abundance of Bifidobacterium was observed in AIH patients, and this was
associated with failure to achieve remission.

To date, no study has investigated the composition of the microbiome of the biliary
tract in patients with AIH and its association with the histological and clinical features of
this liver disease.

3.3. Microbiota and Primary Sclerosing Cholangitis

Primary sclerosing cholangitis (PSC) is another, even less common, chronic inflam-
matory disease of the liver and bile ducts that is associated with the development of
cholangitis, progressive fibrosis, and end-stage disease requiring liver transplantation [100].
Unlike the above-mentioned diseases, no accepted medical therapy for PSC exists at the
moment [101], and this is partly because the etiology and pathogenesis of PSC are not
well-understood. As PSC can be associated with intestinal inflammatory liver disease (IBD),
especially ulcerative colitis (UC), it has been long hypothesized that the interplay between
the gut and hepatobiliary systems played a central role in PSC pathogenesis [102,103],
mainly through gut dysbiosis, alteration of intestinal permeability, bacterial translocation,
and immune-mediated hepatobiliary inflammation [104–106].

In this view, several studies have investigated the gut microbiota composition in PSC
patients [107–117], as reported in Table 3. The diversity of PSC is significantly reduced in
PSC patients, and its global composition is distinct from that of patients with UC or healthy
controls [110,111]; on the other hand, whether there is a difference between PSC patients
with and without IBD is controversial [110,113]. At a genus level, the microbiota of PSC
patients was overrepresented in Enterococcus [111,113,115,116], Lactobacillus [111,115,116],
Veillonella [110,113,114,116], Streptococcus [113,115,116], Fusobacterium [111], Rothia [113],
and Parabacteroides [116]. In the largest cohort to date, including patients from a German
and Norwegian cohort, Kummen et al. [109] not only identified species associated with
PSC patients but also a decrease in the abundance of genes related to the synthesis of
vitamin B6 and branched-chain amino acids, and this reduction was associated with lower
liver-transplantation-free survival. Finally, Lemoinne et al. [114] showed that PSC patients
also displayed a fungal gut dysbiosis, with an increased proportion of Exophiala and a
decreased proportion of Saccharomyces.

As for the microbiota of the biliary tract, only a few studies have evaluated its compo-
sition by cultures or PCR amplification techniques [91,118–122]. Olsson et al. [118,119] first
analyzed the microbiota composition of bile samples from explanted livers of 36 patients
with PSC. The authors reported positive cultures in 20 (56%) patients, where Streptococci
(16/20), Enterococci (5/20), and Staphylococci (5/20) were the most common bacteria; how-
ever, these results might have been biased by culture contamination, recent ERCP, and the
use of antibiotics [119]. In the above-mentioned study by Hiramatsu et al. [91], bacterial
cultures were positive in one out of five patients (Streptococcus milleri), and PCR amplifica-
tion identified bacteria species in two patients (S. milleri and S. aureus). In the more recent
study by Pereira et al. [121], including bile samples from 80 PSC patients and 46 controls
undergoing ERCP, the most common genera in the bile tract were Prevotella, Streptococcus,
Veillonella, Fusobacterium, and Haemophilus.
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Table 2. Summarizing the main microorganisms involved in cholangiocarcinoma and gallbladder cancer.

Potential Pathogenesis Mechanism Phylum Family Genus

Gut Microbiota in
Cholangiocarcinoma

Direct impact of bacterial toxins/metabolites on cancer
initiation and growth

Modulation of the host local and systemic immune response

Alteration of microbial and host metabolism

Interaction of gut microbiota on the bile acids
metabolism pathways

↑ Firmicutes
Lactobacillaceae
Peptostreptococcaceae
Ruminococcaceae

Lactobacillus

↑ Actinobacteria Bifidobacteriaceae Actinomyces Alloscardovia

Biliary Microbiota in
Cholangiocarcinoma

Direct impact of bacterial toxins/metabolites on cancer
initiation and growth

Modulation of the host local and systemic immune response

Alteration of microbial and host metabolism

Interaction of gut microbiota on the bile acids
metabolism pathways

↑ Proteobacteria

Enterobacteriaceae Methylophilaceae
Sinobacteriaceae
Helicobacteracae
Erythrobacteraceae

Klebsiella

Helicobacter
Novosphingobium

↑Gemmatimonadetes

↑ Nitrospirae

↑ Chloroflexi

↑ Latescibacteria

↑ Planctomycetes

↑ Actinobacteria Bifidobacteriaceae Actinomyces

↑ Firmicutes
Enterococcaceae Streptococcaceae

Bacillaceae

Dialister
Streptococcus

Geobacillus
Anoxybacillus

↑ Bacteroidetes Bacteroideceae Prevotella
Bacteroides

↑ Fusobacteria Fusobacteriaceae Fusobacterium

↑ Synergistetes Synergistaceae Pyramidobacter

↑ Deinococcus-Thermus Thermaceae Meiothermus
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Table 2. Cont.

Potential Pathogenesis Mechanism Phylum Family Genus

Biliary Microbiota in
Gallbladder Cancer

Direct impact of bacterial toxins/metabolites on cancer
initiation and growth

Modulation of the host local and systemic immune response

Alteration of microbial and host metabolism

Inflammation-induced carcinogenesis

↑ Proteobacteria Enterobacteriaceae Salmonella

↑ Firmicutes Peptostreptococcaceae
Enterococcaceae

Peptostreptococcus
Enterococcus

↑ Bacteroidetes

↑ Fusobacteria Fusobacteriaceae Fusobacterium
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Table 3. Main gut and biliary microbiota components involved in autoimmune liver disease.

Potential Pathogenesis Mechanism Phylum Family Genus

Gut Microbiota in PBC

Interaction between immune and biliary pathways

Genetic and environmental factors

Molecular mimicry between host antigens and microbe

↑ Proteobacteria

↑ Fusobacteria

↓ Bacteroidetes

Biliary Microbiota in PBC

Interaction between immune and biliary pathways

Genetic and environmental factors

Molecular mimicry between host antigens and microbe

↑ Firmicutes

Staphylococcaceae
Enterococcaceae
Streptococcaceae
Lactobacillaceae

Staphylococcus
Enterococcus
Streptococcus
Lactobacillus

Gut Microbiota in PSC

Gut dysbiosis

Alteration of intestinal permeability→
bacterial translocation

Immune-mediated hepatobiliary inflammation

↑ Firmicutes

Enterococcaceae

Streptococcaceae
Lactobacillaceae
Acidaminococcaceae

Enterococcus
Streptococcus
Lactobacillus
Veillonella

↑ Fusobacteria Fusobacteriaceae Fusobacterium

↑ Actinobacteria Micrococcaceae Rothia

↑ Bacteroidetes Tannerellaceae Parabacteroides

Biliary Microbiota in PSC

Gut dysbiosis

Alteration of intestinal permeability→
bacterial translocation

Immune-mediated hepatobiliary inflammation

↑ Firmicutes

Staphylococcaceae
Enterococcaceae
Streptococcaceae
Acidaminococcaceae

Staphylococcus
Enterococcus
Streptococcus
Veillonella

↑ Bacteroidetes Bacteroideceae Prevotella

↑ Fusobacteria Fusobacteriaceae Fusobacterium

↑ Proteobacteria Pasteurellaceae Haemophilus

Gut Microbiota in AIH Increased intestinal permeability and gut
microbiome dysbiosis ↑ Firmicutes

Acidaminococcaceae
Lactobacillaceae
Ruminococcaceae

Veillonella
Lactobacillus
Oscillospira
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From a clinical point of view, given this substantial evidence linking gut microbiota
and autoimmune cholangitis, different trials have investigated the therapeutic role of
different antibiotics [101], such as metronidazole [123,124], vancomycin [123–125], and
rifaximin [126], with inconclusive results. Of note, in their pilot study, Allegretti et al. [127]
showed that fecal microbiota transplantation (FMT) was safe in 10 patients with PSC and
concomitant IBD; a decrease in the alkaline phosphatase levels ≥50% was seen in 3 (30%)
patients, and this correlated with the bacterial diversity and engraftment after FTM.

In conclusion, PSC is a rare disease with a complex pathogenesis, where gut and biliary
tract dysbiosis may play a significant role. The therapeutic role of microbiome modulation
in these patients is an intriguing field of research that needs further investigation.

4. Microbiome and Liver Transplantation

Liver transplantation (LT) is associated with an overall medical and functional recov-
ery for most patients with end-stage liver disease, and changes in gut microbial compo-
sition are no exception. We reported the main evidence on this topic in Table 4. Several
studies [128–131] have shown that at 6 months after LT, the gut microbiota is significantly
improved, with increased diversity, increased beneficial autochthonous taxa, such as Ru-
minococcaceae, Lachnospiraceae, and Akkermansia, and a reduction in the pathogenic
genera belonging to Enterobacteriaceae (i.e., Escherichia, Shigella, and Salmonella). However,
up to 30% of the patients showed persistent cognitive impairment, and this was associated
with a relative abundance in Proteobacteria after LT.

Recent developments have shown that the microbiota plays a significant role in the
development of complications after LT, where a complex interaction between immuno-
suppression, antibiotic therapy, infections, and liver allograft immunity takes place [132].
Animal studies have shown that gut bacteria shed microbial-associated molecule patterns
into the portal venous circulation, shaping the number, functional activity, and maturational
status of liver Kupffer cells [133]. These findings suggest that the gut microbiome is an
important modulator of both innate and adaptive liver allograft immunity, and, therefore,
its modulation could play a role in the prevention of complications, such as ischemia-
reperfusion injury (IRI), acute cellular rejection (ACR), and infections after LT. For instance,
both animal [134,135] and human studies [136,137] have shown that probiotic supplementa-
tion might attenuate the IRI entity. In fact, cirrhotic patients on rifaximin before LT [136] or
patients receiving multi-strain probiotics before LT, in a recent randomized controlled trial
(RCT) [137], had a lower incidence of early allograft dysfunction (EAD); this is probably
due to the modulation of the intestinal microbiota, the suppression of inflammatory cell
activation in the graft, and therefore, the attenuation of the hepatic IRI, the main driver of
post-LT organ dysfunction. Regarding ACR, studies in animals [138,139] and humans [140]
have established a role of gut dysbiosis in its development, with microbiome alterations
found as early as one week after LT. ACR patients presented with a lower microbiome
diversity; an increase in Bacteroides, Enterobacteriaceae, Streptococcaceae, and Bifidobacteri-
aceae; and a decrease in Enterococcaceae, Lactobacillaceae, Clostridiaceae, and Ruminococcaceae.
However, a recent meta-analysis failed to show a significant reduction in ACR incidence
after probiotic supplementation in LT recipients [141].
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Table 4. LT-related gut and bile microbiota alternations.

Potential Pathogenesis Mechanism Phylum Family Genus

Gut Microbiota in Liver Transplant

Interaction between immunosuppression,
antibiotic therapy, infections, and liver
allograft immunity

Modulation of both innate and adaptive liver
allograft immunity→ prevention of complications
such as ischemia-reperfusion injury, acute cellular
rejection, and infections after LT.

↑ Firmicutes

Ruminococcaceae Lachnospiraceae
Streptococcaceae
Enterococcaceae
Lactobacillaceae
Clostridiaceae Enterococcus

↑ Verrucomicrobia Verrucomicrobiaceae Akkermansia

↑ Proteobacteria Enterobacteriaceae Klebsiella

↑ Bacteroidetes Bacteroidaceae Bacteroides

↑ Actinobacteria Bifidobacteriaceae

↓ Firmicutes Enterococcaceae
Clostridiaceae Lachnospiraceae Faecalibacterium

↓ Proteobacteria Enterobacteriaceae
Escherichia
Shigella
Salmonella

↓ Bacteroidetes Bacteroidaceae Bacteroides

Biliary Microbiota in
Liver Transplant

Interaction between immunosuppression,
antibiotic therapy, infections, and liver
allograft immunity

Modulation of both innate and adaptive liver
allograft immunity→ prevention of complications
such as ischemia-reperfusion injury, acute cellular
rejection, and infections after LT.

↑ Firmicutes

Enterococcaceae
Streptococcaceae

Staphylococcaceae
Clostridiaceae

Enterococcus
Streptococcus
Lactococcus
Staphylococcus
Clostridium

↑ Proteobacteria

Enterobacteriaceae

Rhizobiaceae

Xanthomonadaceae

Pseudomonaceae

Aeromonadaceae

Escherichia
Klebsiella
Rhizobium
Nevskia
Stenotrophomas
Pseudomonas
Aeromonas
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Table 4. Cont.

Potential Pathogenesis Mechanism Phylum Family Genus

↑ Ascomycota Saccharomycetaceae Candida

↓ Proteobacteria Enterobacteriaceae
Escherichia
Shigella
Salmonella

↓ Bacteroidetes Bacteroidaceae Bacteroides

↓ Firmicutes Clostridiaceae
Lachnospiraceae Faecalibacterium Lachnospira
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It is noteworthy that gut microbiota is a strong predictor of infection after LT, a major
cause of morbidity and mortality in these patients [140]. In a recent study [131], a low
pre-transplant alpha-diversity, as well as a post-LT abundance of Enterococcus and Klebsiella,
and reductions in Bacteroides, Faecalibacterium, and Lachnospira, were associated with colo-
nization by multidrug-resistance bacteria, a new hallmark of gut dysbiosis. Therefore, the
restoration of the intestinal microbiota–host homeostasis has been an attractive strategy to
prevent infection after LT, with very promising results. A meta-analysis of four RCTs [141]
found that the synergic use of prebiotics and probiotics significantly reduced the infection
rates (7% vs. 35%) after LT; these results were later confirmed by a fifth RCT [137]. More-
over, gut dysbiosis was also associated with the development of non-anastomotic biliary
strictures [142], hepatic generation after partial liver grafts [132], and the recurrence of
liver disease [143].

Finally, only a handful of studies has evaluated the composition of the bile microbiome
in LT recipients, exclusively in patients undergoing ERCP/percutaneous transhepatic
cholangiography for biliary complications [144]. In a prospective cohort of 213 patients,
the authors showed that the most common bacterial isolates were Enterococcus spp. (40%),
Streptococci (20.5%), Staphylococcus spp. (12.8%), Escherichia coli (10%), and Klebsiella spp.
(4%); moreover, Candida albicans was also found in 15.6% of patients. Importantly, colo-
nization by enteric bacteria, despite successful endoscopic treatment, and fungibilia were
associated with lower retransplantation-free survival. Later, the composition of the bile mi-
crobiome by was confirmed culture-based techniques by a smaller prospective study [144].
Only in the studies by Liu et al. [145,146] was the bile microbiota assessed by 16S-rRNA
gene sequencing. The authors found that the most common genera were Enterococcus,
Rhizobium, Nevskia, Lactococcus, Bacillus, Clostridium sensu strictu, Stenotrophomonas, Pseu-
domonas, Streptococcus, and Aeromona. Moreover, the bile microbiome composition differed
significantly between patients with clinical symptoms or signs of biliary obstruction and
controls, with an increase in Proteobacteria and a decrease in Firmicutes phyla in the case
group. In conclusion, these data should be interpreted with caution, as contamination of
bile sampling, the use of antibiotics, previous ERCP, etc., are all confounding factors that
should be considered. However, the study of the bile microbiome is very promising for a
better understanding of the pathogenesis of biliary and non-biliary complications after LT.

5. Conclusions and Future Perspectives

The biliary tract is an interesting system interposed between an aseptic system, the
hepatocyte, and a rich set of microbes, our gut. The understanding of the interaction of
commensal biliary microbes with the host in determining the state of health or disease
of the hepatobiliary system is an interesting topic of research, with the aim to define the
concept of “biliary dysbiosis”.

While there is some evidence for an association between specific bacterial signatures
and conditions, such as biliary stones, inflammatory disorders, or malignancies, causality is
far from proven. In this view, therapies modulating the microbiota, with antibiotics, prebi-
otics, probiotics, and even FMT are intriguing possibilities to be tested in large prospective
randomized studies for the management of these diseases.
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