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Integration of theory, simulation, artificial intelligence
and virtual reality: a four-pillar approach for recon-
ciling accuracy and interpretability in computational
spectroscopy†

Vicenzo Barone∗a, Cristina Puzzarinib and Giordano Mancini,a

The established pillars of computational spectroscopy are theory and computer based simulations.
Recently, artificial intelligence and virtual reality are becoming the third and fourth pillars of an inte-
grated strategy for the investigation of complex phenomena. The main goal of the present contribu-
tion is the description of some new perspectives for computational spectroscopy, in the framework of
a strategy in which computational methodologies at the state of the art, high-performance comput-
ing, artificial intelligence and virtual reality tools are integrated with the aim of improving research
throughput and achieving goals otherwise not possible. Some of the key tools (e.g., continuous
molecular perception model and virtual multifrequency spectrometer) and theoretical developments
(e.g., non-periodic boundaries, joint variational-perturbative models) are shortly sketched and their
application illustrated by means of representative case studies taken from recent work by the authors.
Some of the results presented are already well beyond the state of the art in the field of computational
spectroscopy, thereby also providing a proof of concept for other research fields.

1 Introduction

Experiment or theory? Which one should be trusted more? While
this dispute has characterized all scientific fields for decades, the
end of the last century witnessed a reconciliation, thus lead-
ing to the widespread employment of integrated experimental-
theoretical approaches. Following on from this, a challenging
issue arises: how far can the quantitative prediction of experi-
mental and technological problems be pushed? This question has
puzzled theoretical and computational chemists since the birth
of quantum mechanics (QM). While the Schrödinger equation,
in principle, contains the solution to all problems related to the
nanoscopic world, its resolution and application have posed seri-
ous issues from the very beginning, thus originating the never-
ending fight between feasibility, accuracy and interpretability.
The continuous struggle against the limitations faced by scien-
tists in their reconciliation has led to the development of multi-
scale and multi-resolution approaches1–4 that have been sup-
ported and driven by considerable improvements, especially dur-
ing the last decade, in hardware and software. Computer-based
simulations are nowadays considered routine facilities in science
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b Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via F. Selmi
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and represent the second pillar of an integrated approach. The
spontaneous question arising is: what is next? The instinctive an-
swer is data science, which is related to the availability of an un-
precedented amount of high quality data and represents today the
third pillar of an effective integrated strategy for the investigation
of complex phenomena5. At the same time, we are witnessing a
parallel and fast growth of a fourth pillar, represented by data vi-
sualization: with Big Data increasing at an unprecedented pace
in all sectors of research and industry, data visualization becomes
crucial not only to obtain a real insight into this data deluge,6 but
also for dissemination purposes, which are nowadays an integral
part of any major project.

Molecular spectroscopy is a discipline underlying all areas of
chemistry because of its ability to investigate different physical-
chemical aspects of molecular systems in a non-invasive way. In
the field of molecular spectroscopy, experimental outcomes have
been traditionally considered as the unquestionable and defini-
tive answers. However, the improvements of conventional spec-
troscopic techniques and the blooming of new ones have provided
new information paralleled by the challenge of interpreting raw
spectral data. In this scenario, experiment cannot do without the-
ory, with the latter providing key inputs for guiding, supporting
and complementing experimental determinations and analyses.

Traditionally, the interpretation of spectroscopic data with QM
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is based on obtaining molecular geometries at the best possible
level attainable7,8. The procedure usually starts from a few can-
didate structures and employs the local search techniques (i.e. ge-
ometry optimizations) available in electronic structure codes. In
these calculations, the starting point is often the available knowl-
edge together with chemical intuition. The growth in size of the
systems to be investigated, however, implies much more complex
potential energy surfaces (PESs), with a large number of min-
ima (some of comparable stability) that makes relying on this ap-
proach prone to bias. As a consequence, wide span exploration
methods that combine (step wise) preliminary cheap simulations
and/or machine learning (ML) methods are becoming increas-
ingly important in all spectroscopic studies9–11. However, even if
all theoretical issues could be solved, computational spectroscopy
would not automatically join its experimental counterpart as a
routine procedure in the analysis of challenging systems as long
as vis-á-vis comparisons of the raw data, i.e. the molecular spec-
tra, cannot be performed in a systematic, robust and user-friendly
way12. The ultimate “ingredient” to improve the vis-á-vis com-
parison is the unprecedented possibility of 3D representations of
scientific data as well as immersive scenarios to explore macro-
/microscopic environments13 employing Immersive Virtual Real-
ity (IVR) and, to a lower extent, Augmented Reality (or AR/VR
for short) to solve the problems related to data visualization in
molecular modeling.

In summary, theory, simulation, machine learning and data vi-
sualization represent the four pillars upon which a complete inte-
gration of theory and experiment in the field of molecular spec-
troscopy can be built. In this manuscript, we provide examples
of the recent developments concerning each of the four pillars
addressing specific challenges in different aggregation states

• Gas phase: rotational spectroscopy is the technique of
choice. The recent introduction of laser-ablation and broad-
band techniques14–17 has opened to the investigation of
biomolecules and large molecular complexes in the gas
phase and with high resolution. This, however, has led sci-
entists to face the huge problem of correctly describing and
characterizing large flexible systems.

• Diluted solutions: optical and chiroptical spectra are of ut-
most interest in this context and their interpretation requires
the average over a large number of low-energy structures
issuing from solvent fluctuations. In this context, the four-
partner strategy alluded above is fundamental for obtaining
the correct atomistic interpretation of the observation, oth-
erwise not accessible. In particular, AR/VR can play an in-
valuable role in perceiving complex spectroscopic outcomes,
like, e.g., magnetic fields for chiroptical spectra.

• Crystals: vibrational (infrared, IR, and Raman) spectra are
the sources of the most valuable information and they are
strongly tuned by environmental effects. Together with the
challenges addressed above, one has to face the problem of
generating and including in the computational model the
correct periodic environment both from computational and
graphical points of view.

To detail this “four-pillar strategy” in the next section we an-
alyze its most distinctive features with special reference to the
different steps of the pipeline and to the benefits of employing
AR/VR tools. Next, different spectroscopic techniques and ag-
gregation states are considered with reference to some recent
studies performed in our laboratories. We start from semi-rigid
molecules in the gas phase and then we proceed to analyze the
role of environmental effects in the solid state or in innocent
solvents (which can be properly described by polarizable contin-
uum models). Subsequently, we tackle the problem of flexibility,
thereby showing that the effectiveness and reliability of system-
atic or stochastic approaches can be overcome by methods based
on the artificial intelligence paradigm. Finally, we consider the
problem of environmental fluctuations, which become a central
issue for non-innocent solvents (especially water) and biological
environments.

2 General workflow: the four pillar strategy
In general terms, the overall strategy starts with a pre-processing
stage (preferably performed in an AR/VR context) in which per-
ception tools are used to analyze the studied system in terms of
chemically-based concepts, like resonance, inductive effects, etc.,
to dissect intra- and inter-molecular interactions, to disentangle
hard and soft degrees of freedom and, possibly, to generate –by
means of unsupervised tools– a local environment closely resem-
bling the experimental one. Next, proper computations are per-
formed to obtain all the needed structural and spectroscopic pa-
rameters, thereby employing QM, molecular mechanics (MM),
stochastic and ML approaches. Finally, in the post-processing
stage, vis-á-vis comparisons between simulated and experimental
spectra can be performed and the physical-chemical properties of
the studied system can be explored in an AR/VR scenario.

In the Introduction, it has been mentioned that IVR (or AR/VR)
is the most recent pillar added to the computational spectroscopy
tools. However, we will discuss this aspect at the very begin-
ning since the other three pillars can be envisioned as tools which
may be used within an IVR context. The importance of the data-
visualization pillar in the overall strategy cannot be underesti-
mated; indeed, without graphical data representations (charts,
diagrams, chemical formulas and drawings) the results of com-
plex experimental or simulation studies would provide very lim-
ited scientific insights.18,19 This is not surprising because one-
third of neurons in the brain cortex are activated when dealing
with visual information. In other words, when visual information
can be immediately understood (for a chemist, most of the ball-
and-stick representations can be deemed as “direct”) or properly
codified (via unambiguous icons, gliphs and symbols), it can be
decoded faster. However, one can still argue on the importance
of IVR with respect to traditional 2D visualization given the in-
creased development efforts that AR/VR requires. In this respect,
its unique features are:

• the possibility and ability of displaying data on several layers
and on much larger surface with respect to a 2D screen;

• multisensorial analysis with data sonification (auditive input
can perform better than visual one in certain cases, most
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notably in perceiving anomalies);20,21

• proprioception: the capability to perceive own position and
movement in space not from sight but from the kinesthetic
inputs from the skeletal muscle apparatus.22

Focusing on the last point, it is noted that proprioceptive feed-
backs are fundamental in approaching both real and virtual ob-
jects, inducing natural reactions that help in the interaction with
the objects. This is important in general, but becomes crucial
for applications such as engineering and chemistry, where the ob-
jects of study are three-dimensional and span different scales. In
general terms, IVR or AR/VR can fill the gap between the hu-
man perception and the molecular world, thereby speeding up
the process of understanding. As a matter of fact, VR allows one
to transfer molecular systems and phenomena from their typical
Angstrom/nanosecond scale to the human meter/second scale.
Such a natural exploration of the nano-world permits to tap into
human intuition, thus enabling the indirect abstraction processes
required for relating microscopic events to their macroscopic con-
sequences.

The benefits of immersive visualization have been recognized
since the first pioneering steps of the technology23,24. However,
the adoption of IVR or AR/VR for applications beyond the proof-
of-concept stage has become commonplace only in the last few
years,25–27 owing to the introduction of cheap, off the shelf de-
vices28. The situation has developed to the point that well-known
remote teaching providers offer courses devoted to the use of
AR/VR for scientific visualization. Furthermore, several compa-
nies (e.g., https://nanome.ai/) now offer services specifically re-
lated to AR/VR and molecular modeling.

In the last decade, we have developed, alongside traditional
2D tools for visualization and interaction such as the so-called
virtual multifrequency spectrometer, VMS29, and Ulysses30 for
the parameterization of intramolecular force fields, a fully immer-
sive molecular graphics system denoted as Caffeine,31–33 which
was based on expensive Cave 3D systems. Although Caffeine is
deficient in many typical features of the more mature 2D molec-
ular viewers, it allowed to show the potentialities of AR/VR ap-
plied to molecular modeling.34,35 * In the last years, the release
of 3D helmets together with new AR devices and widespread
adoption of game engines (mostly Unity, https://unity.com/, and
Unreal, https://www.unrealengine.com) for non game purposes
made the technologies of Caffeine obsolete. Using Unity, a tool
to explore analytical PES and simple chemical reactions has then
been realized36. Now, we are conveying all the experience devel-
oped over the years in a new package named Tardis.37. Tardis is
an AR/VR tool for research and education, which allows to cross
in a seamless way different time and space scales, thus allowing
to perceive in an intuitive way the molecular world and to interact
with the results of molecular simulations and QM computations.
Quantitative information can also be added by exploiting the pos-
sibilities offered by AR. A flavor of these features is provided by

* The code was released under the GPL3 license: https://bitbucket.org/sns-
smartlab/caffeine/src/master/

Figure 1.

Fig. 1 Tardis, the latest AR/VR component of our ecosystem, is used
for the preview in the macroscopic scenario (the molecules shown around
a rock, on a meteorite and in a spherical drop) and for pre- and post-
processing at the molecular level (e.g. exploration of potential energy
surfaces).

As mentioned above, both the pre- and post-processing of com-
putational spectroscopy tasks can be performed in an AR/VR con-
text. Concerning the former (pre-processing), complex molecules
are built and analyzed in an intuitive way, and suitable fragments
can be selected for deeper analysis. Regarding post-processing,
2D PESs can be explored exactly in the same way as 3D maps in
the macroscopic world (through a link to the Avatar code36) and
simulated spectra can be compared to their experimental coun-
terparts (through an interface to VMS12). Some features of the
pre-processing stage have already been mentioned, whereas dif-
ferent aspects of post-processing are illustrated in later sections
with reference to specific case studies.

Once AR/VR tools have led the researcher into the microscopic
world, artificial intelligence comes into play for molecular per-
ception, which is the set of methods and techniques designed to
handle, in a clever and automatic way, chemical data for both
cheminformatics and computational needs. The goal is to em-
ploy the least possible amount of input data (in principle just the
raw chemical formula or the so-called SMILES38), to derive au-
tomatically all the required chemical information39. This task is
performed by the Proxima tool40, which determines the molec-
ular topology. Contrary to the standard practice of employing
discrete indexes (e.g. single, double and triple bonds), Proxima
is able to perform a continuous perception, as recently proposed
with a more limited scope in ref. 41. Furthermore, hydrogen
bonds are detected between lone-pair electrons and acidic hydro-
gens. Once the initial topology is set, the next task is to gener-
ate all possible isomers, tautomers and, whenever chiral centers
are detected, enantiomers or diastereoisomers. In particular, the
detection of a tautomeric form is performed using the lone pair
information: if these lone pairs are sufficiently close to hydrogens
that are capable of being removed from their locations, then these
are identified as tautomeric centers. In the gas phase, only neu-
tral tautomers are generated, whereas tautomers also involving
charge separation are formed if the presence of a solvent is in-
dicated. Next, full lists of enantiomers (for chiral carbon atoms)
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and isomers (at present for imines, alkenes and allenes) can be
generated. Chiral centers are not only detected, but can also
be inverted, and all possible diastereoisomers resulting from this
process can be generated. Then, inter-molecular interactions can
be taken into account by building either solvation shells (liquid
state)42 or periodic replicas of a given unitary cell (solid state).
In the former case, a spherical drop (see Figure 1) is generated
automatically for a panel of available solvents, whereas in the
latter case, the cell parameters can be provided using different
formats.

The outcome of the pre-processing stage is passed to the se-
lected electronic structure code (ESC) for computing the struc-
tural, energetic and spectroscopic parameters of semi-rigid sys-
tems. In the case of flexible molecules, the exploration of soft
degrees of freedom is managed by a new software including both
stochastic and genetic algorithms and linked to some ESCs10.
Finally, atomistic environments (e.g. non innocent solvents or
large non-periodic biological systems) require a more articulated
pipeline, which will be illustrated in a dedicated section.

Some applications of the general strategy (outlined above) will
be illustrated by means of specific examples. In all cases, after
the sought spectrum is obtained, the VMS tool12 takes care of
the graphical representation and vis-á-vis comparison with exper-
iment, possibly also in an immersive AR/VR framework.

3 Semi-rigid molecules
In the present context, we will use the term semi-rigid to indi-
cate molecular systems showing a single well-defined energy min-
imum (sometimes referred to as rigid) and/or characterized by
potential energy surfaces containing only a few low-lying energy
minima separated by high energy barriers. As a matter of fact,
the study of these types of systems does not involve the problem
of exploring a huge number of soft degrees of freedom, which
requires instead going beyond deterministic (local optimization)
methodologies.

3.1 Unraveling molecules in the gas phase: a virtual-
experimental study.

Among different molecular spectroscopic techniques, rotational
spectroscopy, owing to its intrinsic high resolution and high sen-
sitivity, is one of the most powerful tools for investigating the
structure and dynamics of molecules and molecular complexes
in the gas phase7,43–46. Indeed, rotational spectra contain a
wealth of accurate information on different molecular parame-
ters, which are hardly or even not accessible from other experi-
mental methodologies. In particular, the analysis and assignment
of rotational spectra lead to the very accurate derivation of rota-
tional constants, which are the leading terms of this spectroscopic
technique and are strongly related to the structure of the molec-
ular systems under consideration8,43,47,48. However, extracting
such information from the rotational constants is a challenging
task, often unfeasible without the support of quantum-chemical
computations7,8,43,48. Actually, already the analysis and the as-
signment of rotational spectra can be a major challenge.

Most of molecules/molecular systems are asymmetric rotors,

533200 533300 533400 533500 533600

bQ band with K-1 = 7

FREQUENCY  (MHz)

CH2FI

A B

GROUND STATE
v20 = 1
v13 = 1
v21 = 1

HCCCH2NH2

Fig. 2 A) Example of the rotational spectrum of an asymmetric rotor:
the case of fluoroiodomethane49. B) Example of rotational spectra in
the ground and excited vibrational states: the case of propargylamine50.

thus showing complicated and dense rotational spectra, as evi-
dent in Figure 2A. The situation can be further complicated by
the concomitant presence of different conformers and/or isomers,
or low-lying vibrational states whose rotational spectra are well
visible in a spectral recording (see Figure 2B). In such cases, the
spectral analysis and assignment are strongly hampered. From a
quick look at Figure 2A, the great difficulty of dealing with the
rotational spectrum resulting from more species concomitantly
present can be easily imagined, a task that cannot be accom-
plished without computational guidance whenever no previous
information is available. While the practice of computing spec-
troscopic parameters is well established, an approach based on
vis-á-vis simulation and artificial intelligence is here envisaged
for taking a step forward.

3.1.1 From the structure to the rotational spectrum and
back

The close correlation between the rotational spectrum and molec-
ular structure is revealed by rotational constants, the leading
terms of rotational spectroscopy. Indeed, within the rigid-rotor
approximation, the rotational Hamiltonian can be written as

Hrot = ∑
i

BiJ2
i , (1)

where the sum runs over the inertial axis i = a,b,c (so that, Ba =

A), and Bi is defined as

Bi =
h̄2

2πIi
. (2)

where h̄ is the reduced Planck constant. According to Eq. (2),
rotational constants (Bi) are inversely proportional to the corre-
sponding components of the inertia tensor I (Ii), which in turn is
related to the molecular structure:

I = ∑
K

MK(R2
K1−RKRT

K) , (3)

where the sum runs over all nuclei K in the molecule. Note that
the masses MK refer to atomic masses. The nuclear coordinates
RK needed to calculate the inertia tensor I are those of a rigid
molecular configuration (the equilibrium structure), which is ob-
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cycloserine II: CCSD(T)-F12+vib(B3)

Fig. 3 A) Molecular structure of cycloserine (the form II is shown). B) Comparison between experimental and calculated rotational spectra51.

tained in quantum-chemical calculations by means of geometry
optimization.

While for a semi-rigid molecule the search of the equilibrium
structure is a well-defined task, for flexible molecules the explo-
ration of the PES can become a huge challenge, as will be ad-
dressed in Section 4. However, for a reduced number of soft de-
grees of freedom (e.g., hindered rotation, inversion or ring puck-
ering), a systematic search can be still performed with conven-
tional techniques. To describe how to go from structural deter-
minations to the simulation of the rotational spectrum, and then
how to derive geometrical information from the latter, we con-
sider the case study offered by cycloserine51.

Cycloserine has three soft degrees of freedom, namely the ro-
tation of the NH2 group, the NH inversion and the ring puckering
(see Figure 3A). The latter is characterized by only two nonequiv-
alent twisted energy minima. Each minimum can be split in two
forms due to the NH inversion, thus leading to four possible struc-
tures. Then, for each of them, the NH2 rotation can lead to three
staggered conformers (two gauche and one anti structure). Over-
all, a total of 12 possible energy minima is thus expected for cy-
closerine. However, focusing on the isolated species in the gas
phase, only two forms actually “survive” because all the others re-
lax to them, as shown in ref. 51, due to low energy barriers. These
two forms have been denoted as ‘cycloserine I’ and ‘cycloserine II’,
the former being more stable than the latter by ∼204 cm−1.

While a preliminary study of all conformers has been carried
out using a double-hybrid density functional (see ref. 51 for de-
tails), to accurately evaluate the rotational constants to be used
in the prediction of the rotational spectrum of cycloserine, the
equilibrium structures of the two stable species have been opti-
mized using the explicitly correlated CCSD(T)-F12 method53 in
conjunction with the cc-pVDZ-F12 basis set54. Going beyond the
rigid-rotor approximation, while equilibrium rotational constants
(Be

i ) are straightforwardly obtained from equilibrium geometries,
to predict the experimental features, we need to move from the
bottom of the well to the vibrational ground state. Within second-
order vibrational perturbation theory (VPT2)55,56, the rotational
constants of the latter are given by:

B0
i = Be

i +∆B0
i = Be

i −
1
2

N

∑
r=1

α
i
r , (4)

where the superscript “0” denotes the vibrational ground state
and the sum is taken over all fundamental vibrational modes r.
The α i

r ’s are the so-called vibration-rotation interaction constants.
From a computational point of view, anharmonic force field cal-
culations are required to compute the vibrational corrections to
rotational constants (∆B0

i )43,57–60. For cycloserine, vibrational
corrections computed at the B3LYP-D3BJ/jul-cc-pVDZ level61–63

and equilibrium rotational constants computed at the rev-DSD-
PBEP86/jun-cc-pVTZ63–65) or CCSD(T)-F12/cc-pVDZ-F12 level,
lead to the simulated spectra shown Figure 3B, thereby exploit-
ing the VMS-ROT software52. In Figure 3, the comparison
with the experimental counterparts is also reported. As evident,
the agreement is impressive also in the case of DFT calcula-
tions. Indeed, the computational simulations of Figure 3B guided
the assignment of the experimental spectrum. Furthermore,
thanks to the direct access to spectroscopic databases such as the
Cologne database66, the VMS-ROT software allows for cleaning
the recorded spectrum from all features due to photofragmen-
tation products. The latter are present because cycloserine was
brought in the gas phase using the laser ablation technique.

The saturated five-membered ring of cycloserine is also found
in isoxazolidines, which are important scaffolds in drug-design
chemistry. The most remarkable feature of this five-membered
ring is the presence of adjacent nitrogen and oxygen atoms.
The rotational spectroscopy study carried out in ref. 51 allowed
the first accurate determination of this N-O distance. In addi-
tion to accurate computational evaluations, the so-called semi-
experimental approach57,59,67 has been used. Within this ap-
proach, the equilibrium structure is obtained by a least-squares
fit of the molecular structural parameters to the equilibrium mo-
ments of inertia (Ii

e) straightforwardly derived from the semi-
experimental equilibrium rotational constants (BSE

i ):

BSE
i = B0,exp

i −∆B0,calc
i , (5)

with the B0,exp
i ’s being the experimental ground-state rotational

constants and the ∆B0,calc
i ’s computed according to Eq. (4). Since

the rotational constants of only one isotopic species were avail-
able, the semi-experimental approach has been applied to the
evaluation of the N-O bond length in cycloserine I and II (see
Figure 3A), while keeping the other structural parameters fixed
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at the CCSD(T)-F12/cc-pVDZ-F12 values. Notably, the accuracy
of the latter was verified by analogous evaluations for hydroxil-
amine (NH2OH), for which a full semi-experimental equilibrium
structure could be determined.

3.1.2 What is that molecule? The virtual spectrometer

As demonstrated in the previous section, rotational spectroscopy
is a powerful tool for structural characterization of known
molecules. However, is this spectroscopic technique also able
to identify an unknown compound in a gas mixture? A possible
route toward this goal is illustrated in Figure 4, with the starting
point being Proxima40 linked to VMS-ROT. This tool incorporates
quantum-chemical predictions to be used as starting points for
predicting and/or analyzing experiments. In this step, the user is
supported by a “build-in tool” to automatically generate the in-
put files and then run the quantum-chemical calculations. Once
the spectroscopic parameters are available, the SPFIT/SPCAT pro-
gram68 (fully integrated in VMS-ROT) is used to predict or ana-
lyze the spectra, with an intuitive and user-friendly GUI (graphi-
cal user interface) being available for creating the input files and
running the code. The output files are then automatically dis-
played (synthetic spectrum) and, if the experimental spectrum is
available, the assignment and fitting (spectroscopic parameters)
procedure are performed relying on the experimental-calculated
difference.

As introduced in Section 2, Proxima is able to build a molecular
frame starting from the atomic content knowledge. Being linked
to the database of the semi-experimental equilibrium structures*

(SE-re)59,60 and that of the linear regression approach (LRA)60,
Proxima is able to provide VMS-ROT with an accurate predic-
tion of the molecular structure at the equilibrium, and thus an
accurate prediction of the equilibrium rotational constants (see
Figure 5A). The computational module (VMS-Comp) of VMS-
ROT then allows to obtain the missing data by running quantum-
chemical calculations, with the Gaussian code69 being fully inte-
grated52.

Let us consider the case where, in the gas-phase mixture, a

* The SE equilibrium structures are available for download from smart.sns.it.

molecular species containing a given number of H, C and O atoms
is formed, e.g. H2C2O2 (see Figure 5A). Proxima is employed to
generate all possible structures for the given raw chemical for-
mula. In the subsequent step, for each structure, Proxima makes
use of the LRA information to provide a reliable prediction of the
geometrical parameters. In fact, the LRA database collects the
typical values of the most common bond lengths and angles as
well as the associated confidence intervals60. While these first
steps are part of a black-box procedure, the molecular structures
can be further improved by relying on the SE-re database (see Fig-
ure 5B). In the molecular system under consideration, the VMS-
ROT user has to identify fragments that correspond to molecules
present in the latter database. The SE-re structures of these frag-
ments are then employed to improve the geometrical parameters.
A graphical representation of this procedure for structural refine-
ment is shown in Figure 5B, where the specific case of propar-
gyl alcohol is presented. In this molecule, two fragments can
be envisaged, HCC- and -CH2OH, whose accurate structural pa-
rameters can be obtained from the SE-re database (acetylene and
methanol, respectively). For the C-C linkage, the LRA value is
instead kept.

Regardless of how the molecule is built, VMS-ROT proceeds
with (straightforwardly) deriving the rotational constants from
the structural information. Before being able to predict the cor-
responding rotational spectra, quantum-chemical calculations are
automatically submitted by the program itself. These aim at col-
lecting the missing information: not only vibrational corrections
to rotational constants as well as centrifugal distortion parame-
ters, but also energetics and electric dipole moments. While the
first data are required to predict the rotational spectra (i.e. the
frequencies at which the rotational transitions lie), the latter two
pieces of information are needed for predicting the intensities of
the rotational transitions. The relative energy of the various iso-
mers, tautomers and/or conformers allows the derivation of the
Boltzmann distribution, which is -however- not self-sufficient be-
cause the intensities intrinsically depend on the dipole moment
values. Once all this information is available, VMS-ROT predicts
the rotational spectrum of each structure of relevance (i.e. those
molecular systems whose spectrum is sufficiently intense). All
spectra are then combined and displayed together (thereby ex-
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Fig. 5 Proxima: from raw chemical formula to rotational constants.

ploiting the VMS-Draw module12), ready to be compared with
the experimental counterpart. It is from this comparison that the
user can understand what are the molecular species present in
the gas-phase mixture.

3.2 Crystals of semi-rigid molecules: vibrational spectro-
scopies

In this section, we give some hints about the extension of the
strategy illustrated above for molecules in the gas phase to molec-
ular crystals, provided that proper representations and compu-
tational tools are employed for treating periodic environments.
This is illustrated with reference to part of a recent study70 de-
voted to a journey across different aggregation states of creatinine
(see Figure 6), the end product of nitrogen metabolism in verte-
brates, following the evolution of its tautomeric equilibrium71 by
means of the distinctive features of rotational (gas phase) and
vibrational (condensed phases) spectra.

Fig. 6 Models for the imine tautomer of creatinine (I) in the gas phase,
aqueous solution and crystal: starting from the isolated molecule, water
is added. The first solvation-shell is explicitly incorporated, while the
bulk effects are added to describe the solution. If intermolecular bonds
are established among creatinine molecules, the crystal is obtained.

The first step is to build a 3D model of creatinine and to gen-
erate all the different possible tautomers and isomers either in an
augmented reality framework or by more conventional 3D graph-
ics on commodity hardware. Next, the structures of all the above
species are passed to an electronic structure code (in the present
context, the Gaussian software69) and optimized at a low-cost

level of theory (here B3LYP in conjunction with a double-zeta ba-
sis set). The structures and harmonic force fields of those energy
minima falling within pre-selected thresholds are recomputed at
higher level (here B2PLYP-D3/jun-cc-pVTZ63,72–75). Accurate en-
ergies and properties are finally evaluated by means of composite
schemes (here, the so-called “cheap scheme”, ChS76,77). If re-
quired (e.g. for benchmarking purposes), the geometries of se-
lected species can be reoptimized using more advanced method-
ologies (here CCSD(T)-F12/cc-pVDZ-F1253,54). Transition states
ruling the interconversion between different isomers need also to
be located if only species separated by sufficiently high barriers
can be detected experimentally. However, this step has not been
yet integrated in the general platform and must be performed
separately.

In the case of creatinine, all computations and experiments
agree in indicating that ketonic forms are considerably more sta-
ble than enolic tautomers, but the situation is more involved con-
cerning the relative stability of the imine (I) and amine (A) ke-
tonic forms.71,78–81 The imine tautomer is explicitly shown in
Figure 6, whereas the amine form is obtained obtained by trans-
ferring an hydrogen atom from the cyclic to the exocyclic imine
group. According to state-of-the-art electronic computations, the
global energy minimum of the isolated system is the imine tau-
tomer (which exists in two isomers, E and Z, nearly degenerate
in energy), with the A species being 7.7 kJ mol−1 less stable. The
interconversion between I and A forms involves a high energy
barrier (more than 200 kJ mol−1), and thus both forms could be
observable in rotational spectra. Indeed, this prediction was ex-
perimentally confirmed, thus demonstrating unequivocally that
different tautomeric forms are present in non-negligible amounts
in the gas phase.

Focusing on the solid state, the starting point is the proper and
accurate description of the periodicity of the crystal. Using the
parameters of the unitary cell and the symmetry group, our soft-
ware can build either a cluster of predefined dimensions or the
input stream for periodic computations (using, e.g., the Crys-
tal code82). In the latter case, the output can be represented
and managed either by three-dimensional graphics or in a AR/VR
framework. The creatinine crystal belongs to the P21/c space
group and it contains four molecules per unit cell. In the orig-
inal X-ray study80, which dates back to 1955, it was not possi-
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Fig. 7 The experimental IR spectrum of creatinine is compared with those computed for the imine (A) and amine (B) tautomers.

ble to identify the position of the hydrogen atoms, thus leaving
open the question about the presence of the imine and/or amine
tautomer. A more recent investigation71 suggested that only the
amine form is present in the crystal and this has been confirmed
by periodic DFT (B3LYP) computations70. The latter indicate that
the crystal of creatinine in the amine form is more stable than the
imine counterpart by more than 100 kJ mol−1. Since there are
four molecules in the unit cell, the stabilization brought by a sin-
gle amino molecule over the imine one can be estimated to be
around 30 kJ mol−1.

The results discussed above are in contrast with previous in-
terpretations of the vibrational spectra of the solid compound in
terms of both the amine and imine tautomers81. In order to set-
tle the question, we have computed the IR spectra of both the
imine and amine crystals and compared the results with a new
experimental spectrum (see Figure 7). The spectrum computed
for the amine form fits the experimental data much better than
that for the imine tautomer, especially for what concerns the fin-
gerprint region between 1500 and 1650 cm−1, which shows the
bands arising from the NH2 bending (see Figure 7A). Such a mode
is obviously not present in the computed spectrum of the imine
species. In conclusion, all the experimental and computational
evidences concur in suggesting that only the amine tautomer is
present in the solid state.

4 Flexible molecules
A quantitative description of physical-chemical properties (struc-
tural, thermochemical and spectroscopic) of flexible molecules re-
quires at least a full characterization of all low-energy minima
and the transition states ruling their interconversion. Both the
exhaustiveness of the sampling and the accuracy of the underly-
ing quantum-chemical model concur to shape the final outcome,
which is –however– also affected by the ill-defined role of possi-
ble error compensations. Flexibility is also accompanied by local
fluctuations around the located structures, which lead to broad-
ening effects in conventional spectroscopic experiments, whereas
time-resolved experiments (not analyzed explicitly in the follow-
ing) require additional considerations83. The crucial role played
by conformational sampling in shaping the physical and spectro-

scopic behavior has stimulated the development of several com-
puter codes devoted to effective PES explorations84–90, which –in
some cases– combine different methods in a single pipeline.

Exploration methods (in the present context we use the terms
PES exploration and conformer search as synonyms) can be classi-
fied in terms of the underlying model used to compute the energy
and its derivatives (QM, MM, QM/MM, simple geometric crite-
ria)91,92 as well as of the search strategy. The first aspect will be
dealt when analyzing specific case studies, whereas here we dis-
cuss in some detail the available search strategies (see Figure 8).
Systematic searches are the methods of choice for molecules char-
acterized by a small number of soft degrees of freedom93,94, as
illustrated in the case of cycloserine in section 3.1. However, their
cost increases steeply with the number of degrees of freedom, un-
less chemical insights are incorporated in the process95–97. In
the present context, we focus our attention on the so-called meta-
heuristics98, namely iterative generation procedures that guide
subordinate heuristics by combining different concepts for ex-
ploring and exploiting a search space. Several methods of this
kind have been proposed99–109, whose common background is to
mimic the efficiency of natural phenomena (e.g., collective intel-
ligence or natural selection) to produce additional solutions with
respect to those obtained by deterministic local optimizations110.

Here, we assume that a PES exploration proceeds along the
following steps:

• a (set of) solution(s) is initially built from a molecular topol-
ogy;

• the energy of the candidate solution(s) is evaluated (by em-
ploying an electronic structure code);

• the solution(s) undergo some kind of coordinate transfor-
mation;

• new energies are obtained;

• from the current and previous solution(s), a new (set of)
candidate solution(s) is obtained following the chosen algo-
rithm.
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Fig. 8 A simplified taxonomy of PES exploration methods. Note that
in actual applications different techniques can be combined.

The last three steps are repeated until some convergence crite-
rion is satisfied or a predefined number of steps is exceeded. All
these methods111 try to address the problems of exploration (or
diversification), i.e. they are able to escape local minima and
avoid premature convergence, thus reaching far away regions of
the search space, and exploitation (or intensification), i.e. they
are able to improve a given (set of) solution(s) by an extensive
search of its(their) neighbourhood. Noted is that for a success-
ful conformation search, exploration is the critical factor because
exploitation can be straightforwardly carried out by geometry op-
timization102. Furthermore, at each step of the optimization pro-
cedure, the more traditional single-state methods (Monte Carlo,
MC; simulated annealing, SA; or basin hopping, BH) evaluate a
single candidate solution at each step, whereas multi-state meth-
ods (e.g., evolutionary algorithms, EA) act on sets including sev-
eral solutions. An additional option is offered by methods based
on Bayesian optimization, which have recently been applied to
the exploration of the conformational PES of amino acids in the
gas phase112,113. Finally, we note that different flavors of metady-
namics have been exploited and automatic procedures for the au-
tomatic selection of the underlying collective variables have been
proposed114,115.

In the following, the effectiveness of metaheuristics in dealing
with flexible molecules is illustrated with reference to a milestone
system, namely the neutral form of glycine (H2NCH2COOH) in
the gas phase. Its conformational landscape is ruled by three di-
hedral angles and is tuned by the formation of intra-molecular
hydrogen bonds. Recent systematic studies (based on state-of-
the-art QM methods) agree in forecasting 8 low-energy min-
ima116–118, 6 of which (see Figure 9A) have been characterized
by different spectroscopic techniques. The number of calculations
needed to recover all eight minima (when possible) by different
methods can be compared to the upper limit of 123 = 1728 points
needed for a systematic exploration of the three dihedral angles
with a resolution of 30◦. The results of a recent benchmark study9

show that (i) stochastic (MC) explorations combined with geom-
etry optimizations work well and (ii) cheap semi-empirical meth-
ods (such as DFTBA119, PM7120,121 and GFN2-xTB122,123) can
be profitably used for the geometry optimization step. The results

of the MC search are compared in Figure 10A with those issuing
from SA and (λ +µ) EA124 methods. The (λ +µ) model is a Ge-
netic Algorithm in which each generation is actually formed by a
fraction of old (µ) and new (λ) specimens; its choice is motivated
in ref. 10. All QM calculations were performed carrying out a ge-
ometry optimization at the PM7 level followed by a single point
energy evaluation at the B3LYP/6-31+G(d)-D3 level, which was
used to calculate the MC/SA acceptance ratios or the EA fitness.
It is quite apparent that the single state methods (MC and SA) are
systematically outperformed by the multi state counterpart (EA)
when comparing runs with a similar number of electronic struc-
ture calculations (by far the most expensive part of this type of
procedure). Furthermore, a huge improvement is obtained with
respect to systematic approaches.

The spectroscopic consequences of the conformational equilib-
rium of glycine are well illustrated with reference to IR spectra.
From a general point of view, we recall that quantitative results
can be obtained only taking into the proper account anharmonic
contributions in the simulated spectra by means of VPT2 for
small-amplitude motions and one-dimensional quasi-variational
treatments for large-amplitude motions8. Next, inspection of Fig-
ure 9B shows that some IR features can be used as diagnostics for
the presence of specific conformers (see colored regions). Finally,
the overall IR spectrum is obtained by averaging the IR spectra of
the various conformers weighted for their Boltzmann population.
Figure 9B demonstrates that, at room temperature, the experi-
mental IR spectrum is recovered by accounting for the three most
stable conformers.

Let us now consider a larger system, neutral threonine in the
gas phase, for which a full systematic search would be unfea-
sible. Recently, Szidarovszky and co-workers systematically ex-
plored the conformational space of threonine by performing 7776
energy evaluations at the B3LYP/6-311++G(d,p) level125. Seven
of these conformers were subsequently refined at the MP2/6-
311++G(d,p) level and experimentally identified with rotational
spectroscopy126. In ref. 10, we used threonine as a benchmark
to test and tune another EA variant, denoted as (λ + µ) Island
Model (IM). In addition to mixing old and new structures to form
the current solution at any given step, in the IM approach, new so-
lutions can be obtained only by subsets of existing ones (called is-
lands); limited exchange of structures between islands is allowed
during the search. The searches on the threonine PES were car-
ried out using the same two-level method employed for comput-
ing the energy of glycine, with geometry optimizations performed
with the PM7 method10. The outcomes of different exploration
strategies, shown in Figure 10B, point out the comparatively low
efficiency of MC, which actually never recovers more than 39
structures out of 56, present in the reference data set. Finally,
Figure 10C shows that the IM approach is the best performer, in-
deed being able to locate nearly all the structures with less than
1500 electronic structure computations.

5 Molecules in solution
As mentioned in the previous sections, the prediction of the spec-
tra of flexible molecules in the gas phase is a non trivial task,
indeed requiring a careful balance between feasibility and ac-
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Fig. 9 A) The first six low-lying conformers of glycine. B) Comparison of the experimental IR spectrum of neutral glycine with the calculated IR
spectra of the six conformers of panel A together with that resulting from a Boltzmann average of the first three species.

curacy8. When moving to solutions that are poorly described
by continuum models, the difficulty is further exacerbated by
the need of complementing the exhaustive sampling of soft in-
ternal degrees of freedom with the fluctuations of the environ-
ment127–130. The most widely used approaches (e.g., Quantum
Mechanics-Molecular Mechanics, QM/MM) follow a multi-scale
strategy in which a relatively small part of the system (e.g., the
chromophore) is treated at the highest possible QM level, whereas
the remaining (large) part (including remote regions of the solute
and the solvent, possibly beyond the cybotactic region) is treated
at a lower QM or MM level1–3,131,132.

Broadly speaking, a general QM/MM pipeline includes the fol-
lowing main ingredients:

1. creation of the initial model;

2. sampling of the complete system, carried out at a QM or
classical level including an appropriate representation of the
environment either by a discrete (atomistic) or continuum
(mean field) model or by a combination of both;

3. selection of a representative number of system configura-
tions to perform the subsequent high-level calculations;

4. QM/MM calculations of energies and spectra for the chosen
structures.

All these steps play a comparable role in determining the final
accuracy of the results and, here, we sketch how such a stack
may be built starting from the initial creation of the chromophore
of interest and proceeding step by step to the final estimation of
the property under study. The first step, the creation of an initial
(set of) topology(-ies) for the system of interest (for short, solute
hereafter) and a solvent box, has been discussed in section 2.
Hence, in the following section, we focus our attention on points
2 to 4.

5.1 Molecular dynamics under Non Periodic Boundary Con-
ditions

As is well known, molecular mechanics describes the PESs of
molecular systems in terms of specific (and simple) functional
forms for different kinds of interactions, which depend on a lim-
ited number of parameters and are trained for specific systems
and conditions. This is commonly called force field (FF) and the
accuracy of the classical sampling strictly depends on the quality
of the underlying FF parameters133–137. This has stimulated a
large amount of work devoted to increase the reliability of FFs,
which -in recent years- has seen artificial intelligence come into
play through the replacement of traditional FFs by trained ar-
tificial neural networks (ANN)138–140, possibly guided by some
underlying physical model141. ML comes into play also when a
traditional FF needs to be expanded: the most widespread FFs
in soft-matter simulations are trained for specific domain142–144.
Hence, the inclusion of a new molecule (perhaps small with re-
spect to the size of system) implies a new parameterization. This
can be guided by ANNs using existing parameters, thus achiev-
ing the same or better accuracy at a fraction of the computational
cost145. An additional alternative is offered by Direct Chemical
Perception which soughs to assign FF parameters without the en-
coding forced by atom types146. We will not consider explicitly
these possibilities in the following, making, instead, reference to
specific FFs, whose parameters are optimized against quantum-
chemical results for a single system134, possibly employing ge-
netic algorithms136.

Given a reliable FF, classical Molecular Dynamics (MD) is per-
haps the most widely used tool for sampling the phase space of
molecular systems in condensed phase147,148. Although periodic
boundary conditions (PBC) are usually employed for minimiz-
ing the error related to the finite dimensions of the simulation
box, they are also prone to several artifacts149–152. For this rea-
son, in the last few years, we have linked to the Proxima tool40

(which generates the initial regular drop of predefined dimen-
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Fig. 10 A) Exploration of the glycine PES: the number of calculations performed with MC (green full line9), SA (blue and cyan circles) and the EA
(magenta triangles) is shown. B) Exploration of the threonine PES: the 56 minima found after refinement by Szidarovszky et al.125 (green hexagons)
and those retrieved by different stochastic exploration runs are shown in a feature space constituted by dipole moment magnitude and relative stability
with respect to the global energy minimum; in particular, the combination of the sets of structures found by MC (blue square), single population (1P,
red small circle) and Island Model (IM, yellow star) are shown. C) Exploration of the threonine PES: average number of missing structures (within 15
kJ mol−1 above the global energy minimum) as a function of the number of quantum-chemical calculations for single population (cyan circles) and
Island Model (magenta squares) runs.

sions containing the solute and a suitable number of explicit sol-
vent molecules) a new MD engine153,154 based on non periodic
boundary conditions (NPBC)155,156. The NPBC approaches usu-
ally require a lower number of explicit solvent molecules with
respect to PBC ones and provide a more natural choice for QM
methods based on localized basis functions. In particular, in our
GLOB (General Liquid Optimized Boundary) model157–159, the
regular drop mentioned above (usually a sphere) has elastic walls
and is embedded in a polarizable continuum. The interaction po-
tential between the explicit and continuum (mean field, MF) parts
of the system is partitioned into an electrostatic (el) and a steric
(st) part (UMF =Uel +Ust). The former contribution is described
by means of a polarizable continuum (e.g. CPCM160), whereas
the latter is empirically modeled by an optimization procedure
targeting the experimental bulk density. For each solvent, the fi-
nal numerical representation of Ust is then fitted to a simple form
(usually a polynomial in r or r−1) and added to the library of
potentials for common solvents, already available from previous
studies161,162.

Recently163, we have added the possibility of simulating rigid-
body fragments using the rotational velocity Verlet (RVV) integra-
tor164, which is based on a quaternion formalism165–167. When
applicable, this kind of rigid-body simulations allows to use long
time-steps (up to 4 fs), provides remarkable energy conserva-
tion164,168, and does not suffer from constrain limitations in sim-
ulating specific moieties. The stability of the implemented inte-
grator can be appraised by looking at Figure 11 (panels A and B),
where it can be observed that, irrespective of the used time step,
it outperforms the standard velocity Verlet counterpart. Figure
11C shows, instead, the effect of the inclusion of the UMF term
on the average density (and fluctuations) in concentric shells of
equal volume in the simulation of a spherical chloroform box. As
can be observed, without the UMF term the system presents a den-
sity gradient that is clearly an artifact due to limited size, but the
anisotropy vanishes adding Uel and a properly trained Ust term.

Fig. 11 NPBC simulations. A) Total energy fluctuation (percentage)
for a 200 ps pure acetonitrile (simulated with flexible bonds) trajectory
starting from a box equilibrated at 298K. The fluctuation is plotted as
f (E) =

√
〈(E−〈E〉t)2〉t/〈E〉t where 〈E〉t is the average energy. B) Total

energy fluctuation for acetonitrile trajectories carried out with the RVV
integrator and increasing integration time step. C) Deviations from bulk
density with and without the UMF term in an acetonitrile box163.

5.2 Partition of the PES in basins and sub basins

Having generated the initial structure(s) (see section 2) and per-
formed MD simulations to explore the phase space, the sampled
configurations can be used to model spectroscopic properties.
This usually means to perform some kind of convolution of the
generated data. The simplest possible approach is to take frames
with a fixed interval and possibly increase the density of this se-
lection until convergence of the estimated properties. This ap-
proach, however, suffers from two major drawbacks: (i) it may
require a too large number of calculations and (ii) it does not
provide any insight into structure-property relationships. There-
fore, general and robust procedures are needed to select frames
and maximise the signal-to-noise ratio169, with the most effec-
tive alternatives being represented by unsupervised learning (UL)
techniques, such as cluster analysis170, self-organizing maps171

or combinatorial optimization172. Cluster analysis128,173,174 (or
just clustering for short) is carried out on a set of specific struc-
tural parameters and/or properties (the feature space) in which
the similarity/dissimilarity of groups of objects is measured and,
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Fig. 12 A) clustering of molecular frames for tyrosine zwitterion in aqueous solution using the Principal Components of dihedral angle trajectory as
feature space. Clusters are shown as dots of different colors and the corresponding centroids as stars. B) Clustering of molecular frames for uracil
in aqueous solution: the sum of squared distances of cluster samples from their closest center as a function of the number of clusters is shown. C)
Clustering of molecular frames for uracil in aqueous solution: the final selection of four clusters (evidenced by the red line) is employed to assign
different colors to the sampled points.

hence, nearby objects (simulation frames in the present case) are
assigned to the same group; the feature space is usually defined
by a set of (transformed) coordinates, but it can actually include
any set of properties. Since the right number of clusters cannot be
estimated a priori a priori, validation criteria can (and should) be
applied to select sensible parameter values for the chosen algo-
rithm170,175,176.

Figure 12 shows some examples of clustering simulation
frames. In particular, Figure 12A shows the results of a cluster
analysis carried out with a density-based method (HDBSCAN177)
on a two-dimensional feature space obtained from a principal
component analysis178 of the dihedral angles of tyrosine zwit-
terion in aqueous solution179. Figure 12B and 12C show, in-
stead, the use of the so-called F function (a continuous func-
tion quantifying the strength of hydrogen bonds) to partition the
snapshots of a MD simulation of uracil in aqueous solution into
four different clusters by means of the Partition Around Medoids
method180. As already mentioned, the feature space is not re-
stricted to geometrical parameters, but it can result from the com-
bination of properties belonging to different domains and even
vector fields. A specific example is given in Figure 13, which
shows the clustering of the magnetically induced current density
(MICD) around the metal atom of a ruthenium complex169 and
the analysis of the results in an IVR environment using the Caf-
feine viewer32 (Figure 13B).

5.3 Simulation of spectra

The results of the procedures described in the previous sections
provide the necessary background for the computation of differ-
ent kinds of spectra in condensed phases. The general automatic
procedure we have devised to accomplish this task is summarized
in Figure 14 for the specific case of optical and chiroptical spec-
tra.

The starting points are the centroids of the basins determined
according to the procedures described in the previous section.
Next, for each of them, the following two steps are followed:

1. The required structural, energetic and spectroscopic pa-

rameters are evaluated at the highest possible quantum-
chemical level for the solute. If possibly, a reduced number
of strongly bound solvent molecules is incorporated in the
calculation.

2. Vibrational spectra of one or more electronic states are com-
puted using the generalized VPT2 (GVPT2) approach to
take mechanic and electric/magnetic anharmonicity into ac-
count.56,181,182 If needed, vibrational modulation (vibronic)
effects on optical or chiroptical spectra are computed using
models based on the Franck-Condon principle and a contin-
uum description (PCM) of bulk solvent effects, as described
in detail in refs. 183–185.

Both time dependent (TD) and time independent (TI) formula-
tions of this general approach are available, but in the following
we will make reference only to the TI route, in which the band-
shape is obtained as the sum of the individual transitions between
the vibrational states of the initial and final electronic states. Ei-
ther vertical or adiabatic models can be employed for semi-rigid
molecules, but the presence of large amplitude internal motions
favors the use of the vertical approach, with the so-called Ver-
tical Gradient (VG) model186 only requiring the vibrational fre-
quencies of the initial state and the forces of the final state at the
equilibrium geometry of the initial one.183–185

Fig. 13 A) Hierarchical clustering of the MICD in a ruthenium complex
induced by a magnetic field parallel to the Ru–H bond. The colour
and size of arrows are proportional to the density of vectors in a local
neighbourhood. B) analysis of the results in an IVR environment.
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Fig. 14 Complete workflow for the simulation of spectra of flexible
molecules in condensed phase.

Indeed, remarkable results can be often obtained already at
this level, as shown by several recent studies.187,188 For purposes
of illustration, the VCD spectra of two bimetallic complexes in
acetonitrile solution recently analyzed in our laboratory are con-
sidered (see Figure 15). The computational setup treats explicitly
either the bare complex or the supermolecule formed with the
two acetonitrile molecules in axial positions completing the co-
ordination sphere of the metal, whereas bulk solvent effects are
taken into account by means of the polarizable continuum model,
which does not add further degrees of freedom to the analyzed
system. The computation of reliable VCD spectra for these com-
plexes is particularly demanding due to the dimension and flexi-
bility of the system coupled to the presence of a heavy metal atom,
and to the extreme sensitivity of some spectroscopic signatures to
both stereo-electronic and environmental effects. In particular, a
proper description of the different spectral features requires both
the inclusion of explicit acetonitrile molecules in axial positions
and Boltzmann averaging of low-energy structures. For instance,
although the -,+,- sequence of intensities in the region between
1470 and 1600 cm−1 is present in most of the simulated spectra
issuing from the different structures, significant differences are
apparent: only exploiting the Boltzmann averaging of the indi-
vidual spectra allows to approach the experimental shape (see
Figure 15).

More generally, once the spectra for the selected reference
structures are computed, they need to be combined with the ef-
fect of solvent motions to obtain the final spectra. To this end,
we have recently devised a new model179,189 that merges varia-
tional and perturbative approaches to get an effective yet accurate
evaluation of solvatochromic shifts for a large panel of spectro-
scopic techniques. For a reference frame of each basin/cluster,
the sought spectrum is evaluated by a variational procedure in
which the QM model system is embedded in a set of (possibly
polarizable153,190) point charges representing the environment
(ONIOM/EE).191 Then, for all the other frames of each cluster,
the fluctuations of environmental effects with respect to the ref-
erence configuration are computed a posteriori by a perturbative

approach (the perturbed matrix method, PMM189). In details,
for each frame of each sub-trajectory, the diagonal matrix of the
eigenvalues of the reference configuration is perturbed by another
matrix representing the difference of the electrostatic potential
between the considered frame and the reference value. Diag-
onalization of the overall matrix provides a set of eigenvalues
(electronic states) representing the instantaneous effects of the
embedding environment issuing from MD trajectories. The op-
erator representing the variation between the perturbing effects
exerted by the environment in each frame and the reference is ob-
tained by expanding the perturbing electrostatic potential within
the atomic region around each atomic center.192

Fig. 15 The [Rh2(O-Phe-Ac)(O-Ac)3] (Rh2Ac) complex (A) and the
(Rh2Ac-MeCN) complex (b). C) Experimental (black lines) and the-
oretical harmonic VCD vibrational spectra of individual structures and
Boltzmann average (bold lines). The spectra with or without explicit
acetonitrile molecules are shown in shades of red or blue, respectively.
Theoretical line-shapes have been convoluted by means of gaussian dis-
tribution functions with half-width at half-maximum of 10 cm−1.

As an example of the reliability of this approach, Figure 16
compares the computed one photon emission (OPE, panel A) and
circularly polarized luminescence (CPL, panel B) spectra of cam-
phor in methanol solution with their experimental counterparts.
In this case, the separation of the initial MD trajectory in basins
was performed using a three-dimensional feature space based on
the number of hydrogen bonds between the solvent and the car-
bonyl group of the solute. It is apparent that the simulated spectra
are in remarkable agreement with experiment and reproduce, in
particular, the sign alternation of the chiroptical spectrum, a fea-
ture that can be only recovered by going well beyond the standard
computational models, thereby including vibronic contributions,
intra-molecular flexibility and environment fluctuations. For full
details, the reader is referred to ref. 194.

A second example is offered by the UV absorption spectrum
of the neutral form of tyrosine in acetonitrile (Figure 16C). In
this case, the underlying MD trajectory was partitioned in disjoint
basins with reference to a feature space spanning the six princi-
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Fig. 16 OPE (A) and CPL (B) spectra of camphor in methanol, as obtained by combining the ONIOM/EE-PMM procedure outcome with VG|FC
(black full line) and VG|FCHT (dashed red line) models to simulate the vibronic coupling; the corresponding experimental spectra (from ref.193)
are also reported (green dot-dashed line). C) Tyrosine in acetonitrile electronic absorption spectrum as obtained by applying the ONIOM/EE-PMM
procedure.

pal components of the dihedral angle distrbution. As a matter
of fact, neither the results based on a single reference structure
nor the conventional PMM approach provided reasonable spec-
tra, whereas the ONIOM/PMM model reproduces the full ONIOM
results (requiring about 200 variational computations) with just
6 ONIOM computations followed by inexpensive PMM perturba-
tions.

6 Conclusions
A journey through the meanders of a general “four-pillar strat-
egy” has been carried out. The different parts of the general
platform under active development for implementing this strat-
egy have been illustrated by means of some case studies involv-
ing molecules of different sizes and flexibility in different aggre-
gation states. The common thread of our journey is molecular
spectroscopy because of its capability in disclosing the underly-
ing physical-chemical properties. However, this can be only ac-
complished by means of vis-á-vis comparisons of experimental
and simulated spectra. While the expression ‘simulated spectrum’
might recall a simple diagram based on computed spectroscopic
parameters, we have demonstrated that this is instead the result
of a long process that starts from the raw chemical formula and
proceed thanks to machine learning, quantum chemistry and vir-
tual reality.

We are fully aware that the proposed strategy still requires
other scientific and technological developments, but we hope to
have provided convincing evidences that we already dispose of
flexible, robust and reliable tools. Further research along the
route of the “four-pillar strategy” is thus very promising and could
open new exciting perspectives for the study of the complex sys-
tems and processes of current scientific and technological interest.
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