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This paper contributes to the literature on decision making under multiple probability models by studying

a class of variational preferences. These preferences are defined in terms of Fréchet mean utility functionals

which are based on the Wasserstein metric in the space of probability models. In order to produce a measure

which is the “closest” to all probability models in the given set, we find the barycenter of the set. We derive

explicit expressions for the Fréchet-Wasserstein mean utility functionals and show that they can be expressed

in terms of an expansion which provides a tractable link between risk aversion and ambiguity aversion.

The proposed utility functionals are illustrated in terms of two applications. The first application allows us to

define the social discount rate under model uncertainty. In the second application the functionals are used in risk 

securitization. The barycenter in this case can be interpreted as the model which maximizes the probability

that different decision makers will agree upon, which could be useful for designing and pricing a catastrophe

bond.
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1. Introduction

The classic paradigm of von Neumann-Morgenstern expected utility (or its subjective extension

due to Savage) is the primary “industry standard”. Concretely, if a decision maker (DM) faces a

random variable (lottery) X and the probability measure Q can describe the distribution of X,
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then according to the expected utility functional, the utility of X is U(X) = EQ[u(X)]. This is a

straightforward basis for decision rules; however, it is not clear what the basis would be if there are

doubts as to whether Q is the right model to describe the distribution of X – a situation usually

referred to as model uncertainty. What would happen if more than one probability measure for X

exists? Should the DM pick one model out of this set, or use ex-ante information to construct a

subjective prior probability over models (Marinacci 2015), or do something else?

Since the fundamental contribution of Frank Knight (1921) who first put forth the difference

between risk and uncertainty, the literature has paid increasing attention to the effects on decision

making of the absence of a single probability model for X. Hansen and Sargent’s (2001) multiplier

preferences model promoted the idea of introducing a reference or benchmark model for the random

variable to be evaluated, which is surrounded by a cloud of alternative models (see also Strzalecki

(2011) for the axiomatic foundation of multiplier preferences). More recently, Cerreia-Vioglio et

al. (2011) introduced a general class of complete and transitive preferences that are monotone

and convex, which they call “uncertainty averse” preferences. These preferences include as special

cases the Maccheroni-Marinacci-Rustichini variational preferences model (Maccheroni et al. 2006),

the seminal Gilboa-Schmeidler minimax utility model (Gilboa and Schmeidler 1989), the smooth

ambiguity model of Klibanov et al. (2005) and the multiplier and constrained preferences models

of Hansen and Sargent (2001) and Hansen et al. (2006). See also Strzalecki (2011, Figure 1) for

relations between classes of preferences. Throughout this paper, the term “uncertainty averse”

refers to the concept as introduced by Cerreia-Vioglio et al. (2011).

The present paper contributes to the literature on decision making under multiple probability

models and uncertainty aversion by studying a class of variational preferences – and hence uncer-

tainty averse preferences in the sense of Cerreia-Vioglio et al. (2011) – which are defined in terms of

the Fréchet mean in the space of probability models focusing on the use of the Wasserstein metric

and the Wasserstein barycenter. In Figure 1 we present the relations between the class of variational

preferences and the preferences proposed in this paper. Such preferences are useful in situations in

which the DM faces multiple probability models. These situations may appear naturally in areas

such as finance, where an individual investor faces multiple models for relevant economic variables,

e.g., stock returns; climate change, when there are multiple probability densities regarding the

equilibrium climate sensitivity (Meinshausen et al. 2009, Rogelj et al. 2012, Heal and Millner 2014)

or multiple subjective probability intervals for the emergence of major changes, i.e., tipping points

(Kriegler et al. 2009); or the choice of the discount rate, where multiple models may be relevant

for hidden variables (Gollier 2013).

The first contribution of this paper is to combine the set of plausible probability measures in

order to construct another measure – the barycenter – which could be acceptable because of the
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Figure 1 1: Uncertainty averse preferences (Cerreia-Vioglio et al. 2011), 2: Variational preferences

(Maccheroni et al. 2006), 3: Hansen and Sargent multiplier preferences based on Kullback-Leibler divergence

(Hansen and Sargent 2001), 4: Fréchet mean preferences (Definition 1a), 5: Fréchet multiplier preferences

(Definition 1b), 6: Fréchet-Wasserstein mean preferences (Definition 1 and Section 2.5), 7: Fréchet-Wasserstein

multiplier preferences (Definition 1 and Section 3).

desirable property that the total distance in the metric space of probability measures between the

barycenter and all other probability measures is the minimum. Thus, in a sense, the barycenter is

“as close as possible” to the measures provided by the experts or the beliefs of a DM or, to put it

differently, it is the error minimizing choice.

Second, we introduce uncertainty aversion by augmenting the utility functional with an ambi-

guity penalty which is defined in terms of the Fréchet variance. This results in characterizing

Fréchet mean preferences as variational preferences. Thus it provides a clear link between the use

of the barycenter as a desirable probability measure when the problem is characterized by multiple

probability measures and decision making under uncertainty aversion.

To address the problem of proper metrization of the set of probability measures arising in the

construction of uncertainty averse utility functionals, we choose to metrize the set of probability

measures using the (Monge-Kantorovich-) Wasserstein metric. For this class of uncertainty averse

utility functionals, explicit representations are obtained in terms of appropriate quantile averaging

of the set of models, a concept which has recently attracted attention as a model averaging tool

(see, e.g., Lichtendahl et al. 2013). This is useful in providing tractable results in the attempt to

answer questions related to applications.

The third contribution of the paper is to show that the Fréchet-Wasserstein mean utility function-

als can be expressed in terms of an expansion with respect to an uncertainty aversion parameter.
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The first term of this expansion is the barycentric expected utility, i.e., a von Neumann-Morgenstern

expected utility calculated at the Wasserstein barycenter probability measure QB, while all the

higher order corrections can be interpreted as expected utility corrections calculated at the Wasser-

stein barycenter QB. These corrections correspond to utility functions characterized by a higher

risk aversion coefficient relative to the von Neumann expected utility of the first term of the expan-

sion. This result connects the concepts of uncertainty aversion and risk aversion. Finally, we show

that if many DMs with different models seek to reach consensus, the barycenter can be interpreted

as the model which maximizes the probability of achieving consensus.

In terms of applications, we first use this version of variational preferences to calculate the social

discount rate and show the differences in the discount rate estimates between risk and uncertainty

aversion. Second, we use the interpretation of the barycenter as the model which maximizes the

probability of consensus to suggest that the barycenter could be the consensus model which different

agents can agree upon when considering the securitization of an extreme risk, such as when issuing

a CAT bond. The proofs of the main results can be found in the Appendix at the end of the paper.

All other proofs and technical details are available in the online Appendix.

2. Fréchet and Fréchet-Wasserstein mean preferences

2.1. Motivation

Consider a DM who acts as a planner and who asks a set of experts to provide a model describing

a random variable X. The DM wishes to evaluate X, a task which requires determining the prob-

ability distribution of X. The experts are not unanimous concerning the distribution of X, hence,

the DM faces n possible probabilistic models (priors) Qi, with the set M := {Qi, i = 1, · · · , n}

regarded as a reference set. The DM is not confident of the absolute validity of any of them, which

constitutes the case of model uncertainty.

The discrepancy between the various probability distributions (models) Qi can be quantified by

considering them as elements of P, the set of probability measures on some appropriate sample

space, endowed with some metric d, chosen so that d(Qi,Qj) provides an appropriate notion of

distance between the probability measures Qi,Qj ∈P. Then, one way to choose a model Q∗ using

the set M is to consider the models in M as incomplete observations of the true model Q and try

to interpolate between them, in analogy with a least squares fit in standard regression analysis.

The resulting probability measure, which will be called the barycenter of the set of models M, can

then be considered as the average (or mean) model, in the sense that it provides the best estimate

for an acceptable model compatible with M.
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2.2. Preliminaries and standing notation

Uncertainty here is modeled by a measurable space (Ω,B), where Ω is a set of possible states of

nature and B is a σ-algebra on Ω containing more complex events. The DM faces a payoff (or loss)

X, whose exact value depends on the exact state of nature ω ∈Ω that will be realized and is modeled

as a random variable X : Ω→R, on (Ω,B). However, each expert provides a different probability

measure for the events on Ω, which in turn leads to a different probability measure on R that can

be used to derive a distribution for X, leading to a set of feasible models M = {Qi, i= 1, · · · , n}.

This allows us to focus, if needed, on probability measures on R.

In what follows we will use the notation Qi ∈P or Qi ∈P(R) to distinguish between the general

case and the case where we restrict attention to probability measures on R, respectively. Restrict-

ing attention to P(R) is convenient since all elements Q ∈ P(R) can be represented in terms of

distribution functions F : R→ [0,1], defined by F (x) = Q((−∞, x]) for every x ∈ R, or quantile

functions F−1 : [0,1]→ R. The space of quantile functions will be denoted by Q, and the set of

strictly positive quantile functions by Q++. For most of this work we will restrict our attention to

the case P(R).

The space of probability measures P will be endowed with a suitable metric d. The weighted

average of the squared distances between Q ∈ P, and all probability models Qi contained in the

reference set M⊂P, also known as the Fréchet mean, is given by

FM (Q) =
n∑
i=1

wid
2 (Q,Qi) , w= (w1, · · · ,wn)∈∆n−1,

where ∆n−1 := {w= (w1, · · · ,wn) :wi ∈ [0,1] ,
∑n

i=1wi = 1} is the (n− 1)-dimensional simplex.

The barycenter, or the Fréchet mean denoted by QB, is the probability model which provides

the minimum of the Fréchet function. The quantity FM (QB) is real valued and positive, and can

be interpreted as the minimum square error induced if we approximate the models in M with QB.

The Fréchet variance of M is then defined as FM (QB). The larger the value of FM (QB), the larger

the discrepancies in the models within the reference set of models M. The weights wi could provide

a credibility weighting on each model, with the more credible ones – such as those supplied by the

most authoritative expert or the most reliable measuring device – being assigned higher weight

than the others. The choice wi = 1
n

, i= 1, · · · , n, corresponds to assigning equal credibility to all

models in M.

In this paper, from Section 2.5 onwards, we commit to the 2-Wasserstein metric (also denoted

by W2) and set d=W2. For general definitions and properties of the Wasserstein metric see Section
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EC.1 of the online Appendix. For probability measures Qi ∈ P(R), this metric admits a conve-

nient representation in terms of the quantile functions F−1
i of the measures Qi (where Fi is the

distribution function) as

d(Q1,Q2) :=

(∫ 1

0

(F−1
1 (s)−F−1

2 (s))2ds

)1/2

= ‖F−1
1 −F−1

2 ‖L2([0,1]). (1)

Then, for a set of models M = {Q1, · · · ,Qn} ⊂ P(R), the Wasserstein barycenter can be obtained

in terms of the corresponding quantiles as the weighted quantile average

F−1
B =

n∑
i=1

wiF
−1
i .

We use this metric because:

(a) Unlike other popular distances such as the Kullback-Leibler divergence - which is not sym-

metric or may not satisfy the triangle inequality - it is a true metric, which is compatible with the

weak* topology in the space of measures. Indeed, convergence with respect to the 2-Wasserstein

metric is equivalent to weak convergence of measures plus convergence of the first two moments

(see, e.g., Villani 2008, or Santambrogio 2015).

(b) It allows us to extend one of the most desirable properties of the Kullback-Leibler diver-

gence - that of reducing robust decision problems within the exponential family of distributions to

quadratic optimization problems - to any family. Furthermore, it allows the calculation in closed

form of the resulting variational utility (see Theorem 1) and elucidates the connection between risk

aversion and uncertainty aversion in terms of concrete perturbative expansions (see Theorem 2).

(c) It can be used to establish an upper bound for the difference in expected utility associated

with using different probability measures for determining the expected utility associated with a

random variable. By adapting a classical result (see e.g. Villani 2008 or Santambrogio 2015), it can

be shown (see for example Section EC.2.1 in the online Appendix) that the error in the estimation

of a random variable X, using expected utility under two different probability measures, e.g. Qi,QB,

for the distribution of X, is bounded above as

|EQi(u(X))−EQB(u(X))| ≤Cd(Qi,QB), (2)

provided that the utility function is Lipschitz continuous, where C is the Lipschitz constant for u.

2.3. Barycentric expected utility

Once the barycenter QB for the set of models M ⊂ P is derived, the utility associated with the

random variable X could be defined, under standard risk aversion, in terms of a von Neumann-

Morgenstern-Savage expected utility functional of the form

UB(X) =EQB [u(X)],
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which we will call the barycentric expected utility. Note that even though this is an expected utility,

it nevertheless acounts for the effect of model uncertainty since the barycenter QB is an average

or composite model for the set of models M. This is compatible with subjective expected utility

if one assumes that Qi are the opinions of different experts and QB is one’s way to come up with

one’s subjective probability model (see also Proposition 3).

The next result provides an explicit form for the barycentric expected utility when we restrict

our attention to P(R), i.e., to probability measures on R metrized by the 2-Wasserstein metric.

Proposition 1. Consider the set of models M = {Q1, · · · ,Qn} ⊂ P(R), with each probability

measure Qi represented by the quantile function F−1
i . For any choice of weights w= (w1, · · · ,wn)∈

∆n−1, the barycentric expected utility of a lottery X : Ω→R is given by

EQB [u(X)] =

∫ 1

0

u

( n∑
i=1

wiF
−1
i (s)

)
ds.

Proof: The proof follows easily by the representation of the Wasserstein barycenter in terms of

the quantile average and the change of variables s= FB(x) in the resulting expectation. �.

2.4. Fréchet mean preferences

Barycentric expected utility does not take into account aversion to model uncertainty. To address

such concerns we introduce the uncertainty aversion axiom, which within the framework of varia-

tional preferences is reflected by a penalty which is based on the Fréchet function and variance.

Definition 1 (Fréchet mean utility functionals). Consider a set of models M⊂P, the

corresponding Fréchet function FM and barycenter QB.

(a) For any real valued increasing convex function φ :R+→R+, the family of utility functionals

U(X) := min
Q∈P

(
EQ[u(X)] +φ(FM(Q))

)
, (3)

is called the family of Fréchet mean utilities.

(b) The family of utility functionals

Uθ(X) = min
Q∈P

(
EQ[u(X)] +

θ

2
(FM(Q)−FM(QB))

)
, θ > 0, (4)

are called Fréchet multiplier preferences. θ > 0 is a parameter quantifying uncertainty aversion,

called the multiplier. The constant FM(QB) (Fréchet variance) and the factor 1
2

are included for

normalization purposes.

The family of Fréchet mean utilities is well-posed for appropriate choice of the function φ. This

can be shown by standard arguments using the direct method of the calculus of variations (see

e.g. Kravvaritis and Yannacopoulos 2020). The function Q 7→ φ(FM(Q)) plays the role of a penalty
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function in the space of models, which penalizes certain members of the models in M that are

far apart from QB in our metric (i.e., the outliers). The minimization over the set of probability

measures activates the penalty function and has as a consequence the selection of a probability

measure on which the penalty function achieves moderate values, and X is evaluated on this in

terms of an expected utility contribution plus a correction term depending on the penalty.

In the preferences defined in (3), the penalty function penalizes large dispersion of models in

the sense of the Fréchet variance. This is a plausible choice for uncertainty averse agents, since

large Fréchet variance in the set of models indicates to the agent that the situation at hand cannot

be well modeled, potentially leading to poor results in the decision-making process. If the penalty

function is sufficiently large, then the minimizer Q∗ for the variational problem (3) will be closer to

QB, where the minimum of FM is achieved. This implies that (3) will be similar to the barycentric

expected utility EQB [u(X)]. For moderate contributions of the penalty function, Q∗ will be located

at some distance from QB, leading to deviations of U(X) from EB[u(X)], hence one may express

the utility functional U(X) =EQB [u(X)] +C(X) where C(X) is a correction term corresponding to

model uncertainty. Moreover, since by definition U(X)≤EQ[u(X)] +φ(FM(Q)) for any Q∈P, if φ

is normalized such that φ(QB) = 0, then U(X)≤EQB [u(X)]. This can be considered as some form

of pessimism.

The above arguments become very clear in the case of Fréchet multiplier preferences (see Defini-

tion 1). Note that (FM(Q)−FM(QB))≥ 0 for all Q∈P(Ω) and achieves the value 0 when Q=QB.

If θ is large (θ→∞), then the dominant term in the variational problem (4) is the penalty term,

hence the solution of the minimization problem will be achieved where the penalty term is min-

imized (i.e. at QB), and the resulting value of the utility functional will be close to EQB [u(X)].

Hence in the limit as θ→∞ the Fréchet multiplier preferences converge to the barycentric expected

utility. If θ takes smaller values, the solution of the minimization problem in (4) moves from QB

and the resulting utility functional will be the barycentric expected utility plus corrections. As

stated above, Uθ(X)≤EQB [u(X)], for all θ > 0. This pessimism effect can be intuitively understood

as θ→ 0, by the fact that the weak contribution of the penalty function allows the DM to adopt

probability models which put high probability on the worst outcome. This intuitive approach is

made rigorous in Theorem 2.

Remark 1. Under certain conditions on the function φ (e.g., convexity and lower semicontinuity

for Q 7→ φ(FM(Q))), the corresponding Fréchet mean preferences belong to the class of variational

preferences defined in Maccheroni et al. (2006) and satisfy axioms A.1-A.6 in the online Appendix

EC.3 and most notably the weak certainty independence axiom A.2. Such preferences display

ambiguity aversion effects with Q 7→ φ(FM(Q)) acting as an ambiguity index. Details on this can be
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found in Maccheroni et al. (2006), Cerreia-Vioglio et al. (2011), and Cerreia-Vioglio et al. (2015)

(see online Appendix EC.3 for a formal axiomatic definition).

2.5. Fréchet-Wasserstein mean utilities

From this section onwards we restrict our attention to probability measures on R and assume that

P(R) is metrized in terms of the 2-Wasserstein metric. In this case the utility functionals introduced

in Definition 1 will be called Fréchet-Wasserstein mean utilities (case (a)) or Fréchet-Wasserstein

multiplier utilities (case (b)).

In what follows, we show that the Fréchet-Wasserstein mean utilities can be determined, in

almost closed form, subject to the solution of two simple one-dimensional algebraic equations,

involving the quantile functions that uniquely characterize the probability measures.

Theorem 1. Use the standing notation in Section 2.2, and let F−1
B =

∑n

i=1wiF
−1
i be the quantile

corresponding to the Wasserstein barycenter.

Assume the existence of an open interval I ⊂R+ such that for every (s, ρ)∈ [0,1]×I the algebraic

equation

1

ρ
u′(z) + z = F−1

B (s), s∈ [0,1], ρ > 0, (5)

admits a solution z, denoted by z =: gρ(s), such that the resulting function s 7→ gρ(s) satisfies gρ ∈Q,

hence can be considered as the quantile F−1
ρ of some distribution function Fρ.

Define the function ρ 7→ S(ρ) by S(ρ) = 2φ′(
∫ 1

0
(F−1

ρ (s)−F−1
B (s))2ds), and assume that the alge-

braic equation ρ= S(ρ) admits a solution ρ∗ ∈ I.

Then, under suitable smoothness and integrability conditions on u and φ, with φ convex and

sufficiently steep (see the online Appendix, Section EC.2.2, Remarks EC.1, EC.2), a minimizer of

(3) corresponds to the quantile F−1
∗ = F−1

ρ∗ and the utility functional U(X) can be represented in

the form

U(X) =

∫ 1

0

u(F−1
∗ (s))ds+φ

(
n∑
i=1

wi

∫ 1

0

(F−1
∗ (s)−F−1

i (s))2ds

)
. (6)

Proof: See Appendix A. �

Remark 2. In the case of Fréchet-Wasserstein multiplier preferences, the function S(ρ) = θ for

all ρ ∈ I, hence Theorem 1 simplifies in that ρ∗ = θ, and we only need to solve one algebraic

equation, namely (5) for this single value of ρ= θ (see also the online Appendix, Section EC.2.2,

Remark EC.2). Moreover, in this case we can obtain a perturbative expansion of F−1
θ as well as

Uθ in terms of the uncertainty aversion parameter θ, which elucidates the connection between risk

and uncertainty (see Section 3).
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Remark 3. If we cannot find solutions of (5), then the solution of the variational problem

leading to the definition of the utility functional U is still feasible in terms of non-interior solutions.

This issue is technical and is discussed in the online Appendix (see Section EC.2.3).

It is interesting to note that the quantile F−1
∗ for the probability measure for which the minimum

in (3) is achieved, which is determined by condition (5), depends on: (a) the utility function u

adopted by the DM, (b) the penalty function φ (or the uncertainty aversion parameter θ), and (c)

the Wasserstein barycenter F−1
B corresponding to the set of models M.

In fact, F−1
∗ can be considered as a nonlinear transformation of F−1

B ; for example, the solution

of (5) can expressed as F−1
∗ = Ψ−1

ρ∗ (ρ∗F−1
B ) where Ψ−1

ρ is the inverse of the function x 7→Ψρ(x) =

u′(x) + ρx, x ∈R, ρ > 0. This is a nonlinear quantile distortion effect, since u and φ are (strictly)

increasing functions ρ∗ ≥ 0, and therefore F−1
∗ (s) = F−1

B (s)− 1
ρ∗u

′(F−1
∗ (s)) ≤ F−1

B (s) for any s ∈
[0,1]. The fact that F−1

∗ ≤ F−1
B has an interesting economic interpretation, meaning that F−1

∗

underestimates X at all confidence levels relative to the Wasserstein barycenter. This effect can

be understood as a precautionary effect, an effect which is commonly observed in models of choice

under uncertainty. Moreover, the dependence of F−1
∗ on the penalty function as well as the utility

function allows us to derive quantitative connections between risk aversion, which is related to the

form of the utility function u adopted by the DM, and uncertainty aversion, which is related to the

choice of penalty function φ. Moreover, if the penalty function φ is scaled so that φ(FM(QB)) = 0,

then U(X)≤UB(X) :=EQB [u(X)].

Condition (5) can be interpreted as a first-order condition for the variational problem defining

the utility functional. Its solution provides the quantile function F−1
∗ := F−1

ρ∗ corresponding to the

probability measure for which the minimum in (3) is achieved. The first-order condition can have an

intuitive interpretation as follows: Consider any quantile function F−1 for X and any significance

level s. Then, F−1(s) can be interpreted as an estimate for the value of X at significance level s.

In this respect, the quantile function F−1
∗ determined by condition (5) is the one for which the

marginal utility matches the marginal penalty of diverting from the barycenter F−1
B .

3. Fréchet-Wasserstein multiplier preferences, effective risk aversion
and marginal utility

We now consider the class of Fréchet-Wasserstein multiplier preferences, i.e., the choice φ(x) =

θ
2
(x− FM(QB)), where FM is the Fréchet function for P(R) metrized by the 2-Wasserstein metric.

Without loss of generality we restrict our attention to random variables X achieving positive values

and to utility functions u satisfying the following assumption.

Assumption 1. The utility function u :R+→R is C2 and satisfies the standard Inada conditions

u′(0) = limx→0 u
′(x) = +∞ and u′(∞) = limx→∞ u

′(x) = 0, with |u′′| decreasing.
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The above assumption on u requires the introduction of a further assumption on the set of

models M⊂P(R), which since the uncertain quantity of interest is assumed to be positive, consists

of quantiles F−1
i : [0,1]→R+.

Assumption 2. For every Qi ∈M, Qj(X ∈ [0,Kj]) = 0 for some Kj > 0.

This assumption is not too restrictive as X is not necessarily a relative gain or loss, but the

outcome in some broad sense.

If Assumption 2 holds, then the Wasserstein barycenter quantile also satisfies infs∈[0,1]F
−1
B (s)> 0.

Clearly, if at least one of the models in M satisfies the optimism condition of Assumption 2, then

the corresponding Wasserstein barycenter also shares this property. However, as all the models in

M satisfy Assumption 2, it is reasonable to restrict our attention to minimizers of problem (3)

for multiplier preferences, to quantile functions which are strictly bounded below by a positive

constant (say the minimum of the constants Kj in Assumption 2). In the next section we will show

that such a solution exists and provide a characterization for it.

3.1. An approximate closed form expression for Fréchet-Wasserstein multiplier
preferences and effective risk aversion

In what follows we use the standing notation in Section 2.2 and the framework and further notation

of Theorem 1.

Theorem 2. Under Assumptions 1 and 2, there exists a positive constant θc depending on wi

and Ki (the exact dependence is given in the proof, in Section EC.2.3), such that for θ > θc:

(a) A minimizer Qθ of problem (4) in P(R), is expressed in terms of the quantile F−1
θ ∈Q++,

which is the solution of (5) for ρ= θ, and

Uθ(X) =

∫ 1

0

u(F−1
θ (s))ds+

θ

2

∫ 1

0

(F−1
θ (s)−F−1

B (s))2ds=

∫ 1

0

u(F−1
θ (s))ds+

1

2θ

∫ 1

0

(u′(F−1
θ (s)))2ds.

(7)

It holds that F−1
θ ≤ F−1

B and Uθ(X)≤ UB(X) := EQB [u(X)] for all θ > θc, i.e., the DM underesti-

mates X at all confidence levels as compared to the Wasserstein barycenter, whereas F−1
θ → F−1

B

and Uθ(X)→ Uβ(X) = EQB [u(X)] as θ →∞. If u′ is a decreasing function we get the sharper

estimate F−1
θ ≤ F−1

B − 1
θ
u′(F−1

B ) for all θ > θc.

(b) Assuming that u∈C3, the following perturbative expansion for sufficiently large θ holds:

F−1
θ = F−1

B −
1

θ
u′(F−1

B ) +
1

θ2
u′′(F−1

B )u′(F−1
B ) +O

(
1

θ3

)
,

Uθ(X) =EQB [Vθ(X)], (8)

Vθ(x) := u(x)

(
1− 1

2θ

(u′(x))
2

u(x)
+

1

2θ2

(u′(x))
2
u′′(x)

u(x)

)
+O

(
1

θ3

)
.
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Proof: See Appendix B. �

The expansion in (8) looks like an expected utility representation, but note that the “utility

function” Vθ is not in general an increasing function of x unless θ is large enough – a fact which may

be attributed to the observation that (8) arises as a perturbative expansion of a utility functional

which presents uncertainty aversion effects. Assuming higher differentiability for u, we can define

an absolute and a relative risk aversion coefficient for Vθ, by ρa(x) =−V ′′θ (x)

V ′
θ
(x)

and ρr(x) =−xV
′′
θ (x)

V ′
θ
(x)

respectively, and show that Vθ has the correct behaviour for a utility function as long as u′′′ > 0

and u′′′′ < 0. Substituting the exact expression for Vθ, we can obtain a perturbative expansion for

ρa and ρr in powers of 1
θ
, valid for sufficiently large θ, which provides information on the way in

which the effective risk aversion coefficient for Vθ is affected by the uncertainty aversion parameter

θ.

While this calculation is feasible (yet tedious) in terms of u and its derivatives, it is possibly

more informative to provide the exact form of the “effective utility function” Vθ for the case of

CRRA utilities of the form

uγ(x) =

{
lnx, for γ = 1,
x1−γ

1−γ , for γ > 1.

In this case, after some elementary calculations, we obtain - upon defining γ1 = 1 + 2γ, γ2 = 2 + 3γ

- that

Vθ(x) = uγ(x)− 1− γ1

2θ
uγ1

(x)− γ(1− γ2)

2θ2
uγ2

(x) +O

(
1

θ3

)
, (9)

with the corresponding uncertainty averse utility functional expressed up to second order in the

expansion as Uθ(X) =EQB [Vθ(X)]. The leading order in the expansion for Uθ(X) is the barycentric

expected utility, while the corrections can be interpreted again as barycentric expected utilities

albeit corresponding to other members of the CRRA family, but importantly with larger risk aver-

sion coefficients. This observation connects uncertainty aversion with risk aversion in a quantitative

manner, and indicates that an uncertainty averse agent will act as a risk averse agent with a higher

risk aversion coefficient. It is also clear that Uθ(X)≤EQB [u(X)], thus effective risk aversion leads

to a utility functional for X reduced as compared to the barycentric expected utility. Moreover,

the effects of ambiguity aversion become weaker for high wealth levels.

A similar result can be obtained for CARA utility functions1 u(x) = 1
λ
(1− e−λx), as

Vθ(x) =
1

λ
(1− e−λx)− λ

2θ
e−2λx− λ2

2θ2
e−3λx +O

(
1

θ3

)
. (10)

It is interesting to note that the expansion in (9) in the case where γ = 1 corresponds to a

family of utility functions proposed by Bell and Fishburn (2001, p. 604) while the expansion in (10)

1 Such functions do not satisfy limx→0 u
′(x) =∞ but this is not essential for our arguments, see Remark EC.5.
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corresponds to the family of sumex utility functions (see Bell 1988, 1995). These utility functions

for the leading order correction satisfy either the strong one switch or the one-switch property

(Bell 1988, Bell and Fishburn 2001). The utility function expansion in (10) to higher order than

the first satisfies the n-switch property (Bell 1988).2

3.2. Marginal utility

Since in some of the potential applications of the Fréchet-Wasserstein multiplier preferences it will

be necessary to explicitly use marginal utility, in this subsection a convenient representation for

this quantity is provided. In this context marginal utility is the change in the expected utility of

an individual from a small deterministic change in his/her initial endowment when the individual

is uncertainty averse.

Definition 2 (Marginal ambiguity-averse utility). Assume that an agent considers the

random endowment X and let M be a relevant set of models concerning the distribution of X.

Let ε > 0 be a non-random infinitesimal endowment and let Uθ(X), Uθ(X + ε) be the Fréchet-

Wasserstein multiplier utilities corresponding to X and X + ε respectively as in Definition 1. The

marginal utility of X is defined as

Mθ(X) := lim
ε→0

1

ε
(Uθ(X + ε)−Uθ(X)),

provided that the limit exists.

Proposition 2, which uses the standing notation in Section 2.2, and the framework and further

notation of Theorems 1 and 2, provides the representation of the marginal utility under Fréchet-

Wasserstein multiplier preferences.

Proposition 2. Under the same assumptions as in Theorem 2, for θ > θc it holds that

(a) The marginal utility Mθ is represented as

Mθ(X) =

∫ 1

0

u′(F−1
θ (s))ds=EQθ [u

′(X)]. (11)

Morever, it holds that

Mθ(X)≥MB(X) =EQB [u′(X)], ∀θ > θc,

while Mθ(X)→MB(X) for θ→∞.

(b) For large θ, and assuming sufficient smoothness for u, marginal utility admits the expansion

Mθ(X) =EQB [u′(X)Cθ(X)], (12)

where Cθ(X) is a correction factor of the form

Cθ(X) = 1− 1

θ
u′′(X) +

1

θ2

[
(u′′(X))2 +

1

2
u′′′(X)u′(X)

]
+O

(
1

θ3

)
. (13)

2 The authors wish to thank the Department Editor Manel Baucells for bringing this fact to their attention.
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Proof: See Appendix C. �

Remark 4. The statement of Proposition 2(b) admits a very intuitive interpretation. Recall

that by Theorem 2(b) we know that F−1
θ ≤ F−1

B for all θ > 0, which means that the uncertainty

averse agent using the probability model with quantile function F−1
θ provides statistical estimates

for X, which at all confidence levels are lower than the corresponding estimates provided by the

model related to the Wasserstein barycenter of M. However, by Proposition 2(a), the marginal

utility of the uncertainty averse agent admits a representation under the model with quantile

function F−1
θ . Since F−1

θ underestimates F−1
B , the marginal utility corresponding to model F−1

θ will

be higher than the marginal utility corresponding to model F−1
B (since u′ is a decreasing function

so that u′(F−1
θ )≥ u′(F−1

B )). Note furthermore that while M(X)≥MB(X) for all θ > 0, this does

not necessarily hold for the approximations of Mθ in terms of expansion (12), since in general we

do not know the sign of the term u′′′. However, for families such as the exponential or the CRRA

family, u′′′ > 0, so the general property M(X)≥MB(X) which is valid for all θ is satisfied by the

expansion as well. An example of marginal utility in the CRRA family is presented in the online

Appendix, Section EC.2.4.

4. Applications

Fréchet mean preferences can be used as a tool for decision making in various applications. Their use

will be more important in cases where multiple plausible models are available for the phenomenon

under study, such as determining the social discount rate (Section 4.1), or in consensus decision

making when multiple agents, each with a different viewpoint or model, must reach a commonly

acceptable decision such as for the design and pricing of catastrophe bonds (Section 4.2).

4.1. The social discount rate under Fréchet-Wasserstein multiplier preferences

The social discount rate (SDR) is one of the most fundamental but also controversial parameters

in cost-benefit analysis. In the area of climate change, for example, the discussion between Stern

and Nordhaus (Stern 2007, Nordhaus 2007)3 about the choice of the discount rate revealed the

importance of this parameter for the design of climate policy. Given the uncertainty associated with

valuation problems in which the SDR is used to discount future cost and benefits, the approach

developed in this paper could be useful when the SDR is used under conditions of deep uncertainty.

4.1.1. Uncertainty aversion, Fréchet-Wasserstein multiplier preferences and the

Ramsey discounting formula In the absence of model uncertainty the SDR is determined by

the classical consumption-based Ramsey discounting formula

r(t) = δ− 1

t
ln

E[u′(C(t))]

u′(C(0))
,

3 For the choice of the SDR, see also for example Gollier (2002), Weitzman (2007), Dasgupta (2008) and Heal (2009).
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where δ is the utility discount rate, C(t) is consumption at time t (which is a random variable)

and C(0) is today’s consumption. Intuitively, if expected marginal utility in the future is higher,

then the future is discounted less. This formula provides a term structure for r and is a crucial

parameter in standard cost-benefit analysis (Gollier 2013).

Assume now that a regulator seeks to calculate the SDR in the presence of model uncertainty. The

regulator has a standard CRRA utility function and has its own estimates of the utility discount

rate δ and the elasticity of marginal utility or, equivalently, the coefficient of relative risk aversion

γ. The regulator, however, does not have a model for the evolution of uncertain future consumption

and thus asks experts. The experts provide different models, i.e., probability measures, for the

stochastic future consumption, but the regulator is not able to consider a specific model as the most

credible or as the benchmark model. The Fréchet mean preferences developed in this paper, and

in particular the Fréchet-Wasserstein multiplier preferences, can be used to provide a satisfactory

approach to estimating the SDR.

To bring this problem into our general framework, we assume that for any fixed t > 0, the

random variable X = C(t) is the unknown consumption at this instant in time, and that there

is a set of models Mt of probability measures concerning the distribution of C(t). This set of

models is described in terms of the quantiles F−1
t,i , i= 1,2, · · · , n, with Wasserstein barycenter Qt,B,

represented by the quantile function F−1
t,B =

∑n

i=1wiF
−1
t,i .

We can distinguish two cases:

1. The regulator has von Neumann preferences (see Section 2.3), specified by the barycentric

expected utility using the Wasserstein barycenter Qt,B, so that the SDR is

rB(t) = δ− 1

t
ln

EQt,B [u′(C(t))]

u′(C(0))
. (14)

2. The regulator is uncertainty averse with an aversion towards model dispersion which is quan-

tified by Fréchet-Wasserstein multiplier preferences for some multiplier θ (see Definition 1). For

any fixed t > 0, a direct application of Theorem 2 for X =C(t) allows the calculation of the utility

functional Uθ(C(t)), whereas by repeating the arguments that led to the derivation of (14), we can

see that the relevant SDR formula now assumes the form

r(t) = δ− 1

t
ln

[M(C(t))]

u′(C(0))
= δ− 1

t
ln

EQ∗t [u
′(C(t)]

u′(C(0))
, (15)

where the standard expected marginal utility is now replaced by M(C(t)) (see Definition 2 and

Proposition 2) and Q∗t is the probability measure corresponding to the quantile function (F ∗t )−1.

With regard to formula (15), it should be noted that:

(a) This seemingly simple formula takes model uncertainty fully into consideration since the

effects of uncertainty are included in the minimizing quantile (F ∗t )−1.
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(b) In the limit as θ→∞, r(t)→ rB(t), and the barycentric SDR rB provided by (14) is obtained.

(c) Since by Proposition 2 it holds that EQ∗t [u
′(C(t)]>EQt,B [u′(C(t)], and keeping in mind that

u′(C(0))> 0, we conclude that

r(t)< rB(t), t∈R+, θ > 0, (16)

which implies that the effect of uncertainty aversion is to decrease the SDR relative to the SDR

obtained under risk aversion with expected utility defined in terms of the Wasserstein barycenter

model QB. This can be regarded as a second-order precautionary effect.

(d) The perturbative expansions obtained in Section 3 can be used to analytically approximate

the SDR using formula (15). Such approximations, which can provide information on the depen-

dence of the SDR on various parameters of interest (such as θ or in the case of CRRA utilities

the risk aversion coefficient γ), are provided in the online Appendix EC.2.5. As shown there, the

effect of uncertainty aversion, at least to first order in 1
θ
, is to decrease the SDR as compared to

the barycentric one.4 The relevant comparison for general θ follows from Proposition 2. Moreover,

in the general case and without the need to resort to any approximation, one can directly calculate

the SDR using formula (15) numerically, using the algorithm presented in the online Appendix

(Section EC.2.5 and in particular Section EC.2.5.5).

4.1.2. Numerical experiments In this section we present some numerical experiments which

clarify our approach in estimating the SDR under multiple models and uncertainty aversion.

The case of a single model Following Gollier (2013, Ch. 4), we assume that the consumption

process C(t) follows a single factor (autoregressive) model of the form

C(t+ 1) =C(t) exp(x(t)),

x(t+ 1) = µ+ y(t) + εx(t),

y(t) = φy(t− 1) + εy(t),

(17)

where εx(t), εy(t) are independent and serially independent with E[εx(t)] = E[εy(t)] = 0 and

V ar(εx(t)) = σ2
x, V ar(εy(t)) = σ2

y, y−1 is some initial state, and φ∈ [0,1] is a parameter representing

the degree of persistency (mean reversion) of y. The choice φ= 0 reduces the model to a standard

random walk model which is a discretization of a Wiener process. The case where φ 6= 0 corresponds

to a discretization of an Ornstein-Uhlenbeck process. Typically, {y(t)} is an unobserved stochastic

factor, which has an effect on the observed growth rate {x(t)} of the consumption process {C(t)}.

4 Gierlinger and Gollier (2009) study the SDR under ambiguity in the context of smooth ambiguity preferences
(Klibanoff et al. 2005). They identify an ambiguity prudence effect which tends to reduce the SDR and a pessimism
effect which has an ambiguous impact. However Gierlinger and Gollier (2017) indicate that, under variational pref-
erences, pessimism reduces the SDR.
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A straightforward induction procedure shows that, given φ and y−1, the stochastic consumption

process {C(t)} is lognormally distributed and in particular

lnC(t)− lnC(0)∼N(µt, σ
2
t ),

where

µt = µt+ y−1

1−φt

1−φ
,

σ2
t =

σ2
y

(1−φ)2

[
t− 2φ

φt− 1

φ− 1
+φ2φ

2t− 1

φ2− 1

]
+σ2

xt.

When all the parameters and the distributions of noise terms concerning model (17) are fully

known, i.e., when we are in a world of a single model, the Ramsey formula can be used to produce

a term structure for the SDR (Gollier 2013). Using the general class of CRRA utilities, Gollier

produces an analytic formula for the term structure of the discount rate as

r(t) = δ+ γ
1

t
µt−

1

2
γ2 1

t
σ2
t .

Bansal and Yaron (2004) calibrated the factor model for consumption to data from the period

1929-1998 using annual data from the USA, producing estimates for the monthly mean return

and volatilities of µ = 0.0015, σx = 0.0078, σy = 0.00034, and estimated the reversion parameter

as φ= 0.979. Using these parameter values, Gollier implemented formula (17) to produce a term

structure which is increasing or decreasing depending on the sign of y−1. In particular Gollier used

a range of values for y−1 ∈ [−0.001,0.001] for his numerical experiments for the term structure. In

the case where φ= 0, the term structure is flat.

Multiple models without uncertainty aversion Even if we trust the autoregressive model

for the evolution of consumption, there are parameters related to the hidden variables included

in the model, the value of which can be doubted. For the sake of illustration consider the two

parameters φ and y−1. Different estimations or opinions regarding the parameters p = (φ,y−1)

produce different parameters µt and σ2
t , therefore different models for the distribution of C(t). The

important question that arises is how the emergence of multiple models affects the SDR relative

to the single model case (17).

We study this case when each model in the set Mt is a lognormal model of the type presented

in (17). Each has parameters with values µ = 0.0015, σx = 0.0078, σy = 0.00034 (see Bansal and

Yaron 2004), but has a different choice for the parameters φ or y−1 or both. It is quite natural to

allow some uncertainty for these parameters and in particular for y−1 as these are the ones whose

estimation is more delicate. For the needs of the experiments presented here, we have generated
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the set of models Mt by selecting the parameters φ and y−1 corresponding to each model in Mt by

uniform sampling from the intervals [0.977,0.98] and [−0.001,0.001] respectively.5 Then, for the

given set of models Mt, and assuming no uncertainty aversion for the regulator, we calculate the

term structure of barycentric SDR rB(t).

The results for a typical calculation of this type are displayed in Figure 2, where 10 models were

considered as comprising the model set Mt. Each model was used to calculate the term structure

for r over the next 50 years (blue lines), while rB (red line) was calculated by assigning equal weight

wi = 1/10 to each model in M and using the algorithm in section EC.2.5.5. Note that the difference

in the shape of the term structure for the individual realizations of the models in Figure 2 (blue

lines) arises from the different values of the parameter y−1 used in each simulation. As pointed out

in Gollier (2013), the shape of the term structure curves depends on the sign of y−1, with y−1 > 0

and y−1 < 0 leading to convex and concave curves respectively. In particular, Gollier notes that

if the recent growth rate is exactly at its historical mean (y−1 = 0), the yield curve is decreasing

with the slope describing the precautionary effect of the increasing annualized variance of future

log consumption due to the persistence of shocks. During a downturn (y−1 < 0), the yield curve is

upwards sloping, with the shape mostly expressing an accelerating wealth effect generated by rising

growth expectations, while when the economy is booming (y−1 > 0), the yield curve is decreasing

because of diminishing expectations. This shows that different views concerning y−1 may lead to

different yield curves, and this is the effect of the presence of various models (blue lines). On the

other hand, the red curve is the average model (barycentric model) which takes into account all

models, properly weighted through their Wasserstein distance.

Multiple models under uncertainty aversion Finally, assuming uncertainty aversion and

Fréchet multiplier preferences, we use expansion (EC.16) for suitably truncated lognormals, to

assess the effects of the uncertainty aversion parameter θ on the term structure of the SDR r(t).

In Figure 3 we display the results of two numerical experiments. In the first panel we assume

that the barycentric model QB corresponds to a log-normal distribution derived from the Gollier

model (17) for the choice of parameters µ= 0.0015, σx = 0.0078, σy = 0.00034 (Bansal and Yaron

2004) and φ= 0. The red line corresponds to the term structure as described by the Wasserstein

barycenter model rB(t) while the blue line corresponds to the term structure when the uncertainty

aversion parameter is θ= 10. Note that rB(t) produces a flat term structure, as expected, since in

the case when φ= 0, model (17) is a random walk model and rB is defined in terms of expected

utility (Gollier 2013). On the other hand, the uncertainty averse discount rate r displays a term

5 The reason for choosing such an interval of values for φ is that φ is estimated with a statistical error and the range
of the interval corresponds to possible values of the statistical estimator φ̂ for φ, while y−1 is not specified at all as
it corresponds to a hidden variable in the model.
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Figure 2 The individual term structure curves (blue) and the barycentric term structure (red).

structure and, furthermore, r(t)≤ rB(t) as expected from (16). The discrepancy between rB and r

appears for small t, while over longer horizons the two discount rates approach each other. In the

second panel, the parameter values are the same, with the exception of φ which is now chosen to

be φ= 0.979, thus rendering model (17) a mean reverting model. The set of models M consists of

probabilistic models for C(t) drawn from the general class of stochastic models (17), where each

model in M is generated by keeping the parameters µ= 0.0015, σx = 0.0078, σy = 0.00034, φ= 0.979

in (17) fixed, and varying the parameter y−1 in the range [−0.001,0.001], using equal weights for

all scenarios. In this case, rB (the red line) displays term structure as well, as expected (see Gollier

2013), and so does the uncertainty averse discount rate r (drawn for θ= 10 as the blue line). Note

that r(t)≤ rB(t), the difference being more prominent over short horizons, while becoming rather

weak over longer horizons. Finally, by expansion (EC.15), rB(t)− r(t) is decreasing with increasing

θ for large enough values of θ.

4.2. The Wasserstein barycenter in consensus group decision making: Application
to CAT bond pricing

As a final application, we consider the use of the Wasserstein barycenter in group decision making

and show that it can be used in the formulation of proposals that are most likely to lead to

consensus of a group of DMs with varying models concerning an unknown risk. In particular we
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Figure 3 Comparison of the term structure predicted by the barycentric model rB(t) (red line) and the

uncertainty averse Fréchet-Wasserstein model r(t) (blue line) for two different choices of the parameters in the

Gollier model (17).

show that the use of the Wasserstein barycenter as a commonly acceptable probability model upon

which a decision is made is the one which maximizes the probability of reaching consensus.

While the above framework can be encountered in a wide variety of situations, we choose as a

motivating example the issuance and pricing of a CAT bond.

CAT bonds are risk sharing instruments, used by a group of firms in the management of extreme

risks such as natural and climate-change related disaster risks (e.g., earthquakes, hurricanes, floods,

fires) and cybersecurity risks. CAT bonds are issued by insurance and reinsurance firms, corpora-

tions, government bodies and others. CAT bonds have attracted interest in both the academic and

the more applied case study oriented literature. Various pricing methods were proposed, includ-

ing actuarial type pricing methods, stochastic pricing models based on the Poisson or the doubly

stochastic Poisson process, utility-based pricing methods or econometric-based methods (see e.g.

Burnecki and Kukla 2003, Froot 2007, Froot and O’Connell 2008, Cummins and Barrieu 2013,

Galeotti et al. 2013, Edesess 2015). The important effects of ambiguity on the spreads of CAT bonds

have been noted quite early in the literature (see e.g. Bantwal and Kunreuther 2000). Another

important aspect of CAT bonds is the involvement of multiple agents in their design and pricing

(see e.g. Edesess 2015), a fact that affects the calculation of the expected loss, which according to
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econometric studies is one of the key drivers in CAT bonds prices (see e.g. Galeotti et al. 2013). The

application in this section focuses on these two last aspects, and in particular on the determination

of a model for the risk which maximizes the probability of acceptance by all parties involved, and

on the resulting pricing of the CAT bond. For a detailed review on CAT bonds, including their

design and mechanics, see Cummins and Barrieu (2013) and the references therein.

As a consequence of their nature, more than one agent is involved in the issuance of a CAT bond,

such as insurers; reinsurers; corporations; pension funds; structuring agents who assist the issuer

in selecting trigger type and are involved in placing the bond with investors (investment banks

or brokers); modelling agents who estimate the risk based on models and simulations (e.g., Risk

Management Solution, Inc, or Eqcat); ratings agencies and others (see for example Edesess 2015).

All, or the majority, of these different actors must agree on some common characteristics concern-

ing the contract structure of the CAT bond, which are related to a common agreement concerning

the estimation of the extreme risk. Since extreme risks are by nature rare events, the lack of suffi-

cient historical data places them within the realm of model uncertainty, as it is not possible on the

basis of statistical evidence to single out a unique probabilistic model for the random variable L

corresponding to the risk. On the other hand, in order for all parties to agree upon the issue and

the actual contract terms, a commonly agreed model for the distribution of the extreme risk must

be adopted. The agreement is a necessity, as the issuance of a risk sharing instrument is of mutual

benefit to all parties. Since in principle each agent involved may have a different prior for the risk,

the valuation has to be effected by a commonly agreed probability model for the risk, or at least

by a model which the agents involved have the maximum probability of agreeing upon. The issue

of identifying such a model of common acceptance is important for the construction and pricing of

the CAT bond.

Before proceeding further, it is useful to present more details concerning the structure and

function of CAT bonds. This type of instrument has become very popular in recent years, as a

vehicle for transferring extreme risks from insurers and re-insurers to investors. It constitutes a

tool that enables: (a) extreme risks to be covered more efficiently, providing solvency to those

involved in the insurance business; and (b) attractive investment opportunities with potentially

high returns to be provided to investors, which are largely uncorrelated to other market indices,

hence offering at the same time a useful hedging tool. The basic structure of a CAT bond is as

follows. A sponsor or group of sponsors, typically a reinsurer, contacts a special purpose vehicle

(SPV) in order to enter an alternative reinsurance contract which will guarantee solvency in case

of occurrence of extreme losses. The sponsor, at the cost of some premium ρ, will receive insurance

coverage up to some level h, in the case of extreme losses. The SPV for its own coverage, and

in order to guarantee the possibility of covering amount h for the sponsor, issues a CAT bond,
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which is a standard defaultable bond, with the default triggered by the event of extreme losses of

the sponsor. Several payoff structures are possible: if the amount h is issued in bonds, then (a)

in the absence of a triggering event, the bond provides coupons to the investors corresponding to

interest r + ρ, where r is a standard interest rate (e.g., LIBOR) and a principal h; while (b) in

the presence of the triggering event, coupons are reduced to (r + ρ)(1− d1) and the principal is

reduced to h(1− d2), for suitable d1, d2. Other payoff structures are possible, and there exists a

variety of CAT-based derivatives such as CAT swaps which provide a multitude of opportunities

for risk sharing and efficient risk management.

However, the success of such instruments, especially in the primary market, crucially depends

on the choice of the premium ρ, which in turn is related to the spread of the CAT bond. Numerous

theoretical and empirical studies have shown that the most important quantity is the expected loss

EL=E[G(L)] where L is the random variable corresponding to the catastrophic risk and G :R+→

R+ is an appropriate function related to the cover agreement between the sponsor(s) and the SPV.6

One commonly used model for the spread is a linear model of the form ρ = c1 + c2EL (Galeotti

et al. 2013) for appropriate constants c1, c2 which are determined by linear regression and may

incorporate geographic or seasonal effects. Other models are based upon utility pricing arguments

and result in nonlinear models of the form ρ=EL+ γ(PFL)α(CEL)β, where PFL= P (L> a) is

the probability of first loss and CEL=
E[L(a,a+h)|L>a]

h
=

E[L(a,a+h)]

hP (L>a)
is the conditional expected loss.7

4.2.1. Consensus achievement and pricing of CAT bonds The above discussion clearly

indicates the need for agreement on the probability P (L≥ x), no matter which pricing methodology

is adopted for the CAT bond. This requires the development of a scheme which allows the parties

involved in the design of the CAT bond to reach consensus concerning the probability model for the

extreme risk. Even though each agent may have a different prior concerning the probability P (L≥

x), it is in their common interest to agree on a common model that will favor the issuance of the

bond, hence each agent will be willing to change her/his initial prior and accept a new probability

model for L as long as the uneasiness caused by this change is not too high. It is reasonable to

assume that this uneasiness is an increasing function of the distance d(Q,Qi) between the prior

Qi of agent i, concerning the risk, and the adopted probability measure Q. Put differently, the

probability pi of agent i accepting the probability measure Q can be expressed as pi =ϕi(d
2(Q,Qi)),

where ϕi : R+→ [0,1] is a decreasing function characterizing the strength of each agent’s belief in

6 For example, a typical agreement in such type of contracts is the cover of a particular tranche of the catastrophic
risk, e.g. G(L) =L(a,a+h) = 01L≤a + (L− a)1a<L≤a+h +h1L>a+h, for appropriately chosen a and h.

7 A different type of popular models for pricing CAT bonds is models using the Wang distortion operator (Wang 2000,
Galeotti et al. 2013) in which the probability of loss P (L≥ x) plays an important role, as the premium is expressed in
terms of ρ= 1

h

∫ a+h

a
g(P (L≥ x))dx where g : [0,1]→ [0,1] is a nonlinear function such that g(0) = 0, g(1) = 1, g′ ≥ 0,

lims→0 g
′(s) =∞ and g′′ ≤ 0.
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the prior and her/his willingness to move.8 If the agents are independent, the probability of all of

them agreeing with the mediator’s proposal is equal to p= p1 · · ·pn. The choice of the probability

measure Q that satisfies as many agents as possible can then be expressed as the problem of

choosing Q so as to maximize probability p. Since the problem of maximizing p is equivalent to

the problem of maximizing ln(p) under the above assumptions, it can be seen that the probability

measure which will maximize the probability of attaining a consensus is the solution to

max
Q∈P

n∑
i=1

ln(ϕi(d
2(Q,Qi)). (18)

We adopt the metrization of the space of probability measures in terms of the Wasserstein

metric d(Q,Qi) =W2(Q,Qi) and consider the corresponding problem (18). We will show that the

probability measure Q which maximizes the probability of all agents agreeing to it, is the Fréchet

barycenter of the set of models, with a choice of weights which corresponds to the functions ϕi.

Proposition 3. Assume that the models Qi, i = 1, · · · , n, for risk L are expressed in terms

of the probability distributions Fi and the corresponding quantiles F−1
i and define the quantities

Mij :=
∫ 1

0
F−1
i (s)F−1

j (s)ds, i, j = 1, · · · , n. Moreover, assume sufficient smoothness and integrabil-

ity conditions for the decreasing functions ϕi : R+→ [0,1] and let Φi := − ln(ϕi), i = 1, · · · , n, be

increasing and convex.

A probability measure Q ∈ P(R) that maximizes the probability of agreement of all agents coin-

cides with the Wasserstein barycenter QB represented by the distribution function FB given by the

quantile average

F−1
B =

n∑
i=1

wiF
−1
i ,

where the weights w= (w1, · · · ,wn) are solutions of the set of algebraic equations

wi =
Φ′i (Λi(w))∑n

j=1 Φ′j (Λj(w))
, i= 1, · · · , n, (19)

with

Λi(w) :=Mii− 2
n∑
`=1

Mi`w` +
n∑
`=1

n∑
k=1

M`kw`wk, i= 1, · · · , n. (20)

Proof: See Appendix D. �

Proposition 3 shows that the probability measure for L that maximizes the probability of agree-

ment of all agents corresponds to the Wasserstein barycenter with a particular choice of weights,

8 We express φi in terms of d2(Q,Qi) for ease, as d2(Q,Qi) displays smoothness properties which make the analysis
more explicit; clearly, upon redefining φi, this probability could be expressed in terms of d(Q,Qi).
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which are endogenously determined in terms of the elasticities of the functions ϕi which model the

rigidity of the various agents to their priors. In some sense these reflect the bargaining power or

authority of each agent in the group.9 If agents are symmetric with ϕi(z) = exp(ci−c z), i= 1, · · · , n

for ci, c appropriate constants and with ci possibly varying from agent to agent but c being the same

for all agents, the resulting weights will be 1/n. This interpretation of the Wasserstein barycenter

provides a further argument in favor of its use as a decision-making tool under model uncertainty.

Other schemes for the choice of the weights wi could be adopted in place of the one in Proposition

3. For example, the weights can be assigned to the models in terms of a learning scheme, where

more weight is assigned to models which perform better in predictions of the risk, whereas models

which underperform in this task are penalized (e.g., Papayiannis and Yannacopoulos 2018).

We are now ready to proceed with the pricing of the CAT bond. A class of suitable models for

the extreme risk is the class of generalized extreme value (GEV) distributions, described by the

probability distribution functions

Fi(x) =


exp

(
−
(

1 + ξi

(
x−µi
σi

))−1/ξi
)
, ξi 6= 0,

exp

(
−e−

(x−µi)
σi

)
, ξi = 0,

which can be inverted to explicitly obtain the quantile functions

F−1
i (s) =

{
µi + σi

ξi
[(− lns)−ξi − 1], ξi 6= 0,

µi−σi ln(− lns), ξi = 0,

where µi ∈R is a location parameter, σi > 0 is a scale parameter and ξi ∈R is a shape parameter.

The support of the distribution depends on the scale parameter, with

supp(Fi) =


[µi− σi

ξi
,+∞), ξi > 0,

(−∞,∞), ξi = 0,
(−∞, µi− σi

ξi
), ξi < 0.

Note that the above distributions do not necessarily have the same support.

Given a set of weights w = (w1, · · · ,wn) determined in the context of Proposition 3, the corre-

sponding Wasserstein barycenter is F−1
B =

∑n

i=1wiF
−1
i . In the case where all models correspond to

the same shape parameter ξi = ξ, the Wasserstein barycenter corresponds to a member of the GEV

family with µB =
∑n

i=1wiµi, σB =
∑n

i=1wiσi and ξB = ξ. In the general case, the quantile function

F−1
B is explicitly known and its inversion is therefore an easy numerical task (though not feasible

9 Note that the problem studied in Proposition 3 is formally similar to (and in fact inspired by) a Nash bargaining
game in the space of probability models (measures). In such an interpretation, each prior is associated with the
preferred point of each agent in bargaining space, whereas the disutility which arises from shifting from the preferred
point is a function of the distance between the initial and the final points. In our interpretation, this disutility is
associated with the probability of accepting the new probability model.
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in closed form). The family of GEV distributions, which encompasses in one family the three types

of extreme value distributions (Gumbel, Weibull and Fréchet), has been successfully used in the

literature to model the distribution of extreme risks such as earthquakes and floods.

The premium will be determined in terms of the quantity E[L(a,a+h]] which will now be calculated

under the Wasserstein barycenter, in terms of

EL=EQB [L(a,a+h]] =

∫ h

0

SB(a+ y)dy= h−
∫ h

0

FB(a+ y) = h−
∫ a+h

a

FB(y)dy, (21)

or through the equivalent representation

EL=EQB [L(a,a+h]] =

∫ 1

0

G(F−1
B (s))ds=

∫ FB(a+h)

FB(a)

(F−1
B (s)− a)ds+h(1−FB(a+h)). (22)

Both representations are easily computed numerically for the Wasserstein barycenter. For certain

special cases, such as when all the agents have models with the same shape parameter ξi = ξ (which

is a reasonable assumption for certain types of extreme risks which are modelled by the Gumbel

type), the calculation can be performed analytically. In such cases,

F−1
B (s) =

{
µB + σB

ξ
[(− lns)−ξ − 1], ξ 6= 0,

µB −σB ln(− lns), ξ = 0,
, and FB(x) =


exp

(
−
(

1 + ξ
(
x−µB
σB

))−1/ξ
)
, ξ 6= 0,

exp

(
−e−

(x−µB)
σB

)
, ξ = 0,

so that EL can be approximated in terms of the exponential integral function E1 or an appropriate

series expansion.

5. Concluding Remarks

We study decision making under model uncertainty which is characterized by multiple probability

measures, or models, associated with a random variable. We use as the basis for decision making

in such a context a probability measure which is the Fréchet mean, or the barycenter, of the set of

probability measures. By introducing ambiguity aversion, we show that Fréchet mean preferences

are variational preferences, and provide their representations in terms of utility functionals.

The Fréchet-Wasserstein mean utility functionals developed in this paper could provide another

representation of variational preferences when the framework of a benchmark model which deter-

mines a Kullback-Leibler entropy ball cannot be used. Using the Wasserstein metric provides a

tractable representation of utility functionals which allows us to characterize changes in expected

utility when different models are used, and allows for differential treatment of models according

to a weight vector. It also overcomes some technical issues associated with the Kullback-Leibler

entropy. Moreover, it allows for use of expansions in the ambiguity aversion parameter to derive

a tractable quantitative relation between the degree of relative (or absolute) risk aversion and the

parameter reflecting ambiguity aversion.
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The tractability of the Fréchet-Wasserstein mean or multiplier preferences could be useful as a

decision-making framework under uncertainty and uncertainty (or ambiguity) aversion for problems

encountered in the economics of uncertainty. We thus consider two applications. In the first we

show that the Fréchet-Wasserstein multiplier utility functional can be used to define and calculate,

through an easy-to-apply algorithm, the SDR and its term structure under model uncertainty and

ambiguity aversion, which could be useful in cost-benefit analysis. In the second we show that the

Wasserstein barycenter could be a useful tool for achieving consensus among agents involved in

the issuance of a CAT bond. The proposed framework could also be helpful in the study of many

issues which are characterized by model uncertainty and aversion to ambiguity, such as climate

policy, finance, insurance, real options or alternative investments.
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Appendix. Proofs of main results

Appendix A: Proof of Theorem 1

Let Q ⊂ L2([0,1]) be the set of quantile functions. Here for simplicity we restrict attention to continuous

square integrable quantile functions, i.e., we consider Q as a convex subset of L2([0,1]) and let 〈·, ·〉 be its

standard inner product.

We express the Fréchet function in terms of quantiles as the functional FM :Q→R defined by

FM(g) =

n∑
i=1

wi

∫ 1

0

|g(s)−F−1
i (s)|2ds, ∀g ∈Q, (23)

and using the same arguments as in the proof of Proposition 1 we rephrase (3) as the variational problem

U(X) = min
g∈Q

J(g) := min
g∈Q

[∫ 1

0

u(g(s))ds+φ(FM(g))

]
. (24)

We relax the problem in L2([0,1]), and assuming u,φ∈C1 we calculate the Gâteaux derivative of J , as

lim
ε→0+

1

ε
(J(g+ εḡ)− J(g)) =: 〈DJ(g), ḡ〉= 〈u′(g) + 2φ′(FM(g))

n∑
i=1

wi(g−F−1
i ), ḡ〉

= 〈u′(g) + 2φ′(FM(g))(g−F−1
B ), ḡ〉,

where we used the Lebesgue dominated convergence theorem to pass to the limit and the definition of the

Wasserstein barycenter.
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The local minimizer g∗ is an element of Q that satisfies the variational inequality

〈DJ(g∗), g∗− ḡ〉= 〈u′(g∗) + 2φ′(FM(g∗))(g∗−F−1
B ), g∗− ḡ〉 ≤ 0, ∀ ḡ ∈Q. (25)

A candidate interior solution of this is a g∗ ∈Q such that

u′(g∗(s)) + 2φ′
(
FM(g∗)

)(
g∗(s)−F−1

B (s)
)

= 0, a.e. s∈ [0,1], (26)

which in turn can be constructed in terms of the solution gρ(s) of (5) for a value of ρ = ρ∗ such that

ρ∗ = 2φ′(FM(gρ∗)). If the corresponding function gρ∗ is a quantile then F−1
∗ = gρ∗ is an admissible solution for

(3) and the representation (6) follows. For further comments on the proof, regarding conditions under which

the solution of (26) is a quantile as well as the connection of this property with the second-order conditions

see the online Appendix, Section EC.2.2, Remarks EC.1 and EC.2.

Appendix B: Proof of Theorem 2

The proof requires some technical estimates which are provided in the online Appendix, Section EC.2.3.

Here we sketch the main ideas of the proof.

(a) Applying Theorem 1, for φ(x) = θ
2
(x− FM(QB)), we conclude that a minimizer Qθ can be expressed

in terms of the solution of (5) for ρ= θ if this solution represents a quantile. For the solvability of (5) for

all s ∈ [0,1], the function F−1
B must be bounded away from 0, a fact which is guaranteed by Assumption 2.

On the other hand, problems with the solvability of (5) may arise from the term 1
θ
u′(g(s)) if θ is too small.

This requires restricting θ > θc, with the critical value θc, depending on the constants of Assumption 2 and

the utility function, arising from a careful balancing of the terms in (5) so that a suitable solution exists.

By further restricting θ, the resulting solution has monotonicity properties that allow it to be a quantile

function. These arguments are stated in detail in Section EC.2.3.

The first representation in (7) follows by direct substitution of the minimizer in the functional while the

second by observing that by (5), FB(s)−1 −F−1
θ (s) = 1

θ
u′(F−1

θ (s))≥ 0, for all s ∈ [0,1]. From (5) it is clear

that F−1
θ → F−1

B as θ→∞ and from that (with a suitable application of Lebesgue’s dominated convergence

theorem) the convergence of the utility functional follows. The bound Uθ(X)≤ UB(X) for all θ > 0 follows

by the variational definition of Uθ(X) from which it follows that Uθ(X)≤ EQB [u(X)] + φ(QB) and the fact

that for multiplier preferences φ(QB) = 0.

(b) We assume an expansion of the solution of (5) in terms of F−1
θ (s) = g0 + 1

θ
g1(s) + 1

θ2
g2(s) + ... for

g0, g1, g2, · · · , to be determined. Substituting this ansatz in (5), by Taylor expansion of u′(F−1
θ (s)) in terms

of the small parameter 1
θ
, and matching orders we obtain to second order the expression for F−1

θ in (8).

Then, the expansion for Uθ in (8) follows by direct substitution of the expansion for F−1
θ into (7). Assuming

higher regularity of u, one may continue the expansion to higher orders.

Appendix C: Proof of Proposition 2

(a) Working as in the proof of Theorem 2, in terms of the quantiles, and setting for notational simplicity

g∗(·, ε) = F−1
θ,X+ε(·) for the quantile corresponding to the minimizer of problem (4) for the random variable

X + ε, we have the representation

Uθ(X + ε) =

∫ 1

0

u(g∗(s, ε) + ε)ds+
θ

2

∫ 1

0

(g∗(s, ε)−F−1
B (s))2ds, (27)
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where g∗(·, ε) is the solution to the variational inequality∫ 1

0

(u′(g∗(s, ε) + ε) + θ(g∗(s, ε)−F−1
B (s))(g∗(s)− ḡ(s))ds≤ 0, ∀ ḡ ∈Q. (28)

Since θ > θc, we consider interior solutions, so that g∗(s, ε) is the solution of the parametric algebraic equation

1

θ
u′(g∗(s, ε) + ε) + g∗(s, ε) = F−1

B (s), s∈ [0,1]. (29)

Clearly, by continuity arguments, g∗(s,0) = F−1
θ (s), where g∗(s,0) solves

1

θ
u′(g∗(s,0)) + g∗(s,0) = F−1

B (s), s∈ [0,1],

whereas under suitable smoothness assumptions on u it can be shown that g∗(s, ε) is differentiable with

respect to ε. The marginal utility is given by the derivative of Uθ(X + ε) with respect to ε, calculated at

ε= 0,

Mθ(X) :=
d

dε
Uθ(X + ε)

∣∣∣∣
ε=0

.

Using Lebesgue’s dominated convergence theorem to differentiate under the integral sign in (27), we can

express

d

dε
Uθ(X + ε) =

∫ 1

0

{
u′(g∗(s, ε) + ε) +

(
u′(g∗(s, ε) + ε) + θ

(
g∗(s, ε)−F−1

B (s)
)) ∂

∂ε
g∗(s, ε)

}
ds,

which using (29) simplifies to
d

dε
Uθ(X + ε) =

∫ 1

0

u′(g∗(s, ε) + ε)ds.

Passing to the limit as ε→ 0, using once more Lebesgue’s dominated convergence and continuity of u′, we

conclude that

Mθ(X) =

∫ 1

0

u′(g∗(s,0))ds=

∫ 1

0

u′(F−1
θ (s))ds.

If Qθ is the probability measure minimizing problem (4) for the random variable X – corresponding to the

quantile F−1
θ – an equivalent representation is

Mθ(X) = EQθ [u
′(X)].

Since Fθ ≤ F−1
B and u′ is a decreasing function, it follows that u′(F−1

θ )≥ u′(F−1
B ) hence Mθ(X)≥MB(X).

(b) The claims follow using a perturbative expansion as in the proof of Theorem 2.

Appendix D: Proof of Proposition 3

We express problem (18) in terms of quantile functions (assumed for simplicity to be continuous and L2([0,1]))

as

max
Q∈P(R)

n∑
i=1

ln
(
ϕi(d

2(Q,Qi))
)

= min
g∈Q

I(g) := min
g∈Q

n∑
i=1

Φi

(∫ 1

0

|g(s)−F−1
i (s)|2ds

)
.

We relax the problem in L2([0,1]) and - using the smoothness of Φi and the Lebesgue dominated convergence

theorem to pass to the limit - calculate the Gâteaux derivative DI of the functional I as

lim
ε→0

1

ε
(I(g+ εḡ)− I(g)) = 〈DI(g), ḡ〉= 2

n∑
i=1

Φ′i

(∫ 1

0

|g(s)− gi(s)|2ds
)∫ 1

0

(gi(s)− g(s))ḡ(s)ds

= 2〈
n∑
i=1

Φ′i

(∫ 1

0

|g(s)−F−1
i (s)|2ds

)
(F−1

i − g), ḡ〉,
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where by 〈·, ·〉 we denote the inner product in L2([0,1]).

By the assumptions on ϕi – in particular since φi are assumed log-concave – a candidate for a local

extremum is the solution g∗ of the first-order condition DI(g∗) = 0, if it corresponds to a quantile function.

The first-order condition yields

n∑
i=1

Φ′i

(∫ 1

0

|g(s)−F−1
i (s)|2ds

)
(g−F−1

i ) = 0. (30)

Let g be any solution of (30). Defining the real numbers w̄i = Φ′i

(∫ 1

0
|g(s)−F−1

i (s)|2ds
)

for i= 1, · · · , n, we

express (30) as
n∑
i=1

w̄i(g−F−1
i ) = 0,

which is readily solved to yield

g=

n∑
i=1

wiF
−1
i , where wi =

w̄i
w̄1 + · · ·+ w̄n

. (31)

By the properties of Φ, we have that w= (w1, · · · ,wn)∈∆n−1.

Hence, any solution of (30) is a quantile average of the form (31) for an appropriate choice of w ∈∆n−1.

It remains to determine the choice of w. For this we recall the definition of w̄= (w̄1, · · · , w̄n), substitute g as

in (31) and obtain the set of algebraic equations

w̄i = Φ′i

(∫ 1

0

|
n∑
j=1

wjF
−1
j (s)−F−1

i (s)|2ds

)
, i= 1, · · · , n, (32)

which if solved will provide us with the value of w̄i (or equivalently wi) for i= 1, · · · , n.

It is convenient to express the system (32) in terms of w ∈∆n−1 only. By a straightforward calculation

Λi(w) :=

∫ 1

0

|
n∑
j=1

wjF
−1
j (s)−F−1

i (s)|2 =

∫ 1

0

( n∑
j=1

wjF
−1
j (s)−F−1

i (s)
)( n∑

`=1

w`F
−1
` (s)−F−1

i (s)
)
ds

=

n∑
j=1

n∑
`=1

wjw`

∫ 1

0

F−1
j (s)F−1

` (s)ds− 2

n∑
j=1

wj

∫ 1

0

F−1
j (s)F−1

i (s)ds+

∫ 1

0

(F−1
i (s))2ds,

which reduces to (20). Then, using the definition of wi = w̄i∑n
j=1 w̄j

, (32) and (20) we deduce (19). The existence

of a solution to (19) can be obtained by a fixed point argument using e.g., the Brouwer fixed point theorem.
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Online Appendix: Proofs and review of uncertainty averse
preferences

Appendix EC.1: The Wasserstein metric in the space of probability
measures

The definition of the Fréchet mean in the space of probability measures on Ω, denoted by P(Ω),

requires the choice of an appropriate metric d for this space. A good candidate for this task is

the Wasserstein metric. To minimize technicalities, we will focus here on the particular case where

Ω =Rd, d≥ 1, endowed with the Borel σ-algebra B(Rd). For a general discussion of the Wasserstein

metric for measures defined in more general probability spaces as well as its various applications,

see for example Santambrogio (2015) or Villani (2008).

For any two probability measures Q1,Q2 on B(Rd), we can define the p-Wasserstein distance

between then as follows:

Consider a 2d-dimensional random variable Z = (Z1,Z2), where Zi ∈Rd, i= 1,2, distributed in

terms of a probability measure Π on B(R2d), with marginals Q1 and Q2, i.e., such that Π(A×Rd) =

Q1(A) and Π(Rd×A) =Q2(A) for every A∈B(Rd). Let us denote by T the set of all such measures

on B(R2d), called transportation plans. The p-Wasserstein distance between these two measures is

defined as

Wp(Q1,Q2) =
{

inf
Π∈T

EΠ

[
|Z1−Z2|p

]}1/p

, p≥ 1.

This defines a metric in the space of probability measures compatible with the weak∗ topology

(i.e., the convergence in the duality with Cb, the space of bounded continuous functions; see San-

tambrogio 2015).10 The space of probability measures P(R) endowed with this metric is denoted

by Pp(Rd).

In the case where d= 1, i.e., when we consider any two probability measures Q1,Q2 on R, each

one of which may serve as an alternative probabilistic model for the lottery X, in the sense that

for any set A ∈ B(R), Q1(A) and Q2(A) can be interpreted as two alternative assessments of the

probability Pr(X ∈A) for the random variable X, the p-Wasserstein distance admits a closed form

representation in terms of

Wp(Q1,Q2) =

{∫ 1

0

(F−1
1 (s)−F−1

2 )p
}1/p

, p≥ 1,

10 This is the topology which is related to the weak∗ convergence in the space of probability measures. Recall that
a sequence of probability measures {Qn} on R converges to a probability measure Q on R in the weak∗ sense if∫
R φ(x)dQn(x)→

∫
R φ(x)dQ, for any bounded continuous function φ : R→ R. This is a very important notion of

convergence because of its useful compactness properties as well as its connection with simulation and Monte-Carlo
methods.
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where F−1
i are the quantile functions corresponding to the distribution functions characterizing

the measures Qi, i= 1,2.

In this work we focus on the case Ω = R and p= 2, i.e., on P(R) metrized by the 2-Wasserstein

metric, that allows the determination of the corresponding Fréchet mean utility functionals in

closed form. However, these utilities are well-posed for any choice of p > 1, as well as for general

probability measures for vector valued lotteries or factors Q∈P(Rd).

Appendix EC.2: Proofs of Statements: Remarks, comments and
extensions

Notation To ease notation in this section we will denote all quantile functions by g, and by Q the

set of quantile functions.

EC.2.1. Proof of the error bound (2)

Let Q1 and Q2 be the probability laws of agents 1 and 2. These are probability measures on

B(R), expressed in terms of distribution functions Fi, i= 1,2. Let Π be any transportation plan

between these two measures, i.e., a probability measure on B(R×R) with marginals Q1 and Q2

or equivalently with the property Π(A×R) =Q1(A) and Π(R×A) =Q2(A) for every A ∈ B(R).

Assuming without loss of generality continuous distributions, a transportation plan Π can be

expressed in terms of a joint density f :R×R→R, with the property that∫
R
f(x1, x2)dx1 = f2(x2), ∀x2 ∈R,∫

R
f(x1, x2)dx2 = f1(x1), ∀x1 ∈R,

where fi are the probability densities of the measures Qi, i= 1,2. We can easily see by applying

Fubini that

EQ1
[u(X)] =

∫
R
u(x1)f1(x1)dx1 =

∫
R×R

u(x1)f(x1, x2)dx1 dx2,

EQ2
[u(X)] =

∫
R
u(x2)f2(x2)dx2 =

∫
R×R

u(x2)f(x1, x2)dx1 dx2,

so that

|U1(X)−U2(X)|=
∣∣∣∣∫

R×R
(u(x1)−u(x2))f(x1, x2)dx1 dx2

∣∣∣∣
≤
∫
R×R
|u(x1)−u(x2)|f(x1, x2)dx1 dx2 ≤C

∫
R×R
|x1−x2|f(x1, x2)dx1 dx2,

where C is the Lipschitz constant of the utility function u. This implies that

|U1(X)−U2(X)|2 ≤C2

(∫
R×R
|x1−x2|f(x1, x2)dx1 dx2

)2

≤C2

∫
R×R
|x1−x2|2f(x1, x2)dx1 dx2,
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where we use Jensen’s inequality for the convex function φ(x) = x2. The above estimate is true for

any density f corresponding to any transportation plan Π compatible with the marginals Q1,Q2.

It therefore holds also for the infimum of this quantity over the set of such transportation plans T ,

|U1(X)−U2(X)|2 ≤C2 inf
f∈T

∫
R×R
|x1−x2|2f(x1, x2)dx1 dx2 =:C2W 2

2 (Q1,Q2).

This completes the proof.

EC.2.2. Remarks on the proof of Theorem 1

Remark EC.1 (Second-order conditions). It is interesting to look at the second-order

condition for the optimization problem for the functional J . We calculate the second derivative

D2J(g) which is considered as an operator acting from L2([0,1]) onto itself defined as

〈D2J(g)g2, g1〉= lim
ε→0

1

ε
〈DJ(g+ εg2)−DJ(g), g1〉, ∀g1, g2 ∈L2([0,1]).

A critical point g∗ of J corresponds to a local minimum in L2([0,1]) if

〈D2J(g∗)h,h〉 ≥ 0, ∀h∈L2([0,1]). (EC.1)

Using the stated smoothness and integrability conditions on u and φ we may calculate the second

derivative, and in particular the quadratic form in (EC.1).

Since for any g,h∈L2([0,1]) ,

FM(g+ εh) = FM(g) + 2ε〈g− gB, h〉,

we have upon expanding that

DJ(g+ εh) = u′(g+ εh) +φ′(FM(g+ εh))(g+ εh− gB)

=DJ(g) + ε
(
u′′(g) + 2φ′(FM(g))

)
h+ 4εφ′′(FM(g))〈g− gB, h〉 (g− gB) +O(ε2).

Hence, carefully passing to the limit we obtain that

〈D2J(g)h,h〉=
〈(
u′′(g) + 2φ′(FM(g))

)
h,h
〉

+ 4φ′′(FM(g))(〈g− gB, h〉)2

≥ 〈
(
u′′(g) + 2φ′(FM(g))

)
h,h〉=

∫ 1

0

(
u′′(g(s)) + 2φ′(FM(g))

)
h(s)2ds, ∀g,h∈L2([0,1]),

where we also used the convexity of φ.

The second-order condition for an internal minimum g∗ then becomes

〈D2J(g∗)h,h〉 ≥
∫ 1

0

(
u′′(g∗(s)) + 2φ′(FM(g∗))

)
h(s)2ds≥ 0, ∀h∈L2([0,1]),
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which is satisfied if

u′′(g∗(s)) + 2φ′(FM(g∗))≥ 0, a.e. s∈ [0,1]. (EC.2)

Note that g∗ is the solution of the first-order condition

u′(g∗(s)) + 2φ′(FM(g∗))(g∗(s)− gB(s)) = 0, s∈ [0,1]. (EC.3)

Differentiating (EC.3) with respect to s we obtain that(
u′′(g∗(s)) + 2φ′(FM(g∗))

)
dg∗

ds
(s) = 2φ′(FM(g∗))

dgB
ds

(s)≥ 0,

since gB is a quantile function, therefore, we observe that the second-order condition (EC.2) is

satisfied as long as g∗ corresponds to a quantile. In fact the second-order condition (EC.2) and the

condition required for a solution of the first order condition (EC.3) to be a quantile coincide.

In condition (EC.2), the first term is negative for a typical utility function, hence the condition

is satisfied as long as φ′(FM(g∗))≥ sups∈[0,1] |u′′(g∗(s))|, i.e., if φ is steep enough. The latter is easily

satisfied if suitable assumptions on M and u are imposed (see, e.g., Assumptions 1, 2 and the

arguments in the proof of Theorem 2). For Fréchet-Wasserstein multiplier preferences the second-

order condition simplifies to θ > sups∈[0,1] |u′′(g∗(s))|, which is satisfied by the choice of θ > θc (see

proof of Theorem 2).

Remark EC.2. (a) The right hand side of the auxiliary equation

u′(x) + ρx= ρz, ρ > 0, (EC.4)

is considered as varying, since it depends on gB(s). Observe that if ρ→∞, then Ψρ(z)' z, hence

the solution of (26) is expected to be close to gB, i.e. g∗(s) ' gB(s). For smaller values of ρ, the

solution g∗ will be a distorted quantile, the distortion coming from the effects of the 1
2ρ
u′ term.

(b) The existence or not of a solution to (26) for any s ∈ [0,1] depends on the value of

infx∈R vρ(x) =: Γ(ρ). Adopting this notation it is clear that if z < Γ(ρ), then no solution for (EC.4)

exists, therefore, if s is such that gB(s)< Γ(ρ), then u′(g∗(s))+2φ′(A(g∗))(g∗(s)−gB(s))> 0. Since

gB is an increasing function, we conclude that as long as s ∈ [0, s∗) where gB(s∗) = Γ(ρ), then

u′(g∗(s)) + 2φ′(A(g∗))(g∗(s)− gB(s))> 0 for every g∗ ∈Q, and an interior solution is not possible.

The conditions under which g∗ is a quantile depend on the choice of penalty function. For condi-

tions under which g∗ is a quantile in the special case where φ(x) = θ
2
(x−VM), see Theorem 2 and

its proof in Section EC.2.3.

(c) If u′(x)→∞ as x→ 0, then more than one solution of (26) can exist. Care has to be taken

to choose the appropriate one, i.e., the one that provides the smallest value for the function to be

minimized. That may depend on both the choice of u and of the penalty function.
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EC.2.3. Full proof of Theorem 2

(a) We need to introduce the following quantities:

KB =
n∑
i=1

wiKi,

K∗ = min
i=1,··· ,n

Ki.

Furthermore, let g∗(s) = gθ(s) be the solution of the parametrized algebraic equation

1

θ
u′(g∗(s)) + g∗(s) = gB(s), s∈ [0,1],

and define the function

Vθ(x) := u(x)

(
1− 1

2θ

(u′)
2

u(x)
+

1

2θ2

(u′)
2
u′′(x)

u(x)

)
+O

(
1

θ3

)
.

We now proceed with the proof.

In this case φ′(x) = θ
2
, and the variational inequality (25) simplifies to∫ 1

0

(u′(g∗(s)) + θ(g∗(s)− gB(s))(g∗(s)− ḡ(s))ds≤ 0, ∀ ḡ ∈Q. (EC.5)

Under Assumption 2 it is reasonable to define the set of admissible quantile functions as

QK∗ = {g ∈L2([0,1]) : g (right) continuous increasing g≥K∗ := min
i=1,··· ,n

Ki},

which is a convex set, and replace Q by QK∗ in (EC.5). For simplicity we restrict attention to

continuous quantiles. An interior solution for (EC.5) is a solution of the parametric algebraic

equation
1

θ
u′(g∗(s)) + g∗(s) = gB(s), g∗(s)≥K∗ a.e. s∈ [0,1]. (EC.6)

Equation (EC.6) clarifies the need to introduce Assumption 2. If gB(s)→ 0 as s→ 0, then (EC.6)

is impossible as its left hand side is always strictly greater than 0. Therefore, in order to guarantee

internal solutions, we need to make sure that gB does not touch 0 as s→ 0, and this is guaranteed

by Assumption 2. By the same argument, we cannot allow g∗ to touch 0 (unless we drop the

assumption that u′(0) =∞) and this leads to the introduction of the set of admissible quantile

functions QK∗ .

Moreover, the parameter θ > 0 plays a role as well in the above considerations. Clearly, as θ→∞,

the first term becomes insignificant and g∗(s)→ gB(s) for every s ∈ [0,1]. However, for very small

values of θ, i.e., for θ→ 0, the left hand side will tend to infinity for any s ∈ [0,1], pushing g∗(s)

to 0 and the equation (EC.6) will be impossible. Hence, a lower value for θ must be selected, i.e.,

a θc such that for θ > θc one may find admissible internal solutions. This choice should be such as

to keep a balance between the two terms on the left hand side of (EC.6).
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In order to estimate the critical θc, we need to ensure two conditions: (i) that (EC.6) admits

a solution g∗(s) for every choice of right hand side gB(s) ≥ KB, and (ii) the resulting function

g∗(s)∈QK∗ .

We start with (ii). Assuming a solution exists upon differentiating (EC.6) with respect to s, we

have that (
1

θ
u′′(g(s)) + 1

)
dg

ds
(s) =

dgB
ds

(s),

and since gB is increasing, g will be increasing as long as 1
θ
u′′(g(s)) + 1 ≥ 0 which, since u′′ ≤ 0,

reduces to

|u′′(g(s))| ≤ θ. (EC.7)

Since x 7→ |u′′(x)| is decreasing and g(s) >K∗, we have that |u′′(g(s))| < |u′′(K?)|; hence (EC.7)

holds as long as

|u′′(K∗)| ≤ θ, (EC.8)

is satisfied.

We now consider (i). We want to choose θ so that the equation ψ(x) := 1
θ
u′(x) + x = z has a

solution x>K∗ for any z >KB. This will be true if

min
y≥K∗

ψ(y) = min
y≥K∗

(
1

θ
u′(y) + y

)
<KB. (EC.9)

For the range of values for θ given by condition (EC.8), the function x 7→ψ(x) is increasing, hence

miny≥K∗ ψ(y) =ψ(K∗). Therefore (EC.9) becomes

1

θ
u′(K∗) +K∗ <KB,

which upon rearrangement yields

θ >
u′(K∗)

KB−K∗
. (EC.10)

Combining (EC.8) with (EC.10), we can characterize the critical θ as

θc = max

{
|u′′(K∗)|, u

′(K∗)

KB−K∗

}
. (EC.11)

Expression (7) follows by substitution of g∗ = gθ in the functional to be minimized and by simple

algebraic manipulation of the penalty term.

For the comparison of Uθ(X) and Uβ(X) =EQB [u(X)], note that

Uθ(X) = min
Q∈P2(R)

[
EQ[u(X)] +

θ

2

(
FM(Q)−FM(QB)

)]
≤EQB [u(X)] +

θ

2

(
FM(QB)−FM(QB)

)
= UB(X).

Moreover, one may prove monotonicity properties of Uθ with respect to θ.
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For the sharper upper bound on g∗ = gθ, rewrite the algebraic equation as

gθ(s) = gB(s)− 1

θ
u′(gθ(s))≤ gB(s)− 1

θ
u′(gB(s)),

where we used the estimate gθ ≤ gB and the fact that u′ is a decreasing function.

(b) We now consider the expansion of the utility functional U for large θ. Using the notation

ε= 1
θ
, we look for a solution of (EC.6) in the form g∗ = g0 + εg1 + ε2g2 +O(ε3). Substituting into

(EC.6) and assuming smoothness of u, by Taylor expansion and matching orders of ε, we obtain

the approximate solution

g∗ = gB− εu′(gB) + ε2u′′(gB)u′(gB) +O(ε3).

Substituting into (7), after some Taylor expansions we obtain the expansion for Uθ in terms of

ε= 1
θ
, as

Uθ(X) =

∫ 1

0

u(gB(s))ds− ε

2

∫ 1

0

(u′(gB(s)))2ds+
ε2

2

∫ 1

0

(u′(gB(s)))2u′′(gB(s))ds+O(ε3),

reconfirming the fact that g∗ ≤ gB and that Uθ(X)≤
∫ 1

0
u(gB(s))ds=EQB [u(X)]. �

Remark EC.3 (Error estimates for the expansion). The validity of the perturbative

expansion relies on the dependence of g on ε := 1
θ
, and in particular on the smoothness of g as a

function of the parameter ε, denoted for emphasis as g(s; ε). As the above expansion is a Taylor

expansion of the function ε 7→ g(s; ε) around the point ε= 0, with the function g defined implicitly

in terms of

εu′(g(s; ε)) + g(s, ε) = gB(s), (EC.12)

the validity of the expansion depends on the smoothness of the function g with respect to ε,

which in turn, by (EC.12), depends on the smoothness of the utility function x 7→ u(x). Indeed, a

straightforward differentiation of (EC.12) shows that, as long as u ∈ C2, we have ∂g
∂ε

=− u′(g)
1+εu′′(g) ,

so that iterating the argument, we have that in general g has one derivative less than u. This

observation indicates that in order to be able to perform the expansion up to order n in ε, we

need a utility function which is Cn+1. Standard results related to the error induced by the Taylor

approximation can be used to show that upon defining

R1(ε) := sup
s∈[0,1]

|gθ(s)− gB(s) + εu′(gB(s)|

R2(ε) := sup
s∈[0,1]

|gθ(s)− gB(s) + εu′(gB(s)− ε2u′′(gB(s))u′(gB(s))|,
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the error in approximation of gθ by keeping the first- or the second-order terms with respect to ε

in the expansion respectively is

Rn(ε)≤ Cn
(n+ 1)!

εn+1, for ε≤ ε0, n= 1,2,

as long as

sup
s∈[0,1]

∣∣∣∣∂ng(s; ε)

∂εn

∣∣∣∣≤Cn, for ε < ε0 (EC.13)

where in fact the error bound holds for any admissible order n in the expansion, higher than 1

or 2. Condition (EC.13) depends on the choice of utility function u as well as the support of the

random variable X or the nature of gB. For example, to consider the error bound for the first-order

approximation, we need to find some estimate for ∂2g(s;ε)

∂ε2
. After a simple calculation we see that

∂

∂ε
g(s; ε) =− u′(g(s; ε))

1 + εu′′(g(s; ε))
,

∂2

∂ε2
g(s; ε) =−

(
2u′′(g(s; ε)) ∂

∂ε
g(s; ε) + εu′′′(g(s; ε)

(
∂2

∂ε2
g(s; ε)

)2
)

1 + εu′′(g(s; ε))
,

so upon specification of u, estimates for the derivatives can be obtained.

Remark EC.4 (Non-interior solutions). In the case where θ < θc, when (EC.6) does not

admit a solution, then construction of the utility functional is slightly more complicated and

requires the solution of the variational inequality (EC.5), which can be done using numerical tech-

niques or a suitable perturbation expansion.

Remark EC.5 (Relaxing Assumptions 1 and 2). If we relax Assumption 1 so that the

marginal utility is finite at 0, then we are allowed to set K∗ = 0, removing the restriction that g is

strictly positive. This also allows us to relax Assumption 2 on the set of models M.

EC.2.4. Marginal utility in the CRRA family

Assuming now that we operate within the CRRA family, u(x) = 1
1−γ0

x1−γ0 , we can calculate the

expansion for M(X) in the form

Mθ(X) =MB(X,γ0) +
γ0

θ
MB(X,1 + 2γ0)

+
γ0(3γ0 + 1)

2θ2
MB(X,2 + 3γ0), (EC.14)

where

MB(X,γ) :=EQB [u′(X)] =EQB [(X)−γ ]

is the marginal utility of X for an agent whose preferences are characterized by an expected utility

function, under the probability measure which is related to the Wasserstein barycenter QB of the
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model set M, with CRRA utility with risk aversion coefficient γ. This leads to an interesting

interpetation of the marginal utility for an uncertainty averse agent, as a linear combination of

MB(X,γ) with increasing values of risk aversion coefficients (i.e., γ0, 1 + 2γ0 and 2 + 3γ0) with

these terms becoming increasingly important as θ decreases. This interpretation provides a clear

link between risk aversion and uncertainty aversion. A similar expression and interpretation holds

for the exponential family.

EC.2.5. Analytic approximations for the social discount rate (SDR)

EC.2.5.1. A general expansion for the SDR In particular the following expansion holds:

r(t) = rB(t)− 1

θ

1

tu′(C(0))
EQt,B [u′′′(C(t))] (EC.15)

− 1

θ2

1

tu′(C(0))
EQt,B

[
[u′(C(t))

[
(u′′(C(t)))2 +

1

2
u′′′(C(t))u′(C(t))

]]
+O

(
1

θ3

)
.

We can see that, for utility functions for which u′′′ > 0 (e.g., members of the exponential and the

CRRA family), relation (16) is also satisfied by the expansion (EC.15). Since the term u′(C(0))

simply contributes a scaling factor to the formula, without loss of generality we set C(0) = 1 as the

numeraire for consumption to simplify the notation.

EC.2.5.2. The SDR with CRRA utility Assuming now that we operate within the CRRA

family u(x) = 1
1−γ0

x1−γ0 , upon substitution into the Ramsey formula under uncertainty (15) where

MB(X,γ0) :=EQB [u′(X)] =EQB [(X)−γ0 ],

we obtain an expansion for the SDR for large enough θ in terms of

r(t) = δ− 1

t
ln

(
MB(C(t), γ0) +

γ0

θ
MB(C(t),1 + 2γ0) +

γ0(3γ0 + 1)

2θ2
MB(C(t),2 + 3γ0)

)
,

which can further be approximated as

r(t) = rB(t)− 1

t

γ0

θ

MB(C(t),1 + 2γ0)

MB(C(t), γ0)

− 1

t

γ0

θ2

{
(3γ0 + 1)

MB(C(t),2 + 3γ0)

MB(C(t), γ0)
− γ0

(
MB(C(t),1 + 2γ0)

MB(C(t), γ0)

)2
}

+O

(
1

θ3

)
.

Here rB(t) is the SDR under the probability measure corresponding to the Wasserstein barycenter

of the set of models Mt. The remaining terms are corrections due to uncertainty aversion, which

are expressed in terms of nonlinear functions of the expected marginal utilities under QB. These

terms correspond to CRRA utilities but with a higher risk aversion coefficient. Hence, the effect

of uncertainty aversion, at least to first order in 1
θ
, is to decrease the SDR as compared to the

barycentric one. The relevant comparison for general θ follows from Proposition 2.

We further consider two specific examples for the probability models concerning the random

variable C(t) which are considered in reference set M, and the corresponding Wasserstein barycenter

model.
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EC.2.5.3. Location scale families: Under the additional assumption that all agents have

models according to which C(t) follows a location scale family, each one with different parameters

(µt,i, σt,i), i.e., F−1
t,i (s) = µt,i+σt,iF

−1(s), the Wasserstein barycenter for Mt is of the form F−1
t,B(s) =

µt,B +σt,BF
−1(s), where µt,B =

∑n

i=1wiµt,i and σt,i =
∑n

i=1wiσt,i so that

MB(C(t), γ) =EQt,B [(C(t))−γ ] =

∫ 1

0

(µt,B +σt,BF
−1(s))−γds.

The calculation of the SDR r(t) is then reduced to the calculation of a class of parametric integrals

of the form
∫ 1

0
(µ+ σF−1(s))−γds which, if not possible analytically in closed form, can always be

performed numerically, either using quadrature techniques or Monte-Carlo integration. The second

choice is very easy to implement, since knowledge of the quantile allows for creation of the relative

sample on which the integral can easily be estimated, using the method of inversion. This integral

is well-posed as long as infs∈[0,1] µt,B + σt,BF
−1(s)≥K∗ > 0, which is always true if Assumption 2

holds and at least one of the Ki > 0.

EC.2.5.4. Log normal consumption distribution In the case where consumption follows

the log normal distribution, that is for any t > 0 under the Wasserstein barycenter measure Qt,B,

lnC(t)∼N(µt,B, σ
2
t,B) where µt,B and σ2

t,B depend on t, an expression for the uncertainty averse

SDR can be obtained in closed form.

In order to perform the calculation for the quantities MB(C(t), γ), we express

MB(C(t), γ) =EQt,B [(C(t))−γ ] =EQt,B [exp(−γ lnC(t))],

and using the formula for the exponential moments of the normal distribution we find, after some

algebra, that

r(t) = rB(t)− γ0

θ

1

t
exp(A1(t))− γ0

θ2

1

t
{(3γ0 + 1)exp(A2(t))− γ0 exp(2(A1(t))}+O

(
1

θ3

)
, (EC.16)

where

rB(t) = δ+ γ0

1

t
µt,B −

γ2
0

2

1

t
σ2
t,B,

and A1 = a1− a0, A2 = a2− a0 with

ai(t) =−γi
(
µt,B −

1

2
γiσ

2
t,B

)
, i= 0,1,2.

EC.2.5.5. Numerical estimation of the SDR The SDR can be calculated numerically

using the following step-by-step algorithmic procedure.
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Algorithm [Calculation of r(t)]

A. Suppose that we have n different models concerning the distribution of C(t). Thus, for each

t ∈ R+ we have a set of Mt = {Qt,i, i= 1, · · · , n} of n distinct probability measures Qt,i that can

model the random variable C(t). These measures can be characterized through the distribution

functions Ft,i or their inverses, the quantile functions gt,i.

B. If each of the models is assigned a weight wi, the Wasserstein barycenter is of the form

gt,B(s) =
N∑
i=1

wigt,i(s), s∈ (0,1).

C. If a Fréchet means utility functional is used to evaluate C(t) and the corresponding marginal

utility, then we can calculate the minimizing quantile function by solving for each s ∈ [0,1] the

algebraic equation

u′(x) + θx− θgt,B(s) = 0,

and then set g∗t (s) = x. This step is very easy to handle numerically, as it is an algebraic equation

for a single variable, and in the cases of CRRA utilities with γ = 1,2 can be obtained analytically

(see previous section).

D. Having obtained the minimizing quantile g∗t , the marginal utility M(C(t)) is calculated by

calculating the integral

M(C(t)) =

∫ 1

0

u′(g∗t (s))ds.

This can be performed numerically, using a quadrature procedure.

E. The SDR can then be calculated by

r(t) = δ− 1

t
ln
M(C(t))

u′(C(0))
.

Appendix EC.3: A brief review of uncertainty averse preferences

Cerreia-Vioglio et al. (2011) introduced a general class of preferences called uncertainty averse

preferences. These preferences take ambiguity into consideration and can be considered as general-

izations of certain important paradigms in decision making under uncertainty in the sense that they

include as special cases the Maccheroni-Marinacci-Rustichini variational preferences model (Mac-

cheroni et al. 2006) and because of that the Gilboa-Schmeidler minimax utility model (Gilboa and

Schmeidler 1989), the Hansen and Sargent multiplier preferences model (see Hansen and Sargent

2001).

The uncertainty averse preferences require the introduction of the standard Anscombe-Aumann

set-up in decision theory, in which F is a set of uncertain acts f : S →X, where S is a state space

and X is a convex outcome space. By ∆ we denote the set of all probability measures on S. As
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is standard in this theory, the preferences � are on the acts. According to Cerreia-Vioglio et al.

(2011), the preference relation � is uncertainty averse if and only if there exists a utility function

u : X→ R and a quasi-convex function G : u(X)×∆→ (−∞,∞], increasing in the first variable

such that the preference functional

U(f) := min
P∈∆

G

(∫
u(f)dP,P

)
, ∀f ∈ F (EC.17)

represents the preference relation. The outcome space can be considered as a lottery space (i.e., a

space of random variables), and the meaning of an act is that, depending on the state of the world

s, the DM faces a different lottery (which is in fact a random variable with a given probability

distribution).11

Depending on the choice of G we may recover all the aforementioned preference models. For

example, if G(t,P ) = t+ δP0
(P ), where δP0

is the Dirac measure on ∆ (i.e., a delta measure on a

space of measures), then U(f) =
∫
u(f)dP0 = EP0

[u(f)] is a subjective expected utility function,

over the subjective probability measure P0. If, on the other hand, G(t,P ) = t+c(P ) where c : ∆→R

is a convex function, then the preference functional becomes the variational preferences functional

U(f) = minP∈∆[
∫
u(f)dP +c(P )]. Depending on the choice for c, we obtain a variety of preferences:

(i) If c(P ) = IC(P ) where C ⊂ ∆ is closed and convex, and IC is the indicator function in

the sense of convex analysis, then we recover the Gilboa-Schmeidler minmax utility U(f) =

minP∈C [
∫
u(f)dP ]. In the particular case where C = {P0}, i.e., where the set C consists of a single

element, we recover the subjective expected utility case.

(ii) If c(P ) = θKL(P ||P0) where KL(·||P0) is the Kullback-Leibler divergence from a given refer-

ence measure, the U(f) = minP∈∆[
∫
u(f)dP + θKL(P ||P0)], the multiplier preferences introduced

by Hansen and Sargent.

(iii) If c(P ) = IC(P ) where C = {P ∈ ∆ : KL(P ||P0) < H0}, then we obtain the constraint

preferences of Hansen and Sargent. It is well-known (through a simple application of Lagrange

multiplier theory) that for particular values of θ the corresponding variational preferences coincide

with the constraint preferences.

If on the other hand we use non-separable forms for G, i.e., if G(t,P ) = t+ minQ∈Γ(P ) It(Q||Q0)

where It(· ||Q0) is some statistical distance function that generalizes relative entropy and Γ(P ) is

a suitable set of second-order probabilities, then the model (EC.17) reduces to the smooth prefer-

ences model of Klibanoff, Marinacci and Mukerjii where U(f) = φ−1(
∫

∆
φ(
∫
S
u(f(s)))dP (s))dµ(P )),

11 As a simple example consider the Elsberg-Schmeidler thought experiment in which “nature” chooses a coin s ∈ S
which has probability (a,1− a) on the heads and tails respectively. The action is a lottery on the heads and the
tails, i.e., a random variable with a probability distribution depending on s. For example, betting 1 euro on heads
corresponds to the lottery f = 1H and f(s) will then yield 1 euro with probability a and 0 euros with probability
1− a. More complicated lotteries f(s) can also be selected.
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where φ is a continuous and strictly increasing function and µ is a probability measure on ∆.

Smooth preferences are not necessarily distinct from variational preferences; as shown in Cerreia-

Vioglio et al. (2011), if φ is a function corresponding to constant absolute risk aversion12 then the

smooth preferences reduce to a variational preference.

In closing this short review, we wish to mention that uncertainty averse preferences satisfy a

well-defined set of axioms. The first set of axioms which allows us to characterize a preference

relation as uncertainty averse are standard rationality axioms (weak order and monotonicity) along

with a convexity axiom according to which f1 ∼ f2 implies that αf1 + (1 − α)f2 ≥ f1 for any

α ∈ (0,1). The remaining axioms on the preference relation are somewhat technical, such as for

instance continuity assumptions or a weak version of the risk independence axiom which holds

for the constant acts only, i.e., for any triple of constant acts13 x1, x2, x3 ∈ X, if x1 ∼ x2 then

αx1 + (1− α)x3 ∼ αx1 + (1− α)x3 for any α ∈ (0,1). Further refinement of the technical axioms

yield more refined results on the mapping G. For details, we refer to Cerreia-Vioglio et al. (2011).

Let S be a state space modelling the various states of nature, and consider mappings f : S →X

which model the outcome of an action effected by the agent which is dependent on the state of the

world; f(s) is the effect of action f if the state of the world s ∈ S materializes. The constant act

f(s) = x for all s∈ S will be simply denoted by x. The agent is equipped with a preference relation

on the set of acts, �. Following Maccheroni et al. (2006) we assume that the preference relation

satisfies the following properties.

Assumption EC.1 (Properties of �). The preference relation � satisfies the following prop-

erties:

A.1 Weak order, i.e., � is complete and transitive.

A.2 Weak certainty independence, i.e., λf1 + (1− λ)x� λf2 + (1− λ)x implies that λf1 + (1−

λ)y� λf2 + (1−λ)y, for any acts f1, f2, any constant acts x, y and λ∈ (0,1).

A.3 Continuity, i.e., the sets {λ∈ [0,1] : λf1 + (1−λ)f2 � f3} and {λ∈ [0,1] : f3 � λf1 + (1−

λ)f2} are closed sets for any acts f1, f2, f3.

A.4 Monotonicity, i.e., if f1(s)� f2(s) for any s∈ S then f1 � f2.

A.5 Uncertainty aversion, i.e., f1 ∼ f2 implies that λf1 + (1−λ)f2 � f1 for any acts f1, f2 and

any λ∈ (0,1).

A.6 Nondegeneracy, i.e., f1 � f2 for some acts f1, f2.

Definition EC.1 (Variational preferences, Maccheroni et al. (2006)). A preference

relation � on the space of acts is called variational if it satisfies the axioms of Assumption EC.1.

12 That is, φ(t) =−a exp(−θt) + b or φ(t) = at= b, with a, θ > 0 and b∈R.

13 That is, acts such that x(s) = x for every s∈ S.


